JP7168215B2 - Article inspection device and article inspection method - Google Patents

Article inspection device and article inspection method Download PDF

Info

Publication number
JP7168215B2
JP7168215B2 JP2019010261A JP2019010261A JP7168215B2 JP 7168215 B2 JP7168215 B2 JP 7168215B2 JP 2019010261 A JP2019010261 A JP 2019010261A JP 2019010261 A JP2019010261 A JP 2019010261A JP 7168215 B2 JP7168215 B2 JP 7168215B2
Authority
JP
Japan
Prior art keywords
light
image
polarizer
article
resin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019010261A
Other languages
Japanese (ja)
Other versions
JP2020118557A (en
Inventor
弘樹 本庄
祐一 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N Tech KK
Original Assignee
N Tech KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Tech KK filed Critical N Tech KK
Priority to JP2019010261A priority Critical patent/JP7168215B2/en
Publication of JP2020118557A publication Critical patent/JP2020118557A/en
Application granted granted Critical
Publication of JP7168215B2 publication Critical patent/JP7168215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、光透過性の無機材料よりなる物品における光透過性の樹脂部材の有無又は位置を検査する物品検査装置及び物品検査方法に関する。 The present invention relates to an article inspection apparatus and article inspection method for inspecting the presence or absence or position of a light-transmitting resin member in an article made of a light-transmitting inorganic material.

例えば、特許文献1には、第1偏光フィルタと第2偏光フィルタとを用いてガラス壜(物品の一例)に付されたラベル(樹脂部材の一例)の貼付位置を検査する物品検査装置が開示されている。この検査装置では、光源から出た光を第1偏光フィルタを通過させた後、ラベルを貼付したガラス壜のラベル上縁付近を通過させ、更に第1偏光フィルタとほぼ直角方向の振動の光を通過させる第2偏光フィルタを通過させることで、ラベルを通過した光以外の光はカットされる。ラベルの透明部分を通過した光は、振動の向きが90°回転するので、カメラにはラベルの透明部分を通過した光だけが到達し、その通過した光を画像処理することでラベルの貼付位置を検査する。 For example, Patent Literature 1 discloses an article inspection device that inspects the pasting position of a label (an example of a resin member) attached to a glass bottle (an example of an article) using a first polarizing filter and a second polarizing filter. It is In this inspection device, the light emitted from the light source is passed through the first polarizing filter, then passed through the vicinity of the label upper edge of the glass bottle to which the label is pasted, and furthermore, the light oscillating in a direction substantially perpendicular to the first polarizing filter is passed through. Light other than the light that has passed through the label is cut by passing through the second polarizing filter. The direction of vibration of the light that passes through the transparent part of the label is rotated by 90°, so only the light that has passed through the transparent part of the label reaches the camera. to inspect.

しかし、ラベル等の樹脂部材が複屈折率を有するなど光学的に非等方性の樹脂材料である場合、樹脂部材の透明部分を通過した光の振動の向きが回転する角度は、90°に限らず、樹脂部材の向き(例えば光学軸の向き)や種類によって変化する場合がある。光源から出た光が第1偏光フィルタを通過した偏光の振動方向が、樹脂部材の向きや種類に合っていない場合、樹脂部材を透過した光の一部又は略全部が第2偏光フィルタにカットされてしまい、検査の精度が大幅に低下する。 However, if the resin member such as a label is made of an optically anisotropic resin material such as having a birefringence index, the angle at which the direction of vibration of the light passing through the transparent portion of the resin member rotates is 90°. However, it may change depending on the direction of the resin member (for example, the direction of the optical axis) and the type. If the vibration direction of the polarized light emitted from the light source that passes through the first polarizing filter does not match the orientation or type of the resin member, part or substantially all of the light that has passed through the resin member is cut by the second polarizing filter. and the accuracy of the inspection is greatly reduced.

また、特許文献2には、光源から出射された光を偏光子により直線偏光とし、この直線偏光を、透明フィルムを通過させ、その通過光を偏光子と偏光方向が略直交する検光子に照射して、検光子を通過した光量の変化をイメージセンサにより検出する透明フィルム検出装置が開示されている。この装置では、透明フィルムの種類が変わったとき、偏光子と検光子との偏光方向が略直交した状態を維持したまま回転させる回転手段を駆動させ、偏光子と検光子を、透明フィルムへ入射する直線偏光の偏光方向が透明フィルムによって十分大きな角度だけ旋光される位置に調整できる。 Further, in Patent Document 2, the light emitted from the light source is linearly polarized by a polarizer, the linearly polarized light is passed through a transparent film, and the passing light is irradiated to an analyzer whose polarization direction is substantially orthogonal to the polarizer. Then, a transparent film detection device is disclosed in which an image sensor detects a change in the amount of light that has passed through an analyzer. In this device, when the type of transparent film is changed, the rotating means for rotating the polarizer and the analyzer while maintaining the polarization directions of the polarizer and the analyzer being substantially perpendicular to each other is driven, and the polarizer and the analyzer are incident on the transparent film. The polarization direction of the linearly polarized light can be adjusted to a position where it is optically rotated by a sufficiently large angle by the transparent film.

特開2002-296009号公報JP-A-2002-296009 特開平5-319680号公報JP-A-5-319680

しかしながら、特許文献2に記載の回転手段があっても、ガラス壜等の物品に付されるラベルや透明フィルム等の樹脂部材の向き又は種類が変わる度に、回転手段を駆動させ、偏光子と検光子とを略直交を維持したまま回転させる調整作業が必要となる。また、検査ラインにラベル等の樹脂部材の向き又は種類の異なる物品が混在する検査には対応できない。このため、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査できる物品検査装置が要望されている。 However, even if the rotating means described in Patent Document 2 is provided, the rotating means is driven every time the orientation or type of the resin member such as a label attached to an article such as a glass bottle or a transparent film changes, and the polarizer and the like are changed. An adjustment operation is required to rotate the analyzer while maintaining a substantially orthogonal orientation. In addition, it is not possible to handle inspections in which articles such as labels with different orientations or different kinds of resin members are mixed in the inspection line. Therefore, there is a demand for an article inspection apparatus that can inspect the presence or absence or position of a resin member on an article regardless of the orientation or type of the resin member attached to the article.

本発明の目的は、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査できる物品検査装置及び物品検査方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an article inspection apparatus and an article inspection method capable of inspecting the presence or absence or position of a resin member on an article regardless of the orientation or type of the resin member attached to the article.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する物品検査装置は、光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査装置であって、第1光源、第1偏光子及び検光子を有し、前記第1光源の光が前記第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された前記検光子を通して第1の像を生成する第1の像生成機構と、第2光源、第2偏光子、移相子及び検光子を有し、前記第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された前記第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過する前後の少なくとも一方で前記第2偏光を前記移相子に通して当該第2偏光の位相差を変更して、当該第2偏光の振動方向を前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度に応じた角度だけ回転させて第3偏光とし、当該第3偏光を前記検光子に通して第2の像を生成する第2の像生成機構と、前記第1の像と前記第2の像とを撮像する撮像部と、前記撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査部と、を備える。
Means for solving the above problems and their effects will be described below.
An article inspection apparatus that solves the above problems is an article inspection that irradiates light onto an inspection target area of an article made of a light-transmitting inorganic material to inspect the presence or absence or position of a light-transmitting resin member attached to the article. An apparatus comprising a first light source, a first polarizer, and an analyzer, wherein light from the first light source passes through the first polarizer and irradiates a first polarized light onto an inspection target region of the article, a first image generating mechanism for generating a first image of the first polarized light transmitted through the article through the analyzer arranged such that the transmission axis crosses the transmission axis of the first polarizer; It has two light sources, a second polarizer, a phase shifter and an analyzer, and the light from the second light source is arranged in a direction such that the transmission axis is at a different angle with respect to the transmission axis of the first polarizer. A region to be inspected of the article is irradiated with the second polarized light that has passed through the second polarizer, and the second polarized light is passed through the phase shifter at least before and after passing through the article to obtain a phase difference of the second polarized light. is changed to rotate the vibration direction of the second polarized light by an angle corresponding to the predetermined angle formed by the transmission axes of the first polarizer and the second polarizer to obtain the third polarized light, and a second image generating mechanism that passes polarized light through the analyzer to generate a second image; an imaging unit that captures the first image and the second image; and an image captured by the imaging unit. and an inspection unit that inspects the presence or absence or position of the resin member based on.

この構成によれば、第1の像生成機構と第2の像生成機構により、検査対象領域にある樹脂部材に対して光の振動方向(偏光の向き)が所定角度だけ異なる2つの偏光が照射されるので、樹脂部材の向き又は種類によらず樹脂部材を透過する2つの偏光の振動方向の回転する角度が、2つの偏光のうち一方で大きく他方で小さくなる。また、第2の像生成機構では、第2偏光子と検光子のそれぞれの透過軸が直交していないが、移相子を通して光の振動方向を所定角度に応じた角度だけ回転させる。このため、検査対象領域で樹脂部材を透過した2つの偏光のうち一方が検光子でカットされても他方が検光子を透過する。この結果、第1の像と第2の像は、そのうちの一方で樹脂部材の部分が暗くても、他方で樹脂部材の部分が明るくなる関係にある。そのため、第1の像と第2の像を撮像した撮像画像では、必ず樹脂部材の部分が明部となり樹脂部材以外の部分が暗部となる。検査部はこの撮像画像を基に樹脂部材の有無又は位置を検査する。よって、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査することができる。 According to this configuration, the first image generation mechanism and the second image generation mechanism irradiate the resin member in the inspection target area with two polarized light beams whose oscillation directions (polarization directions) differ by a predetermined angle. Therefore, the rotation angle of the vibration directions of the two polarized light beams passing through the resin member is large for one of the two polarized light beams and small for the other, regardless of the direction or type of the resin member. In the second image generation mechanism, the transmission axes of the second polarizer and the analyzer are not perpendicular to each other, but the vibration direction of the light is rotated by an angle corresponding to a predetermined angle through the phase shifter. Therefore, even if one of the two polarized lights transmitted through the resin member in the inspection target area is cut off by the analyzer, the other is transmitted through the analyzer. As a result, even if one of the first image and the second image has a dark resin member portion, the other has a bright resin member portion. Therefore, in captured images obtained by capturing the first image and the second image, the portion of the resin member always becomes a bright portion, and the portion other than the resin member becomes a dark portion. The inspection unit inspects the presence or absence or position of the resin member based on this captured image. Therefore, the presence or absence or position of the resin member on the article can be inspected regardless of the orientation or type of the resin member attached to the article.

上記物品検査装置において、前記移相子は、前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度θに応じた角度(nπ-θ)(但しnは0以上の整数)だけ偏光の振動方向を回転可能な分の位相差を変更することが好ましい。 In the above article inspection apparatus, the phase shifter has an angle (nπ−θ) corresponding to a predetermined angle θ between transmission axes of the first polarizer and the second polarizer (where n is 0 or more). It is preferable to change the phase difference by an amount capable of rotating the oscillation direction of the polarized light by (integer).

この構成によれば、物品に付される樹脂部材の向き又は種類によらず、撮像画像中の樹脂部材の部分の明度を高くできる。よって、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を高い精度で検査できる。 According to this configuration, the brightness of the resin member portion in the captured image can be increased regardless of the direction or type of the resin member attached to the article. Therefore, the presence or absence or position of the resin member on the article can be inspected with high accuracy regardless of the direction or type of the resin member attached to the article.

上記課題を解決する物品検査装置は、光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査装置であって、第1光源、第1偏光子及び第1検光子を有し、前記第1光源の光が前記第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された前記第1検光子を通して第1の像を生成する第1の像生成機構と、第2光源、第2偏光子及び第2検光子を有し、前記第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された前記第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過した第2偏光を、前記第2偏光子の透過軸に対して透過軸が交差する向きに配置された前記第2検光子を通して第2の像を生成する第2の像生成機構と、前記第1の像と前記第2の像とを撮像する撮像部と、前記撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査部と、を備える。 An article inspection apparatus that solves the above problems is an article inspection that irradiates light onto an inspection target area of an article made of a light-transmitting inorganic material to inspect the presence or absence or position of a light-transmitting resin member attached to the article. An apparatus comprising a first light source, a first polarizer, and a first analyzer, wherein light from the first light source passes through the first polarizer and irradiates a first polarized light onto an area to be inspected of the article. and a first image generator for generating a first image of the first polarized light transmitted through the article through the first analyzer oriented such that the transmission axis crosses the transmission axis of the first polarizer. a mechanism, a second light source, a second polarizer, and a second analyzer, wherein light from the second light source is oriented such that the transmission axis is at a different angle with respect to the transmission axis of the first polarizer; The inspection target area of the article is irradiated with the second polarized light that has passed through the second polarizer, and the second polarized light that has passed through the article is applied in a direction in which the transmission axis intersects the transmission axis of the second polarizer. a second image generation mechanism that generates a second image through the second analyzer arranged in the second image generation mechanism, an imaging unit that captures the first image and the second image, and the imaging unit acquires an inspection unit that inspects the presence or absence or position of the resin member based on the captured image.

この構成によれば、第1の像生成機構と第2の像生成機構により、検査対象領域にある樹脂部材に対して光の振動方向(偏光の向き)が所定角度だけ異なる2つの偏光が照射されるので、樹脂部材の向き又は種類によらず樹脂部材を透過する2つの偏光の振動方向の回転する角度が、2つの偏光のうち一方で大きく他方で小さくなる。この結果、第1の像と第2の像は、そのうちの一方で樹脂部材の部分が暗くても他方で樹脂部材の部分が明るくなる関係にある。そのため、第1の像と第2の像を撮像した撮像画像では、必ず樹脂部材の部分が明部となり樹脂部材以外の部分が暗部となる。検査部はこの撮像画像を基に樹脂部材の有無又は位置を検査する。よって、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査することができる。 According to this configuration, the first image generation mechanism and the second image generation mechanism irradiate the resin member in the inspection target area with two polarized light beams whose oscillation directions (polarization directions) differ by a predetermined angle. Therefore, the rotation angle of the vibration directions of the two polarized light beams passing through the resin member is large for one of the two polarized light beams and small for the other, regardless of the direction or type of the resin member. As a result, the first image and the second image have a relationship in which one of them has a dark resin member portion and the other has a bright resin member portion. Therefore, in captured images obtained by capturing the first image and the second image, the portion of the resin member always becomes a bright portion, and the portion other than the resin member becomes a dark portion. The inspection unit inspects the presence or absence or position of the resin member based on this captured image. Therefore, the presence or absence or position of the resin member on the article can be inspected regardless of the orientation or type of the resin member attached to the article.

上記物品検査装置は、前記撮像部を制御する駆動制御部を備え、前記駆動制御部は、前記撮像部に前記第1の像と前記第2の像とを1フレームの撮像動作で撮像させることが好ましい。 The article inspection apparatus includes a drive control section that controls the image pickup section, and the drive control section causes the image pickup section to pick up the first image and the second image in one frame of image pickup operation. is preferred.

この構成によれば、撮像部が第1の像と第2の像とを1フレームの撮像動作で撮像するので、1つの撮像画像を処理することによって、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査することができる。よって、検査部による検査処理が簡単で済む。 According to this configuration, since the image capturing unit captures the first image and the second image in one frame of image capturing operation, by processing one captured image, the direction or direction of the resin member attached to the article can be determined. The presence or absence or position of a resin member in an article can be inspected regardless of the type. Therefore, the inspection processing by the inspection unit can be simplified.

上記物品検査装置において、前記駆動制御部は、前記撮像部の同一の1フレーム撮像期間内に前記第1光源と前記第2光源とを異なるタイミングで発光させることが好ましい。
この構成によれば、第1光源の発光期間に生成される第1の像と、第2光源の発光期間に生成される第2の像とが、撮像部によって異なるタイミングで撮像される。よって、これら2つの像を同じタイミングで撮像する構成とした場合に比べ、1つの撮像画像中の樹脂部材の部分を、樹脂部材以外の物品のみの部分を含む背景の暗部に対し明度の高い明部として得ることができる。この結果、物品に付された樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を高い精度で検査できる。
In the article inspection apparatus described above, it is preferable that the drive control section causes the first light source and the second light source to emit light at different timings within the same one-frame imaging period of the imaging section.
According to this configuration, the imaging unit captures the first image generated during the light emission period of the first light source and the second image generated during the light emission period of the second light source at different timings. Therefore, compared to a configuration in which these two images are captured at the same timing, the portion of the resin member in one captured image is brighter than the dark portion of the background including the portion of only the article other than the resin member. can be obtained as a part. As a result, the presence or absence or position of the resin member on the article can be inspected with high accuracy regardless of the direction or type of the resin member attached to the article.

