JP7128516B2 - How to measure interference signals in dual comb spectroscopy - Google Patents

How to measure interference signals in dual comb spectroscopy Download PDF

Info

Publication number
JP7128516B2
JP7128516B2 JP2018247417A JP2018247417A JP7128516B2 JP 7128516 B2 JP7128516 B2 JP 7128516B2 JP 2018247417 A JP2018247417 A JP 2018247417A JP 2018247417 A JP2018247417 A JP 2018247417A JP 7128516 B2 JP7128516 B2 JP 7128516B2
Authority
JP
Japan
Prior art keywords
optical frequency
frequency comb
comb
optical
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018247417A
Other languages
Japanese (ja)
Other versions
JP2020106477A (en
Inventor
薫 美濃島
彰文 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2018247417A priority Critical patent/JP7128516B2/en
Publication of JP2020106477A publication Critical patent/JP2020106477A/en
Application granted granted Critical
Publication of JP7128516B2 publication Critical patent/JP7128516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、デュアルコム分光法における干渉信号の測定方法に関する。 The present invention relates to a method for measuring interference signals in dual comb spectroscopy.

デュアルコム分光法は、繰り返し周波数の異なる2つの光周波数コムを用いたフーリエ変換分光法の1つであり、広波長域・高精度・高分解能な測定を可能にする分光法である。精密なスペクトルを超高速で計測できるため、デュアルコム分光法は、フーリエ変換赤外分光光度計(Fourier transform infrared spectrometer:FTIR)に代わる新しい分光法として期待されている。 Dual comb spectroscopy is one of Fourier transform spectroscopy using two optical frequency combs with different repetition frequencies, and is a spectroscopy that enables wide-wavelength, high-precision, and high-resolution measurements. Dual-comb spectroscopy is expected to replace Fourier transform infrared spectrometer (FTIR) as a new spectroscopic method because it can measure precise spectra at ultra-high speed.

デュアルコム分光法を用いた計測によって、固体試料の物性情報を位相スペクトルとして取得できる。位相スペクトルを取得するためには、2つの光周波数コムのうち1つの光周波数コムの進路上に固体試料を設置し、固体試料を通過した光周波数コムと通過しない光周波数コムとの干渉波形を取得する。リアルタイムで干渉波形の位相補正及びコヒーレント積算を行うことによって、固体試料の特性を含む位相スペクトルを検出できる(例えば、非特許文献1参照)。さらに、検出した位相スペクトルをフーリエ解析することによって、固体試料の物性情報が得られる。 Physical property information of a solid sample can be obtained as a phase spectrum by measurement using dual comb spectroscopy. In order to obtain the phase spectrum, a solid sample is placed on the path of one of the two optical frequency combs, and the interference waveform between the optical frequency comb that passes through the solid sample and the optical frequency comb that does not pass through is measured. get. By performing phase correction and coherent integration of the interferometric waveform in real time, the phase spectrum including the properties of the solid sample can be detected (see, for example, Non-Patent Document 1). Furthermore, physical property information of the solid sample can be obtained by Fourier analysis of the detected phase spectrum.

”Dual-comb spectroscopy for rapid characterization of complex optical properties of solids”, Akifumi Asahara, Akiko Nishiyama, Satoru Yoshida, Ken-ichi Kondo, Yoshiaki Nakajima and Kaoru Minoshima, Optics Letters, Vol. 41, No. 21, pp. 4971-4974, 2016.``Dual-comb spectroscopy for rapid characterization of complex optical properties of solids'', Akifumi Asahara, Akiko Nishiyama, Satoru Yoshida, Ken-ichi Kondo, Yoshiaki Nakajima and Kaoru Minoshima, Optics Letters, Vol. 41, No. 21, pp. 4971 -4974, 2016.

デュアルコム分光法を用いた位相スペクトルの取得時には、例えば、互いに繰り返し周波数の異なる2つの光周波数コムのうちの一方の光周波数コムを固体試料の情報をのせるための信号光パルスとし、他方の光周波数コムを信号光パルスとマルチヘテロダイン干渉させるためのローカル光パルスとする。信号光パルスの進路上に固体試料を配置し、信号光パルスが固体試料を透過する、あるいは内部反射(多重反射)した後に透過する際の時間領域における光パルスの位相遅れを測定する。固体試料の位相屈折率(単に、屈折率ともいう)に依存して生じる光パルスの位相遅れを測定するためには、標準とする光パルス、すなわち固体試料を通過せずに位相遅れのない光パルスとの時間軸上のずれを検出する。 When acquiring a phase spectrum using dual comb spectroscopy, for example, one of two optical frequency combs with different repetition frequencies is used as a signal light pulse for carrying information on a solid sample, and the other The optical frequency comb is assumed to be a local optical pulse for causing multi-heterodyne interference with the signal optical pulse. A solid sample is placed on the path of the signal light pulse, and the phase delay of the light pulse in the time domain is measured when the signal light pulse passes through the solid sample or passes through the solid sample after internal reflection (multiple reflection). In order to measure the phase delay of a light pulse that occurs depending on the phase refractive index (simply called refractive index) of a solid sample, a standard light pulse, that is, light that does not pass through the solid sample and has no phase delay Detect the deviation on the time axis from the pulse.

上述の非特許文献1をはじめとして、従来のデュアルコム分光法を用いた干渉信号の測定では、固体試料を透過した光パルスの位相遅れを測定するために、固体試料の移動が必須であった。固体試料の移動では、信号光パルスの進路に対して固体試料を機械的に挿入及び退避させる。信号光パルスの進路に固体試料を挿入した場合と信号光パルスの進路から固体試料を退避させた場合のそれぞれの信号光パルスとローカル光パルスとをマルチヘテロダイン干渉させ、干渉波形を取得する。位相検出の精度を向上させるためには、信号光パルスを互いに異なる進路を進むように2つに分け、第1の信号光パルスの進路に対して固体試料を上述のように挿入及び退避させる。試料を通過しない第2の信号光パルスを参照光パルスとして、第1の信号光パルスと参照光パルスとをそれぞれ、ローカル光パルスとマルチヘテロダイン干渉させ、それぞれの干渉波形を取得すればよい。 In the measurement of interference signals using conventional dual comb spectroscopy, including the above-mentioned Non-Patent Document 1, it was essential to move the solid sample in order to measure the phase delay of the light pulse that passed through the solid sample. . Movement of the solid sample involves mechanically inserting and retracting the solid sample with respect to the path of the signal light pulse. Multi-heterodyne interference is caused between the signal light pulse and the local light pulse when the solid sample is inserted into the path of the signal light pulse and when the solid sample is retracted from the path of the signal light pulse, and an interference waveform is obtained. In order to improve the accuracy of phase detection, the signal light pulse is divided into two so as to travel different paths, and the solid sample is inserted and retracted from the path of the first signal light pulse as described above. Using the second signal light pulse that does not pass through the sample as a reference light pulse, the first signal light pulse and the reference light pulse are each caused to undergo multi-heterodyne interference with the local light pulse, and each interference waveform is acquired.

しかしながら、信号光パルスの進路に対して固体試料の挿入及び退避させる際に、遅い位相揺らぎが生じる。図1の横軸は、デュアルコム分光において信号光パルスとローカル光パルスとの干渉波形を観測する時間スケールtをlogスケールで示している。時間スケールtは、1つの測定値を取得してから次の測定値を取得するまでの時間を表している。図1の縦軸は、干渉波形の位相揺らぎの大きさδφ(位相の不確かさ)をlogスケールで示している。図1に示すように、観測時間tが零から所定値t近傍まで大きくなるにしたがって、測定値の積算により信号対雑音比が低下するため、位相揺らぎδφは減少する(領域R-1)。観測時間tが所定値t近傍からさらに大きくなると、数秒単位の長周期の位相ドリフトの影響で、位相揺らぎδφは増大する(領域R-3)。信号光パルスの進路上に固体試料を挿入及び退避させる際に、このような長周期の位相ドリフトが測定値の位相揺らぎδφに含まれる。 However, slow phase fluctuations occur when the solid sample is inserted and retracted from the path of the signal light pulse. The horizontal axis of FIG. 1 indicates the time scale t for observing the interference waveform between the signal light pulse and the local light pulse in dual comb spectroscopy in log scale. The time scale t represents the time from taking one measurement to taking the next. The vertical axis in FIG. 1 indicates the magnitude of phase fluctuation δφ (phase uncertainty) of the interference waveform on a log scale. As shown in FIG. 1, as the observation time t increases from zero to the vicinity of the predetermined value ts, the signal-to-noise ratio decreases due to integration of the measured values, so the phase fluctuation δφ decreases (region R-1). . When the observation time t further increases from the vicinity of the predetermined value ts, the phase fluctuation δφ increases (region R-3) due to the influence of the long-period phase drift of several seconds. Such a long-period phase drift is included in the phase fluctuation .delta..phi. of the measured value when the solid sample is inserted into and retracted from the path of the signal light pulse.

また、上述のように参照光パルスを用いる場合は、参照光パルスとローカル光パルスとの干渉波形を位相基準とした信号補正処理により、前述の位相揺らぎδφを除去することで、位相検出を高精度化できる。しかしながら、参照光パルスは信号光パルスとは異なる進路に分岐されるので、参照光パルスと信号光パルスとが異なって通過する空間領域や進路を分岐するための光学部品等における環境変動の影響が、位相揺らぎδφとは別の位相ゆらぎとして測定値に及ぶ可能性がある。したがって、参照光パルスを用いても、第1の信号光パルスの進路上に固体試料を設置する際に、測定値の位相揺らぎδφに長周期の位相ドリフトが付加される。 Further, when the reference light pulse is used as described above, phase detection is enhanced by removing the above-described phase fluctuation δφ through signal correction processing using the interference waveform of the reference light pulse and the local light pulse as a phase reference. Precision can be achieved. However, since the reference light pulse and the signal light pulse are branched into paths different from each other, the spatial region through which the reference light pulse and the signal light pulse pass differently and the influence of environmental fluctuations in the optical components for branching the paths are affected. , may be introduced into the measurements as phase fluctuations other than the phase fluctuation δφ. Therefore, even if the reference light pulse is used, a long-period phase drift is added to the phase fluctuation δφ of the measured value when the solid sample is placed on the path of the first signal light pulse.

