JP7107809B2 - Positive electrode for secondary battery - Google Patents

Positive electrode for secondary battery Download PDF

Info

Publication number
JP7107809B2
JP7107809B2 JP2018196863A JP2018196863A JP7107809B2 JP 7107809 B2 JP7107809 B2 JP 7107809B2 JP 2018196863 A JP2018196863 A JP 2018196863A JP 2018196863 A JP2018196863 A JP 2018196863A JP 7107809 B2 JP7107809 B2 JP 7107809B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
carbon fiber
carbon
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018196863A
Other languages
Japanese (ja)
Other versions
JP2020064790A (en
Inventor
邦光 山本
修平 吉野
勇一 伊藤
厳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018196863A priority Critical patent/JP7107809B2/en
Publication of JP2020064790A publication Critical patent/JP2020064790A/en
Application granted granted Critical
Publication of JP7107809B2 publication Critical patent/JP7107809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、二次電池用正極に関する。 The present disclosure relates to positive electrodes for secondary batteries.

近年、携帯機器の需要増加に伴い、その電源としての二次電池において、高容量化及び高エネルギー密度化が求められている。これらの要求を満たすため、二次電池中の電極密度を高める試みが知られている。 2. Description of the Related Art In recent years, with the increase in demand for portable devices, there is a demand for higher capacity and higher energy density in secondary batteries as power sources for such devices. Attempts to increase the electrode density in secondary batteries are known to meet these demands.

特許文献1には、リチウムイオンを吸蔵放出可能な活物質、炭素系導電助剤、及びバインダからなるリチウム電池用正極であって、炭素系導電助剤の添加量が正極全体の0.1~2質量%で、かつ炭素系導電助剤に平均繊維径1~200nmの炭素繊維が含まれていることを特徴とするリチウム系電池用正極が開示されている。当該文献には、当該リチウム系電池用正極に炭素繊維を含めることにより、高密度化しても、電解液の浸透性の低下が抑制されると共に電解液がより良く保持される旨の記載がある。 Patent Document 1 discloses a positive electrode for a lithium battery comprising an active material capable of intercalating and deintercalating lithium ions, a carbon-based conductive agent, and a binder, wherein the amount of the carbon-based conductive agent added is 0.1 to 0.1 in the entire positive electrode. A positive electrode for a lithium-based battery is disclosed, which is characterized by containing 2% by mass of carbon fibers having an average fiber diameter of 1 to 200 nm in a carbon-based conductive additive. The document describes that the inclusion of carbon fibers in the positive electrode for lithium-based batteries suppresses a decrease in the permeability of the electrolytic solution and retains the electrolytic solution better even when the density is increased. .

特開2006-86116号公報JP-A-2006-86116

しかしながら、特許文献1で開示されているような正極を用いたリチウム二次電池は、セル抵抗が高いという問題があった。
本開示は、上記実情に鑑み、二次電池に用いられた際に、当該二次電池のセル抵抗を低減させる正極を提供することを目的とする。
However, the lithium secondary battery using the positive electrode disclosed in Patent Document 1 has a problem of high cell resistance.
In view of the above circumstances, an object of the present disclosure is to provide a positive electrode that reduces the cell resistance of a secondary battery when used in the secondary battery.

本開示の二次電池用正極は、繊維径が180nm以上850nm以下の炭素繊維を含有し、不織布構造を有する炭素繊維集合体と、当該炭素繊維集合体に包含されかつ当該炭素繊維集合体と複合化した正極活物質とを含むことを特徴とする。 A positive electrode for a secondary battery of the present disclosure contains carbon fibers having a fiber diameter of 180 nm or more and 850 nm or less and has a nonwoven fabric structure; and a positive electrode active material that has been converted into a positive electrode active material.

本開示の二次電池用正極によれば、特定範囲の繊維径の繊維及び不織布構造を有する炭素繊維集合体と、当該炭素繊維集合体に包含されかつ当該炭素繊維集合体と複合化した正極活物質とを含むため、二次電池に用いられた際に、当該二次電池のセル抵抗を低減させることができる。 According to the positive electrode for a secondary battery of the present disclosure, a carbon fiber aggregate having a fiber diameter within a specific range and a nonwoven fabric structure, and a positive electrode active material contained in the carbon fiber aggregate and composited with the carbon fiber aggregate When used in a secondary battery, the cell resistance of the secondary battery can be reduced.

実施例1の二次電池用正極に用いた炭素繊維集合体と正極活物質との複合体のSEM画像である。1 is an SEM image of a composite of a carbon fiber assembly and a positive electrode active material used for a positive electrode for a secondary battery of Example 1. FIG.

本開示の二次電池用正極は、繊維径が180nm以上850nm以下の炭素繊維を含有し、不織布構造を有する炭素繊維集合体と、当該炭素繊維集合体に包含されかつ当該炭素繊維集合体と複合化した正極活物質とを含むことを特徴とする。 A positive electrode for a secondary battery of the present disclosure contains carbon fibers having a fiber diameter of 180 nm or more and 850 nm or less and has a nonwoven fabric structure; and a positive electrode active material that has been converted into a positive electrode active material.