上記物品検査装置では、前記第1光源と前記第2光源を異なるタイミングで発光させ、前記撮像部は、前記第1の像と前記第2の像を個別の異なる2フレームで撮像することが好ましい。 In the article inspection device, it is preferable that the first light source and the second light source emit light at different timings, and the imaging section captures the first image and the second image in two separate and different frames. .

この構成によれば、撮像部は、第1の像と第2の像とを異なる個別の2フレームで撮像するので、それぞれのフレーム撮像時の露光時間を調整しやすく、第1の像を含む第1画像と第2の像を含む第2画像とを適切な明度又はコントラストで取得しやすい。また、撮像部が第1の像と第2の像とを2フレームで撮像する構成であれば、フレーム間の差分処理が可能となる。2つの画像差が小さい場合には、検査部がフレーム間の差分をとることで検出精度を上げることができる。よって、検査部は、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を高い精度で検査できる。 According to this configuration, the image capturing unit captures the first image and the second image in two different individual frames, so that the exposure time when capturing each frame can be easily adjusted, and the image including the first image can be captured. It is easy to obtain the first image and the second image including the second image with appropriate brightness or contrast. Further, if the imaging unit is configured to capture the first image and the second image in two frames, difference processing between frames becomes possible. If the difference between the two images is small, the detection accuracy can be improved by having the inspection unit take the difference between the frames. Therefore, the inspection section can inspect the presence or absence or position of the resin member on the article with high accuracy regardless of the orientation or type of the resin member attached to the article.

上記課題を解決する物品検査方法は、光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査方法であって、第1光源の光が第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された検光子を通して第1の像を生成する第1の像生成工程と、第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過する前後の少なくとも一方で前記第2偏光の位相差を変更して、当該第2偏光の振動方向を前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度に応じた角度だけ回転させて第3偏光とし、当該第3偏光を前記検光子に通して第2の像を生成する第2の像生成工程と、前記第1の像と前記第2の像とを撮像する撮像工程と、前記撮像工程で取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査工程と、を備える。 An article inspection method for solving the above problems is an article inspection for inspecting the presence or absence or position of a light-transmitting resin member attached to the article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material. In the method, light from a first light source passes through a first polarizer and irradiates a region to be inspected of the article with the first polarized light, and the first polarized light that has passed through the article is applied to the transmission axis of the first polarizer. a first image generating step of generating a first image through an analyzer oriented with the transmission axis crossed with respect to the A region to be inspected of the article is irradiated with the second polarized light that has passed through the second polarizer arranged in the direction of the transmission axis of the angle, and the phase difference of the second polarized light is adjusted at least before and after passing through the article. changing the vibration direction of the second polarized light by an angle corresponding to a predetermined angle formed by the transmission axes of the first polarizer and the second polarizer to obtain the third polarized light; is passed through the analyzer to generate a second image, an imaging step of imaging the first image and the second image, and the captured image obtained in the imaging step and an inspection step of inspecting the presence or absence or position of the resin member based on the inspection.

この方法によれば、上記物品検査装置と同様の作用効果を得ることができる。
上記課題を解決する物品検査方法は、光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査方法であって、第1光源の光が第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子と透過軸が交差する向きに配置された第1検光子を通して第1の像を生成する第1の像生成工程と、第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過した第2偏光を、前記第2偏光子の透過軸に対して透過軸が交差する向きに配置された第2検光子を通して第2の像を生成する第2の像生成工程と、前記第1の像と前記第2の像とを撮像する撮像工程と、撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査工程と、を備える。
According to this method, it is possible to obtain the same effect as that of the article inspection apparatus.
An article inspection method for solving the above problems is an article inspection for inspecting the presence or absence or position of a light-transmitting resin member attached to the article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material. In the method, light from a first light source passes through a first polarizer and irradiates a region to be inspected of the article with the first polarized light, and the first polarized light that has passed through the article is applied to the first polarizer and the transmission axis. generating a first image through a first analyzer oriented in a crossed direction; and transmitting light from a second light source at different angles with respect to the transmission axis of the first polarizer. A region to be inspected of the article is irradiated with the second polarized light that has passed through a second polarizer arranged in an axial direction, and the second polarized light that has passed through the article is directed to the transmission axis of the second polarizer. a second image generating step of generating a second image through a second analyzer arranged in a direction in which the transmission axes intersect; an imaging step of imaging the first image and the second image; and an inspection step of inspecting the presence or absence or position of the resin member based on the captured image acquired by the unit.

この方法によれば、上記物品検査装置と同様の作用効果を得ることができる。 According to this method, it is possible to obtain the same effect as that of the article inspection apparatus.

本発明によれば、物品に付される樹脂部材の向き又は種類によらず、物品における樹脂部材の有無又は位置を検査できる。 According to the present invention, the presence or absence or position of a resin member in an article can be inspected regardless of the orientation or type of the resin member attached to the article.

第1実施形態における容器検査装置を備えた容器検査システムを示す模式側面図。1 is a schematic side view showing a container inspection system provided with a container inspection device according to the first embodiment; FIG. 透明な樹脂部材が付された容器を示す模式側面図。FIG. 4 is a schematic side view showing a container to which a transparent resin member is attached; 容器検査装置を示す模式平面図。The schematic plan view which shows a container inspection apparatus. 容器検査処理を示すフローチャート。4 is a flowchart showing container inspection processing; カメラと2つの光源との制御タイミングを示すタイミングチャート。A timing chart showing control timings of a camera and two light sources. 容器の液体がない部分に付された透明な樹脂部材をカメラが撮像する像を説明する図。The figure explaining the image which a camera imaged the transparent resin member attached to the part without the liquid of a container. 容器の液体がある部分に付された透明な樹脂部材をカメラが撮像する像を説明する図。The figure explaining the image which a camera imaged the transparent resin member attached to the part with the liquid of a container. 第2実施形態における容器検査装置を示す模式平面図。The schematic plan view which shows the container inspection apparatus in 2nd Embodiment.

(第1実施形態)
以下、容器検査装置を備えた容器検査システムについて図面を参照して説明する。図1に示すように、容器検査システム11は、検査対象である物品の一例としての容器12を搬送する搬送装置13と、搬送装置13により搬送方向Xに搬送される容器12を搬送経路の途中の検査位置で検査する物品検査装置の一例としての容器検査装置14とを備える。搬送装置13は、例えばコンベヤ15を備えたコンベヤ装置16により構成される。図2に示す例では、搬送装置13は、検査位置を通る経路で容器12を搬送するコンベヤ15Aを有するコンベヤ装置16Aと、コンベヤ15Aへ容器12を受け渡す搬入用のコンベヤ15を有するコンベヤ装置16Bと、検査を終えた容器12をコンベヤ15Aから受け取り搬送する搬出用のコンベヤ15を有するコンベヤ装置16Cとを備える。搬送装置13はコンベヤ装置16に限らず、容器12を把持又は吸着して吊下状態で搬送する吊下式搬送方式や、スクリューの回転で搬送するスクリュー式搬送方式でもよい。なお、図1では、搬送方向Xと鉛直方向Zとの二方向に交差する方向を、コンベヤ15の幅方向Yとする。
(First embodiment)
A container inspection system including a container inspection device will be described below with reference to the drawings. As shown in FIG. 1, a container inspection system 11 includes a transport device 13 that transports a container 12, which is an example of an article to be inspected, and a container 12 that is transported in the transport direction X by the transport device 13 in the middle of a transport route. and a container inspection device 14 as an example of an article inspection device that inspects at the inspection position of . The conveying device 13 is constituted, for example, by a conveyor device 16 with a conveyor 15 . In the example shown in FIG. 2, the conveying device 13 includes a conveyor device 16A having a conveyor 15A that conveys the container 12 along a path passing through the inspection position, and a conveyor device 16B having a carrying-in conveyor 15 that transfers the container 12 to the conveyor 15A. and a conveyor device 16C having a conveyer 15 for carrying out which receives and conveys the inspected container 12 from the conveyor 15A. The conveying device 13 is not limited to the conveyor device 16, and may be a hanging conveying method in which the container 12 is conveyed in a suspended state by gripping or sucking it, or a screw conveying method in which the container is conveyed by rotation of a screw. In FIG. 1 , a width direction Y of the conveyor 15 is defined as a direction that intersects the two directions of the conveying direction X and the vertical direction Z. As shown in FIG.

搬送装置13は、検査位置を含む検査搬送領域では、不図示の間隔形成装置により容器12を所定の間隔を開けて所定搬送速度で1本ずつ搬送する。容器検査装置14は、検査搬送領域の検査位置で容器12を図3に示すカメラ20で撮像し、カメラ20が取得した撮像画像に基づいて容器12における樹脂部材18の有無及び位置を検査する。容器検査装置14は、検査対象の容器12が図1に示す検査位置に所定距離まで近づいたことを検知するセンサ17を備える。センサ17が容器12を検知した検知信号に基づき図3に示すカメラ20が制御されることで、容器12は図1示す検査位置で撮像され、その撮像画像を基に容器12の検査が行われる。 In the inspection transportation area including the inspection position, the transportation device 13 transports the containers 12 one by one at a predetermined transportation speed with a predetermined interval formed by an interval forming device (not shown). The container inspection device 14 captures an image of the container 12 at an inspection position in the inspection transfer area with the camera 20 shown in FIG. The container inspection device 14 includes a sensor 17 that detects when the container 12 to be inspected approaches the inspection position shown in FIG. 1 by a predetermined distance. By controlling the camera 20 shown in FIG. 3 based on the detection signal from the sensor 17 detecting the container 12, the container 12 is imaged at the inspection position shown in FIG. 1, and the container 12 is inspected based on the captured image. .

図2に示すように、容器12は、光透過性の無機材料よりなる。詳しくは、容器12は、透明又は半透明のガラス壜よりなる。容器12には光透過性の樹脂部材18が付される。樹脂部材18は、例えば環状を有し、容器12の首部又は肩部に挿し込まれた状態で付着されている。 As shown in FIG. 2, the container 12 is made of a light transmissive inorganic material. Specifically, the container 12 is made of a transparent or translucent glass bottle. A light-transmissive resin member 18 is attached to the container 12 . The resin member 18 has, for example, an annular shape, and is attached while being inserted into the neck or shoulder of the container 12 .

ここで、光透過性の樹脂部材18は、透明又は半透明の合成樹脂製である。樹脂部材18は、例えばビニル片、PET(ポリエチレンテレフタレート)フィルムなどが挙げられる。ビニルやPETの他、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、アクリル、ポリアミド(ナイロン)などの熱可塑性樹脂や、メラミン、不飽和ポリエステル、エポキシ等の熱硬化性樹脂でもよい。 Here, the light-transmissive resin member 18 is made of a transparent or translucent synthetic resin. Examples of the resin member 18 include a piece of vinyl and a PET (polyethylene terephthalate) film. In addition to vinyl and PET, thermoplastic resins such as polyethylene (PE), polypropylene (PP), polystyrene, acrylic, and polyamide (nylon), and thermosetting resins such as melamine, unsaturated polyester, and epoxy may be used.

樹脂部材18は、例えばフィルム又はシートよりなり、その製造過程で延伸されるなど製造上の原因で配向し、光学特性上の異方性を呈し、光学軸を有する場合がある。図2に示す樹脂部材18は、樹脂製フィルムや樹脂製シートを裁断して製造されるが、その裁断方向に応じて、直線偏光が樹脂部材18を通過する過程でその直線偏光の振動方向(偏光面)が回転する角度は、樹脂部材18の向き(光学軸の向き)によって変化する。つまり、直線偏光が樹脂部材18を通過した偏光の振動方向が回転する角度が、例えば90°になるときの樹脂部材18の光学軸の向きは、その筒形状の周方向になる場合もあれば幅方向になる場合もある。さらに樹脂部材18の光学軸の向きは、容器12に付される樹脂部材18の向きによっても変わる。なお、容器検査装置14は、図2に示す容器12における樹脂部材18の一部又は全部を含む領域を検査対象領域とする。容器検査装置14は、容器12の検査対象領域を含むエリアに光を照射し、容器12及び樹脂部材18を透過した像をカメラ20(図3参照)で撮像し、その撮像画像を基に樹脂部材18の有無又は位置を検査する。 The resin member 18 is made of, for example, a film or sheet, and may be oriented due to manufacturing reasons such as stretching during the manufacturing process, exhibit anisotropy in optical properties, and have an optical axis. The resin member 18 shown in FIG. 2 is manufactured by cutting a resin film or a resin sheet. The angle at which the plane of polarization) rotates changes depending on the orientation of the resin member 18 (orientation of the optical axis). In other words, the direction of the optical axis of the resin member 18 when the angle of rotation of the vibration direction of the linearly polarized light passing through the resin member 18 is, for example, 90° may be the circumferential direction of the cylindrical shape. It may be widthwise. Furthermore, the orientation of the optical axis of the resin member 18 also changes depending on the orientation of the resin member 18 attached to the container 12 . Note that the container inspection device 14 uses an area including part or all of the resin member 18 in the container 12 shown in FIG. 2 as an inspection target area. The container inspection device 14 irradiates light onto an area including the inspection target region of the container 12, captures an image transmitted through the container 12 and the resin member 18 with a camera 20 (see FIG. 3), and based on the captured image, resin Existence or position of member 18 is inspected.

容器12は、液体が充填されている場合と、空である場合とがある。図2に示す例では、容器12に液体が充填された状態で蓋19がなされている。樹脂部材18が容器12に付される使用目的は、容器12の装飾・デザイン、宣伝、品質表示、容量表示など何でもよい。例えば、液体が充填された状態で蓋19がなされていること、又は容器12の蓋19を含む一部が封止用フィルム(図示せず)で被覆され封止されていることの証として目印となる樹脂部材18が付されてもよい。 The container 12 may be liquid-filled or empty. In the example shown in FIG. 2, the lid 19 is provided while the container 12 is filled with liquid. The purpose for which the resin member 18 is attached to the container 12 may be anything, such as decoration/design of the container 12, advertising, quality display, and capacity display. For example, as a proof that the lid 19 is filled with liquid or that a portion of the container 12 including the lid 19 is covered and sealed with a sealing film (not shown). The resin member 18 may be attached.

図2に示す例では、容器12の首部に樹脂部材18が付され、容器12に充填された液体の液面LSよりも上方に樹脂部材18が位置する。また、図2に二点鎖線で示すように樹脂部材18は容器12の肩部に付され、容器12の液面LSよりも下方に位置してもよい。一方、容器12は空であってもよい。例えば、空の容器12から取り外されているはずの樹脂部材18の有無を検査してもよい。 In the example shown in FIG. 2, a resin member 18 is attached to the neck of the container 12 and positioned above the liquid surface LS of the liquid filled in the container 12 . 2, the resin member 18 may be attached to the shoulder of the container 12 and positioned below the liquid surface LS of the container 12. As shown in FIG. Alternatively, container 12 may be empty. For example, the presence or absence of the resin member 18 that should have been removed from the empty container 12 may be inspected.

本実施形態では、図1に示す容器検査装置14は、樹脂部材18の有無を検査する。図1に示すように、樹脂部材18が付される容器12の検査では、樹脂部材18が有る場合に容器12は良品とされ、樹脂部材18が無い場合に容器12は不良品とされる。また、樹脂部材18が取り外された容器12の検査では、樹脂部材18が無い場合に容器12が良品とされ、樹脂部材18が有る場合に容器12が不良品とされる。このように容器検査装置14は、樹脂部材18の有無を検出し、その検出結果に応じて容器12が良品であるか不良品であるかを検査する。 In this embodiment, the container inspection device 14 shown in FIG. 1 inspects the presence or absence of the resin member 18 . As shown in FIG. 1, in the inspection of the container 12 to which the resin member 18 is attached, the container 12 is determined to be a non-defective product if the resin member 18 is present, and is determined to be defective if the resin member 18 is absent. In the inspection of the container 12 from which the resin member 18 has been removed, the container 12 is determined to be non-defective if the resin member 18 is not present, and the container 12 is determined to be defective if the resin member 18 is present. In this manner, the container inspection device 14 detects the presence or absence of the resin member 18 and inspects whether the container 12 is good or defective according to the detection result.