すなわち、従来のデュアルコム分光法を用いた光パルスの測定では、試料を通過するか否かということによって変化する光周波数コムの信号光パルスの時間的な遅れを正確に測定することが難しく、位相揺らぎδφが大きくなるという問題があった。 That is, in the measurement of light pulses using the conventional dual comb spectroscopy, it is difficult to accurately measure the time delay of the signal light pulses of the optical frequency comb, which varies depending on whether or not they pass through the sample. There is a problem that the phase fluctuation .delta..phi. increases.

本発明は、上述の事情を鑑みてなされたものであって、測定対象の試料を通過して変化する光周波数コムの各周波数モードの位相情報を正確に測定可能であって、試料の移動が不要で、高速に測定可能なデュアルコム分光法における干渉信号の測定方法を提供する。 The present invention has been made in view of the above-mentioned circumstances, and is capable of accurately measuring phase information of each frequency mode of an optical frequency comb that changes while passing through a sample to be measured. A method for measuring interference signals in dual-comb spectroscopy that is unnecessary and can be measured at high speed is provided.

本発明のデュアルコム分光法における干渉信号の測定方法は、互いに異なる繰り返し周波数を有する第1の光周波数コムと第2の光周波数コムとを用いたデュアルコム分光法における干渉信号の測定方法であって、単一の前記第1の光周波数コムの進行方向に直交する幅方向における通過幅が試料の被測定部の前記幅方向における測定幅より大きい通過幅調節済単一第1光周波数コムの進路上の試料配置位置で、前記幅方向において前記通過幅調節済単一第1光周波数コムが通過する領域の一部に前記被測定部を配置する第1工程と、前記試料配置位置より前記通過幅調節済単一第1光周波数コムの進行方向の奥側において、前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムと前記被測定部から出射した前記通過幅調節済単一第1光周波数コムとを一括して受光する第2工程と、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムと前記第2の光周波数コムとの第1の干渉信号を生成し、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過した前記通過幅調節済単一第1光周波数コムと前記第2の光周波数コムの第2の干渉信号を生成する第3工程と、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムの光パルスの時間軸上の位置を参照位置とし、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過した前記通過幅調節済単一第1光周波数コムの光パルスの時間軸上の位置を測定対象位置とし、前記第1の干渉信号及び前記第2の干渉信号に基づいて前記参照位置に対する前記測定対象位置の情報を取得する第4工程と、を備える。 A method of measuring an interference signal in dual comb spectroscopy of the present invention is a method of measuring an interference signal in dual comb spectroscopy using a first optical frequency comb and a second optical frequency comb having repetition frequencies different from each other. of the single first optical frequency comb whose passage width in the width direction perpendicular to the traveling direction of the single first optical frequency comb is larger than the measurement width in the width direction of the portion to be measured of the sample a first step of arranging the part to be measured in a part of the region through which the passage width-adjusted single first optical frequency comb passes in the width direction at a sample placement position on the path; The passage width-adjusted single first optical frequency comb not passing through the part to be measured and the passage emitted from the part to be measured on the far side of the passage direction of the passage width-adjusted single first optical frequency comb a second step of collectively receiving a width-adjusted single first optical frequency comb; generating a first interference signal between the passwidth-adjusted single first optical frequency comb and the second optical frequency comb that have not passed through, and the passwidth adjustment received collectively in the second step a third step of generating a second interference signal between the passage width-adjusted single first optical frequency comb and the second optical frequency comb, which have passed through the part under test, among the single first optical frequency combs; , of the optical pulses of the first passwidth-adjusted single optical frequency comb that have not passed through the part to be measured among the first passwidth-adjusted single optical frequency combs received collectively in the second step; Using the position on the time axis as a reference position, the pass width-adjusted single first optical frequency comb that has passed through the part to be measured among the pass width-adjusted single first optical frequency combs received collectively in the second step. A fourth step of obtaining information on the position of the measurement target with respect to the reference position based on the first interference signal and the second interference signal, with the position on the time axis of the optical pulse of the optical frequency comb as the position of the measurement target. And prepare.

上述のデュアルコム分光法における干渉信号の測定方法において、前記第3工程で取得した前記参照位置に対する前記測定対象位置の情報に基づいて前記試料の物性情報を算出する第5工程をさらに備えてもよい。 The method for measuring an interference signal in dual comb spectroscopy described above may further include a fifth step of calculating physical property information of the sample based on the information of the position to be measured with respect to the reference position acquired in the third step. good.

上述のデュアルコム分光法における干渉信号の測定方法において、前記第2工程において、前記被測定部から出射した前記通過幅調節済単一第1光周波数コムは、前記進行方向に沿って前記被測定部を透過した前記通過幅調節済単一第1光周波数コムと、前記被測定部の入射面と出射面との間を前記進行方向に沿って多重反射した前記通過幅調節済単一第1光周波数コムと、を含んでもよい。 In the method for measuring an interference signal in dual comb spectroscopy described above, in the second step, the passage width-adjusted single first optical frequency comb emitted from the part to be measured travels along the traveling direction. the passage width-adjusted single first optical frequency comb transmitted through the section and the passage width-adjusted single first optical frequency comb multiple-reflected along the traveling direction between the incident surface and the exit surface of the measured section; and an optical frequency comb.

本発明によれば、測定対象の試料を通過して変化する光周波数コムの各周波数モードの位相情報を正確に測定可能であって、試料の移動が不要で、高速に測定可能なデュアルコム分光法における干渉信号の測定方法が提供される。 According to the present invention, it is possible to accurately measure the phase information of each frequency mode of the optical frequency comb that changes through the sample to be measured, does not require sample movement, and can be measured at high speed Dual comb spectroscopy A method for measuring an interfering signal in a method is provided.

信号光パルスを観測する時間に対する位相揺らぎの変化を表す概略図である。FIG. 4 is a schematic diagram showing changes in phase fluctuation with respect to time for observing a signal light pulse; 周波数領域及び時間領域の光周波数コムの模式図である。1 is a schematic diagram of an optical frequency comb in the frequency domain and time domain; FIG. デュアルコム分光法の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of dual comb spectroscopy. デュアルコム分光法のモデル及び光パルスのふるまいについて説明するための模式図である。FIG. 3 is a schematic diagram for explaining a model of dual comb spectroscopy and the behavior of light pulses; 本発明のデュアルコム分光法における干渉信号の測定方法に基づいて位相プロファイルを測定する測定装置の概略図である。1 is a schematic diagram of a measuring apparatus for measuring a phase profile based on the method for measuring interference signals in dual comb spectroscopy of the present invention; FIG. 図5に示す測定装置の一部を示す概要図である。6 is a schematic diagram showing part of the measuring device shown in FIG. 5; FIG. 図5に示す測定装置の領域174を拡大した図である。6 is an enlarged view of region 174 of the measuring device shown in FIG. 5; FIG. 図5に示す測定装置の一部を拡大した図である。6 is an enlarged view of a part of the measuring device shown in FIG. 5; FIG.

以下、本発明のデュアルコム分光法における干渉信号の測定方法(以下、単に「測定方法」という場合がある)の実施形態について、図面を参照して説明する。 An embodiment of a method for measuring an interference signal in dual comb spectroscopy of the present invention (hereinafter sometimes simply referred to as "measurement method") will be described below with reference to the drawings.

[原理的説明]
図2の右側に示すように、光周波数コムは、周波数領域において周波数軸で零に対してオフセット周波数fCEOを有する第1の光周波数モードと、周波数軸で第1の光周波数モードに対して繰り返し周波数frepの正の整数倍の間隔をあけて並ぶ複数の第2の光周波数モードと、を有する。周波数軸の零からm番目の光周波数モードの周波数fは、次に示す(1)式で表される。
[Explanation of principle]
As shown on the right side of FIG. 2, the optical frequency comb has a first optical frequency mode with an offset frequency f CEO with respect to zero on the frequency axis in the frequency domain and and a plurality of second optical frequency modes spaced apart by a positive integer multiple of the repetition frequency f rep . The frequency fm of the 0th to m -th optical frequency modes on the frequency axis is expressed by the following equation (1).

Figure 0007128516000001
Figure 0007128516000001

以下では、第1の周波数モードと第2の光周波数モードとをまとめて光周波数モード(または、複数の光周波数モード)と称する。光周波数コムの周波数分布(スペクトル)をフーリエ変換して時間領域で見ると、図2の左側に示すように、繰り返し周期(1/frep)を有する光パルス列が現れる。 Hereinafter, the first frequency mode and the second optical frequency mode are collectively referred to as an optical frequency mode (or multiple optical frequency modes). When the frequency distribution (spectrum) of the optical frequency comb is Fourier transformed and viewed in the time domain, an optical pulse train having a repetition period (1/f rep ) appears as shown on the left side of FIG.

デュアルコム分光法は、繰り返し周波数が互いに異なる2つの光周波数コム(第1の光周波数コムと第2の光周波数コム)を用いたフーリエ変換分光法である。2つの光周波数コムの繰り返し周波数をそれぞれ、繰り返し周波数frep1,frep2とする。繰り返し周波数frep1を基準とすると、繰り返し周波数frep2は、次に示す(2)式で表される。 Dual comb spectroscopy is Fourier transform spectroscopy using two optical frequency combs (a first optical frequency comb and a second optical frequency comb) with different repetition frequencies. Let repetition frequencies of the two optical frequency combs be repetition frequencies f rep1 and f rep2 , respectively. Using the repetition frequency f rep1 as a reference, the repetition frequency f rep2 is expressed by the following equation (2).