通常、活物質粒子(粒径数μm)と炭素系導電助剤微粒子(粒径数十nm)の混合物を用いて製造した電極内部においては、これら異種材料のサイズの違いに起因した空隙が存在する。当該電極を含む二次電池の充放電時においては、当該空隙に染み込んだ電解液を介してイオンが伝導する。イオン伝導経路は空隙の場所に依存して形成されるため、電極断面に垂直な直線距離に対し実際のイオン伝導経路は長く、その結果イオン伝導度は低下する。
従来、導電性向上及び活物質粒子間の空隙確保を目的として、炭素系導電助剤の一部に炭素繊維を使用したものが知られている(特許文献1)。しかし、上述したようにセル抵抗の点で問題がある。
また、一般的に、炭素繊維を含む電極材料混合物においては、混合の際に繊維を均一に分散させることは難しい。当該電極材料混合物においては、炭素繊維同士が凝集及び偏析することにより、かえってイオン伝導度を低下させる場合もある。
さらに、活物質粒子と炭素繊維導電助剤とは、通常、点接触しかしないため、単に混合するのみでは従来よりも電子伝導性を向上させることは難しい。
本開示の二次電池用正極は、これらの問題を解決するため、特定の炭素繊維集合体と正極活物質とを含むものであり、二次電池に用いられた際に、当該二次電池のセル抵抗を低減させ、当該二次電池のレート特性を向上させることが可能な正極である。
Normally, inside an electrode manufactured using a mixture of active material particles (particle size of several μm) and carbon-based conductive agent fine particles (particle size of several tens of nm), there are voids due to the difference in size between these dissimilar materials. do. During charging and discharging of a secondary battery including the electrode, ions are conducted through the electrolyte that has permeated the voids. Since the ionic conduction path is formed depending on the location of the gap, the actual ionic conduction path is longer than the straight line distance perpendicular to the electrode cross section, resulting in a decrease in ionic conductivity.
Conventionally, for the purpose of improving electrical conductivity and securing voids between active material particles, there has been known a carbon-based conductive additive that uses carbon fiber as a part (Patent Document 1). However, as mentioned above, there is a problem in terms of cell resistance.
Further, in general, in an electrode material mixture containing carbon fibers, it is difficult to uniformly disperse the fibers during mixing. In the electrode material mixture, aggregation and segregation of the carbon fibers may rather reduce the ionic conductivity.
Furthermore, since the active material particles and the carbon fiber conductive aid are usually only in point contact, it is difficult to improve the electron conductivity by simply mixing them.
In order to solve these problems, the positive electrode for a secondary battery of the present disclosure contains a specific carbon fiber aggregate and a positive electrode active material, and when used in a secondary battery, the secondary battery It is a positive electrode capable of reducing cell resistance and improving rate characteristics of the secondary battery.

本開示における炭素繊維集合体は、繊維径が180nm以上850nm以下の炭素繊維を含有し、かつ不織布構造を有する。本開示における「不織布構造」は、炭素繊維同士が互いに絡み合いながら積層してなる構造を含む。
炭素繊維集合体は、不織布構造を有し、上記範囲の繊維径の炭素繊維を含むものであれば特に限定されない。炭素繊維集合体の製造方法は特に限定されないが、電界紡糸法(Electrospinning method)により製造された炭素繊維集合体を用いることが好ましい。
電界紡糸法により製造された炭素繊維集合体は一般的に不織布構造を形成する。そのため、炭素繊維集合体内部の空隙構造が、当該構造の断面方向に対して貫通孔を有すると考えられ、当該貫通孔に沿って形成されるイオン伝導経路はより直線的となると考えられる。そのため、このような炭素繊維集合体を正極に含む二次電池においては、充放電の際イオン伝導が速やかに進行し、イオン伝導度の向上及びセル抵抗の低減につながると考えられる。
また、電界紡糸法によって製造された炭素繊維集合体の方が、正極活物質と炭素繊維とを単に混合した組成物を用いる場合よりも、正極活物質と炭素繊維との接触状態が良好となり、正極内部の電子伝導性も良好となると考えられる。
さらに、このようにイオン伝導経路がより直線的な炭素繊維集合体においては、電解液の浸み込み速度も速くなる。したがって、このような炭素繊維集合体を正極に含む二次電池の製造の際、二次電池に対し電解液を注液するプロセスや、電解液を含む二次電池の活性化プロセス等に費やす時間を短縮することが可能となる。
The carbon fiber aggregate in the present disclosure contains carbon fibers with a fiber diameter of 180 nm or more and 850 nm or less, and has a nonwoven fabric structure. The “nonwoven fabric structure” in the present disclosure includes a structure in which carbon fibers are laminated while being entangled with each other.
The carbon fiber aggregate is not particularly limited as long as it has a nonwoven fabric structure and contains carbon fibers having a fiber diameter within the above range. Although the method for producing the carbon fiber aggregate is not particularly limited, it is preferable to use a carbon fiber aggregate produced by an electrospinning method.
Carbon fiber aggregates produced by electrospinning generally form nonwoven structures. Therefore, it is considered that the void structure inside the carbon fiber aggregate has through holes in the cross-sectional direction of the structure, and the ion conduction paths formed along the through holes are more linear. Therefore, in a secondary battery containing such a carbon fiber assembly in the positive electrode, ionic conduction proceeds rapidly during charging and discharging, leading to improvement in ionic conductivity and reduction in cell resistance.
In addition, the carbon fiber assembly produced by the electrospinning method has a better contact state between the positive electrode active material and the carbon fibers than when using a composition in which the positive electrode active material and the carbon fibers are simply mixed. It is considered that the electron conductivity inside the positive electrode is also improved.
Furthermore, in the carbon fiber assembly having a straighter ionic conduction path, the permeation speed of the electrolytic solution also increases. Therefore, when manufacturing a secondary battery containing such a carbon fiber assembly in the positive electrode, the time spent in the process of injecting the electrolyte into the secondary battery, the activation process of the secondary battery containing the electrolyte, etc. can be shortened.