次に、図3を参照して、容器検査装置14の構成について説明する。
図3に示すように、容器検査装置14は、第1光源21、第2光源22、第1偏光子23、第2偏光子24、検光子25及び移相子の一例としての波長板26を備える。第1光源21は、検査位置にある容器12に対してその検査対象領域を含む第1エリアに光を照射する。第2光源22は、検査位置にある容器12に対して第1光源21の光照射方向と異なる光照射方向から検査対象領域を含む第2エリアに光を照射する。図3に示す例では、同図における平面視で第1光源21と第2光源22は、それぞれの光軸のなす角度が、60°以上かつ150°以下の範囲内の所定角度となるそれぞれ異なる向きに配置されている。なお、第1光源21の光が照射される検査対象領域と、第2光源22の光が照射される検査対象領域は、基本的に同じ位置であるが、双方の位置がずれていてもよい。
Next, the configuration of the container inspection device 14 will be described with reference to FIG.
As shown in FIG. 3, the container inspection device 14 includes a first light source 21, a second light source 22, a first polarizer 23, a second polarizer 24, an analyzer 25, and a wave plate 26 as an example of a phase shifter. Prepare. The first light source 21 irradiates a first area including the inspection target area of the container 12 at the inspection position with light. The second light source 22 irradiates the container 12 at the inspection position with light from a light irradiation direction different from the light irradiation direction of the first light source 21 to a second area including the inspection target region. In the example shown in FIG. 3, the first light source 21 and the second light source 22 are different from each other in that the angles formed by the optical axes of the first light source 21 and the second light source 22 are predetermined angles within the range of 60° or more and 150° or less. placed in the direction. The inspection target area irradiated with the light of the first light source 21 and the inspection target area irradiated with the light of the second light source 22 are basically at the same position, but both positions may be shifted. .

また、図3に示すように、容器検査装置14は、第1光源21の光を容器12の検査対象領域に透過させることで第1の像Img1(図6、図7を参照)を生成する第1の像生成機構31と、第2光源22の光を容器12の検査対象領域に透過させることで第2の像Img2(図6、図7を参照)を生成する第2の像生成機構32とを備える。さらに、容器検査装置14は、第1の像Img1と第2の像Img2を撮像するカメラ20と、第1光源21、第2光源22及びカメラ20を制御する制御部50を備えている。 Further, as shown in FIG. 3, the container inspection apparatus 14 transmits the light from the first light source 21 through the inspection target area of the container 12 to generate a first image Img1 (see FIGS. 6 and 7). A first image-generating mechanism 31 and a second image-generating mechanism that generates a second image Img2 (see FIGS. 6 and 7) by transmitting light from a second light source 22 to an inspection target area of the container 12. 32. Further, the container inspection device 14 includes a camera 20 that captures the first image Img1 and the second image Img2, and a controller 50 that controls the first light source 21, the second light source 22, and the camera 20.

図3に示すように、第1の像生成機構31は、第1光源21、第1偏光子23、検光子25、第1ミラー33及び第2ミラー34を備える。また、第2の像生成機構32は、第2光源22、第2偏光子24、検光子25、波長板26、第3ミラー35及び第4ミラー36を備える。 As shown in FIG. 3, the first image generating mechanism 31 comprises a first light source 21, a first polarizer 23, an analyzer 25, a first mirror 33 and a second mirror . The second image generation mechanism 32 also includes a second light source 22 , a second polarizer 24 , an analyzer 25 , a wavelength plate 26 , a third mirror 35 and a fourth mirror 36 .

図3に示すように、第1偏光子23は、第1光源21と検査位置にある容器12との間に位置する。第1偏光子23を通った第1偏光L1は、容器12の検査対象領域を含む第1エリアに照射される。容器12及び樹脂部材18を透過した第1偏光L1は、第1ミラー33で反射し、その反射した第1偏光L1はさらに第2ミラー34で反射した後、検光子25を透過して第1の像Img1を生成する。第1ミラー33は、第1偏光子23との間に検査位置にある容器12を挟んで対向する位置に配置され、容器12及び樹脂部材18を透過した第1偏光L1を、第2ミラー34に向けて反射させる。第2ミラー34は、第1ミラー33から入射した第1偏光L1を検光子25に向かって反射させる。検光子25は、第2ミラー34からの第1偏光L1を透過することで第1の像Img1をカメラ20に向かって出力する。 As shown in FIG. 3, the first polarizer 23 is positioned between the first light source 21 and the container 12 in the inspection position. The first polarized light L1 that has passed through the first polarizer 23 is applied to the first area including the inspection target area of the container 12 . The first polarized light L1 transmitted through the container 12 and the resin member 18 is reflected by the first mirror 33, and the reflected first polarized light L1 is further reflected by the second mirror 34, then transmitted through the analyzer 25, and transmitted to the first polarized light L1. generates an image Img1 of The first mirror 33 is arranged to face the first polarizer 23 with the container 12 at the inspection position interposed therebetween. reflect towards. The second mirror 34 reflects the first polarized light L<b>1 incident from the first mirror 33 toward the analyzer 25 . The analyzer 25 outputs the first image Img1 toward the camera 20 by transmitting the first polarized light L1 from the second mirror 34 .

図3に示すように、第2偏光子24は、第2光源22と検査位置にある容器12との間に位置する。第2光源22の光が第2偏光子24を通った第2偏光L2は、第1偏光L1とは異なる光照射方向から容器12の検査対象領域を含む第2エリアに照射される。容器12及び樹脂部材18を透過した第2偏光L2は、波長板26を透過することで第2偏光L2と位相差の異なる第3偏光L3となる。 As shown in FIG. 3, the second polarizer 24 is positioned between the second light source 22 and the container 12 in the inspection position. The second polarized light L2 obtained by passing the light of the second light source 22 through the second polarizer 24 is irradiated onto the second area including the inspection target area of the container 12 from a light irradiation direction different from that of the first polarized light L1. The second polarized light L2 that has passed through the container 12 and the resin member 18 becomes third polarized light L3 that has a phase difference different from that of the second polarized light L2 by passing through the wavelength plate 26 .

波長板26は、入射した光の位相差を透過過程で変化させて出射する機能を有する。波長板26は、検査対象領域で樹脂部材18を透過した偏光の振動方向が第1偏光子23と第2偏光子24とのそれぞれの透過軸23A,24Aのなす所定角度に応じた角度だけ回転させられる位相差Φ分だけ第2偏光L2の位相差を変化させて第3偏光L3とする。第3偏光L3は第3ミラー35で反射し、その反射した第3偏光L3はさらに第4ミラー36で反射した後、検光子25を透過して第2の像Img2を生成する。 The wavelength plate 26 has a function of changing the phase difference of incident light during the transmission process and emitting the light. Wave plate 26 rotates the vibration direction of the polarized light transmitted through resin member 18 in the area to be inspected by an angle corresponding to the predetermined angle formed by transmission axes 23A and 24A of first polarizer 23 and second polarizer 24, respectively. The phase difference of the second polarized light L2 is changed by the phase difference Φ to be the third polarized light L3. The third polarized light L3 is reflected by the third mirror 35, and the reflected third polarized light L3 is further reflected by the fourth mirror 36 and then transmitted through the analyzer 25 to generate the second image Img2.

第3ミラー35は、第2偏光子24と検査位置にある容器12を挟んで対向する位置に配置され、容器12及び樹脂部材18を透過した第2偏光L2が波長板26を通って位相差が変更された第3偏光L3を、第4ミラー36に向けて反射させる。第4ミラー36は、第3ミラー35から入射した第3偏光L3を検光子25に向かって反射させる。検光子25は、第4ミラー36に反射した第3偏光L3を透過することで第2の像Img2をカメラ20に向かって出力する。ここで、第2偏光L2が波長板26を透過する過程で、位相差が変更された第3偏光L3となる。 The third mirror 35 is arranged at a position facing the second polarizer 24 with the container 12 at the inspection position in between. is reflected toward the fourth mirror 36 . The fourth mirror 36 reflects the third polarized light L3 incident from the third mirror 35 toward the analyzer 25 . The analyzer 25 outputs the second image Img2 toward the camera 20 by transmitting the third polarized light L3 reflected by the fourth mirror 36 . Here, in the process of transmitting the second polarized light L2 through the wavelength plate 26, it becomes the third polarized light L3 whose phase difference has been changed.

第1偏光子23、第2偏光子24及び検光子25は、それぞれ偏光板(例えば偏光フィルタ)により構成される。図3では、各偏光子23,24及び検光子25のそれぞれの近傍位置に、円内に引いた複数本の平行な線の向きによって、それぞれの透過軸23A,24A,25Aの向きを示す。第1偏光子23と第2偏光子24はそれぞれ透過軸23A,24Aの向きが所定角度θだけ異なる。所定角度θは、図3に示す例では45°に設定されている。所定角度θは、15°以上かつ75°以下の範囲内の角度が好ましい。所定角度θがこの範囲にあれば、容器12における樹脂部材18の有無を検査できることが確認されている。なお、所定角度θは、樹脂部材18の有無を検査できる限りにおいて、上記範囲外の値でもよい。 The first polarizer 23, the second polarizer 24, and the analyzer 25 are each composed of a polarizing plate (for example, a polarizing filter). In FIG. 3, the directions of the respective transmission axes 23A, 24A and 25A are indicated by the directions of a plurality of parallel lines drawn in circles near the polarizers 23, 24 and the analyzer 25, respectively. The directions of the transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24 are different by a predetermined angle θ. The predetermined angle θ is set to 45° in the example shown in FIG. The predetermined angle θ is preferably an angle within the range of 15° or more and 75° or less. It has been confirmed that if the predetermined angle θ is within this range, the presence or absence of the resin member 18 in the container 12 can be inspected. Note that the predetermined angle θ may be a value outside the above range as long as the presence or absence of the resin member 18 can be inspected.

ここで、搬送方向Xと平行な水平方向を0°とすると、透過軸24Aは0°、透過軸23Aが水平(0°)に対して所定角度θ(図3の例では45°)だけ傾いている。光の進行方向側から見たときに反時計方向を正の方向とすると、透過軸23Aは、0°に対して正の方向に所定角度θだけ回転した角度にある。 Here, assuming that the horizontal direction parallel to the transport direction X is 0°, the transmission axis 24A is 0°, and the transmission axis 23A is inclined by a predetermined angle θ (45° in the example of FIG. 3) with respect to the horizontal (0°). ing. Assuming that the counterclockwise direction is the positive direction when viewed from the light propagating direction, the transmission axis 23A is rotated by a predetermined angle θ from 0° in the positive direction.

また、図3に示すように、第1偏光子23と検光子25は、それぞれの透過軸23A,25Aが交差する向きの関係にあり、本例では透過軸23A,25Aが直交している。ここで、透過軸23A,25Aが「直交」とは、90°に限らず、80°~100°の範囲内の角度Aであってもよいし、検査が可能であればこの範囲外の角度でもよい。本例では、図3に示すように、角度Aを一例として90°としている。 As shown in FIG. 3, the transmission axes 23A and 25A of the first polarizer 23 and the analyzer 25 intersect each other. In this example, the transmission axes 23A and 25A are orthogonal to each other. Here, the transmission axes 23A and 25A being “perpendicular” is not limited to 90°, but may be an angle A within the range of 80° to 100°. It's okay. In this example, as shown in FIG. 3, the angle A is 90 degrees as an example.

また、図3に示すように、第2偏光子24と検光子25は、それぞれの透過軸24A,25Aが直交していない。すなわち、透過軸24A,25Aが角度A以外の角度をなす向きの関係にある。図3に示す例では、透過軸24A,25Aが45°の角度をなす関係にある。これは、第1偏光子23と検光子25との透過軸23A,25Aを直交させるとともに、第1偏光子23と第2偏光子24との透過軸23A,24Aを所定角度θをなす設定にしていることによる。このため、第2偏光子24と検光子25は、互いの透過軸24A,25Aが、所定角度θに応じた角度-θの分だけ、直交(角度A)からずれている。つまり、透過軸25Aは、透過軸24A(0°)に対して透過軸23Aが傾く所定角度θ(例えば45°)の分だけ透過軸24Aに対して反対方向(負の方向)に角度-θ(例えば-45°)だけ傾いている。 Further, as shown in FIG. 3, the transmission axes 24A and 25A of the second polarizer 24 and the analyzer 25 are not perpendicular to each other. In other words, the transmission axes 24A and 25A are in a relationship of directions forming an angle other than the angle A. As shown in FIG. In the example shown in FIG. 3, the transmission axes 24A and 25A are in a relationship of forming an angle of 45°. The transmission axes 23A and 25A of the first polarizer 23 and the analyzer 25 are orthogonal to each other, and the transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24 are set to form a predetermined angle θ. due to Therefore, the transmission axes 24A and 25A of the second polarizer 24 and the analyzer 25 are deviated from orthogonality (angle A) by an angle -θ corresponding to the predetermined angle θ. That is, the transmission axis 25A is tilted in the opposite direction (negative direction) with respect to the transmission axis 24A (0°) by a predetermined angle θ (for example, 45°) at which the transmission axis 23A is inclined at an angle of -θ. (eg -45°).

このため、第2の像生成機構32は、第2偏光子24と検光子25との間の光経路上の位置に波長板26を備える。本例では、波長板26は、検査位置にある容器12と第3ミラー35との間の位置に配置されている。波長板26は、第1偏光子23と第2偏光子24とのそれぞれの透過軸23A,24Aのなす所定角度θに応じた角度(nπ-θ)(但しnは0以上の整数)の分だけ光の振動方向を回転できる位相差Φ分だけ第2偏光L2の位相差を変化させる。本例の波長板26は、角度(-θ)の分だけ光の振動方向を回転できる位相差Φ分だけ第2偏光L2の位相差を変化させる。そして、第2偏光L2が波長板26を通ると、第2偏光L2の位相差が位相差Φの分だけ変更され、振動方向を角度-θだけ回転させた第3偏光L3となる。これにより、第2偏光子24と検光子25との透過軸24A,25Aを、実質的に直交させたのと同等の効果が得られるようにしている。ここで、所定角度θに応じた角度(nπ-θ)とは、正確に(nπ-θ)であることに限定されず、(nπ-θ)±10°の範囲でもよいし、検査が可能な限りにおいて(nπ-θ)±10°の範囲以外の値でもよい。なお、波長板26は、検査位置にある容器12と第3ミラー35との間の位置に替え、第2偏光子24と検査位置にある容器12との間の位置に配置されてもよい。この場合、波長板26を通過した後の第3偏光L3が容器12及び樹脂部材18を透過する。 For this reason, the second imaging mechanism 32 comprises a wave plate 26 at a position on the optical path between the second polarizer 24 and the analyzer 25 . In this example, the wave plate 26 is arranged at a position between the container 12 at the inspection position and the third mirror 35 . Wave plate 26 has an angle (nπ-θ) (where n is an integer of 0 or more) corresponding to a predetermined angle θ formed by transmission axes 23A and 24A of first polarizer 23 and second polarizer 24, respectively. The phase difference of the second polarized light L2 is changed by the phase difference Φ that can rotate the vibration direction of the light. The wave plate 26 of this example changes the phase difference of the second polarized light L2 by the phase difference Φ that can rotate the vibration direction of the light by the angle (−θ). Then, when the second polarized light L2 passes through the wavelength plate 26, the phase difference of the second polarized light L2 is changed by the phase difference Φ, and becomes the third polarized light L3 whose oscillation direction is rotated by the angle -θ. As a result, an effect equivalent to that obtained by making the transmission axes 24A and 25A of the second polarizer 24 and the analyzer 25 substantially perpendicular to each other can be obtained. Here, the angle (nπ−θ) corresponding to the predetermined angle θ is not limited to being exactly (nπ−θ), and may be in the range of (nπ−θ)±10°, and inspection is possible. A value outside the range of (nπ−θ)±10° may be used as long as it is not limited. The wavelength plate 26 may be arranged between the second polarizer 24 and the container 12 at the inspection position instead of the position between the container 12 at the inspection position and the third mirror 35 . In this case, the third polarized light L3 after passing through the wave plate 26 is transmitted through the container 12 and the resin member 18 .

また、図3に示す制御部50には、カメラ20、第1光源21、第2光源22及びセンサ17が電気的に接続されている。また、制御部50は、図4にフローチャートで示されるプログラムPRを記憶するメモリ51を備える。制御部50は、例えばCPUを内蔵し、CPUによりプログラムPRを実行させることにより、光源21,22の発光制御およびカメラ20の撮像制御を含む容器検査処理を行う。制御部50は、第1光源21、第2光源22及びカメラ20を制御する駆動制御部52と、容器12における樹脂部材18の有無又は位置を検査する検査部53とを備える。本例では、駆動制御部52は、図4におけるステップS11~ステップS15の処理を実行するCPUにより構成される。また、検査部53は、ステップS16~ステップS18の処理を実行するCPUにより構成される。 Also, the camera 20, the first light source 21, the second light source 22, and the sensor 17 are electrically connected to the controller 50 shown in FIG. The control unit 50 also includes a memory 51 that stores a program PR shown in the flowchart of FIG. The control unit 50 includes, for example, a CPU, and executes a program PR by the CPU to perform container inspection processing including light emission control of the light sources 21 and 22 and imaging control of the camera 20 . The control unit 50 includes a drive control unit 52 that controls the first light source 21 , the second light source 22 and the camera 20 , and an inspection unit 53 that inspects the presence or absence or position of the resin member 18 in the container 12 . In this example, the drive control unit 52 is configured by a CPU that executes the processes of steps S11 to S15 in FIG. Also, the inspection unit 53 is configured by a CPU that executes the processes of steps S16 to S18.