Figure 0007128516000002
Figure 0007128516000002

なお、(2)式におけるΔfrepは、2つの光周波数コムの繰り返し周波数差を表す。 Note that Δf rep in equation (2) represents the repetition frequency difference between the two optical frequency combs.

図3に示すように、デュアルコム分光法では、繰り返し周波数差Δfrepを有する2つの光周波数コム1,2のうち、光周波数コム1(第1の光周波数コム、図3に示すSignal)のみが固体試料5(試料、図3に示すSample)を通過し、光周波数コム2(第2の光周波数コム、図3に示すLocal;LO)は固体試料5を通過しない。固体試料5を通過することにより、光周波数コム1のスペクトルは、固体試料5の物性情報の影響を受けて変化する。つまり、固体試料5を透過することにより、光周波数コム1は光周波数コム3に変化する。光周波数コム3の繰り返し周波数は、光周波数コム1の繰り返し周波数frep1に等しい。一方、光周波数コム3の複数の周波数モードがなす包絡線は、光周波数コム1の複数の周波数モードがなす包絡線とは異なる。これらの包絡線の差異に、固体試料5の物性情報が反映されている。 As shown in FIG. 3, in the dual comb spectroscopy, among the two optical frequency combs 1 and 2 having a repetition frequency difference Δf rep , only the optical frequency comb 1 (first optical frequency comb, Signal shown in FIG. 3) pass through the solid sample 5 (sample, Sample shown in FIG. 3), and the optical frequency comb 2 (second optical frequency comb, Local; LO shown in FIG. 3) does not pass through the solid sample 5 . By passing through the solid sample 5 , the spectrum of the optical frequency comb 1 changes under the influence of the physical property information of the solid sample 5 . That is, the optical frequency comb 1 changes to the optical frequency comb 3 by passing through the solid sample 5 . The repetition frequency of optical frequency comb 3 is equal to the repetition frequency f rep1 of optical frequency comb 1 . On the other hand, the envelope formed by the multiple frequency modes of the optical frequency comb 3 is different from the envelope formed by the multiple frequency modes of the optical frequency comb 1 . Physical property information of the solid sample 5 is reflected in the difference between these envelopes.

光周波数コム2,3同士をマルチヘテロダイン検出することによって、光周波数コム3の振幅及び位相の情報を無線周波数コム4(図3に示すRadio FrequencyComb;RF周波数コム)として取得できる。RF周波数コム4の繰り返し周波数は、繰り返し周波数差Δfrepに等しい。また、RF周波数コム4の複数の周波数モードがなす包絡線は、光周波数コム3の複数の周波数モードがなす包絡線を反映している。したがって、光周波数コム3に反映された固体試料5の物性情報を、光周波数コム3よりも低い繰り返し周波数を有するRF周波数コム4によって検出できる。 By performing multi-heterodyne detection on the optical frequency combs 2 and 3, information on the amplitude and phase of the optical frequency comb 3 can be obtained as a radio frequency comb 4 (Radio Frequency Comb; RF frequency comb shown in FIG. 3). The repetition frequency of the RF frequency comb 4 is equal to the repetition frequency difference Δf rep . Also, the envelope formed by the multiple frequency modes of the RF frequency comb 4 reflects the envelope formed by the multiple frequency modes of the optical frequency comb 3 . Therefore, the physical property information of the solid sample 5 reflected on the optical frequency comb 3 can be detected by the RF frequency comb 4 having a repetition frequency lower than that of the optical frequency comb 3 .

デュアルコム分光によって導出可能な物性情報には、例えば、厚みL、群屈折率n(ω)及び位相屈折率n(ω)が含まれる。ωは、固体試料5を通過する光周波数コム1の角周波数を表し、2πf(fは、角周波数ωに対応する光周波数コム1の周波数)で表される。群屈折率n(ω)及び位相屈折率n(ω)は、それぞれ角周波数ωの関数である。 Physical property information that can be derived by dual-comb spectroscopy includes, for example, thickness L, group index n g (ω), and phase index n p (ω). ω represents the angular frequency of the optical frequency comb 1 passing through the solid sample 5, and is represented by 2πf (f is the frequency of the optical frequency comb 1 corresponding to the angular frequency ω). The group index n g (ω) and the phase index n p (ω) are each a function of the angular frequency ω.

厚みLは、固体試料5の幾何学的な厚みを表す。群屈折率n(ω)は、光周波数コムの光パルスの伝搬速度に対応する屈折率であり、次に示す(3)式で表される。 Thickness L represents the geometrical thickness of solid sample 5 . The group refractive index n g (ω) is a refractive index corresponding to the propagation velocity of the optical pulse of the optical frequency comb, and is expressed by the following equation (3).

Figure 0007128516000003
Figure 0007128516000003

位相屈折率n(ω)は、次に示す(4)式の複素屈折率nに含まれる。iは虚数単位であり、κは固体試料5の吸収係数を表す。 The phase refractive index n p (ω) is included in the complex refractive index n c in the following equation (4). i is the imaginary unit and κ represents the absorption coefficient of the solid sample 5 .

Figure 0007128516000004
Figure 0007128516000004

例えば石英ガラスの消衰係数のように、消衰係数κが例えば0以上0.001以下であって十分に小さい場合は、複素屈折率nとして実部の位相屈折率n(ω)のみを考慮する。 For example, when the extinction coefficient κ is 0 or more and 0.001 or less and is sufficiently small, such as the extinction coefficient of silica glass, only the real phase refractive index n p (ω) is used as the complex refractive index nc . Consider.

固体試料5の上述の物性情報を取得するために、図4に示すモデルを想定する。図4の上段に示すように、固体試料5は、互いに平行な入射面6と出射面7とを有する。入射面6及び出射面7が光周波数コム1の進路に対して略直交するように配置されている。光周波数コム1が入射面6から固体試料5に入射すると、光周波数コム1の一部は、固体試料5の内部を進行し、透過した光周波数コム3として出射面7から出射する。また、光周波数コム1の残りの一部は、固体試料5の内部を通り、出射面7で反射さした後に入射面6に折り返して進み、入射面6で反射した後、多重反射した光周波数コム3として出射面7から出射する。光周波数コム1の残りの残部は、さらに入射面6及び出射面7との間で固体試料5の内部をより多く多重反射した光周波数コム3として固体試料5から順次出射する。本実施形態では、図4に示すように固体試料5を透過した光周波数コム3と固体試料5を2回多重反射した光周波数コム3を扱う。 In order to acquire the above physical property information of the solid sample 5, a model shown in FIG. 4 is assumed. As shown in the upper part of FIG. 4, the solid sample 5 has an incident surface 6 and an exit surface 7 parallel to each other. The entrance surface 6 and the exit surface 7 are arranged so as to be substantially perpendicular to the course of the optical frequency comb 1 . When the optical frequency comb 1 enters the solid sample 5 from the incident surface 6 , part of the optical frequency comb 1 travels inside the solid sample 5 and exits from the exit surface 7 as the transmitted optical frequency comb 3 . The remaining part of the optical frequency comb 1 passes through the inside of the solid sample 5, is reflected by the exit surface 7, then goes back to the entrance surface 6, and after being reflected by the entrance surface 6, is multiple-reflected. The comb 3 is emitted from the emission surface 7 . The rest of the optical frequency comb 1 is sequentially emitted from the solid sample 5 as the optical frequency comb 3 that is more multiple-reflected inside the solid sample 5 between the entrance surface 6 and the exit surface 7 . In this embodiment, as shown in FIG. 4, the optical frequency comb 3 transmitted through the solid sample 5 and the optical frequency comb 3 multiple-reflected the solid sample 5 twice are handled.

図4の上段に示すように、光周波数コム1の光パルス8が固体試料5を通過すると、一定の時間の経過後、透過した光周波数コム3の透過光パルス9(図4に示す“Transmitted pulse”)と、出射面7及び入射面6で多重反射(2回多重反射)した光周波数コム3の多重反射光パルス10(図4に示す“First echo”)として現れる。 As shown in the upper part of FIG. 4, when the optical pulse 8 of the optical frequency comb 1 passes through the solid sample 5, after a certain time has passed, the transmitted optical pulse 9 of the optical frequency comb 3 (“Transmitted pulse") and a multiple reflected light pulse 10 ("First echo" shown in FIG. 4) of the optical frequency comb 3 multiple-reflected (multiple-reflected twice) at the exit surface 7 and the entrance surface 6. FIG.

図4の下段に示すように、光パルス8が固体試料5を通過せずに一定の時間が経過すると、参照光パルス11となる。なお、「固体試料5を通過せずに」ということは、「固体試料5と同じ厚みLと大気の屈折率nairとを有する固体試料(図4に破線で示す仮想試料)12を通過する」ことと同じ意味である。参照光パルス11に対する透過光パルス9の位相スペクトルφ(ω)は、次に示す(5)式で表される。 As shown in the lower part of FIG. 4, the light pulse 8 becomes a reference light pulse 11 after a certain period of time has elapsed without passing through the solid sample 5 . Note that "without passing through the solid sample 5" means "passing through a solid sample (virtual sample indicated by a dashed line in FIG. 4) 12 having the same thickness L as the solid sample 5 and the refractive index n air of the atmosphere. has the same meaning as A phase spectrum φ 1 (ω) of the transmitted light pulse 9 with respect to the reference light pulse 11 is expressed by the following equation (5).