電界紡糸法により炭素繊維集合体を製造する場合、その炭素原料は、特に限定されないが、例えば、カーボンブラック(CB)、カーボンナノチューブ(CNT)等が挙げられる。
この場合、紡糸用ポリマーは特に限定されないが、例えば、ポリビニルアルコール(PVA)、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)等が挙げられる。このうち、電界紡糸法に適する点から、ポリビニルアルコール(PVA)であることが好ましい。
When the carbon fiber assembly is produced by the electrospinning method, the carbon raw material is not particularly limited, and examples thereof include carbon black (CB) and carbon nanotube (CNT).
In this case, the spinning polymer is not particularly limited, but examples include polyvinyl alcohol (PVA), polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), polyacrylonitrile (PAN), and the like. Among these, polyvinyl alcohol (PVA) is preferable because it is suitable for the electrospinning method.

炭素繊維集合体は、炭素繊維のみからなるものであってもよいし、炭素繊維以外の材料をさらに含むものであってもよい。炭素繊維集合体中の炭素繊維以外の材料としては、例えば上記紡糸用ポリマー及びその誘導体等が挙げられる。ただし、炭素繊維以外の材料の含有割合が高すぎる場合には電極反応に支障が生じるおそれがあるため、炭素繊維集合体中における炭素繊維以外の材料の含有割合は、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、炭素繊維以外の材料は炭素繊維集合体に含まれないことがよりさらに好ましい。 The carbon fiber aggregate may consist of carbon fibers only, or may further contain materials other than carbon fibers. Materials other than carbon fibers in the carbon fiber assembly include, for example, the above spinning polymers and derivatives thereof. However, if the content of materials other than carbon fibers is too high, the electrode reaction may be hindered, so the content of materials other than carbon fibers in the carbon fiber assembly should be 50% by mass or less. is preferably 30% by mass or less, more preferably 10% by mass or less, and it is even more preferable that the carbon fiber assembly does not contain materials other than carbon fibers.

炭素繊維集合体中の炭素繊維の繊維径は、通常180nm以上850nm以下であり、好適には190nm以上800nm以下であり、より好適には200nm以上750nm以下である。
電界紡糸法により炭素繊維集合体を製造する場合、得られる炭素繊維の繊維径は、原料となる炭素材料粒子の平均粒径よりも太いことが好ましい。例えば、炭素原料にカーボンブラック(平均粒径:110nm)を用いる場合には、得られる炭素繊維の繊維径は110nm以上であることが好ましい。この場合、カーボンブラックの粒度分布も考慮すると、得られる炭素繊維の繊維径は180nm以上であることが好ましい。
また、電界紡糸法により炭素繊維集合体を製造する場合、紡糸液中の紡糸用ポリマー濃度を高くすることにより炭素繊維の繊維径を太くすることができる。太い繊維径を有する炭素繊維の紡糸にはその分高い電圧が必要である。炭素繊維の繊維径が850nm以下であれば、問題なく電界紡糸法により炭素繊維集合体を製造することができる。
炭素繊維の繊維径が太いほど、不織布構造の強度は高いが、炭素繊維集合体中の空隙が少なくなる。一方、炭素繊維の繊維径が細いほど、炭素繊維集合体中の空隙を多く確保することができ、断面方向に対して貫通孔を多く有する正極が得られるが、不織布構造の強度は低い。
炭素繊維集合体中の炭素繊維の繊維径は、例えば、炭素繊維集合体のSEM画像から算出される。SEM観察条件の例は以下の通りである。
・走査型電子顕微鏡:(株式会社ニコンインステック、Quanta200FEG)
・加速電圧:5kV
・倍率:20000倍
The fiber diameter of the carbon fibers in the carbon fiber aggregate is usually 180 nm or more and 850 nm or less, preferably 190 nm or more and 800 nm or less, more preferably 200 nm or more and 750 nm or less.
When a carbon fiber aggregate is produced by an electrospinning method, the fiber diameter of the obtained carbon fibers is preferably larger than the average particle diameter of the carbon material particles as a raw material. For example, when carbon black (average particle diameter: 110 nm) is used as the carbon raw material, the fiber diameter of the obtained carbon fibers is preferably 110 nm or more. In this case, considering the particle size distribution of the carbon black, the fiber diameter of the obtained carbon fibers is preferably 180 nm or more.
Further, when a carbon fiber aggregate is produced by an electrospinning method, the fiber diameter of the carbon fibers can be increased by increasing the concentration of the spinning polymer in the spinning solution. Spinning of carbon fibers having a large fiber diameter requires a correspondingly high voltage. If the fiber diameter of the carbon fibers is 850 nm or less, the carbon fiber assembly can be produced by the electrospinning method without any problem.
The larger the fiber diameter of the carbon fibers, the higher the strength of the non-woven fabric structure, but the smaller the voids in the carbon fiber aggregate. On the other hand, the finer the fiber diameter of the carbon fiber, the more voids can be secured in the carbon fiber assembly, and a positive electrode having many through-holes in the cross-sectional direction can be obtained, but the strength of the non-woven fabric structure is low.
The fiber diameter of the carbon fibers in the carbon fiber aggregate is calculated, for example, from the SEM image of the carbon fiber aggregate. Examples of SEM observation conditions are as follows.
・Scanning electron microscope: (Nikon Instech Co., Ltd., Quanta200FEG)
・Acceleration voltage: 5 kV
・Magnification: 20000 times

炭素原料は親水性を有する材料であることが好ましい。その理由は、疎水性が高い炭素原料は、電界紡糸法に供する組成物の調製の際に、当該炭素原料と他の材料(例えば、親水性ポリマーなど)とが分離してしまい、電界紡糸法が十分進行しないおそれがあるためである。炭素原料は予め親水化処理を施したものであってもよい。 The carbon raw material is preferably a hydrophilic material. The reason for this is that a highly hydrophobic carbon raw material separates from other materials (for example, hydrophilic polymers) during the preparation of a composition to be subjected to the electrospinning method. This is because there is a risk that the process will not progress sufficiently. The carbon raw material may be previously subjected to a hydrophilization treatment.