図5は、制御部50が制御するカメラ20、第1光源21及び第2光源22のそれぞれの制御タイミングを示す。図5に示すように、カメラ20が1回露光して1フレームの撮像動作が行われる同一の1フレーム撮像期間IP内に、第1光源21と第2光源22とを異なる発光タイミングで発光させる。すなわち、同一の1フレーム撮像期間IP内に、第1光源21を発光させる第1発光と、第1発光の後に第1発光と異なる発光タイミングで、第2光源22を発光させる第2発光とを行う。第1発光と第2発光は、発光タイミングが異なり重複する期間がない。カメラ20は、エリアセンサよりなる撮像素子を内蔵する。カメラ20内の撮像素子は、同一の1フレーム撮像期間IP内において、第1発光期間で第1の像生成機構31により生成された第1の像Img1を受光し、第2発光期間で第2の像生成機構32により生成された第2の像Img2を受光する。これにより、1フレームの撮像動作で、第1の像Img1と第2の像Img2とを一緒に撮像される。 FIG. 5 shows control timings of the camera 20, the first light source 21, and the second light source 22 controlled by the control unit 50. FIG. As shown in FIG. 5, the first light source 21 and the second light source 22 are caused to emit light at different emission timings within the same one-frame imaging period IP during which the camera 20 performs one-time exposure and one-frame imaging operation. . That is, within the same one-frame imaging period IP, the first light emission that causes the first light source 21 to emit light, and the second light emission that causes the second light source 22 to emit light at a light emission timing different from that of the first light emission after the first light emission. conduct. The first light emission and the second light emission have different light emission timings and do not have overlapping periods. The camera 20 incorporates an imaging device made up of an area sensor. The imaging device in the camera 20 receives the first image Img1 generated by the first image generation mechanism 31 during the first light emission period and the second image Img1 during the second light emission period within the same one-frame imaging period IP. receives the second image Img2 generated by the image generating mechanism 32 of the . As a result, the first image Img1 and the second image Img2 are captured together in one frame imaging operation.

ここで、図6及び図7に、第1の像Img1と第2の像Img2と撮像画像Img3とを示す。図6は、容器12の液体のない部分に樹脂部材18が付された例を示し、図7は、容器12の液体のある部分に樹脂部材18が付された例を示す。図6、図7の例では、容器12の水平方向に対して第1偏光子23を透過して生成される直線偏光の振動方向とのなす角度が「0°」となる第1偏光L1は、この向きの樹脂部材18を透過する過程で光の振動方向が回転せず又は回転量が少なく、検光子25にかなりの部分が遮光される。このため、第1の像Img1では図6、図7に示す向きにある樹脂部材18は明度の低い暗部となる。また、図6、図7の例では、容器12の水平方向に対して第2偏光子24を透過して生成される直線偏光の振動方向とのなす角度が「45°」となる第2偏光L2は、この向きの樹脂部材18を透過する過程で光の振動方向が例えば90°回転し、波長板26を通った第3偏光L3は検光子25にかなりの部分が透過する。このため、第2の像Img2では図6、図7に示す向きにある樹脂部材18は明度の高い明部となる。 Here, FIGS. 6 and 7 show the first image Img1, the second image Img2, and the captured image Img3. FIG. 6 shows an example in which a resin member 18 is attached to a portion of the container 12 without liquid, and FIG. 7 shows an example in which a resin member 18 is attached to a portion of the container 12 with liquid. In the examples of FIGS. 6 and 7, the first polarized light L1 having an angle of "0°" between the horizontal direction of the container 12 and the vibration direction of the linearly polarized light generated through the first polarizer 23 is In the process of passing through the resin member 18 oriented in this direction, the vibration direction of the light does not rotate or the amount of rotation is small, and a considerable portion of the light is blocked by the analyzer 25 . Therefore, in the first image Img1, the resin member 18 in the direction shown in FIGS. 6 and 7 becomes a dark portion with low brightness. Further, in the examples of FIGS. 6 and 7, the second polarized light has an angle of "45°" between the horizontal direction of the container 12 and the vibration direction of the linearly polarized light generated by passing through the second polarizer 24. In the process of transmitting the resin member 18 oriented in this direction, the vibration direction of the light is rotated by 90°, for example, and a considerable part of the third polarized light L3 that has passed through the wave plate 26 is transmitted to the analyzer 25 . Therefore, in the second image Img2, the resin member 18 in the direction shown in FIGS. 6 and 7 becomes a bright portion with high brightness.

また、樹脂部材18の回転向きが、図6、図7の例の向きに対して45°傾いていると、第1の像Img1では、図6、図7に示す例とは反対に、樹脂部材18の部分が明度の高い明部となり、第2の像Img2では樹脂部材18の部分が明度の低い暗部となる。そして、樹脂部材18が、図6、図7に示す向きにあっても、これと45°傾いた向きにあっても、さらにこれらの向きの間の範囲の向きにあっても、撮像画像Img3では、樹脂部材18の部分が明度の高い明部となり、樹脂部材18以外の容器12のみの部分を含む背景の部分が明度の低い暗部となる。そして、図6、図7から分かるように、容器12の液体のない部分に樹脂部材18が付された場合(図6)も、容器12の液体のある部分に樹脂部材18が付された場合(図7)も、共に撮像画像Img3において樹脂部材18の部分が明度、その背景の部分が暗部となる。 Further, when the rotation direction of the resin member 18 is tilted by 45° with respect to the directions shown in FIGS. The portion of the member 18 becomes a bright portion with high brightness, and the portion of the resin member 18 becomes a dark portion with low brightness in the second image Img2. Then, even if the resin member 18 is oriented as shown in FIGS. 6 and 7, or inclined 45° from this, or oriented in a range between these orientations, the captured image Img3 Then, the portion of the resin member 18 becomes a bright portion with high brightness, and the background portion including only the portion of the container 12 other than the resin member 18 becomes a dark portion with low brightness. 6 and 7, both when the resin member 18 is attached to the portion of the container 12 without liquid (FIG. 6) and when the resin member 18 is attached to the portion of the container 12 with liquid, In both cases (FIG. 7), the portion of the resin member 18 in the captured image Img3 has the brightness, and the portion of the background thereof has the dark portion.

次に、図1~図7を参照して、容器検査システム11の作用を説明する。
図1に示すに示す容器検査システム11の運転が開始されると、コンベヤ装置16が駆動してコンベヤ15上の容器12を搬送する。容器12は、1つずつ検査搬送領域を搬送され、その途中の検査位置で容器検査装置14が容器12における樹脂部材18の有無を検査する。制御部50は、図4にフローチャートで示されるプログラムPRを実行する。以下、図4を参照して、制御部50が行う容器検査処理について説明する。
Next, operation of the container inspection system 11 will be described with reference to FIGS. 1 to 7. FIG.
When the operation of the container inspection system 11 shown in FIG. 1 is started, the conveyor device 16 is driven to convey the container 12 on the conveyor 15 . The containers 12 are transported one by one through the inspection transport area, and the container inspection device 14 inspects the presence or absence of the resin member 18 in the containers 12 at inspection positions along the way. The control unit 50 executes a program PR shown in the flow chart of FIG. Hereinafter, container inspection processing performed by the control unit 50 will be described with reference to FIG. 4 .

まずステップS11では、制御部50は、容器12を検知したか否かを判断する。制御部50は、センサ17が容器12を検知すればステップS12に進み、容器12を検知しなければ検知するまで待機する。 First, in step S11, the controller 50 determines whether or not the container 12 has been detected. If the sensor 17 detects the container 12, the control unit 50 proceeds to step S12, and if the sensor 17 does not detect the container 12, it waits until it detects it.

ステップS12では、制御部50は、カメラ20による撮像を開始する。つまり、図5に示すように、カメラ20の露光を開始する。
ステップS13では、制御部50は、第1光源21を発光させる。つまり、図5に示すように、第1発光が行われる。第1光源21が発光すると、第1の像生成機構31では、第1光源21の光が第1偏光子23を通った第1偏光L1が容器12の検査対象領域を含む第1エリアに照射され、容器12及び樹脂部材18を透過した第1偏光L1が複数のミラー33,34に順次反射した後、検光子25を通ることで第1の像Img1が生成される。第1の像Img1はカメラ20の撮像素子の撮像面に結像し撮像素子に受光される。
In step S<b>12 , the control unit 50 starts imaging with the camera 20 . That is, as shown in FIG. 5, exposure of the camera 20 is started.
In step S13, the controller 50 causes the first light source 21 to emit light. That is, as shown in FIG. 5, the first light emission is performed. When the first light source 21 emits light, in the first image generation mechanism 31, the light from the first light source 21 passes through the first polarizer 23, and the first polarized light L1 is irradiated onto the first area including the inspection target region of the container 12. The first polarized light L1 transmitted through the container 12 and the resin member 18 is sequentially reflected by the plurality of mirrors 33 and 34, and then passes through the analyzer 25 to generate the first image Img1. The first image Img1 is formed on the imaging surface of the imaging element of the camera 20 and received by the imaging element.

次のステップS14では、制御部50は、第2光源22を発光させる。制御部50は、第1光源21と第2光源22とを異なる発光タイミングで発光させる。第2光源22が発光すると、第2の像生成機構32では、第2光源22の光が第2偏光子24を通った第2偏光L2が容器12の検査対象領域を含む第2エリアに照射され、容器12及び樹脂部材18を透過した第2偏光L2が、波長板26を透過することで第2偏光L2と位相差の異なる第3偏光L3が生成される。つまり、波長板26によって、第2偏光L2の振動方向が-θの角度だけ回転可能な位相差Φの分だけ第2偏光L2の位相差が変化することで、第3偏光L3が生成される。この第3偏光L3が複数のミラー35,36に順次反射した後、検光子25を通ることで第2の像Img2が生成される。第2の像Img2はカメラ20の撮像素子の撮像面に結像し撮像素子に受光される。 In the next step S14, the controller 50 causes the second light source 22 to emit light. The control unit 50 causes the first light source 21 and the second light source 22 to emit light at different emission timings. When the second light source 22 emits light, in the second image generating mechanism 32, the light from the second light source 22 passes through the second polarizer 24 to irradiate the second area including the inspection target area of the container 12 with the second polarized light L2. Then, the second polarized light L2 transmitted through the container 12 and the resin member 18 is transmitted through the wavelength plate 26 to generate the third polarized light L3 having a phase difference different from that of the second polarized light L2. That is, the third polarized light L3 is generated by changing the phase difference of the second polarized light L2 by the phase difference Φ by which the oscillation direction of the second polarized light L2 can be rotated by an angle of -θ. . After the third polarized light L3 is sequentially reflected by the plurality of mirrors 35 and 36, it passes through the analyzer 25 to generate the second image Img2. The second image Img2 is formed on the imaging surface of the imaging element of the camera 20 and received by the imaging element.

ステップS15では、制御部50は、カメラ20による撮像を終了する。すなわち、制御部50は、カメラ20の露光を終了する。こうしてカメラ20内のエリアセンサよりなる撮像素子が第1発光期間で第1の像Img1を受光し、第2発光期間で第2の像Img2を撮像素子に受光することで、撮像画像Img3(いずれも図6、図7を参照)が取得される。このとき、容器12の液体のない部分に樹脂部材18が付されていても(図6)、容器12の液体のある部分に樹脂部材18が付されていても(図7)、撮像画像Img3中の樹脂部材18の部分が明度の高い白色になっており、樹脂部材18以外の光照射エリア内の容器12を含む背景の部分が明度の低い濃灰色又は黒色となっている。なお、ステップS11~S15の処理は、制御部50の駆動制御部52が行う。 In step S<b>15 , the control unit 50 terminates imaging by the camera 20 . That is, the control unit 50 ends exposure of the camera 20 . In this way, the imaging element made up of an area sensor in the camera 20 receives the first image Img1 during the first light emission period, and receives the second image Img2 during the second light emission period. (See also FIGS. 6 and 7). At this time, even if the resin member 18 is attached to the portion of the container 12 where there is no liquid (FIG. 6) or the resin member 18 is attached to the portion of the container 12 with the liquid (FIG. 7), the captured image Img3 The portion of the resin member 18 inside is white with high brightness, and the background portion including the container 12 in the light irradiation area other than the resin member 18 is dark gray or black with low brightness. The processing of steps S11 to S15 is performed by the drive control section 52 of the control section 50. FIG.

図4に示すステップS16では、制御部50は、撮像画像Img3に画像処理を施す。画像処理は、例えば2値化処理を含む。制御部50は、撮像画像Img3に明度の閾値で2値化処理を施すことで、撮像画像Img3中の閾値よりも明度の高い高明度の樹脂部材18の領域を他の領域と分離する。 In step S16 shown in FIG. 4, the control unit 50 performs image processing on the captured image Img3. Image processing includes, for example, binarization processing. The control unit 50 performs binarization processing on the captured image Img3 using a brightness threshold value, thereby separating areas of the high-brightness resin member 18 having brightness higher than the threshold value in the captured image Img3 from other areas.

ステップS17では、制御部50は、樹脂部材18の有無を判定する。すなわち、制御部50は、分離された高明度の樹脂部材18の領域の形状と面積とを求め、求めた形状と面積をそれぞれ形状閾値及び面積閾値と比較し、その比較結果から樹脂部材18の有無を判定する。例えば、求めた形状が形状閾値を超え且つ求めた面積が面積閾値を超えると、樹脂部材ありと判定する。一方、制御部50は、求めた形状と面積とのうち一方でも閾値を超えなければ、樹脂部材なしと判定する。なお、樹脂部材18の有無の判定に用いる判定パラメータは、形状と面積とのうち一方でもよい。 At step S<b>17 , the control unit 50 determines whether or not the resin member 18 is present. That is, the control unit 50 obtains the shape and area of the separated region of the high-brightness resin member 18, compares the obtained shape and area with the shape threshold value and the area threshold value, respectively, and determines the shape and area of the resin member 18 based on the comparison result. Determine presence/absence. For example, when the determined shape exceeds the shape threshold and the determined area exceeds the area threshold, it is determined that there is a resin member. On the other hand, the control unit 50 determines that there is no resin member if either one of the determined shape and area does not exceed the threshold. The determination parameter used to determine whether or not the resin member 18 is present may be either the shape or the area.

ステップS18では、制御部50は、容器12が不良品であるか否かを判定する。ここで、不良品の判定処理は、不良品の定義に応じて決められている。不良品の定義としては、次のものが挙げられる。1つ目に、樹脂部材18が付されていないと、取付けミス不良として容器12を不良品とする。2つ目に、樹脂部材18が付されていると、取外しミス不良として容器12を不良品とする。3つ目に、樹脂部材18の付着位置が正規の位置から許容量を超えてずれていると、位置ずれ不良として容器12を不良品とする。1つ目と2つ目に関しては樹脂部材18の有無が分かれば不良品の判定は可能であるが、3つ目に関しては樹脂部材18の位置を把握する必要がある。 At step S18, the controller 50 determines whether the container 12 is defective. Here, the processing for determining defective products is determined according to the definition of defective products. Definitions of defective products include: First, if the resin member 18 is not attached, the container 12 is regarded as a defective product due to mounting error. Secondly, if the resin member 18 is attached, the container 12 is regarded as a defective product due to mis-removal. Thirdly, if the adhering position of the resin member 18 deviates from the normal position by more than an allowable amount, the container 12 is regarded as a defective product due to misalignment. Regarding the first and second items, if the presence or absence of the resin member 18 is known, it is possible to determine whether the product is defective.