Figure 0007128516000005
Figure 0007128516000005

(5)式におけるNは、透過光パルス9の位相オフセット係数を表す。参照光パルス11に対する多重反射光パルス10の位相スペクトルφ(ω)は、次に示す(6)式で表される。cは、真空中の光速を表す。nairは、大気の屈折率を表す。 N1 in equation (5) represents the phase offset coefficient of the transmitted light pulse 9 . A phase spectrum φ 2 (ω) of the multiple-reflected light pulse 10 with respect to the reference light pulse 11 is expressed by the following equation (6). c represents the speed of light in vacuum. n air represents the refractive index of the atmosphere.

Figure 0007128516000006
Figure 0007128516000006

(5)式及び(6)式によって、固体試料5の厚みLは、次に示す(7)式で表される。(7)式は、厚みLと位相スペクトルφ(ω),φ(ω)の傾きとの相対関係を示す式であり、位相スペクトルφ(ω),φ(ω)の傾きに基づいて、厚みLが求められるということを意味する。 From the equations (5) and (6), the thickness L of the solid sample 5 is expressed by the following equation (7). Expression (7) is an expression showing the relative relationship between the thickness L and the slopes of the phase spectra φ 1 ( ω) and φ 2 ( ω). This means that the thickness L is obtained based on

Figure 0007128516000007
Figure 0007128516000007

ここで、(5)式の両辺を角周波数ωで微分すると、次に示す(8)式が得られる。 Here, by differentiating both sides of the equation (5) with respect to the angular frequency ω, the following equation (8) is obtained.

Figure 0007128516000008
Figure 0007128516000008

(3)式を変形すると、次に示す(9)式が得られ、(9)式を(8)式に代入すると、後述の(10)式が導かれる。 By transforming the equation (3), the following equation (9) is obtained, and substituting the equation (9) into the equation (8) leads to the equation (10) described later.

Figure 0007128516000009
Figure 0007128516000009

Figure 0007128516000010
Figure 0007128516000010

(10)式を群屈折率n(ω)について整理すると、固体試料5の群屈折率n(ω)は、次に示す(11)式で表される。(11)式は、群屈折率n(ω)と位相スペクトルφ(ω)の傾きとの相対関係を示す式であり、少なくとも位相スペクトルφ(ω)の傾きに基づいて、群屈折率n(ω)が求められるということを意味する。 When formula (10) is arranged with respect to the group refractive index n g (ω), the group refractive index n g (ω) of the solid sample 5 is expressed by the following formula (11). Formula (11) is a formula showing the relative relationship between the group refractive index n g (ω) and the slope of the phase spectrum φ 1 ( ω). It means that the rate n g (ω) is determined.

Figure 0007128516000011
Figure 0007128516000011

しかしながら、(5)式では、位相スペクトルφ(ω)が簡略化されており、位相オフセット係数Nが考慮されていない。(7)式及び(11)式のように、角周波数ωに対する位相スペクトルφ(ω),φ(ω)の傾きに着目すればよい場合は、位相オフセット係数Nを必ずしも考慮しなくてよい。図4に示すように、位相オフセット係数Nを考慮すると、正確な位相スペクトルΦ(ω)は、次に示す(12)式のように表される。 However, in equation (5), the phase spectrum φ 1 (ω) is simplified and the phase offset factor N is not considered. As in the equations (7) and (11), when the inclination of the phase spectra φ 1 (ω) and φ 2 (ω) with respect to the angular frequency ω should be noted, the phase offset coefficient N does not necessarily have to be considered. good. As shown in FIG. 4, considering the phase offset coefficient N, the correct phase spectrum Φ(ω) can be expressed as the following equation (12).

Figure 0007128516000012
Figure 0007128516000012

デュアルコム分光法に基づくヘテロダイン検出では、(5)式及び(6)式の右辺の第2項の差異は取得できず(すなわち、視覚化されず)、本来位相の絶対スペクトルΦ(ω)を2πで割った余りが位相スペクトルφ(ω),φ(ω)として取得される。したがって、デュアルコム分光法に基づく測定結果に基づいて、位相スペクトルφ(ω),φ(ω)を位相オフセット2πNで補正しなくても、前述のように固体試料5の厚みLと群屈折率n(ω)は容易に、かつ直接導出される。 In heterodyne detection based on dual-comb spectroscopy, the difference in the second term on the right-hand side of Eqs. (5) and (6) cannot be obtained (i.e., not visualized) and the intrinsic phase absolute spectrum Φ(ω) is Remainders of division by 2π are obtained as phase spectra φ 1 (ω) and φ 2 (ω). Therefore, even if the phase spectra φ 1 (ω) and φ 2 (ω) are not corrected by the phase offset 2πN based on the measurement results based on the dual comb spectroscopy, the thickness L of the solid sample 5 and the group The refractive index n g (ω) is easily and directly derived.

固体試料5の位相屈折率n(ω)は、次に示す(13)式のように表され、位相オフセット係数Nをパラメータとして含んでいる。 The phase refractive index n p (ω) of the solid sample 5 is represented by the following equation (13) and includes the phase offset coefficient N as a parameter.

Figure 0007128516000013
Figure 0007128516000013

すなわち、固体試料5の位相屈折率n(ω)を正確に導出するためには、厚みL、位相スペクトルφ(ω)及び位相オフセット係数Nをそれぞれ所定の方法で正確に求める必要がある。 That is, in order to accurately derive the phase refractive index n p (ω) of the solid sample 5, the thickness L, the phase spectrum φ 1 (ω), and the phase offset coefficient N must be accurately obtained by predetermined methods. .

[本発明のデュアルコム分光法における干渉信号の測定方法]
本発明の測定方法では、デュアルコム分光法に基づいて透過光パルス9及び多重反射光パルス10の時間軸上の位相差に基づいて位相スペクトルφ(ω),φ(ω)を正確に測定できる。
[Method for measuring interference signals in dual comb spectroscopy of the present invention]
In the measuring method of the present invention, the phase spectra φ 1 (ω) and φ 2 (ω) are accurately obtained based on the phase difference on the time axis between the transmitted light pulse 9 and the multiple reflected light pulse 10 based on dual comb spectroscopy. can be measured.

本発明の測定方法に基づいて位相スペクトルφ(ω),φ(ω)を正確に測定するための測定装置の一例として、図5に示すデュアルコム分光測定装置210が挙げられる。図5に示すように、デュアルコム分光測定装置210は、2つの光周波数コム1,2を生成するための構成として、光周波数コム出力部210A,210Bと、周波数制御部290と、連続発振レーザー(以下、CWレーザーという)292と、周波数安定化部294と、を備える。 As an example of a measuring device for accurately measuring the phase spectra φ 1 (ω) and φ 2 (ω) based on the measuring method of the present invention, there is a dual comb spectroscopic measuring device 210 shown in FIG. As shown in FIG. 5, the dual comb spectrometer 210 includes optical frequency comb output units 210A and 210B, a frequency control unit 290, and a continuous wave laser as a configuration for generating the two optical frequency combs 1 and 2. (hereinafter referred to as a CW laser) 292 and a frequency stabilizer 294 are provided.

光周波数コム出力部210Aは、光周波数コム1を出射する。光周波数コム出力部210Bは、光周波数コム2を出射する。周波数制御部290は、光周波数コム出力部210A,210Bのそれぞれに対して光周波数コム1,2のそれぞれのオフセット周波数差ΔfCEOを制御するための基準信号を入力する。CWレーザー292は、光周波数コム1,2同士の位相を同期させる。周波数安定化部294は、CWレーザー292から出射された連続発振光(以下、CW光という)と光周波数コム1,2のそれぞれとのビート信号とを制御する。 The optical frequency comb output section 210A outputs the optical frequency comb 1 . The optical frequency comb output unit 210B outputs the optical frequency comb 2. FIG. The frequency control section 290 inputs a reference signal for controlling the offset frequency difference Δf CEO of each of the optical frequency combs 1 and 2 to each of the optical frequency comb output sections 210A and 210B. A CW laser 292 synchronizes the phases of the optical frequency combs 1 and 2 . The frequency stabilizer 294 controls continuous wave light (hereinafter referred to as CW light) emitted from the CW laser 292 and beat signals of the optical frequency combs 1 and 2, respectively.

図5及び図6では、光周波数コム出力部210A,210Bのそれぞれの光周波数コム出射部220、オフセット周波数制御部218のファンクションジェネレータ(Function generator:FG)64、繰り返し周波数制御部222のFG74、ピエゾ(PZT)素子230等の主要部分を図示し、主要部分以外の構成の図示は省略する。光周波数コム出力部210A,210Bのそれぞれは、前述の主要部分以外に、図6に示すように半導体レーザ(LD)や多数の光学素子等から構成されている。 5 and 6, the optical frequency comb output units 220 of the optical frequency comb output units 210A and 210B, the function generator (FG) 64 of the offset frequency control unit 218, the FG 74 of the repetition frequency control unit 222, the piezo Principal portions such as the (PZT) element 230 are illustrated, and the illustration of the configuration other than the principal portions is omitted. Each of the optical frequency comb output units 210A and 210B is composed of a semiconductor laser (LD), a large number of optical elements, etc., as shown in FIG.

光周波数コム出力部210A,210Bはそれぞれ、光周波数コム光源212、光干渉部214、ビート信号検出部216、オフセット周波数制御部218、光周波数コム出射部220、及び、繰り返し周波数制御部222を備えている。 The optical frequency comb output units 210A and 210B each include an optical frequency comb light source 212, an optical interference unit 214, a beat signal detection unit 216, an offset frequency control unit 218, an optical frequency comb output unit 220, and a repetition frequency control unit 222. ing.