本開示における正極活物質は、炭素繊維集合体に包含されかつ当該炭素繊維集合体と複合化している。ここで、正極活物質が炭素繊維集合体に包含される状態には、正極活物質が炭素繊維集合体の内部に取り込まれている実施形態が含まれる。また、正極活物質が炭素繊維集合体と複合化している状態には、正極活物質が炭素繊維集合体と絡み合い一体化されている実施形態が含まれる。
上述したように、炭素繊維集合体中において、正極活物質が炭素繊維と絡み合って存在するため、正極活物質と炭素繊維集合体の接触状態が良好になると推測される。
The positive electrode active material in the present disclosure is included in the carbon fiber aggregate and composited with the carbon fiber aggregate. Here, the state in which the positive electrode active material is included in the carbon fiber aggregate includes an embodiment in which the positive electrode active material is incorporated inside the carbon fiber aggregate. Further, the state in which the positive electrode active material is combined with the carbon fiber aggregate includes an embodiment in which the positive electrode active material is entangled and integrated with the carbon fiber aggregate.
As described above, in the carbon fiber aggregate, the positive electrode active material is entangled with the carbon fibers, so it is presumed that the contact state between the positive electrode active material and the carbon fiber aggregate is improved.

正極活物質としては、リチウムイオンを吸蔵放出可能な材料であれば特に限定されず、例えば、LiMnNiCo(x=y=z=1/3)等が挙げられる。
二次電池用正極における、正極活物質と炭素繊維集合体との含有割合は、(正極活物質):(炭素繊維集合体)=96:4~80:20であることが好ましい。当該含有割合をこの範囲内とすることにより、正極活物質を多く確保しエネルギー密度を高く維持できると共に、二次電池用正極に対し十分な導電性を付与することができる。
二次電池用正極の製造方法において電界紡糸法を採用する場合、電界紡糸法に供する正極活物質と炭素原料との混合割合は、上述した正極活物質と炭素繊維集合体との含有割合を実現できる割合であればよい。
The positive electrode active material is not particularly limited as long as it is capable of intercalating and deintercalating lithium ions, and examples thereof include LiMnxNiyCozO2 ( x = y = z =1/3).
The content ratio of the positive electrode active material and the carbon fiber aggregate in the positive electrode for secondary battery is preferably (positive electrode active material):(carbon fiber aggregate)=96:4 to 80:20. By setting the content ratio within this range, a large amount of the positive electrode active material can be secured and a high energy density can be maintained, and sufficient conductivity can be imparted to the positive electrode for a secondary battery.
When the electrospinning method is adopted in the method for producing a positive electrode for a secondary battery, the mixing ratio of the positive electrode active material and the carbon raw material to be subjected to the electrospinning method realizes the above-described content ratio of the positive electrode active material and the carbon fiber aggregate. It is good if the ratio is possible.

後述する図1に示すように、電界紡糸法を用いて製造した二次電池用正極においては、不織布構造を有する炭素繊維集合体の内部に正極活物質が取り込まれ、当該炭素繊維集合体と絡み合い一体化している。このように、電界紡糸法の紡糸時においては、炭素繊維集合体中に正極活物質が織り込まれるため、ナノファイバー化された不織布構造中に正極活物質が絡まりながら取り込まれている。そのため正極活物質と炭素繊維集合体の接触状態が良好であり、得られる正極全体の導電性も良好であるため、性能向上に寄与していることが考えられる。 As shown in FIG. 1, which will be described later, in a positive electrode for a secondary battery manufactured using an electrospinning method, a positive electrode active material is incorporated inside a carbon fiber aggregate having a non-woven fabric structure, and is entangled with the carbon fiber aggregate. are unified. As described above, the positive electrode active material is woven into the carbon fiber aggregate during spinning by the electrospinning method, so that the positive electrode active material is incorporated into the nanofiber non-woven fabric structure while being entangled. Therefore, the contact state between the positive electrode active material and the carbon fiber assembly is good, and the conductivity of the positive electrode as a whole is also good, which is considered to contribute to the improvement of the performance.

本開示の二次電池用正極の評価としては、電子伝導度評価、液浸透速度評価及び空隙率測定が挙げられる。
正極の電子伝導度の評価方法は以下の通りである。乾燥した2枚の正極を重ね合わせ、所定の圧力をかけることにより積層体を作製する。得られた積層体について抵抗値を測定し、得られた抵抗値から正極の電子伝導度を算出する。
Evaluation of the positive electrode for a secondary battery of the present disclosure includes electronic conductivity evaluation, liquid permeation rate evaluation, and porosity measurement.
The method for evaluating the electron conductivity of the positive electrode is as follows. A laminate is produced by stacking two dry positive electrodes and applying a predetermined pressure. The resistance value of the obtained laminate is measured, and the electron conductivity of the positive electrode is calculated from the obtained resistance value.