そのため、3つ目の例では、ステップS17において、樹脂部材18の有無の判定に加え、樹脂部材ありと判定された場合に更に容器12における樹脂部材18の位置を検出する。例えば樹脂部材18が容器12に付着されたラベルである場合、容器12におけるラベルの位置ずれを検出する。容器12の搬送高さとカメラ20の撮像高さは既知であるため、検出された樹脂部材18の位置が、容器12の搬送高さから想定される正規のラベル高さ範囲から鉛直方向Zに許容量を超えて外れていれば、制御部50はラベルの位置ずれ不良と判定する。 Therefore, in the third example, in step S17, the position of the resin member 18 in the container 12 is further detected when it is determined that the resin member 18 is present, in addition to determining whether or not the resin member 18 is present. For example, if the resin member 18 is a label attached to the container 12, positional deviation of the label on the container 12 is detected. Since the conveying height of the container 12 and the imaging height of the camera 20 are known, the detected position of the resin member 18 is within the normal label height range assumed from the conveying height of the container 12 in the vertical direction Z. If the label is deviated beyond the capacity, the control unit 50 determines that the label is misaligned.

さらに、上記1つ目~3つ目の例において、樹脂部材18の形状を検出してもよい。例えば、制御部50は、撮像画像Img3の画像処理で取得した樹脂部材18の領域からその形状及び面積を取得し、その形状及び面積と、形状閾値及び面積閾値とをそれぞれ比較し、形状及び面積がそれぞれの閾値範囲に対して許容量を超えて外れた場合、ラベルの破れや剥がれ等のラベル形状不良と判定する。このように制御部50は、樹脂部材18の有無に応じて容器12を不良品と判定し、樹脂部材18がある場合は不良品としない場合でも樹脂部材18の位置ずれ不良や形状不良があれば、容器12を不良品と判定する。なお、ラベルは、例えば、熱硬化性樹脂よりなる筒状フィルムをガラス壜などの容器12に外挿した状態で熱収縮させて容器12の外周面に密着状態に付着させたシュリンクラベルでもよいし、容器12の外周面に接着剤で付着されたものでもよい。 Furthermore, in the first to third examples, the shape of the resin member 18 may be detected. For example, the control unit 50 acquires the shape and area from the region of the resin member 18 acquired by image processing of the captured image Img3, compares the shape and area with the shape threshold and the area threshold, and determines the shape and area. deviates from each threshold range by an allowable amount, it is determined that the label is defective in shape such as tearing or peeling of the label. In this manner, the control unit 50 determines that the container 12 is defective according to the presence or absence of the resin member 18, and if the resin member 18 is present, the container 12 is determined to be defective. For example, the container 12 is determined to be defective. The label may be, for example, a shrink label in which a cylindrical film made of a thermosetting resin is attached to the container 12 such as a glass bottle and then heat-shrunk to adhere to the outer peripheral surface of the container 12. , may be attached to the outer peripheral surface of the container 12 with an adhesive.

ステップS19では、制御部50は、容器12を不良品として排出する。制御部50は、検査位置よりも搬送方向Xの下流側の位置でコンベヤ15の側方に配設された排出用プッシャー又はエア噴出装置を駆動し、不良品の容器12を押し出し又は噴射エアによりコンベヤ15上から排除する。 At step S19, the controller 50 discharges the container 12 as a defective product. The control unit 50 drives a discharge pusher or an air ejection device disposed on the side of the conveyor 15 at a position downstream of the inspection position in the conveying direction X to push out the defective container 12 or eject the defective container 12 by ejecting air. Remove from the conveyor 15.

以上詳述したように、この第1実施形態によれば、以下の効果が得られる。
(1)容器検査装置14は、光透過性の無機材料よりなる容器12の検査対象領域に光を照射して容器12に付される光透過性の樹脂部材18の有無又は位置を検査する。容器検査装置14は、第1光源21、第1偏光子23及び検光子25を有する第1の像生成機構31と、第2光源22、第2偏光子24、移相子の一例としての波長板26及び検光子25を有する第2の像生成機構32とを備える。第1の像生成機構31は、第1光源21の光が第1偏光子23を通った第1偏光L1を容器12の検査対象領域に照射し、容器12を透過した第1偏光L1を、第1偏光子23の透過軸23Aに対して透過軸25Aが交差する向きに配置された検光子25を通して第1の像Img1を生成する。第2の像生成機構32は、第2光源22の光が第1偏光子23の透過軸23Aに対して異なる角度の透過軸24Aとなる向きに配置された第2偏光子24を通った第2偏光L2を容器12の検査対象領域に照射する。第2偏光L2が容器12を透過する前後の少なくとも一方で、第2偏光L2を第2偏光子24と検光子25との間の光経路上に位置する波長板26に通して、第2偏光L2の振動方向を第1偏光子23と第2偏光子24とのそれぞれの透過軸23A,24Aのなす所定角度θに応じた角度(例えば-θ)だけ回転させて第3偏光L3とする。そして、第3偏光L3を検光子25に通して第2の像Img2を生成する。さらに、容器検査装置14は、第1の像Img1と第2の像Img2とを撮像するカメラ20と、カメラ20が取得した撮像画像Img3を基に樹脂部材18の有無又は位置を検査する検査部53とを備える。
As described in detail above, according to the first embodiment, the following effects are obtained.
(1) The container inspection device 14 irradiates light onto an inspection area of the container 12 made of a light-transmitting inorganic material to inspect the presence or position of the light-transmitting resin member 18 attached to the container 12 . The container inspection device 14 includes a first image generation mechanism 31 having a first light source 21, a first polarizer 23 and an analyzer 25, a second light source 22, a second polarizer 24, and a wavelength shifter as an example. a second imaging mechanism 32 having a plate 26 and an analyzer 25; The first image generation mechanism 31 irradiates the inspection target area of the container 12 with the first polarized light L1, which is the light from the first light source 21 that has passed through the first polarizer 23, and transmits the first polarized light L1 transmitted through the container 12. A first image Img1 is generated through an analyzer 25 arranged such that the transmission axis 25A intersects the transmission axis 23A of the first polarizer 23. FIG. The second image generating mechanism 32 passes the light from the second light source 22 through the second polarizer 24 oriented such that the transmission axis 24A is at a different angle with respect to the transmission axis 23A of the first polarizer 23 . A region to be inspected of the container 12 is irradiated with the two polarized lights L2. At least one of before and after the second polarized light L2 is transmitted through the container 12, the second polarized light L2 is passed through the wave plate 26 located on the optical path between the second polarizer 24 and the analyzer 25, and the second polarized light L2 is The oscillation direction of L2 is rotated by an angle (eg, −θ) corresponding to a predetermined angle θ formed by the transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24, respectively, to obtain the third polarized light L3. Then, the third polarized light L3 is passed through the analyzer 25 to generate the second image Img2. Further, the container inspection device 14 includes a camera 20 that captures the first image Img1 and the second image Img2, and an inspection unit that inspects the presence or absence or position of the resin member 18 based on the captured image Img3 acquired by the camera 20. 53.

第1の像生成機構31と第2の像生成機構32により、検査対象領域にある樹脂部材18に対して光の振動方向(偏光面)が所定角度θだけ異なる2つの偏光L1,L2が照射される。このため、樹脂部材18の向き又は種類によらず、樹脂部材18を透過する2つの偏光L1,L2の振動方向の回転する角度が、2つの偏光L1,L2のうち一方で大きく他方で小さくなる。また、第2の像生成機構32では、第2偏光子24と検光子25のそれぞれの透過軸24A,25Aが直交していないので、波長板26を通して光の振動方向を所定角度θ(例えば15°~75°)に応じた角度(例えば-θ)だけ回転させる。このため、検査対象領域で樹脂部材18を透過した2つの偏光L1,L2の一方が検光子25でカットされても他方が検光子25を透過する。この結果、第1の像Img1と第2の像Img2は、そのうちの一方で樹脂部材18の部分が暗くても、他方で樹脂部材18の部分が明るくなる関係にある。そのため、第1の像Img1と第2の像Img2を撮像した撮像画像Img3では、必ず樹脂部材18の部分が明部となり樹脂部材18以外の部分が暗部となる。検査部53は撮像画像Img3を基に樹脂部材18の有無又は位置を検査する。よって、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を検査できる。さらに、第1の像Img1と第2の像Img2を共通のカメラ20が撮像するので、カメラ20が1つで済む。また、検光子25が第1の像生成機構31と第2の像生成機構32との共通部品とした。よって、容器検査装置14の部品点数が少なく済むうえ、装置の小型化を実現できる。 The first image generation mechanism 31 and the second image generation mechanism 32 irradiate the resin member 18 in the inspection target area with two polarized light beams L1 and L2 in which the vibration directions (polarization planes) of the light differ by a predetermined angle θ. be done. Therefore, regardless of the orientation or type of the resin member 18, the rotation angle of the vibration directions of the two polarized light beams L1 and L2 transmitted through the resin member 18 is large for one of the two polarized light beams L1 and L2 and small for the other. . In the second image generating mechanism 32, the transmission axes 24A and 25A of the second polarizer 24 and the analyzer 25 are not perpendicular to each other. ° to 75°). Therefore, even if one of the two polarized lights L1 and L2 transmitted through the resin member 18 in the inspection target area is cut by the analyzer 25, the other is transmitted through the analyzer 25. FIG. As a result, even if one of the first image Img1 and the second image Img2 is dark at the resin member 18 portion, the other is bright at the resin member 18 portion. Therefore, in a captured image Img3 obtained by capturing the first image Img1 and the second image Img2, the portion of the resin member 18 is always a bright portion and the portion other than the resin member 18 is a dark portion. The inspection unit 53 inspects the presence or absence or position of the resin member 18 based on the captured image Img3. Therefore, the presence or absence or position of the resin member 18 in the container 12 can be inspected regardless of the orientation or type of the resin member 18 attached to the container 12 . Furthermore, since the common camera 20 captures the first image Img1 and the second image Img2, only one camera 20 is required. Also, the analyzer 25 is a common component of the first image generation mechanism 31 and the second image generation mechanism 32 . Therefore, the number of parts of the container inspection device 14 can be reduced, and the size of the device can be reduced.

(2)容器検査装置14は、特許文献2に記載の検査装置が有する回転手段が無くて済むので、物品に付される樹脂部材の向き又は種類が変わる度に、回転手段を駆動させ、偏光子と検光子とを略直交を維持したまま回転させる調整作業が不要となる。また、容器検査システム11のコンベヤ15等の検査ラインに樹脂部材18の向き又は種類の異なる容器12が混在して搬送される検査にも対応できる。 (2) Since the container inspection device 14 does not need the rotation means of the inspection device described in Patent Document 2, the rotation means is driven every time the orientation or the type of the resin member attached to the article changes, and the polarized light is polarized. This eliminates the need for an adjustment operation to rotate the element and the analyzer while maintaining the substantially orthogonal relationship. In addition, it is possible to cope with an inspection in which containers 12 having resin members 18 of different orientations or different types are transported together on an inspection line such as the conveyor 15 of the container inspection system 11 .

(3)波長板26は、第1偏光子23と第2偏光子24とのそれぞれの透過軸23A,24Aのなす所定角度θに応じた角度(nπ-θ)(但しnは0以上の整数)だけ偏光の振動方向を回転可能な分の位相差Φを変更する。よって、容器12に付される樹脂部材18の向き又は種類によらず、撮像画像Img3中の樹脂部材18の部分の明度を高くできる。よって、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を高い精度で検査できる。 (3) The wavelength plate 26 has an angle (nπ-θ) corresponding to a predetermined angle θ between the transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24 (where n is an integer of 0 or more). ) to change the phase difference Φ by the amount that can rotate the oscillation direction of the polarized light. Therefore, regardless of the orientation or type of the resin member 18 attached to the container 12, the brightness of the portion of the resin member 18 in the captured image Img3 can be increased. Therefore, the presence or absence or position of the resin member 18 in the container 12 can be inspected with high accuracy regardless of the direction or type of the resin member 18 attached to the container 12 .

(4)容器検査装置14は、カメラ20を制御する駆動制御部52を備える。駆動制御部52は、カメラ20に第1の像Img1と第2の像Img2とを1フレームの撮像動作で撮像させる。よって、容器12に付される樹脂部材18の光学軸の向きによらず、カメラ20が撮像した1つの撮像画像Img3から、容器12における樹脂部材18の有無又は位置を検査できる。したがって、制御部50による検査処理が簡単で済む。 (4) The container inspection device 14 includes a drive control section 52 that controls the camera 20 . The drive control unit 52 causes the camera 20 to capture the first image Img1 and the second image Img2 in one frame of imaging operation. Therefore, regardless of the orientation of the optical axis of the resin member 18 attached to the container 12, the presence or absence or the position of the resin member 18 in the container 12 can be inspected from one captured image Img3 captured by the camera 20. Therefore, the inspection process by the control unit 50 can be simplified.

(5)駆動制御部52は、カメラ20の同一の1フレーム撮像期間IP内に第1光源21と第2光源22とを異なるタイミングで発光させる。よって、第1光源21の第1発光期間に生成される第1の像Img1と、第2光源22の第2発光期間に生成される第2の像Img2とが、カメラ20によって異なるタイミングで撮像される。よって、2つの光源21,22を同じタイミングで発光させて2つの像Img1,Img2を同じタイミングで撮像する構成とした場合に比べ、1つの撮像画像Img3中の樹脂部材18の部分を、容器12のみの部分を含む背景の暗部に対し明度の高い明部として得ることができる。この結果、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を高い精度で検査できる。 (5) The drive control unit 52 causes the first light source 21 and the second light source 22 to emit light at different timings within the same one-frame imaging period IP of the camera 20 . Therefore, the first image Img1 generated during the first light emission period of the first light source 21 and the second image Img2 generated during the second light emission period of the second light source 22 are captured by the camera 20 at different timings. be done. Therefore, compared to a configuration in which the two images Img1 and Img2 are captured at the same timing by causing the two light sources 21 and 22 to emit light at the same timing, the resin member 18 portion in one captured image Img3 is replaced by the container 12. It can be obtained as a bright part with high brightness against the dark part of the background including the chisel part. As a result, the presence or absence or position of the resin member 18 in the container 12 can be inspected with high accuracy regardless of the orientation or type of the resin member 18 attached to the container 12 .

(6)第1偏光子23の透過軸23Aと第2偏光子24の透過軸24Aとのなす角度は、15°以上且つ75°以下の範囲内の所定角度が好ましい。よって、撮像画像Img3中で背景となる容器12と樹脂部材18との明暗の差の大きな撮像画像Img3が得られるので、容器12に付される樹脂部材18の向きによらず、容器12における樹脂部材18の有無又は位置を高い精度で検査できる。 (6) The angle formed by the transmission axis 23A of the first polarizer 23 and the transmission axis 24A of the second polarizer 24 is preferably a predetermined angle within the range of 15° or more and 75° or less. Therefore, a captured image Img3 with a large difference in brightness between the container 12 and the resin member 18, which is the background in the captured image Img3, can be obtained. The presence or absence or position of the member 18 can be inspected with high accuracy.

(7)容器検査方法は、光透過性の無機材料よりなる容器12の検査対象領域に光を照射して容器12に付される光透過性の樹脂部材18の有無又は位置を検査し、第1の像生成工程と、第2の像生成工程と、撮像工程と、検査工程とを備える。第1の像生成工程では、第1光源21の光が第1偏光子23を通った偏光を容器12の検査対象領域に照射し、容器12を透過した第1偏光L1を、第1偏光子23の透過軸23Aに対して透過軸25Aが交差する向きに配置された検光子25を通して第1の像Img1を生成する。第2の像生成工程では、第2光源22の光が第1偏光子23の透過軸23Aに対して異なる角度の透過軸24Aとなる向きに配置された第2偏光子24を通った第2偏光L2を容器12の検査対象領域に照射する。容器12を透過する前後の少なくとも一方で第2偏光L2の位相差を変更して、第2偏光L2の振動方向を第1偏光子23と第2偏光子24とのそれぞれの透過軸23A,24Aのなす所定角度に応じた角度だけ回転させて第3偏光L3とし、第3偏光L3を検光子25に通して第2の像Img2を生成する。撮像工程では、第1の像Img1と第2の像Img2とを撮像する。そして、検査工程では、撮像工程で取得した撮像画像Img3を基に樹脂部材18の有無又は位置を検査する。よって、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を検査できる。 (7) The container inspection method includes irradiating light onto an inspection target region of the container 12 made of a light-transmitting inorganic material, inspecting the presence or absence or position of the light-transmitting resin member 18 attached to the container 12; 1 image generation process, a second image generation process, an imaging process, and an inspection process. In the first image generation step, the light from the first light source 21 passes through the first polarizer 23 and irradiates the inspection target region of the container 12 with the polarized light, and the first polarized light L1 transmitted through the container 12 is converted to the first polarized light L1 by the first polarizer. A first image Img1 is generated through an analyzer 25 oriented such that the transmission axis 25A intersects the transmission axis 23A of 23 . In the second image generation step, the light from the second light source 22 passes through the second polarizer 24 oriented such that the transmission axis 24A is at a different angle with respect to the transmission axis 23A of the first polarizer 23, and passes through the second light source 24. A region to be inspected of the container 12 is irradiated with the polarized light L2. By changing the phase difference of the second polarized light L2 at least either before or after passing through the container 12, the oscillation direction of the second polarized light L2 is changed to the transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24, respectively. The third polarized light L3 is obtained by rotating the light by an angle corresponding to the predetermined angle formed by the light beams, and the third polarized light L3 is passed through the analyzer 25 to generate the second image Img2. In the imaging step, a first image Img1 and a second image Img2 are captured. Then, in the inspection process, the presence or absence or position of the resin member 18 is inspected based on the captured image Img3 acquired in the imaging process. Therefore, the presence or absence or position of the resin member 18 in the container 12 can be inspected regardless of the orientation or type of the resin member 18 attached to the container 12 .