光周波数コム光源212は、例えばループ型のファイバレーザである。光周波数コム光源212は、エルビウム添加ファイバ(EDF)24と、LD26と、を備える。EDF24からの光の出射方向(図6における時計回りの方向)に沿って光アイソレータ34、光カプラ32、ファイバレーザの共振器長を変更可能なPZT素子230、及び、偏波コントローラ28がEDF24によって連結されている。 The optical frequency comb light source 212 is, for example, a loop-type fiber laser. The optical frequency comb light source 212 includes an erbium-doped fiber (EDF) 24 and an LD 26 . An optical isolator 34, an optical coupler 32, a PZT element 230 capable of changing the cavity length of the fiber laser, and a polarization controller 28 are operated by the EDF 24 along the direction of light emitted from the EDF 24 (clockwise direction in FIG. 6). Concatenated.

光カプラ32から出射された光周波数コムは、光干渉部214と、光周波数コム出射部220に供給される。光カプラ32と光干渉部214及び光周波数コム出射部220との間には、光カプラ32に近い側から順に偏波コントローラ38、EDF増幅器40が設けられている。EDF増幅器40は、EDF39と、励起LD41と、光カプラ43と、を備える。光カプラ32と光干渉部214までの各構成と、光カプラ32と光周波数コム出射部220までの各構成は、光ファイバ36によって連結されている。EDF増幅器40と光干渉部214との間には、高非線形光ファイバ(High-nonlinear fiber:HNLF)42が配置されている。HNLF42からは、入射する前よりも広帯域な光周波数コムが出射する。 The optical frequency comb output from the optical coupler 32 is supplied to the optical interference section 214 and the optical frequency comb output section 220 . Between the optical coupler 32 and the optical interference unit 214 and the optical frequency comb output unit 220, a polarization controller 38 and an EDF amplifier 40 are provided in order from the side closer to the optical coupler 32. FIG. The EDF amplifier 40 has an EDF 39 , an excitation LD 41 and an optical coupler 43 . Each component up to the optical coupler 32 and the optical interference unit 214 and each component up to the optical coupler 32 and the optical frequency comb output unit 220 are connected by an optical fiber 36 . A high-nonlinear fiber (HNLF) 42 is arranged between the EDF amplifier 40 and the optical interference section 214 . The HNLF 42 emits an optical frequency comb having a wider band than before it is incident.

光干渉部214は、光周波数コム光源212に近い側から順に、ファイバコリメータ44、集光レンズ46、λ/2波長板48、周期分極反転ニオブ酸リチウム(periodically-poled lithium niobate:PPLN)50、光バンドパスフィルタ52を備える。PPLN50からは、広帯域の光周波数コム(2f)と、PPLN50で新たに生成された第二高調波(2×1f)とが重なった成分が出射する。 The optical interference unit 214 includes, in order from the side closer to the optical frequency comb light source 212, a fiber collimator 44, a condenser lens 46, a λ/2 wavelength plate 48, a periodically-poled lithium niobate (PPLN) 50, An optical bandpass filter 52 is provided. The PPLN 50 emits a component in which the wideband optical frequency comb (2f) and the second harmonic (2×1f) newly generated by the PPLN 50 overlap.

広帯域の光コムと第二高調波は、ビート信号検出部216で干渉する。ビート信号検出部216では、広帯域の光コムと第二高調波とのビート信号が検出される。PPLN50から出射した光は、ビート信号検出部216のフォトディテクタ54によって検出される。フォトディテクタ54から出力された電気信号は、電気ケーブル56を介してオフセット周波数制御部218に伝送され、電気ケーブル58を介して繰り返し周波数制御部222に伝送される。 The broadband optical comb and the second harmonic interfere with each other at the beat signal detector 216 . The beat signal detector 216 detects the beat signal of the broadband optical comb and the second harmonic. Light emitted from the PPLN 50 is detected by the photodetector 54 of the beat signal detector 216 . The electrical signal output from the photodetector 54 is transmitted to the offset frequency control section 218 via the electrical cable 56 and transmitted to the repetition frequency control section 222 via the electrical cable 58 .

オフセット周波数制御部218は、高周波バンドパスフィルタ61、高周波アンプ62、ファンクションジェネレータ(Function generator:FG)64、周波数変換器(Double Balanced Mixer:DBM)66、ループフィルタ68を備える。オフセット周波数制御部218は、FG64から発信される参照信号の周波数が変更されると、ループフィルタ68によって励起LD26の印加電流にフィードバックをかける。すなわち、FG64から発信される参照信号の周波数を制御することによって、光周波数コム光源212から出射される光コムのオフセット周波数fCEOが制御される。 The offset frequency control unit 218 includes a high frequency bandpass filter 61 , a high frequency amplifier 62 , a function generator (FG) 64 , a frequency converter (Double Balanced Mixer (DBM) 66 ), and a loop filter 68 . The offset frequency control section 218 applies feedback to the current applied to the excitation LD 26 by the loop filter 68 when the frequency of the reference signal transmitted from the FG 64 is changed. That is, by controlling the frequency of the reference signal transmitted from the FG 64, the offset frequency f CEO of the optical comb emitted from the optical frequency comb light source 212 is controlled.

繰り返し周波数制御部222は、高周波バンドパスフィルタ71、高周波アンプ72、FG74、DBM76、ループフィルタ78を備える。繰り返し周波数制御部222は、FG74から発信される参照信号の周波数が変更されると、ループフィルタ78によってPZT素子230にフィードバックをかける。すなわち、FG74から発信される参照信号の周波数を制御することによって、光周波数コム光源212から出射される光周波数コムの繰り返し周波数frepが制御される。 The repetition frequency control section 222 includes a high frequency bandpass filter 71 , a high frequency amplifier 72 , an FG 74 , a DBM 76 and a loop filter 78 . The repetition frequency control section 222 applies feedback to the PZT element 230 through the loop filter 78 when the frequency of the reference signal transmitted from the FG 74 is changed. That is, by controlling the frequency of the reference signal emitted from the FG 74, the repetition frequency f rep of the optical frequency comb emitted from the optical frequency comb light source 212 is controlled.

図5に示す周波数安定化部294は、コンピュータに内蔵されたプログラム等からなる周波数制御部290と、FG130,132と、DBM108,118と、PID制御器110,120と、を備える。光周波数コム出力部210Aから出射された光周波数コム1は、光カプラ102を介して光カプラ104に入射する。CWレーザー292から出射されたCW光は、光カプラ112を介して光カプラ104に入射する。光カプラ104で合わさった光周波数コム1とCW光は、フォトディテクタ等の受光部106で受光され、電気信号に変換される。受光部106から発せられた電気信号は、DBM108に入力され、FG130からの参照信号と合わさる。DBM108からの出力は、PID制御器110に入力される。PID制御器110からの出力は、CWレーザー292への入力電流値にフィードバックされる。 The frequency stabilization unit 294 shown in FIG. 5 includes a frequency control unit 290 composed of a program or the like incorporated in a computer, FGs 130 and 132, DBMs 108 and 118, and PID controllers 110 and 120. The optical frequency comb 1 emitted from the optical frequency comb output section 210A enters the optical coupler 104 via the optical coupler 102 . CW light emitted from the CW laser 292 enters the optical coupler 104 via the optical coupler 112 . The optical frequency comb 1 and the CW light combined by the optical coupler 104 are received by the light receiving unit 106 such as a photodetector and converted into an electric signal. An electrical signal emitted from the light receiving section 106 is input to the DBM 108 and combined with a reference signal from the FG 130 . The output from DBM 108 is input to PID controller 110 . The output from PID controller 110 is fed back to the input current value to CW laser 292 .

CWレーザー292から出射されたCW光は、光カプラ112を介して光カプラ114にも入射する。光周波数コム出力部210Bから出射された光周波数コム2は、光カプラ122を介して光カプラ114に入射する。光カプラ114で合わさった光周波数コム2とCW光はフォトディテクタ等の受光部116で受光され、電気信号に変換される。受光部116から発せられた電気信号は、DBM118に入力され、FG132からの参照信号と合わさる。DBM118からの出力は、PID制御器120に入力される。PID制御器120からの出力は、光周波数コム出力部210Bの光周波数コム光源212におけるPZT素子230の変位量にフィードバックされる。 The CW light emitted from the CW laser 292 also enters the optical coupler 114 via the optical coupler 112 . The optical frequency comb 2 emitted from the optical frequency comb output section 210B enters the optical coupler 114 via the optical coupler 122 . The optical frequency comb 2 and the CW light combined by the optical coupler 114 are received by the light receiving unit 116 such as a photodetector and converted into an electric signal. An electrical signal emitted from the light receiving section 116 is input to the DBM 118 and combined with a reference signal from the FG 132 . The output from DBM 118 is input to PID controller 120 . The output from PID controller 120 is fed back to the amount of displacement of PZT element 230 in optical frequency comb light source 212 of optical frequency comb output section 210B.

デュアルコム分光測定装置210において、光周波数コム1に対して光周波数コム2を追随させ、位相同期のとれたデュアルコムを生成するためには、先ず光周波数コム1の繰り返し周波数frep1及びオフセット周波数fCEO1を光周波数コム出力部210AのFG64,74から発信される参照信号の周波数に合わせて安定化させる。次に、光周波数コム出力部210Aより出力される光周波数コム1とCW光とのビート信号をFG130からの参照信号に対して安定化させる。次に、光周波数コム出力部210Bから出力される光周波数コム2のオフセット周波数fCEO2を安定化させたうえで、CW光と光周波数コム2とのビート信号を検出し、検出したビート信号をFG118からの参照信号に対して安定化させる。このような手順により、光周波数コム1,2の繰り返し周波数frep1,frep2をそれぞれCW光の周波数を追随させる。つまり、光周波数コム1に対して光周波数コム2が追随し、互いに位相同期のとれたデュアルコムが得られる。 In the dual comb spectrometer 210, in order to cause the optical frequency comb 2 to follow the optical frequency comb 1 and generate a phase-synchronized dual comb, first, the repetition frequency f rep1 of the optical frequency comb 1 and the offset frequency f CEO1 is stabilized to the frequency of the reference signal emitted from FGs 64 and 74 of optical frequency comb output 210A. Next, the beat signal of the optical frequency comb 1 and the CW light output from the optical frequency comb output section 210A is stabilized with respect to the reference signal from the FG130. Next, after stabilizing the offset frequency fCEO2 of the optical frequency comb 2 output from the optical frequency comb output unit 210B, the beat signal between the CW light and the optical frequency comb 2 is detected, and the detected beat signal is Stabilize against the reference signal from FG118. By such a procedure, the repetition frequencies f rep1 and f rep2 of the optical frequency combs 1 and 2 are made to follow the frequency of the CW light. That is, the optical frequency comb 2 follows the optical frequency comb 1, and a dual comb phase-synchronized with each other is obtained.