正極の液浸透速度の評価方法は以下の通りである。正極を所定のサイズの短冊状に加工し、電極の長軸方向の一端をプロピレンカーボネート(PC)に浸漬させる。PCが浸透する質量(液浸透質量)と、PCが浸透する時間とから、下記式(A)に基づき液浸透速度を算出する。
式(A)
v = m / (t1/2
(上記式(A)中、vは液浸透速度(g/(h1/2))、mは液浸透質量(g)、tは液浸透時間(h)をそれぞれ示す。)
The evaluation method of the liquid permeation rate of the positive electrode is as follows. The positive electrode is processed into a strip of a predetermined size, and one end of the electrode in the longitudinal direction is immersed in propylene carbonate (PC). From the mass permeated by PC (liquid permeation mass) and the time for PC to permeate, the liquid permeation rate is calculated based on the following formula (A).
Formula (A)
v = m/( t1 /2)
(In the above formula (A), v represents liquid permeation speed (g/(h 1/2 )), m represents liquid permeation mass (g), and t represents liquid permeation time (h).)

正極の空隙率の算出方法は以下の通りである。
空隙率(%)=(1-m/M)×100
正極の密度(g/cm):m=w/L×10
正極の真密度(g/cm):M=(n+c+p)/{(n/N)+(c/C)+(p/P)}
N:正極活物質の密度(g/cm
C:炭素繊維の密度(g/cm
P:ポリマーの密度(g/cm
n:正極の総質量を100質量%としたとき正極に含まれる正極活物質の割合(質量%)
c:正極の総質量を100質量%としたとき正極に含まれる炭素繊維の割合(質量%)
p:正極の総質量を100質量%としたとき正極に含まれるポリマーの割合(質量%)
なお、正極の総質量を100質量%としたとき、n+c+p=100(質量%)とする。
w:正極の目付量(mg/cm
L:正極の厚さ(μm)
正極の空隙率は、25~50%であってもよい。空隙率が25%未満の場合は、空隙率が低くなりすぎて不織布構造によるイオン伝導性向上の効果が発揮されにくくなる。空隙率が50%を超える場合は、得られる炭素繊維集合体の強度が低下するおそれがある。
The method for calculating the porosity of the positive electrode is as follows.
Porosity (%) = (1-m/M) x 100
Density of positive electrode (g/cm 3 ): m=w/L×10
True density of positive electrode (g/cm 3 ): M=(n+c+p)/{(n/N)+(c/C)+(p/P)}
N: Density of positive electrode active material (g/cm 3 )
C: Density of carbon fiber (g/cm 3 )
P: Density of polymer (g/cm 3 )
n: Proportion of the positive electrode active material contained in the positive electrode when the total mass of the positive electrode is 100% by mass (% by mass)
c: Ratio of carbon fiber contained in the positive electrode when the total mass of the positive electrode is 100% by mass (% by mass)
p: Proportion of the polymer contained in the positive electrode when the total mass of the positive electrode is 100% by mass (% by mass)
When the total mass of the positive electrode is 100% by mass, n+c+p=100 (% by mass).
w: weight of positive electrode (mg/cm 2 )
L: thickness of positive electrode (μm)
The porosity of the positive electrode may be 25-50%. If the porosity is less than 25%, the porosity becomes too low, and the effect of improving the ionic conductivity by the nonwoven fabric structure is hardly exhibited. If the porosity exceeds 50%, the strength of the obtained carbon fiber aggregate may decrease.

電界紡糸法を採用した場合の二次電池用正極の製造例は以下の通りである。なお、本開示の二次電池用正極は、下記製造例により製造されるものに限定されない。
まず、イオン交換水に紡糸用ポリマーを溶解させることにより、ポリマー水溶液を調製する。このとき、ポリマー水溶液の濃度によって、得られる炭素繊維の繊維径を調節することができる。ポリマー水溶液の濃度が高いほど紡糸可能な繊維径は太くなる。紡糸化を速やかに進行させる観点から、ポリマー水溶液の濃度は2質量%~15質量%としてもよい。
このポリマー水溶液に対し、正極活物質及び炭素原料を混合し、得られる正極用材料溶液(紡糸液)を均一に調製する。
この正極用材料溶液を、電界紡糸法により繊維化かつ不織布化し、不織布構造を有する炭素繊維集合体と正極活物質との複合体をコレクター表面に堆積させる。電界紡糸法の条件は、例えば、以下の通りである。
・電界紡糸装置:(例えば、株式会社メック、NANON-03)
・コレクター:アルミニウム箔(正極集電体)
・ノズル-コレクター間の電圧:30kV
・ノズル-コレクター間の距離:5cm
・紡糸時間:5分間
・目付量:5mg/cm
その後、複合体と正極集電体との積層体(正極前駆体)を焼成に供する。焼成により複合体中の繊維表面を覆っていた紡糸用ポリマーの一部又は全部が熱分解して消失するため、導電性に優れる炭素繊維を含む不織布構造が形成される。さらに、焼成後の正極前駆体を適宜プレスすることにより、不織布構造を有する炭素繊維集合体を含み、かつ当該炭素繊維集合体と絡み合い一体化された正極活物質を含む二次電池用正極が得られる。
An example of manufacturing a positive electrode for a secondary battery using the electrospinning method is as follows. It should be noted that the positive electrode for a secondary battery of the present disclosure is not limited to those produced by the production examples below.
First, an aqueous polymer solution is prepared by dissolving a spinning polymer in ion-exchanged water. At this time, the fiber diameter of the obtained carbon fibers can be adjusted by the concentration of the aqueous polymer solution. The higher the concentration of the aqueous polymer solution, the thicker the fiber diameter that can be spun. From the viewpoint of speeding up the spinning process, the concentration of the aqueous polymer solution may be 2% by mass to 15% by mass.
The positive electrode active material and the carbon raw material are mixed with this aqueous polymer solution to uniformly prepare the resulting positive electrode material solution (spinning solution).
This positive electrode material solution is fibrillated into a non-woven fabric by an electrospinning method, and a composite of a carbon fiber aggregate having a non-woven fabric structure and a positive electrode active material is deposited on the surface of the collector. Conditions for the electrospinning method are, for example, as follows.
・ Electrospinning device: (eg, MEC Co., Ltd., NANON-03)
・Collector: Aluminum foil (positive electrode current collector)
・Nozzle-collector voltage: 30 kV
・Distance between nozzle and collector: 5 cm
・Spinning time: 5 minutes ・Weight per unit area: 5 mg/cm 2
After that, the laminate (positive electrode precursor) of the composite and the positive electrode current collector is subjected to firing. A part or all of the spinning polymer covering the fiber surfaces in the composite is thermally decomposed and lost by baking, so that a non-woven fabric structure containing carbon fibers with excellent conductivity is formed. Further, by appropriately pressing the baked positive electrode precursor, a positive electrode for a secondary battery containing a carbon fiber aggregate having a non-woven fabric structure and a positive electrode active material entangled and integrated with the carbon fiber aggregate can be obtained. be done.