(第2実施形態)
次に、図8を参照して、第2実施形態の容器検査装置14について説明する。本実施形態の容器検査装置14は、波長板26を備えていない。つまり、波長板26を廃止し、検光子25を、第1検光子27と第2検光子28との2つに置き替えている。第1の像生成機構31が第1検光子27を有し、第2の像生成機構32が第2検光子28を有する。
(Second embodiment)
Next, a container inspection device 14 according to a second embodiment will be described with reference to FIG. The container inspection device 14 of this embodiment does not include the wave plate 26 . That is, the wavelength plate 26 is eliminated and the analyzer 25 is replaced with two, a first analyzer 27 and a second analyzer 28 . A first imaging mechanism 31 has a first analyzer 27 and a second imaging mechanism 32 has a second analyzer 28 .

図8に示すように、容器検査装置14は、第1の像Img1(図6、図7を参照)を生成する第1の像生成機構31と、第2の像Img2(図6、図7を参照)を生成する第2の像生成機構32とを備える。さらに、容器検査装置14は、第1の像Img1と第2の像Img2を撮像するカメラ20と、第1光源21、第2光源22及びカメラ20を制御する制御部50を備える。この第2実施形態では、第1の像生成機構31と第2の像生成機構32との構成が、前記第1実施形態と異なる。 As shown in FIG. 8, the container inspection apparatus 14 includes a first image generation mechanism 31 that generates a first image Img1 (see FIGS. 6 and 7) and a second image Img2 (see FIGS. 6 and 7). ), and a second image generating mechanism 32 for generating the . Further, the container inspection device 14 includes a camera 20 that captures the first image Img1 and the second image Img2, and a control unit 50 that controls the first light source 21, the second light source 22, and the camera 20. In the second embodiment, the configurations of the first image generation mechanism 31 and the second image generation mechanism 32 are different from those in the first embodiment.

図8に示すように、第1の像生成機構31は、第1光源21、第1偏光子23、第1検光子27、第1ミラー33及び第2ミラー34を備える。また、第2の像生成機構32は、第2光源22、第2偏光子24、第2検光子28、第3ミラー35及び第4ミラー36を備える。ここで、第1光源21、第2光源22、第1偏光子23及び第2偏光子24は、前記第1実施形態と同様の構成であり、検査位置に配置される容器12に対して、前記第1実施形態と同じ位置及び向きに配置されている。また、各ミラー33~36も、第1実施形態と同様の構成であり、検査位置の容器12に対して、前記第1実施形態と同じ位置及び向きに配置されている。さらに、カメラ20も1つで、前記第1実施形態と同じ位置及び向きに配置されている。制御部50の制御内容も前記第1実施形態と同様である。すなわち、制御部50は、メモリ51に記憶された図4にフローチャートで示されるプログラムPRをCPUに実行させることで、光源21,22の発光制御およびカメラ20の撮像制御を含む容器検査処理を行う。 As shown in FIG. 8, the first image generating mechanism 31 comprises a first light source 21, a first polarizer 23, a first analyzer 27, a first mirror 33 and a second mirror . The second image generation mechanism 32 also includes a second light source 22 , a second polarizer 24 , a second analyzer 28 , a third mirror 35 and a fourth mirror 36 . Here, the first light source 21, the second light source 22, the first polarizer 23, and the second polarizer 24 have the same configurations as those in the first embodiment. It is arranged in the same position and orientation as in the first embodiment. The mirrors 33 to 36 also have the same configuration as in the first embodiment, and are arranged in the same positions and orientations as in the first embodiment with respect to the container 12 at the inspection position. Furthermore, there is also one camera 20, which is arranged in the same position and orientation as in the first embodiment. The contents of control by the control unit 50 are also the same as in the first embodiment. That is, the control unit 50 causes the CPU to execute the program PR shown in the flowchart of FIG. .

第1の像生成機構31は、検査位置にある容器12とカメラ20との間の第1偏光L1の光経路上の位置に第1検光子27を備える。本例では、第1検光子27は、検査位置にある容器12と第1ミラー33との間の位置に配置されている。また、第2の像生成機構32は、検査位置にある容器12とカメラ20との間の第2偏光L2の光経路上の位置に第2検光子28を備える。本例では、第2検光子28は、検査位置にある容器12と第3ミラー35との間の位置に配置されている。 The first imaging mechanism 31 comprises a first analyzer 27 at a position on the optical path of the first polarization L1 between the container 12 in the inspection position and the camera 20 . In this example, the first analyzer 27 is arranged at a position between the container 12 in the inspection position and the first mirror 33 . The second image generating mechanism 32 also comprises a second analyzer 28 at a position on the optical path of the second polarization L2 between the container 12 in the inspection position and the camera 20 . In this example, the second analyzer 28 is positioned between the container 12 in the inspection position and the third mirror 35 .

第1偏光子23、第2偏光子24、第1検光子27及び第2検光子28は、それぞれ偏光板(例えば偏光フィルタ)により構成されている。図8では、各偏光子23,24及び各検光子27,28のそれぞれの近傍位置に、円内に引いた複数本の平行な線の向きによって、それぞれの透過軸23A,24A,27A,28Aの向きを示す。第1偏光子23と第2偏光子24は、前記第1実施形態と同様に、それぞれ透過軸23A,24Aの向きが所定角度θ(例えば45°)だけ異なる。なお、所定角度θは、15°以上かつ75°以下の範囲内の角度でもよいし、検査が可能な限りにおいてこの範囲外の角度でもよい。 Each of the first polarizer 23, the second polarizer 24, the first analyzer 27, and the second analyzer 28 is composed of a polarizing plate (for example, a polarizing filter). In FIG. 8, the transmission axes 23A, 24A, 27A, and 28A of the respective polarizers 23, 24 and the analyzers 27, 28 are indicated by the directions of a plurality of parallel lines drawn in the circle. direction. The transmission axes 23A and 24A of the first polarizer 23 and the second polarizer 24 differ from each other by a predetermined angle θ (for example, 45°) as in the first embodiment. The predetermined angle θ may be an angle within the range of 15° or more and 75° or less, or may be an angle outside this range as long as the inspection is possible.

ここで、搬送方向Xと平行な水平方向を0°とすると、透過軸24Aは0°、透過軸23Aが水平(0°)に対して所定角度θ(例えば45°)だけ傾いている。光の進行方向側から見たときに反時計方向を正の方向とすると、透過軸23Aは、0°に対して正の方向に所定角度θだけ回転した角度にある。 Here, assuming that the horizontal direction parallel to the transport direction X is 0°, the transmission axis 24A is 0°, and the transmission axis 23A is inclined by a predetermined angle θ (for example, 45°) with respect to the horizontal (0°). Assuming that the counterclockwise direction is the positive direction when viewed from the light propagating direction, the transmission axis 23A is rotated by a predetermined angle θ from 0° in the positive direction.

また、図8に示すように、第1偏光子23と第1検光子27は、それぞれの透過軸23A,27Aが交差する向きの関係にあり、本例では透過軸23A,27Aが直交している。ここで、透過軸23A,27Aが「直交」とは、90°に限らず、一例として80°~100°の範囲内の角度Aでもよい(80°≦A≦100°)。但し、角度Aは、80°~100°の範囲以外の角度でもよい。 Also, as shown in FIG. 8, the first polarizer 23 and the first analyzer 27 have a relationship in which their respective transmission axes 23A and 27A intersect. there is Here, the transmission axes 23A and 27A are not limited to 90°, but may be an angle A within the range of 80° to 100° (80°≦A≦100°). However, the angle A may be an angle other than the range of 80° to 100°.

また、図8に示すように、第2偏光子24と第2検光子28は、それぞれの透過軸24A,28Aが交差する向きの関係にあり、本例では透過軸24A,28Aが直交している。ここで、透過軸24A,28Aが「直交」とは、90°に限らず、80°~100°の範囲内の角度Aでもよい(80°≦A≦100°)。但し、角度Aは、80°~100°の範囲以外の角度でもよい。なお、透過軸23A,27Aのなす角度Aと、透過軸24A,28Aのなす角度Aは、同じ値に限らず異なる値でもよい。 Also, as shown in FIG. 8, the second polarizer 24 and the second analyzer 28 have a relationship in which their respective transmission axes 24A and 28A intersect. there is Here, the transmission axes 24A and 28A being "perpendicular" is not limited to 90°, but may be an angle A within the range of 80° to 100° (80°≤A≤100°). However, the angle A may be an angle other than the range of 80° to 100°. The angle A formed by the transmission axes 23A and 27A and the angle A formed by the transmission axes 24A and 28A are not limited to the same value and may be different values.

図8に示すように、第1の像生成機構31において、第1光源21の光が第1偏光子23を通った第1偏光L1は、容器12の検査対象領域を含む第1エリアに照射される。容器12及び樹脂部材18を透過した第1偏光L1は、第1検光子27を透過して第1の像Img1を生成する。第1の像Img1は、第1ミラー33と第2ミラー34とに順次反射した後、カメラ20に入射される。 As shown in FIG. 8, in the first image generation mechanism 31, the light from the first light source 21 passes through the first polarizer 23, and the first polarized light L1 irradiates the first area including the inspection target area of the container 12. be done. The first polarized light L1 transmitted through the container 12 and the resin member 18 is transmitted through the first analyzer 27 to generate the first image Img1. The first image Img1 is incident on the camera 20 after being sequentially reflected by the first mirror 33 and the second mirror 34 .

また、第2の像生成機構32において、第2光源22の光が第2偏光子24を通った第2偏光L2は、第1偏光L1とは異なる光照射方向から容器12の検査対象領域を含む第2エリアに照射される。容器12及び樹脂部材18を透過した第2偏光L2は、第2検光子28を透過して第2の像Img2を生成する。第2の像Img2は、第3ミラー35と第4ミラー36とに順次反射した後、カメラ20に入射される。 In the second image generation mechanism 32, the second polarized light L2 obtained by passing the light from the second light source 22 through the second polarizer 24 illuminates the inspection target area of the container 12 from a light irradiation direction different from that of the first polarized light L1. A second area comprising: The second polarized light L2 transmitted through the container 12 and the resin member 18 is transmitted through the second analyzer 28 to generate a second image Img2. The second image Img2 is incident on the camera 20 after being sequentially reflected by the third mirror 35 and the fourth mirror 36 .

制御部50は、図5に示すように、カメラ20が1回露光して1フレームの撮像動作が行われる同一の1フレーム撮像期間IP内に、第1光源21と第2光源22を異なる発光タイミングで発光させる。カメラ20内の撮像素子は、同一の1フレーム撮像期間IP内において、第1発光期間で第1の像Img1を受光し、第2発光期間で第2の像Img2を受光する。これにより、カメラ20は、1フレームの撮像動作で、第1の像Img1と第2の像Img2とを一緒に撮像し、撮像画像Img3(図6、図7を参照)を取得する。そして、制御部50は、撮像画像Img3に画像処理を施し、画像処理後の撮像画像Img3を基に樹脂部材18の有無を判定する。さらに制御部50は、前記第1実施形態と同様に、容器12が不良品であるか否かの判定、樹脂部材18の位置検出(ラベル位置ずれ判定を含む)を行う。 As shown in FIG. 5, the control unit 50 causes the first light source 21 and the second light source 22 to emit different light within the same one-frame imaging period IP during which the camera 20 performs one-time exposure and one-frame imaging operation. Light up in time. The imaging element in the camera 20 receives the first image Img1 during the first light emission period and receives the second image Img2 during the second light emission period within the same one-frame imaging period IP. As a result, the camera 20 captures the first image Img1 and the second image Img2 together in one-frame imaging operation to obtain a captured image Img3 (see FIGS. 6 and 7). Then, the control unit 50 performs image processing on the captured image Img3, and determines the presence or absence of the resin member 18 based on the captured image Img3 after the image processing. Further, the control unit 50 determines whether or not the container 12 is defective, and detects the position of the resin member 18 (including label position deviation determination), as in the first embodiment.

以上詳述したように、この第2実施形態によれば、以下の効果が得られる。
(8)容器検査装置14は、第1光源21、第1偏光子23及び第1検光子27を有する第1の像生成機構31と、第2光源22、第2偏光子24及び第2検光子28を有する第2の像生成機構32とを備える。第1の像生成機構31は、第1光源21の光が第1偏光子23を通った第1偏光L1を容器12の検査対象領域に照射し、容器12を透過した第1偏光L1を、第1偏光子23の透過軸23Aに対して透過軸27Aが交差する向きに配置された第1検光子27を通して第1の像Img1を生成する。第2の像生成機構32は、第2光源22の光が、第1偏光子23の透過軸23Aに対して異なる角度の透過軸24Aとなる向きに配置された第2偏光子24を通った第2偏光L2を、容器12の検査対象領域に照射する。容器12を透過した第2偏光L2を、第2偏光子24の透過軸24Aに対して透過軸28Aが交差する向きに配置された第2検光子28を通して第2の像Img2を生成する。さらに、容器検査装置14は、第1の像Img1と第2の像Img2とを撮像するカメラ20と、カメラ20が取得した撮像画像Img3を基に樹脂部材18の有無又は位置を検査する検査部53とを備える。
As described in detail above, according to the second embodiment, the following effects are obtained.
(8) The container inspection device 14 includes a first image generation mechanism 31 having a first light source 21, a first polarizer 23 and a first analyzer 27, a second light source 22, a second polarizer 24 and a second detector. and a second imaging mechanism 32 having photons 28 . The first image generation mechanism 31 irradiates the inspection target area of the container 12 with the first polarized light L1, which is the light from the first light source 21 that has passed through the first polarizer 23, and transmits the first polarized light L1 transmitted through the container 12. A first image Img1 is generated through a first analyzer 27 arranged in a direction in which the transmission axis 27A intersects the transmission axis 23A of the first polarizer 23. FIG. The second image generating mechanism 32 passes the light of the second light source 22 through a second polarizer 24 oriented such that the transmission axis 24A is at a different angle to the transmission axis 23A of the first polarizer 23. A region to be inspected of the container 12 is irradiated with the second polarized light L2. The second polarized light L2 transmitted through the container 12 is passed through a second analyzer 28 arranged such that the transmission axis 28A intersects the transmission axis 24A of the second polarizer 24 to generate a second image Img2. Further, the container inspection device 14 includes a camera 20 that captures the first image Img1 and the second image Img2, and an inspection unit that inspects the presence or absence or position of the resin member 18 based on the captured image Img3 acquired by the camera 20. 53.

ここで、第1の像Img1と第2の像Img2は、そのうち一方で樹脂部材18の部分が暗くても、他方で樹脂部材18の部分が明るくなる関係にある。そのため、撮像画像Img3では、必ず樹脂部材18の部分が明部となり樹脂部材18以外の部分が暗部となる。検査部53は撮像画像Img3を基に樹脂部材18の有無又は位置を検査する。よって、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を検査できる。 Here, the first image Img1 and the second image Img2 have such a relationship that even if one of them has a dark resin member 18 portion, the other has a bright resin member 18 portion. Therefore, in the captured image Img3, the portion of the resin member 18 always becomes a bright portion, and the portion other than the resin member 18 becomes a dark portion. The inspection unit 53 inspects the presence or absence or position of the resin member 18 based on the captured image Img3. Therefore, the presence or absence or position of the resin member 18 in the container 12 can be inspected regardless of the orientation or type of the resin member 18 attached to the container 12 .