また、周波数制御部290は、オフセット周波数差ΔfCEO、オフセット周波数fCEO1、オフセット周波数fCEO2、繰り返し周波数差Δfrep、繰り返し周波数frep1、繰り返し周波数frep2の6つのパラメータ同士が任意の整数比で表される相対関係が成り立つように、オフセット周波数fCEO1,fCEO2及び繰り返し周波数frep1,frep2の4つのパラメータを制御する。 In addition, the frequency control unit 290 sets the six parameters of the offset frequency difference Δf CEO , the offset frequency f CEO1 , the offset frequency f CEO2 , the repetition frequency difference Δf rep , the repetition frequency f rep1 , and the repetition frequency f rep2 at arbitrary integer ratios. The four parameters of the offset frequencies f CEO1 and f CEO2 and the repetition frequencies f rep1 and f rep2 are controlled so that the indicated relative relationships hold.

デュアルコム分光測定装置210では、上述のように制御されてファイバコリメータ141から出射された光周波数コム1は、折り返しミラー171によって折り返され、ビームエキスパンダー172によって拡げられる。図7に示すように、ビームエキスパンダー172によって拡げられた光周波数コム1の通過幅(すなわち、光周波数コム1の進路に直交する方向(幅方向)における光周波数コム1の大きさ)301は、固体試料5の被測定部17の幅方向における測定幅19より大きく、例えば測定幅19の略2倍である。 In the dual comb spectrometer 210 , the optical frequency comb 1 controlled as described above and emitted from the fiber collimator 141 is folded back by the folding mirror 171 and expanded by the beam expander 172 . As shown in FIG. 7, the passage width of the optical frequency comb 1 expanded by the beam expander 172 (that is, the size of the optical frequency comb 1 in the direction (width direction) perpendicular to the path of the optical frequency comb 1) 301 is It is larger than the measurement width 19 in the width direction of the portion 17 to be measured of the solid sample 5, and is approximately twice the measurement width 19, for example.

固体試料5は均一な厚みLを有し、入射面6及び出射面7は光周波数コム1の進路に対して直交し且つ互いに平行になっている。被測定部17は、固体試料5の物性情報を得るために光周波数コム1を照射する必要がある部分を意味する。被測定部17が固体試料5の任意の部分であって(すなわち、固体試料5のどの部分に光周波数コム1を照射しても測定対象の透過光パルス9及び多重反射光パルス10を得られて)、光周波数コム1を実質的に拡げられる大きさより固体試料5における光周波数コム1の幅方向における大きさが大きい場合は、ビームエキスパンダー172で適当な大きさまで通過幅301を大きくし、幅方向に拡げられた光周波数コム(通過幅調節済単一第1光周波数コム)311の片側に固体試料5を挿入できる。 The solid sample 5 has a uniform thickness L, and the entrance plane 6 and the exit plane 7 are perpendicular to the path of the optical frequency comb 1 and parallel to each other. The measured portion 17 means a portion that needs to be irradiated with the optical frequency comb 1 in order to obtain physical property information of the solid sample 5 . If the portion to be measured 17 is an arbitrary portion of the solid sample 5 (that is, no matter which portion of the solid sample 5 is irradiated with the optical frequency comb 1, the transmitted light pulse 9 and the multiple reflected light pulse 10 to be measured can be obtained. ), if the size in the width direction of the optical frequency comb 1 in the solid sample 5 is larger than the size that allows the optical frequency comb 1 to be substantially expanded, the passage width 301 is increased to an appropriate size by the beam expander 172, and the width A solid sample 5 can be inserted on one side of a directionally spread optical frequency comb (passwidth adjusted single first optical frequency comb) 311 .

図7に示すように、光周波数コム311の進路上の試料配置位置320で、幅方向において光周波数コム311が通過する領域の一部に被測定部17が配置されている。このことによって、試料配置位置320より光周波数コム311の進行方向の奥側(すなわち、前方)に、幅方向において被測定部17を通過していない光周波数コム312と被測定部17から出射した光周波数コム313とが空間分割された状態で、光周波数コム321が現れる。 As shown in FIG. 7, at a sample placement position 320 on the path of the optical frequency comb 311, the part to be measured 17 is placed in a part of the region through which the optical frequency comb 311 passes in the width direction. As a result, the light emitted from the optical frequency comb 312 and the measured portion 17 that does not pass through the measured portion 17 in the width direction is on the far side (that is, forward) in the traveling direction of the optical frequency comb 311 from the sample placement position 320 . An optical frequency comb 321 appears in a state in which the optical frequency comb 313 is spatially divided.

図5に示すように、試料配置位置320より光周波数コム311の進行方向の奥側に出射した光周波数コム321は、ビームエキスパンダー176に入射する。光周波数コム321の通過幅は、ビームエキスパンダー176によって光周波数コム2の通過幅(すなわち、光周波数コム2の進路に直交する方向(幅方向)における光周波数コム2の大きさ)と同程度の大きさまで縮められる。ビームエキスパンダー176を通過した光周波数コム321は、ビームスプリッター146に入射し、反射され、光周波数コム2と進路を共通にして進む。 As shown in FIG. 5 , the optical frequency comb 321 emitted from the sample placement position 320 to the far side in the traveling direction of the optical frequency comb 311 enters the beam expander 176 . The passage width of the optical frequency comb 321 is about the same as the passage width of the optical frequency comb 2 by the beam expander 176 (that is, the size of the optical frequency comb 2 in the direction (width direction) perpendicular to the path of the optical frequency comb 2). reduced to size. After passing through the beam expander 176 , the optical frequency comb 321 enters the beam splitter 146 , is reflected, and travels along the same path as the optical frequency comb 2 .

光周波数コム321,2は、フォトディテクター160で受光される。図8に示すように、ビームスプリッター146から進行する光周波数コム321では、幅方向において光周波数コム312,313が隣接して互いに異なる領域を通っている。また、ビームスプリッター146とフォトディテクター160との間の光周波数コム321,2の進路上には、集光レンズ165が配置されている。集光レンズ165から光周波数コム321,2の進行方向の奥側且つ集光レンズ165から集光レンズ165の焦点距離だけ離れた位置に、フォトディテクター160の受光部162が配置されている。光周波数312,313と光周波数コム2は、受光部162の同一領域で受光される。 Optical frequency comb 321,2 is received by photodetector 160 . As shown in FIG. 8, in the optical frequency comb 321 traveling from the beam splitter 146, the optical frequency combs 312 and 313 are adjacent in the width direction and pass through different regions. A condenser lens 165 is arranged on the course of the optical frequency combs 321 and 2 between the beam splitter 146 and the photodetector 160 . A light-receiving section 162 of the photodetector 160 is arranged at the far side of the optical frequency combs 321 and 2 from the condenser lens 165 and at a position separated from the condenser lens 165 by the focal length of the condenser lens 165 . The optical frequencies 312 and 313 and the optical frequency comb 2 are received in the same area of the light receiving section 162 .

フォトディテクター160において光周波数コム312,2が干渉した第1の干渉信号は、RF周波数コム342として生成される。フォトディテクター160において光周波数コム313,2が干渉した第2の干渉信号は、RF周波数コム343として生成される。つまり、本実施形態では、不図示の第1の干渉信号及び第2の干渉信号をRF周波数コム342,343として取得する。 A first interference signal resulting from the interference of optical frequency combs 312 and 2 at photodetector 160 is produced as RF frequency comb 342 . A second interference signal resulting from the interference of optical frequency combs 313,2 at photodetector 160 is generated as RF frequency comb 343 . That is, in this embodiment, the first interference signal and the second interference signal (not shown) are acquired as the RF frequency combs 342 and 343 .

データ処理部98では、フォトディテクター160から送信されるRF周波数コム342,343、及び前述の(5)式から(13)式に基づいて、固体試料5の厚みL、群屈折率n(ω)及び位相屈折率n(ω)等の物性情報を取得する。 In the data processing unit 98, based on the RF frequency combs 342 and 343 transmitted from the photodetector 160 and the above equations (5) to (13), the thickness L of the solid sample 5, the group refractive index n g (ω ) and phase refractive index n p (ω).