負極は、少なくとも負極活物質を含み、必要に応じて、結着剤及び増粘剤等を含んでいてもよい。
負極活物質としては、炭素質材料、金属リチウム、リチウム合金(複合金属)、Li原子を含まない酸化物、及びLi原子を含む酸化物等が挙げられる。
結着剤は特に限定されず、例えば、スチレンブタジエンゴム(SBR)等が挙げられる。
増粘剤は特に限定されず、例えば、カルボキシルメチルセルロース(CMC)等が挙げられる。
The negative electrode contains at least a negative electrode active material and, if necessary, may contain a binder, a thickener, and the like.
Examples of negative electrode active materials include carbonaceous materials, metallic lithium, lithium alloys (composite metals), oxides containing no Li atoms, and oxides containing Li atoms.
The binder is not particularly limited, and examples thereof include styrene-butadiene rubber (SBR).
The thickener is not particularly limited, and examples thereof include carboxymethylcellulose (CMC).

セパレータは、正極と負極との間に存在する。セパレータを介して、正極活物質と負極活物質との間のイオン伝導が生じる。
セパレータとしては、例えば、ポリエチレンテレフタレートを含む多孔膜フィルムが挙げられる。
A separator is present between the positive and negative electrodes. Ionic conduction occurs between the positive electrode active material and the negative electrode active material through the separator.
Examples of separators include porous films containing polyethylene terephthalate.

二次電池には非水電解液を用いてもよい。
非水電解液の溶媒としては、エチレンカルボナート(EC)、ジメチルカルボナート(DMC)及びエチルメチルカルボナート(EMC)、並びにこれらの混合溶媒が使用できる。
非水電解液の溶質(電解質)としては、LiPF等のリチウム塩が挙げられる。
A non-aqueous electrolyte may be used in the secondary battery.
Ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and mixed solvents thereof can be used as the solvent for the non-aqueous electrolyte.
Examples of the solute (electrolyte) of the non-aqueous electrolyte include lithium salts such as LiPF6 .

二次電池は、セパレータの一方の面に正極を、当該セパレータの他方の面に負極をそれぞれ配置し、得られた積層体に上述した非水電解液を添加することにより製造することができる。得られた二次電池は、外装体としてラミネートフィルムを用いることにより全体を密封してもよい。 A secondary battery can be manufactured by disposing a positive electrode on one side of a separator and a negative electrode on the other side of the separator, and adding the non-aqueous electrolyte described above to the resulting laminate. The obtained secondary battery may be entirely sealed by using a laminate film as an outer package.

本開示の二次電池について、例えば、下記の通りセル抵抗を測定することにより、当該二次電池のレート特性を評価することができる。
まず、下記条件下で二次電池のコンディショニングを数サイクル繰り返す。
・電流密度:0.2mA/cm
・電位窓:3.0~4.1V
最終サイクルにおける放電容量を、その二次電池のセル容量とする。当該セル容量に基づき、二次電池をSOC60%の状態まで充電する。その後、順次、数点の電流密度(例えば、0.2mA/cm,2.0mA/cm,4.0mA/cm,10mA/cm,20mA/cm等)で各10秒間放電する。
各電流密度での電圧降下△Vと電流値から、セル抵抗(IV抵抗)を算出する。算出されたセル抵抗が低いほど、二次電池がレート特性に優れると言える。
For the secondary battery of the present disclosure, for example, the rate characteristics of the secondary battery can be evaluated by measuring the cell resistance as described below.
First, the conditioning of the secondary battery is repeated several cycles under the following conditions.
・Current density: 0.2 mA/cm 2
・Potential window: 3.0 to 4.1 V
Let the discharge capacity in the final cycle be the cell capacity of the secondary battery. Based on the cell capacity, the secondary battery is charged to an SOC of 60%. After that, discharge is performed at several current densities (for example, 0.2 mA/cm 2 , 2.0 mA/cm 2 , 4.0 mA/cm 2 , 10 mA/cm 2 , 20 mA/cm 2 , etc.) for 10 seconds each. .
The cell resistance (IV resistance) is calculated from the voltage drop ΔV at each current density and the current value. It can be said that the lower the calculated cell resistance, the better the rate characteristics of the secondary battery.