さらに、前記第1実施形態と同様に、カメラ20が1つで済むので、容器検査装置14の部品点数が少なく済むうえ、装置の小型化を実現できる。また、第2実施形態では、波長板26が無くても、2つの検光子27,28を用いることで、第1実施形態と同様の効果が得られる。そのうえ、第1実施形態に比べ、容器検査装置14を構成する部品の数を増やさずに部品の種類を低減できる。また、偏光子23,24及び検光子27,28は、偏光板(例えば偏光フィルタ)により構成されるので、機能の異なる複数の部品を共通の材料で製造できる。よって、容器検査装置14を比較的安価なコストでかつ比較的簡単に製造できる。その他、第2実施形態によれば、前記第1実施形態における前記(2),(4)~(6)の効果が同様に得られる。 Furthermore, since only one camera 20 is required as in the first embodiment, the number of parts of the container inspection device 14 can be reduced, and the size of the device can be reduced. Moreover, in the second embodiment, the same effect as in the first embodiment can be obtained by using the two analyzers 27 and 28 without the wavelength plate 26 . Moreover, compared to the first embodiment, it is possible to reduce the types of parts without increasing the number of parts constituting the container inspection device 14 . Moreover, since the polarizers 23 and 24 and the analyzers 27 and 28 are composed of polarizing plates (for example, polarizing filters), a plurality of parts having different functions can be manufactured from a common material. Therefore, the container inspection device 14 can be manufactured relatively easily at a relatively low cost. In addition, according to the second embodiment, the effects (2), (4) to (6) of the first embodiment are similarly obtained.

(9)物品検査方法は、第1の像生成工程と、第2の像生成工程と、撮像工程と、検査工程とを備える。第1の像生成工程では、第1光源21の光が、第1偏光子23を通った第1偏光L1を容器12の検査対象領域に照射し、容器12を透過した第1偏光L1を、第1偏光子23の透過軸23Aに対して透過軸27Aが交差する向きに配置された第1検光子27を通して第1の像Img1を生成する。第2の像生成工程では、第2光源22の光が、第1偏光子23の透過軸23Aに対して異なる角度の透過軸24Aとなる向きに配置された第2偏光子24を通った第2偏光L2を、容器12の検査対象領域に照射する。容器12を透過した第2偏光L2を、第2偏光子24の透過軸24Aに対して透過軸28Aが交差する向きに配置された第2検光子28を通して第2の像Img2を生成する。撮像工程では、第1の像Img1と第2の像Img2とを撮像する。そして、検査工程では、撮像工程で取得した撮像画像Img3を基に樹脂部材18の有無又は位置を検査する。よって、容器12に付される樹脂部材18の向き又は種類によらず、容器12における樹脂部材18の有無又は位置を検査できる。 (9) An article inspection method includes a first image generation process, a second image generation process, an imaging process, and an inspection process. In the first image generation step, the light from the first light source 21 irradiates the inspection target region of the container 12 with the first polarized light L1 that has passed through the first polarizer 23, and the first polarized light L1 transmitted through the container 12 is A first image Img1 is generated through a first analyzer 27 arranged in a direction in which the transmission axis 27A intersects the transmission axis 23A of the first polarizer 23. FIG. In the second image generation step, the light from the second light source 22 passes through the second polarizer 24 which is oriented so that the transmission axis 24A is at a different angle with respect to the transmission axis 23A of the first polarizer 23. A region to be inspected of the container 12 is irradiated with the two polarized lights L2. The second polarized light L2 transmitted through the container 12 is passed through a second analyzer 28 arranged such that the transmission axis 28A intersects the transmission axis 24A of the second polarizer 24 to generate a second image Img2. In the imaging step, a first image Img1 and a second image Img2 are captured. Then, in the inspection process, the presence or absence or position of the resin member 18 is inspected based on the captured image Img3 acquired in the imaging process. Therefore, the presence or absence or position of the resin member 18 in the container 12 can be inspected regardless of the orientation or type of the resin member 18 attached to the container 12 .

実施形態は、上記に限定されず、以下の態様に変更してもよい。
・前記第1実施形態および第2実施形態において、カメラ20が1つの容器12に対して2フレームで撮像動作を行い、第1の像Img1と第2の像Img2とを異なる個別の2フレームで撮像してもよい。この場合、検査部53は、カメラ20が取得した第1の像Img1を含む第1撮像画像と第2の像Img2を含む第2撮像画像とに別々に画像処理を施す。そして、第1撮像画像と第2撮像画像のうち一方で樹脂部材18が検出されれば、樹脂部材ありと判定し、第1撮像画像と第2撮像画像との両方で樹脂部材18が検出されなければ、樹脂部材なしと判定する。また、樹脂部材18の位置を検出する場合は、さらに第1撮像画像と第2撮像画像とのうち樹脂部材18が検出された一方の画像中における樹脂部材18の位置を計算することにより、容器12等の物品に対する樹脂部材18の相対位置を検出する。容器12の搬送高さとカメラ20の撮像高さは既知であるため、検出された樹脂部材18の位置が、容器12の搬送高さから想定される正規の高さ範囲から鉛直方向Zに許容量を超えて外れていれば、制御部50は樹脂部材18(例えばラベル)の位置ずれ不良と判定する。第1の像Img1と第2の像Img2とを2フレームで撮像するので、それぞれのフレーム撮像時の露光時間を調整しやすく、第1画像と第2画像とを適切な明度又はコントラストで取得しやすい。さらに、カメラ20が第1の像Img1と第2の像Img2とを2フレームで撮像すると、フレーム間の差分処理が可能である。前記各実施形態における1フレーム内での第1の像Img1と第2の像Img2との合成は、処理時間の短縮に効果はあるが、差分画像情報を得ることができない。これに対してカメラ20が第1の像Img1と第2の像Img2とを2フレームで撮像する構成であれば、2つの画像差が小さい場合には検査部53がフレーム間の差分をとることで検出精度を上げることができる。よって、検査部53は、物品に付される樹脂部材18の向き又は種類によらず、物品における樹脂部材18の有無又は位置を高い精度で検出できる。
Embodiments are not limited to the above, and may be modified as follows.
- In the first embodiment and the second embodiment, the camera 20 performs an imaging operation for one container 12 in two frames, and the first image Img1 and the second image Img2 are captured in two different frames. You can take an image. In this case, the inspection unit 53 performs image processing separately on the first captured image including the first image Img1 and the second captured image including the second image Img2 acquired by the camera 20 . Then, if the resin member 18 is detected in one of the first captured image and the second captured image, it is determined that the resin member is present, and the resin member 18 is detected in both the first captured image and the second captured image. If not, it is determined that there is no resin member. Further, when the position of the resin member 18 is detected, the position of the resin member 18 in one of the first captured image and the second captured image in which the resin member 18 is detected is calculated to obtain the container. The relative position of the resin member 18 with respect to the article such as 12 is detected. Since the conveying height of the container 12 and the imaging height of the camera 20 are known, the detected position of the resin member 18 is within the allowable amount in the vertical direction Z from the normal height range assumed from the conveying height of the container 12. , the controller 50 determines that the resin member 18 (for example, a label) is misaligned. Since the first image Img1 and the second image Img2 are captured in two frames, it is easy to adjust the exposure time when capturing each frame, and the first image and the second image can be obtained with appropriate brightness or contrast. Cheap. Furthermore, when the camera 20 captures the first image Img1 and the second image Img2 in two frames, difference processing between frames is possible. Synthesis of the first image Img1 and the second image Img2 within one frame in each of the above-described embodiments is effective in shortening the processing time, but the difference image information cannot be obtained. On the other hand, if the camera 20 is configured to capture the first image Img1 and the second image Img2 in two frames, if the difference between the two images is small, the inspection unit 53 will take the difference between the frames. can improve detection accuracy. Therefore, the inspection unit 53 can detect the presence or absence or position of the resin member 18 on the article with high accuracy regardless of the orientation or type of the resin member 18 attached to the article.

・第1光源21と第2光源22を同じタイミングで同時に発光させてもよい。この構成によっても、カメラ20で第1の像Img1と第2の像Img2とを撮像した撮像画像Img3を取得できるので、前記実施形態と同様に、容器12等の物品における樹脂部材18の有無又は位置を検査できる。 - You may make the 1st light source 21 and the 2nd light source 22 light-emit simultaneously at the same timing. With this configuration as well, a captured image Img3 obtained by capturing the first image Img1 and the second image Img2 with the camera 20 can be obtained. position can be inspected.

・前記各実施形態では、検査時は第1光源21と第2光源22を発光させたが、2つの光源21,22のうち一方のみ発光させてもよい。制御部50は、容器12に付される樹脂部材18の向き又は種類を把握し、第1光源21と第2光源22とのうち樹脂部材18の向き又は種類に応じた一方のみ発光させる。例えば、容器12の種類の切り替わり時に1つの容器12に対して第1の像Img1を含む第1撮像画像と第2の像Img2を含む第2撮像画像とを別々に取得し、これら2つの撮像画像のうち樹脂部材18の部分が明部となる一方を特定し、その特定した一方の撮像画像の撮像時に発光させた光源を以降の検査で発光させる光源として決定する。また、制御部50は、検査対象の容器12に付される樹脂部材18の向き又は種類の情報に応じて2つの光源21,22のうち発光させる一方を切り替える構成にすれば、検査ラインに、樹脂部材18の向き又は種類の異なる容器12が混在しても対応できる。例えば、検査位置よりも上流側で容器12に付されたバーコード等のコード情報を読み込んで容器12の種類を把握し、その種類の容器に付される樹脂部材18の向き又は種類に応じて発光させる光源を切り替えればよい。 - In each of the above embodiments, the first light source 21 and the second light source 22 are caused to emit light during inspection, but only one of the two light sources 21 and 22 may be caused to emit light. The control unit 50 grasps the direction or type of the resin member 18 attached to the container 12 and causes only one of the first light source 21 and the second light source 22 to emit light according to the direction or type of the resin member 18 . For example, when the type of the container 12 is switched, a first captured image including the first image Img1 and a second captured image including the second image Img2 are acquired separately for one container 12, and these two captured images are captured. One of the images in which the portion of the resin member 18 is a bright portion is specified, and the light source that emits light when the specified one of the captured images is captured is determined as the light source that emits light in subsequent inspections. In addition, if the control unit 50 is configured to switch one of the two light sources 21 and 22 to emit light according to information on the orientation or type of the resin member 18 attached to the container 12 to be inspected, the inspection line can Even if containers 12 with different orientations or types of resin members 18 are mixed, it can be handled. For example, code information such as a barcode attached to the container 12 is read on the upstream side of the inspection position to grasp the type of the container 12, and depending on the orientation or type of the resin member 18 attached to that type of container, It is sufficient to switch the light source to emit light.

・第1実施形態において、検光子25は、第1の像生成機構31を構成する第1検光子と、第2の像生成機構32を構成する第2検光子とに分けて配置してもよい。この場合、第1検光子を検査位置にある容器とカメラ20との間の第1偏光L1の光経路上の位置に配置し、第2検光子を検査位置にある容器とカメラ20との間の第3偏光L3の光経路上の位置に配置すればよい。例えば、第1検光子を、容器12と第1ミラー33との間、あるいは第1ミラー33と第2ミラー34との間に配置する。また、第2検光子を、波長板26と第3ミラー35との間、あるいは第3ミラー35と第4ミラー36との間に配置する。そして、第1検光子と第2検光子のそれぞれを透過した2つの偏光L2,L3の像Img1,Img2は、共通のカメラ20により撮像される。 - In the first embodiment, the analyzer 25 may be divided into a first analyzer that constitutes the first image generation mechanism 31 and a second analyzer that constitutes the second image generation mechanism 32. good. In this case, a first analyzer is placed at a position on the optical path of the first polarization L1 between the container in the inspection position and the camera 20, and a second analyzer is placed between the container in the inspection position and the camera 20. may be arranged at a position on the optical path of the third polarized light L3. For example, a first analyzer is placed between the container 12 and the first mirror 33 or between the first mirror 33 and the second mirror 34 . A second analyzer is arranged between the wave plate 26 and the third mirror 35 or between the third mirror 35 and the fourth mirror 36 . The images Img1 and Img2 of the two polarized light beams L2 and L3 transmitted through the first analyzer and the second analyzer, respectively, are picked up by the common camera 20 .

・第1実施形態において、第3の像生成機構を追加してもよい。第3の像生成機構は、第2の像生成機構と基本的に同じ構成で、第3光源、第3偏光子、検光子及び移相子の一例としての第2波長板を有する。第3光源は、光照射方向が第1光源及び第2光源と異なる。第1偏光子、第2偏光子及び第3偏光子はそれぞれの透過軸のなす角度が互いに異なる。これら3つの偏光子の角度は、互いに異なる。また、第3偏光子と検光子とのそれぞれの透過軸が直交しないので、第2波長板により、第1偏光子と第3偏光子とのそれぞれの透過軸がなす所定角度に応じた角度だけ偏光の振動方向(偏光面)を回転させる。また、第2実施形態において、第3の像生成機構を追加してもよい。第3の像生成機構は、第1の像生成機構31と基本的に同じ構成で、第3光源、第3偏光子及び第3検光子を有する。上記いずれの構成においても、制御部50は、3つの光源の発光制御およびカメラ20の撮像タイミングを制御し、カメラ20によって、第1の像Img1、第2の像Img2及び第3の像を異なる撮像タイミングで撮像してもよいし、同じ撮像タイミングで撮像してもよい。 • In the first embodiment, a third image generation mechanism may be added. The third image generation mechanism has basically the same configuration as the second image generation mechanism, and has a third light source, a third polarizer, an analyzer, and a second wavelength plate as an example of a phase shifter. The third light source has a light irradiation direction different from that of the first light source and the second light source. The transmission axes of the first polarizer, the second polarizer, and the third polarizer have different angles. The angles of these three polarizers are different from each other. Further, since the transmission axes of the third polarizer and the analyzer are not perpendicular to each other, the second wavelength plate allows the transmission axes of the first polarizer and the third polarizer to pass through an angle corresponding to the predetermined angle formed by the respective transmission axes of the first polarizer and the third polarizer. Rotate the vibration direction of polarized light (polarization plane). Also, in the second embodiment, a third image generation mechanism may be added. The third image generation mechanism has basically the same configuration as the first image generation mechanism 31 and has a third light source, a third polarizer and a third analyzer. In any of the above configurations, the control unit 50 controls the light emission control of the three light sources and the imaging timing of the camera 20, and the first image Img1, the second image Img2, and the third image are different depending on the camera 20. The image may be captured at the same image capturing timing, or may be captured at the same image capturing timing.

・第1実施形態において、偏光子23,24と検光子25とのうち一方又は両方を、偏光板に替え、偏光プリズムとしてもよい。また、第2実施形態において、偏光子23,24と検光子27,28とのうち少なくとも一つを、偏光板に替え、偏光プリズムとしてもよい。 - In the first embodiment, one or both of the polarizers 23 and 24 and the analyzer 25 may be replaced with a polarizing plate and a polarizing prism. Further, in the second embodiment, at least one of the polarizers 23 and 24 and the analyzers 27 and 28 may be replaced with a polarizing plate and may be a polarizing prism.

・第1実施形態において、移相子は、波長板26に限らず、位相差が可変な補償板でもよい。
・第2実施形態において、第1検光子27を第1ミラー33と第2ミラー34との間の光経路上の位置に配置してもよい。また、第2検光子28を第3ミラー35と第4ミラー36との間の光経路上の位置に配置してもよい。さらに配置スペースを確保できれば、第1検光子27をミラー34とカメラ20との間の光経路上の位置に配置したり、第2検光子28をミラー36とカメラ20との間の光経路上の位置に配置したりしてもよい。
- In the first embodiment, the retarder is not limited to the wave plate 26, but may be a compensator having a variable phase difference.
- In 2nd Embodiment, you may arrange|position the 1st analyzer 27 in the position on an optical path between the 1st mirror 33 and the 2nd mirror 34. FIG. Also, the second analyzer 28 may be arranged at a position on the optical path between the third mirror 35 and the fourth mirror 36 . Furthermore, if the arrangement space can be secured, the first analyzer 27 can be arranged on the optical path between the mirror 34 and the camera 20, or the second analyzer 28 can be arranged on the optical path between the mirror 36 and the camera 20. position.

・樹脂部材18は、容器12に付される環状の部材や、容器12の外周面に付着したシュリンクラベル等のラベルに限定されない。例えば容器12の包装フィルムや、蓋19及び容器12の首部に亘って付された封止フィルムでもよい。また、フィルムに限らずシートでもよい。また、樹脂部材18は、容器12の外側又は外周面に付されるものにも限らず、容器12の内部に入れられるものでもよい。例えば、容器12に入れられるべき樹脂部材18の投入ミスの有無や、容器12内から取り出されるべき樹脂部材18の排出ミスの有無を検査してもよい。 - The resin member 18 is not limited to an annular member attached to the container 12 or a label such as a shrink label attached to the outer peripheral surface of the container 12 . For example, it may be a packaging film for the container 12 or a sealing film applied over the lid 19 and the neck of the container 12 . Moreover, not only a film but also a sheet may be used. Moreover, the resin member 18 is not limited to being attached to the outside or the outer peripheral surface of the container 12 , and may be put inside the container 12 . For example, it may be inspected whether or not the resin member 18 to be put into the container 12 has been erroneously inserted or whether or not the resin member 18 to be taken out from the container 12 has been erroneously discharged.