すなわち、本実施形態の測定方法は、少なくとも第1工程から第3工程までを備え、第4工程をさらに備える。第1工程では、幅方向に対して通過する通過幅が被測定部17の測定幅19より大きい光周波数コム311の進路上の試料配置位置320で、幅方向において光周波数コム311が通過する領域の一部に被測定部17を配置する。第2工程では、試料配置位置320より光周波数コム311,321の進行方向の奥側において、被測定部17を通過していない光周波数コム312と被測定部17から出射した光周波数コム313とを一括して、フォトディテクター160で受光する。第3工程では、第2工程において一括して受光した光周波数コム321のうち光周波数コム312と光周波数コム2との第1の干渉信号をRF周波数コム342として生成する。また、第3工程では、第2工程において一括して受光した光周波数コム321のうち光周波数コム313と光周波数コム2との第2の干渉信号をRF周波数コム343として生成する。第4工程では、光周波数コム312の光パルス11の時間軸上の位置を参照位置とし、光周波数コム313の透過光パルス9及び多重反射光パルス10の時間軸上の位置を測定対象位置とし、RF周波数コム342,343に基づいて参照位置に対する測定対象位置の情報を位相スペクトルφDC(ω)としてデータ処理部98によって取得する。第5工程では、参照位置に対する測定対象位置の情報に基づいて固体試料5の物性情報を算出する。 That is, the measuring method of this embodiment includes at least the first to third steps, and further includes a fourth step. In the first step, a region through which the optical frequency comb 311 passes in the width direction at a sample placement position 320 on the path of the optical frequency comb 311 whose passage width in the width direction is greater than the measurement width 19 of the part 17 to be measured. A portion to be measured 17 is arranged in a part of the . In the second step, the optical frequency comb 312 that does not pass through the part to be measured 17 and the optical frequency comb 313 emitted from the part to be measured 17 are located on the far side of the traveling direction of the optical frequency combs 311 and 321 from the sample placement position 320. are collectively received by the photodetector 160 . In the third step, a first interference signal between the optical frequency comb 312 and the optical frequency comb 2 among the optical frequency combs 321 collectively received in the second step is generated as the RF frequency comb 342 . In the third step, a second interference signal between the optical frequency comb 313 and the optical frequency comb 2 among the optical frequency combs 321 collectively received in the second step is generated as the RF frequency comb 343 . In the fourth step, the position of the optical pulse 11 of the optical frequency comb 312 on the time axis is set as a reference position, and the positions of the transmitted light pulse 9 and the multiple reflected light pulse 10 of the optical frequency comb 313 on the time axis are set as the positions to be measured. , and RF frequency combs 342 and 343, the data processing unit 98 acquires information on the position of the object to be measured with respect to the reference position as a phase spectrum φ DC (ω). In the fifth step, physical property information of the solid sample 5 is calculated based on the information of the measurement target position with respect to the reference position.

本実施形態の測定方法によれば、単一の光周波数コム321において光周波数コム312,313を空間分割し、光周波数コム312,313との差を試料配置位置320において固体試料5を通過したか否かということのみにすることができる。言い換えれば、参照光パルスである光パルス11と、透過光パルス9及び多重反射光パルス10のそれぞれとの差異を、試料配置位置320において固体試料5を通ったか否かということのみにすることができる。また、透過光パルス9と多重反射光パルス10は、試料配置位置320において固体試料5を透過するか、それとも多重反射するかという進路が異なり、これらの進路以外は共通の進路をとる光周波数コム311,321に基づく。さらに、固体試料5を一旦配置すれば、光周波数コム311の進路上に挿入または当該進路から退避させる等の機械的な動作は不要になる。したがって、RF周波数コム342,343の差異に、図4に示す位相スペクトルφ(ω),φ(ω)を良好に反映し、光周波数コム311の進路上に対する固体試料5の挿入及び退避をさせたときに生じる遅い位相揺らぎをキャンセルし、従来の測定方法に比べて図1に示す位相揺らぎδφを領域R-2に近づけて抑えることができる。 According to the measurement method of this embodiment, the optical frequency combs 312 and 313 are spatially divided in the single optical frequency comb 321, and the difference between the optical frequency combs 312 and 313 is passed through the solid sample 5 at the sample placement position 320. You can only ask whether or not In other words, the difference between the light pulse 11, which is the reference light pulse, and each of the transmitted light pulse 9 and the multiple-reflected light pulse 10 can be only whether or not they passed through the solid sample 5 at the sample arrangement position 320. can. In addition, the transmitted light pulse 9 and the multiple reflected light pulse 10 have different paths in that they pass through the solid sample 5 at the sample placement position 320 or undergo multiple reflections. 311,321. Furthermore, once the solid sample 5 is arranged, mechanical operations such as inserting it into the path of the optical frequency comb 311 or withdrawing it from the path are unnecessary. Therefore, the phase spectra φ 1 (ω) and φ 2 (ω) shown in FIG. is canceled, and the phase fluctuation .delta..phi. shown in FIG. 1 can be suppressed closer to the region R-2 than in the conventional measurement method.

上述のように本実施形態の測定方法によって位相スペクトルφ(ω),φ(ω)を正確に測定できるので、位相スペクトルφ(ω),φ(ω)に基づいて導出される固体試料5の物性情報の精度を高くすることができる。上述の作用効果は、複数の光周波数モードのそれぞれの周波数軸上の位置や、光パルスの時間軸上の位置が正確である光周波数コムを用いて、光パルスの位相スペクトル(すなわち、時間軸上の情報)を正確に測定する際に、上述のように大きな効果を発揮する。 Since the phase spectra φ 1 (ω) and φ 2 (ω) can be accurately measured by the measurement method of the present embodiment as described above, the phase spectra φ 1 (ω) and φ 2 (ω) are derived based on Accuracy of physical property information of the solid sample 5 can be improved. The above-mentioned effects can be obtained by using an optical frequency comb in which the position of each of a plurality of optical frequency modes on the frequency axis and the position of the optical pulse on the time axis are accurate, and the phase spectrum of the optical pulse (that is, the (Information above) is very effective as described above.

本実施形態の測定方法によれば、第2工程において、被測定部17から出射した光周波数コム321は、光周波数コム311の進行方向に沿って被測定部17を透過した光周波数コム313-1と、被測定部17の入射面6と出射面7との間を進行方向に沿って多重反射した光周波数コム313-2と、を含む。 According to the measurement method of the present embodiment, in the second step, the optical frequency comb 321 emitted from the part to be measured 17 passes through the part to be measured 17 along the traveling direction of the optical frequency comb 311. 1, and an optical frequency comb 313-2 that is multiple-reflected along the traveling direction between the entrance surface 6 and the exit surface 7 of the measured part 17. FIG.

上述のように本実施形態の測定方法によって位相スペクトルφ(ω),φ(ω)を一括して正確に測定できる。なお、本実施形態では、図4に例示した透過光パルス9及び多重反射光パルス10を測定対象とした。出射面7と入射面6との間で多重反射の回数が増すにしたがってパワーが低下するが、出射面7と入射面6との間で4回、6回、・・・とより多くの回数で多重反射した光パルスが出射され、それらの光パルスの位相スペクトルφDC(ω)を測定できる。したがって、透過光パルス9及び多重反射光パルス10をはじめとして固体試料5の出射面7から出射される光パルスの参照光パルス11に対する位相スペクトルφDC(ω)に基づいて、厚みL、群屈折率φ(ω)、位相屈折率φ(ω)をはじめとして固体試料5の物性情報を高精度に取得できる。 As described above, the phase spectra φ 1 (ω) and φ 2 (ω) can be collectively and accurately measured by the measurement method of this embodiment. In this embodiment, the transmitted light pulse 9 and the multiple reflected light pulse 10 illustrated in FIG. 4 are measured. The power decreases as the number of multiple reflections between the exit surface 7 and the entrance surface 6 increases, but the number of times between the exit surface 7 and the entrance surface 6 increases, such as 4 times, 6 times, and so on. , and the phase spectrum φ DC (ω) of those light pulses can be measured. Therefore, based on the phase spectrum φ DC (ω) of the light pulses emitted from the exit surface 7 of the solid sample 5, including the transmitted light pulse 9 and the multiple reflected light pulse 10, with respect to the reference light pulse 11, the thickness L, the group refraction Physical property information of the solid sample 5 including the index φ g (ω) and the phase refractive index φ p (ω) can be obtained with high accuracy.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・Changes are possible.

例えば、上述の実施形態では、光周波数コム1は、ビームエキスパンダー172によって拡げられると説明した。しかしながら、光周波数コム1を通過幅301を有するように拡げる方法は、特に限定されず、ビームエキスパンダー172以外の光学部品でなされてもよい。また、ファイバコリメータ141の出射口が通過幅301より大きく加工され、ファイバコリメータ141から通過幅301を有する光周波数コム311が直接出射してもよい。 For example, in the embodiments described above, the optical frequency comb 1 was described as being expanded by the beam expander 172 . However, the method of expanding the optical frequency comb 1 to have the passage width 301 is not particularly limited, and it may be done with an optical component other than the beam expander 172 . Alternatively, the exit port of the fiber collimator 141 may be processed to be larger than the passage width 301 , and the optical frequency comb 311 having the passage width 301 may be directly emitted from the fiber collimator 141 .

また、上述の実施形態では、物性情報を取得する対象として吸収係数が無視できる程度に小さい固体試料を想定した。しかしながら、吸収係数を考慮した適切な数式やモデルを上述の内容に導入することによって、本発明に係る位相屈折率の導出方法は、汎用的な試料の位相屈折率の導出が可能になる。また、位相屈折率の異方性が大きくなければ、測定時に用いる試料は固体試料に限定されない。 Further, in the above-described embodiments, a solid sample whose absorption coefficient is negligibly small is assumed as a target for acquiring physical property information. However, by introducing appropriate formulas and models considering the absorption coefficient into the above contents, the method for deriving the phase refractive index according to the present invention enables the derivation of the phase refractive index of a general-purpose sample. Moreover, the sample used for the measurement is not limited to a solid sample unless the anisotropy of the phase refractive index is large.

また、上述の実施形態の測定対象は固体試料5の位相屈折率であるが、本発明の測定方法は、固体試料5の位相屈折率に限らず、固体試料5の誘電率や伝導率を測定対象とすることができる。すなわち、本発明の測定方法によれば、光周波数コムの干渉信号に基づいて取得可能な測定に広く適用できる。 In addition, although the measurement object of the above-described embodiment is the phase refractive index of the solid sample 5, the measuring method of the present invention is not limited to the phase refractive index of the solid sample 5, and the dielectric constant and conductivity of the solid sample 5 are measured. Can be targeted. That is, the measurement method of the present invention can be widely applied to measurements that can be obtained based on the interference signal of the optical frequency comb.