このように、本開示の二次電池用正極は、上述した特定の炭素繊維集合体と正極活物質との複合体を含むため、二次電池に用いられた際に、当該二次電池のセル抵抗を低減させることができ、レート特性に優れる二次電池を提供することができる。 In this way, the positive electrode for a secondary battery of the present disclosure contains the above-described composite of the specific carbon fiber aggregate and the positive electrode active material, so that when used in a secondary battery, the cell of the secondary battery It is possible to provide a secondary battery that can reduce the resistance and has excellent rate characteristics.

以下に、実施例を挙げて、本開示を更に具体的に説明するが、本開示は、この実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present disclosure will be described in more detail with reference to Examples, but the present disclosure is not limited only to these Examples.

[実施例1]
1.二次電池用正極の製造
まず、イオン交換水にポリビニルアルコール(PVA、紡糸用ポリマー、富士フイルム和光純薬社製)を溶解させて、5質量%のポリビニルアルコール水溶液を調製した。
一方、正極活物質としてLiMnNiCo(x=y=z=1/3)を、炭素繊維集合体の基となる炭素原料として親水性カーボンブラック(CB、平均粒径:110nm)を、それぞれ用意した。これら正極用材料を、正極活物質:炭素原料=90質量%:10質量%の比で混合した。得られた混合物を、上記5質量%のポリビニルアルコール水溶液に添加し、溶液全体が均一になるまで攪拌及び混練した。
均一に調製された正極用材料溶液を、電界紡糸法により繊維化かつ不織布化し、不織布構造を有する炭素繊維集合体と正極活物質との複合体をコレクター表面に堆積させた。電界紡糸法の詳細な条件は以下の通りである。
・電界紡糸装置:株式会社メック、NANON-03
・コレクター:アルミニウム箔(正極集電体、厚さ:15μm)
・ノズル-コレクター間の電圧:30kV
・ノズル-コレクター間の距離:5cm
・紡糸時間:5分間
・目付量:5mg/cm
[Example 1]
1. Production of Positive Electrode for Secondary Battery First, polyvinyl alcohol (PVA, polymer for spinning, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was dissolved in ion-exchanged water to prepare a 5% by mass polyvinyl alcohol aqueous solution.
On the other hand, LiMnxNiyCozO2 ( x = y = z = 1/3) was used as the positive electrode active material, and hydrophilic carbon black (CB, average particle size: 110 nm) was used as the carbon raw material to form the carbon fiber aggregate. ) were prepared respectively. These positive electrode materials were mixed in a ratio of positive electrode active material:carbon raw material=90% by mass:10% by mass. The resulting mixture was added to the above 5% by mass polyvinyl alcohol aqueous solution, and stirred and kneaded until the entire solution was uniform.
A uniformly prepared positive electrode material solution was made into fibers and non-woven fabrics by an electrospinning method, and a composite of a carbon fiber aggregate having a non-woven fabric structure and a positive electrode active material was deposited on the collector surface. Detailed conditions of the electrospinning method are as follows.
・Electrospinning device: MEC Co., Ltd., NANON-03
- Collector: aluminum foil (positive electrode current collector, thickness: 15 μm)
・Nozzle-collector voltage: 30 kV
・Distance between nozzle and collector: 5 cm
・Spinning time: 5 minutes ・Weight per unit area: 5 mg/cm 2

前記複合体と正極集電体との積層体(正極前駆体)を、焼成に供した。焼成工程の詳細な条件は以下の通りである。
・焼成温度:230℃
・焼成時間:1時間
・焼成雰囲気:大気
A laminate (positive electrode precursor) of the composite and the positive electrode current collector was subjected to firing. Detailed conditions of the firing process are as follows.
・Baking temperature: 230°C
・Firing time: 1 hour ・Firing atmosphere: air

焼成後の積層体をプレスし、実施例1の二次電池用正極を製造した。プレス工程の詳細な条件は、ロールプレス機を使用し、以下の通りである。
・プレス圧力:線圧300kN/m
・プレス時間:ロール回転速度3m/min
実施例1の二次電池用正極の空隙率は35%であった。
The fired laminate was pressed to produce a positive electrode for a secondary battery of Example 1. The detailed conditions of the pressing process are as follows using a roll press machine.
・Press pressure: Line pressure 300 kN/m
・Press time: roll rotation speed 3m/min
The porosity of the positive electrode for secondary battery of Example 1 was 35%.

図1は、実施例1の二次電池用正極に用いた炭素繊維集合体と正極活物質との複合体のSEM画像である。SEM観察条件は以下の通りである。
・走査型電子顕微鏡:株式会社ニコンインステック、Quanta200FEG
・加速電圧:5kV
・倍率:20000倍
図1の中央に、炭素繊維に取り込まれた正極活物質を示す。図1中の炭素繊維の延伸方向からも明らかな通り、実施例1に使用した炭素繊維集合体は不織布構造を有していた。そして、正極活物質は、当該不織布構造に包含されかつ当該炭素繊維集合体と複合化していた。より具体的には、正極活物質は、当該炭素繊維集合体に絡まりながら、当該炭素繊維集合体の内部に取り込まれていた。図1より、当該炭素繊維集合体中の炭素繊維の繊維径は280nmであった。
FIG. 1 is an SEM image of a composite of a carbon fiber assembly and a positive electrode active material used for the positive electrode for a secondary battery of Example 1. FIG. The SEM observation conditions are as follows.
・Scanning electron microscope: Nikon Instech Co., Ltd., Quanta200FEG
・Acceleration voltage: 5 kV
・Magnification: 20000 times The center of FIG. 1 shows the positive electrode active material incorporated into the carbon fiber. As is clear from the drawing direction of the carbon fibers in FIG. 1, the carbon fiber aggregate used in Example 1 had a nonwoven fabric structure. The positive electrode active material was included in the nonwoven fabric structure and composited with the carbon fiber assembly. More specifically, the positive electrode active material was incorporated into the carbon fiber aggregate while being entangled with the carbon fiber aggregate. From FIG. 1, the fiber diameter of the carbon fibers in the carbon fiber assembly was 280 nm.