・樹脂部材18は全部が透明又は半透明であることに限定されない。例えば印刷が施されたラベルのように一部に透明又は半透明の部分がある樹脂部材であればよい。
・樹脂部材18はフィルムやシートに限らず、例えばブロック状の部材でもよい。
- The resin member 18 is not limited to being entirely transparent or translucent. For example, a resin member having a transparent or translucent part, such as a printed label, may be used.
- The resin member 18 is not limited to a film or sheet, and may be, for example, a block-shaped member.

・容器12は、ガラス壜に限定されず、ガラス製のカップ、皿、花瓶などでもよい。また、無機材料は、非晶質であるガラスに限定されず、無機材料よりなる光透過性を有するシリカ、アルミナ、ジルコニア等の結晶材料でもよい。 - The container 12 is not limited to a glass bottle, and may be a glass cup, plate, vase, or the like. In addition, the inorganic material is not limited to glass, which is amorphous, and may be a crystal material such as silica, alumina, or zirconia made of an inorganic material and having optical transparency.

・物品は容器に限定されない。光透過性を有する無機材料よりなる物品であればよい。例えば、板ガラス、照明用ガラス製品、レンズ等のガラス製光学部品やガラス製の置物でもよい。 • Articles are not limited to containers. Any article made of an inorganic material having optical transparency may be used. For example, plate glass, lighting glass products, glass optical components such as lenses, and glass ornaments may be used.

11…容器検査システム、12…物品の一例としての容器、13…搬送部、14…物品検査装置の一例としての容器検査装置、15,15A…コンベヤ、16,16A,16B,16C…コンベヤ装置、17…センサ、18…樹脂部材、19…蓋、20…撮像部の一例としてのカメラ、21…第1光源、22…第2光源、23…第1偏光子、23A…透過軸、24…第2偏光子、24A…透過軸、25…検光子、25A…透過軸、26…移相子の一例としての波長板、27…第1検光子、27A…透過軸、28…第2検光子、28A…透過軸、31…第1の像生成機構、32…第2の像生成機構、33…第1ミラー、34…第2ミラー、35…第3ミラー、36…第4ミラー、50…制御部、51…メモリ、52…駆動制御部、53…検査部、PR…プログラム、L1…第1偏光、L2…第2偏光、L3…第3偏光、IP…1フレーム撮像期間、Img1…第1の像、Img2…第2の像、Img3…撮像画像。 DESCRIPTION OF SYMBOLS 11... Container inspection system, 12... Container as an example of goods, 13... Conveying part, 14... Container inspection apparatus as an example of goods inspection apparatus, 15, 15A... Conveyor, 16, 16A, 16B, 16C... Conveyor apparatus, DESCRIPTION OF SYMBOLS 17... Sensor, 18... Resin member, 19... Lid, 20... Camera as an example of imaging part, 21... First light source, 22... Second light source, 23... First polarizer, 23A... Transmission axis, 24... Second light source 2 polarizers, 24A... transmission axis, 25... analyzer, 25A... transmission axis, 26... wavelength plate as an example of phase shifter, 27... first analyzer, 27A... transmission axis, 28... second analyzer, 28A... transmission axis, 31... first image generating mechanism, 32... second image generating mechanism, 33... first mirror, 34... second mirror, 35... third mirror, 36... fourth mirror, 50... control Unit 51 Memory 52 Drive control unit 53 Inspection unit PR Program L1 First polarization L2 Second polarization L3 Third polarization IP One frame imaging period Img1 First image, Img2: second image, Img3: captured image.

Claims (8)

光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査装置であって、
第1光源、第1偏光子及び検光子を有し、前記第1光源の光が前記第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された前記検光子を通して第1の像を生成する第1の像生成機構と、
第2光源、第2偏光子、移相子及び検光子を有し、前記第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された前記第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過する前後の少なくとも一方で前記第2偏光を前記移相子に通して当該第2偏光の位相差を変更して、当該第2偏光の振動方向を前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度に応じた角度だけ回転させて第3偏光とし、当該第3偏光を前記検光子に通して第2の像を生成する第2の像生成機構と、
前記第1の像と前記第2の像とを撮像する撮像部と、
前記撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査部と、を備えたことを特徴とする物品検査装置。
An article inspection apparatus for inspecting the presence or absence or position of a light-transmitting resin member attached to an article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material,
It has a first light source, a first polarizer and an analyzer, the light of the first light source passes through the first polarizer, irradiates the inspection target area of the article with the first polarized light, and transmits the article. a first image generating mechanism for generating a first image by passing one polarized light through the analyzer oriented such that the transmission axis crosses the transmission axis of the first polarizer;
It has a second light source, a second polarizer, a phase shifter and an analyzer, and is arranged such that the light from the second light source has a transmission axis at a different angle with respect to the transmission axis of the first polarizer. A region to be inspected of the article is irradiated with the second polarized light that has passed through the second polarizer, and the second polarized light is passed through the phase shifter at least before and after passing through the article, and the position of the second polarized light is By changing the phase difference, the vibration direction of the second polarized light is rotated by an angle corresponding to the predetermined angle formed by the transmission axes of the first polarizer and the second polarizer, and the third polarized light is obtained. a second image generating mechanism for passing three polarized light beams through the analyzer to generate a second image;
an imaging unit that captures the first image and the second image;
and an inspection unit that inspects the presence or absence or position of the resin member based on the captured image acquired by the imaging unit.
前記移相子は、前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度θに応じた角度(nπ-θ)(但しnは0以上の整数)だけ偏光の振動方向を回転可能な分の位相差を変更する、ことを特徴とする請求項1に記載の物品検査装置。 The retarder oscillates the polarized light by an angle (nπ-θ) (where n is an integer equal to or greater than 0) corresponding to a predetermined angle θ between the transmission axes of the first polarizer and the second polarizer. 2. The article inspection apparatus according to claim 1, wherein the phase difference is changed by a rotatable amount. 光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査装置であって、
第1光源、第1偏光子及び第1検光子を有し、前記第1光源の光が前記第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された前記第1検光子を通して第1の像を生成する第1の像生成機構と、
第2光源、第2偏光子及び第2検光子を有し、前記第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された前記第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過した第2偏光を、前記第2偏光子の透過軸に対して透過軸が交差する向きに配置された前記第2検光子を通して第2の像を生成する第2の像生成機構と、
前記第1の像と前記第2の像とを撮像する撮像部と、
前記撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査部と、を備えたことを特徴とする物品検査装置。
An article inspection apparatus for inspecting the presence or absence or position of a light-transmitting resin member attached to an article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material,
Having a first light source, a first polarizer and a first analyzer, the light from the first light source passes through the first polarizer and irradiates the inspection target area of the article with the first polarized light, which is transmitted through the article. a first image generating mechanism for generating a first image of the first polarized light through the first analyzer arranged in a direction in which the transmission axis intersects the transmission axis of the first polarizer;
The second light source has a second light source, a second polarizer, and a second analyzer, and the light from the second light source is arranged in a direction such that the transmission axis is at a different angle with respect to the transmission axis of the first polarizer. A region to be inspected of the article is irradiated with the second polarized light that has passed through two polarizers, and the second polarized light that has passed through the article is arranged in a direction in which the transmission axis crosses the transmission axis of the second polarizer. a second image generating mechanism for generating a second image through said second analyzer;
an imaging unit that captures the first image and the second image;
and an inspection unit that inspects the presence or absence or position of the resin member based on the captured image acquired by the imaging unit.
前記撮像部を制御する駆動制御部を備え、
前記駆動制御部は、前記撮像部に前記第1の像と前記第2の像とを1フレームの撮像動作で撮像させる、ことを特徴とする請求項1~3のいずれか一項に記載の物品検査装置。
A drive control unit that controls the imaging unit,
4. The method according to any one of claims 1 to 3, wherein the drive control section causes the imaging section to capture the first image and the second image in one frame of imaging operation. Article inspection equipment.
前記駆動制御部は、前記撮像部の同一の1フレーム撮像期間内に前記第1光源と前記第2光源とを異なるタイミングで発光させる、ことを特徴とする請求項4に記載の物品検査装置。 5. The article inspection apparatus according to claim 4, wherein the drive control section causes the first light source and the second light source to emit light at different timings within the same one-frame imaging period of the imaging section. 前記第1光源と前記第2光源を異なるタイミングで発光させ、前記撮像部は、前記第1の像と前記第2の像を個別の異なる2フレームで撮像する、ことを特徴とする請求項1~3のいずれか一項に記載の物品検査装置。 2. The first light source and the second light source are caused to emit light at different timings, and the imaging unit captures the first image and the second image in two separate and different frames. 4. The article inspection device according to any one of -3. 光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査方法であって、
第1光源の光が第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子の透過軸に対して透過軸が交差する向きに配置された検光子を通して第1の像を生成する第1の像生成工程と、
第2光源の光が前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過する前後の少なくとも一方で前記第2偏光の位相差を変更して、当該第2偏光の振動方向を前記第1偏光子と前記第2偏光子とのそれぞれの透過軸のなす所定角度に応じた角度だけ回転させて第3偏光とし、当該第3偏光を前記検光子に通して第2の像を生成する第2の像生成工程と、
前記第1の像と前記第2の像とを撮像する撮像工程と、
前記撮像工程で取得した撮像画像を基に前記検査対象領域における前記樹脂部材の有無又は位置を検査する検査工程と、
を備えたことを特徴とする物品検査方法。
An article inspection method for inspecting the presence or absence or position of a light-transmitting resin member attached to the article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material,
Light from a first light source passes through a first polarizer and irradiates a region to be inspected of the article with the first polarized light, and the first polarized light that has passed through the article has a transmission axis with respect to the transmission axis of the first polarizer. a first imaging step of generating a first image through an analyzer oriented with the
irradiating a region to be inspected of the article with the second polarized light that has passed through a second polarizer arranged such that the light from the second light source has a transmission axis at a different angle with respect to the transmission axis of the first polarizer; The phase difference of the second polarized light is changed at least either before or after it is transmitted through the article, and the oscillation direction of the second polarized light is set to a predetermined value formed by the transmission axes of the first polarizer and the second polarizer. a second image generating step of rotating the third polarized light by an angle corresponding to the angle and passing the third polarized light through the analyzer to generate a second image;
an imaging step of imaging the first image and the second image;
an inspection step of inspecting the presence or absence or position of the resin member in the inspection target area based on the captured image acquired in the imaging step;
An article inspection method comprising:
光透過性の無機材料よりなる物品の検査対象領域に光を照射して当該物品に付される光透過性の樹脂部材の有無又は位置を検査する物品検査方法であって、
第1光源の光が第1偏光子を通った第1偏光を前記物品の検査対象領域に照射し、当該物品を透過した第1偏光を、前記第1偏光子と透過軸が交差する向きに配置された第1検光子を通して第1の像を生成する第1の像生成工程と、
第2光源の光が、前記第1偏光子の透過軸に対して異なる角度の透過軸となる向きに配置された第2偏光子を通った第2偏光を前記物品の検査対象領域に照射し、当該物品を透過した第2偏光を、前記第2偏光子の透過軸に対して透過軸が交差する向きに配置された第2検光子を通して第2の像を生成する第2の像生成工程と、
前記第1の像と前記第2の像とを撮像する撮像工程と、
撮像部が取得した撮像画像を基に前記樹脂部材の有無又は位置を検査する検査工程と、
を備えたことを特徴とする物品検査方法。
An article inspection method for inspecting the presence or absence or position of a light-transmitting resin member attached to the article by irradiating light onto an inspection target area of an article made of a light-transmitting inorganic material,
Light from a first light source passes through a first polarizer and irradiates a region to be inspected of the article with the first polarized light, and the first polarized light that has passed through the article is directed in a direction in which the transmission axis intersects the first polarizer. a first imaging step of generating a first image through a first positioned analyzer;
The light from the second light source passes through a second polarizer arranged in a direction where the transmission axis is at a different angle with respect to the transmission axis of the first polarizer, and the inspection target area of the article is irradiated with the second polarized light. a second image generating step of generating a second image of the second polarized light transmitted through the article through a second analyzer arranged in a direction in which the transmission axis crosses the transmission axis of the second polarizer; When,
an imaging step of imaging the first image and the second image;
an inspection step of inspecting the presence or absence or position of the resin member based on the captured image acquired by the imaging unit;
An article inspection method comprising:
JP2019010261A 2019-01-24 2019-01-24 Article inspection device and article inspection method Active JP7168215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019010261A JP7168215B2 (en) 2019-01-24 2019-01-24 Article inspection device and article inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019010261A JP7168215B2 (en) 2019-01-24 2019-01-24 Article inspection device and article inspection method

Publications (2)

Publication Number Publication Date
JP2020118557A JP2020118557A (en) 2020-08-06
JP7168215B2 true JP7168215B2 (en) 2022-11-09

Family

ID=71890512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019010261A Active JP7168215B2 (en) 2019-01-24 2019-01-24 Article inspection device and article inspection method

Country Status (1)

Country Link
JP (1) JP7168215B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504413A (en) 1996-01-22 2000-04-11 エスアールシー ヴィジョン インコーポレイテッド Apparatus and method for classifying PVC and PET plastic articles
JP2002107304A (en) 2000-09-29 2002-04-10 Sumitomo Osaka Cement Co Ltd Device for inspecting birefringent object to be inspected
JP2002296009A (en) 2001-03-29 2002-10-09 Toyo Glass Co Ltd Method and device for inspecting pasting position of label with transparent upper margin pasted on bottle
JP2011089978A (en) 2009-08-28 2011-05-06 Krones Ag Device and method for inspecting container with label

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951995A (en) * 1972-09-16 1974-05-20
JPH0972861A (en) * 1995-09-01 1997-03-18 Ishizuka Glass Co Ltd Method and apparatus for detecting mounting abnormality of transparent film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504413A (en) 1996-01-22 2000-04-11 エスアールシー ヴィジョン インコーポレイテッド Apparatus and method for classifying PVC and PET plastic articles
JP2002107304A (en) 2000-09-29 2002-04-10 Sumitomo Osaka Cement Co Ltd Device for inspecting birefringent object to be inspected
JP2002296009A (en) 2001-03-29 2002-10-09 Toyo Glass Co Ltd Method and device for inspecting pasting position of label with transparent upper margin pasted on bottle
JP2011089978A (en) 2009-08-28 2011-05-06 Krones Ag Device and method for inspecting container with label

Also Published As

Publication number Publication date
JP2020118557A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US6937339B2 (en) Inspection device and system for inspecting foreign matters in a liquid filled transparent container
JP4476283B2 (en) Method and system for inspecting packages
US20220236193A1 (en) Method and device for optically inspecting containers
JP6250644B2 (en) Method and equipment for inspecting empty bottles
US20180172602A1 (en) System and method for inspecting containers using multiple radiation sources
CN213239910U (en) Transmitted light inspection apparatus for inspection of side walls of containers
JP2012132929A (en) Label inspection method and apparatus
JP2000298103A (en) Foreign matter inspecting device for powder in transparent container
JP2008128944A (en) Method and device for inspecting label
JP2010060312A (en) Device and system for inspecting foreign matter
JP7168215B2 (en) Article inspection device and article inspection method
JP5298327B2 (en) Foreign matter inspection apparatus and foreign matter inspection system
KR100972235B1 (en) Camera device photographing lateral view of container with optical mirror system
JP4038077B2 (en) Foreign object detection device in injection solution in transparent container
CN113711019A (en) Transmission light inspection apparatus and transmission light inspection method for inspecting sidewall of container
US11667424B2 (en) Liquid container labelling machine with optical inspection device
JP2012098306A (en) Method and device for inspecting label
JP7053840B2 (en) Inspection equipment, manufacturing equipment, and inspection method for packaging containers for smoking articles
CN111443093B (en) Transparent container detection device and detection method
JP7292865B2 (en) Transparent bottle inspection device and transparent bottle inspection method
JP4177204B2 (en) Container foreign matter inspection system
JP6996736B2 (en) Foreign matter inspection device
JP5919842B2 (en) Inspection apparatus and inspection method
JP2002267612A (en) Device and system for inspecting foreign matter in liquid filled in transparent container or the like
JP2005030810A (en) Foreign matter inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7168215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150