1・・・光周波数コム(第1の光周波数コム)
2・・・光周波数コム(第2の光周波数コム)
5・・・固体試料(試料)
17・・・被測定部
19・・・測定幅
301・・・通過幅
311・・・光周波数コム(通過幅調節済単一第1光周波数コム)
312・・・光周波数コム(被測定部を通過していない通過幅調節済単一第1光周波数コム)
313・・・光周波数コム(被測定部から出射した通過幅調節済単一第1光周波数コム)
1... Optical frequency comb (first optical frequency comb)
2 Optical frequency comb (second optical frequency comb)
5 Solid sample (sample)
Reference numerals 17 ... measured part 19 ... measurement width 301 ... passage width 311 ... optical frequency comb (pass width adjusted single first optical frequency comb)
312... Optical frequency comb (pass width adjusted single first optical frequency comb that does not pass through the part to be measured)
313... Optical frequency comb (pass width adjusted single first optical frequency comb emitted from the part to be measured)

Claims (3)

互いに異なる繰り返し周波数を有する第1の光周波数コムと第2の光周波数コムとを用いたデュアルコム分光法における干渉信号の測定方法であって、
単一の前記第1の光周波数コムの進行方向に直交する幅方向における通過幅が試料の被測定部の前記幅方向における測定幅より大きい通過幅調節済単一第1光周波数コムの進路上の試料配置位置で、前記幅方向において前記通過幅調節済単一第1光周波数コムが通過する領域の一部に前記被測定部を配置する第1工程と、
前記試料配置位置より前記通過幅調節済単一第1光周波数コムの進行方向の奥側において、前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムと前記被測定部から出射した前記通過幅調節済単一第1光周波数コムとを一括して受光する第2工程と、
前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムと前記第2の光周波数コムとの第1の干渉信号を生成し、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過した前記通過幅調節済単一第1光周波数コムと前記第2の光周波数コムとの第2の干渉信号を生成する第3工程と、
前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過していない前記通過幅調節済単一第1光周波数コムの光パルスの時間軸上の位置を参照位置とし、前記第2工程において一括して受光した前記通過幅調節済単一第1光周波数コムのうち前記被測定部を通過した前記通過幅調節済単一第1光周波数コムの光パルスの時間軸上の位置を測定対象位置とし、前記第1の干渉信号及び前記第2の干渉信号に基づいて前記参照位置に対する前記測定対象位置の情報を取得する第4工程と、
を備えるデュアルコム分光法における干渉信号の測定方法。
A method for measuring an interference signal in dual comb spectroscopy using a first optical frequency comb and a second optical frequency comb having repetition frequencies different from each other, comprising:
On the path of the single first optical frequency comb whose passage width in the width direction orthogonal to the traveling direction of the single first optical frequency comb is larger than the measurement width in the width direction of the portion to be measured of the sample a first step of arranging the part to be measured in a part of the region through which the passage width-adjusted single first optical frequency comb passes in the width direction at the sample arrangement position of
the passage width-adjusted single first optical frequency comb that does not pass through the part to be measured, and the subject to be measured, on the far side of the passage direction of the passage width-adjusted single first optical frequency comb from the sample arrangement position; a second step of collectively receiving the passage width-adjusted single first optical frequency comb emitted from the unit;
Of the pass width-adjusted single first optical frequency combs received collectively in the second step, the pass width-adjusted single first optical frequency comb that does not pass through the part to be measured and the second The first interference signal with the optical frequency comb is generated, and the passage width-adjusted single first optical frequency comb received in the second step has passed through the part to be measured. a third step of generating a second interference signal of a single first optical frequency comb and said second optical frequency comb;
The time of the optical pulse of the first passwidth-adjusted single optical frequency comb that does not pass through the part to be measured among the first passwidth-adjusted single optical frequency combs that are collectively received in the second step. Using the position on the axis as a reference position, the passage width-adjusted single first light beam that has passed through the part to be measured among the passage width-adjusted single first optical frequency combs collectively received in the second step A fourth step of obtaining information on the position of the measurement target with respect to the reference position based on the first interference signal and the second interference signal, with the position of the optical pulse of the frequency comb on the time axis as the position of the measurement target; ,
A method for measuring interference signals in dual comb spectroscopy comprising:
前記第3工程で取得した前記参照位置に対する前記測定対象位置の情報に基づいて前記試料の物性情報を算出する第5工程をさらに備える、
請求項1に記載のデュアルコム分光法における干渉信号の測定方法。
Further comprising a fifth step of calculating physical property information of the sample based on the information of the position to be measured with respect to the reference position acquired in the third step,
A method for measuring interference signals in dual comb spectroscopy according to claim 1 .
前記第2工程において、
前記被測定部から出射した前記通過幅調節済単一第1光周波数コムは、
前記進行方向に沿って前記被測定部を透過した前記通過幅調節済単一第1光周波数コムと、
前記被測定部の入射面と出射面との間を前記進行方向に沿って多重反射した前記通過幅調節済単一第1光周波数コムと、を含む、
請求項1または請求項2に記載のデュアルコム分光法における干渉信号の測定方法。
In the second step,
The pass width-adjusted single first optical frequency comb emitted from the part to be measured,
the passage width-adjusted single first optical frequency comb that passes through the part under test along the traveling direction;
the passage width-adjusted single first optical frequency comb that is multiple-reflected along the traveling direction between the incident surface and the exit surface of the measured part,
The method for measuring an interference signal in dual comb spectroscopy according to claim 1 or 2.
JP2018247417A 2018-12-28 2018-12-28 How to measure interference signals in dual comb spectroscopy Active JP7128516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018247417A JP7128516B2 (en) 2018-12-28 2018-12-28 How to measure interference signals in dual comb spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018247417A JP7128516B2 (en) 2018-12-28 2018-12-28 How to measure interference signals in dual comb spectroscopy

Publications (2)

Publication Number Publication Date
JP2020106477A JP2020106477A (en) 2020-07-09
JP7128516B2 true JP7128516B2 (en) 2022-08-31

Family

ID=71450722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247417A Active JP7128516B2 (en) 2018-12-28 2018-12-28 How to measure interference signals in dual comb spectroscopy

Country Status (1)

Country Link
JP (1) JP7128516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600728B (en) 2020-11-06 2022-11-30 Irsweep Ag Dual-comb spectrometry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046352A (en) 2006-08-16 2008-02-28 Optware:Kk Optical information reproducing apparatus
US20110069309A1 (en) 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
WO2015045266A1 (en) 2013-09-24 2015-04-02 国立大学法人東京農工大学 Measurement device
JP2017138129A (en) 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method
US20180216996A1 (en) 2015-06-01 2018-08-02 Arizona Board Of Regents On Behalf Of The University Of Arizona Dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser
US20180351319A1 (en) 2017-05-31 2018-12-06 Samsung Electronics Co., Ltd. Optical dual-comb source apparatuses including optical microresonator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760965B2 (en) * 1998-02-23 2006-03-29 富士ゼロックス株式会社 Optical recording method, optical recording apparatus, optical reading method, optical reading apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046352A (en) 2006-08-16 2008-02-28 Optware:Kk Optical information reproducing apparatus
US20110069309A1 (en) 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
WO2015045266A1 (en) 2013-09-24 2015-04-02 国立大学法人東京農工大学 Measurement device
US20180216996A1 (en) 2015-06-01 2018-08-02 Arizona Board Of Regents On Behalf Of The University Of Arizona Dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser
JP2017138129A (en) 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method
US20180351319A1 (en) 2017-05-31 2018-12-06 Samsung Electronics Co., Ltd. Optical dual-comb source apparatuses including optical microresonator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,Optics Letters,2016年11月01日,Vol.41, No.21

Also Published As

Publication number Publication date
JP2020106477A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
EP2606311B1 (en) Apparatus and method for measuring distance
US9207121B2 (en) Cavity-enhanced frequency comb spectroscopy system employing a prism cavity
Matsumoto et al. Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb
WO2014203654A1 (en) Distance measurement device, shape measurement device, processing system, distance measurement method, shape measurement method, and processing method
US20170146335A1 (en) Dual Laser Frequency Sweep Interferometry System and Method
JP2011504234A (en) Interferometer device and method of operating the same
US9012833B2 (en) Terahertz wave measuring apparatus and measurement method
JP2016048188A (en) Distance measuring apparatus
JP5421013B2 (en) Positioning device and positioning method
JP7128516B2 (en) How to measure interference signals in dual comb spectroscopy
CN113056650A (en) Method and apparatus for in situ process monitoring
JP2903486B2 (en) Dispersion interferometer
US20160363434A1 (en) Method of calibrating interferometer and interferometer using the same
KR101398835B1 (en) Spectral interferometer using comb generation and detection technique for real-time profile measurement
JP3533651B1 (en) Time-resolved nonlinear susceptibility measurement system
Yoshioka et al. A method for measuring the frequency response of photodetector modules using twice-modulated light
JP6370633B2 (en) Accuracy evaluation method and apparatus for laser frequency measurement by optical frequency comb
JP2007101370A (en) Terahertz spectral device
JP7270202B2 (en) Phase refractive index derivation method and phase refractive index measuring device
US20120212746A1 (en) Interferometer and measurement method
JP2014092425A (en) Optical interference tomographic imaging apparatus and optical interference tomographic imaging method
US20120013908A1 (en) System and method for a virtual reference interferometer
Kolachevsky et al. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius
WO2023163018A1 (en) Optical measurement device
Strobel Constructing a Homodyne Detector for 399nm Laser light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220812

R150 Certificate of patent or registration of utility model

Ref document number: 7128516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150