2.二次電池の製造
まず、下記負極用材料を混合し、イオン交換水により適宜粘度調整をすることによって、負極合材ペーストを調製する。
・負極活物質:人造黒鉛(C)
・増粘剤:カルボキシルメチルセルロース(CMC)
・結着剤:スチレンブタジエンゴム(SBR)
なお、負極活物質、増粘剤及び結着剤の混合比は、(負極活物質):(増粘剤):(結着剤)=98質量%:1質量%:1質量%とした。
調製した負極合材ペーストは、コンマコーターにより銅箔(厚さ:10μm)表面に塗布し、160℃にて乾燥させることによって、負極を作製した。
2. Manufacture of Secondary Battery First, the following negative electrode materials are mixed, and the viscosity is appropriately adjusted with deionized water to prepare a negative electrode mixture paste.
・Negative electrode active material: artificial graphite (C)
・Thickening agent: carboxyl methyl cellulose (CMC)
・Binder: Styrene-butadiene rubber (SBR)
The mixing ratio of the negative electrode active material, the thickener and the binder was (negative electrode active material):(thickener):(binder)=98% by mass:1% by mass:1% by mass.
The prepared negative electrode mixture paste was applied to the surface of a copper foil (thickness: 10 μm) with a comma coater and dried at 160° C. to produce a negative electrode.

セパレータとしては、ポリエチレンテレフタレートからなる多孔膜フィルム(厚さ:25μm)を用意した。
非水電解液の溶媒としては、エチレンカルボナート(EC)、ジメチルカルボナート(DMC)及びエチルメチルカルボナート(EMC)を、EC:DMC:EMC=1:1:1の体積比で混合した溶媒を用いた。この混合溶媒に、リチウム塩の電解質として、LiPFを1mol/Lの濃度となるように混合し、非水電解液を調製した。
As a separator, a porous membrane film (thickness: 25 μm) made of polyethylene terephthalate was prepared.
As the solvent for the non-aqueous electrolyte, a solvent obtained by mixing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) at a volume ratio of EC:DMC:EMC=1:1:1. was used. This mixed solvent was mixed with LiPF 6 as a lithium salt electrolyte at a concentration of 1 mol/L to prepare a non-aqueous electrolyte.

まず、上記実施例1の二次電池用正極と、上記負極について、それぞれスリット溝を形成した。次に、両電極の端の部分の電極合材を、集電箔から物理的な方法により剥離させた後、集電用リードを超音波溶接により接合した。得られた正極と負極を、セパレータを介して対向させ、積層体を作製した。得られた積層体に非水電解液を含浸させ、外装としてラミネートフィルムを用いて密封し、実施例1の二次電池を製造した。 First, slit grooves were formed in each of the positive electrode for a secondary battery of Example 1 and the negative electrode. Next, the electrode compound material at the ends of both electrodes was peeled off from the collector foil by a physical method, and then the collector lead was joined by ultrasonic welding. The obtained positive electrode and negative electrode were opposed to each other with a separator interposed therebetween to produce a laminate. The resulting laminate was impregnated with a non-aqueous electrolyte and sealed with a laminate film as an outer packaging to produce a secondary battery of Example 1.

[実施例2]
実施例1の「1.二次電池用正極の製造」中、ポリビニルアルコール水溶液の濃度を5質量%から12質量%に変更したこと、及び、炭素繊維集合体中の炭素繊維の繊維径を280nmから850nmに変更したこと以外は、実施例1と同様に、実施例2の二次電池用正極及び二次電池を製造した。
[Example 2]
In "1. Production of positive electrode for secondary battery" in Example 1, the concentration of the polyvinyl alcohol aqueous solution was changed from 5% by mass to 12% by mass, and the fiber diameter of the carbon fibers in the carbon fiber aggregate was changed to 280 nm. A positive electrode for a secondary battery and a secondary battery of Example 2 were manufactured in the same manner as in Example 1, except that the thickness was changed from to 850 nm.

[実施例3]
実施例1の「1.二次電池用正極の製造」中、ポリビニルアルコール水溶液の濃度を5質量%から2質量%に変更したこと、及び、炭素繊維集合体中の炭素繊維の繊維径を280nmから180nmに変更したこと以外は、実施例1と同様に、実施例3の二次電池用正極及び二次電池を製造した。
[Example 3]
In "1. Production of positive electrode for secondary battery" in Example 1, the concentration of the polyvinyl alcohol aqueous solution was changed from 5% by mass to 2% by mass, and the fiber diameter of the carbon fibers in the carbon fiber aggregate was 280 nm. A positive electrode for a secondary battery and a secondary battery of Example 3 were produced in the same manner as in Example 1, except that the thickness was changed from 180 nm to 180 nm.

[実施例4]
実施例1の「1.二次電池用正極の製造」中、正極活物質としてLiMnNiCo(x=y=z=1/3)を、炭素原料として親水性カーボンブラック(CB、平均粒径:110nm)及びカーボンナノチューブ(CNT、繊維径:10~15nm、長さ:10μm、Cnano社製)をそれぞれ用意し、かつ、これら正極用材料を、正極活物質:CB:CNT=90質量%:5質量%:5質量%の比で混合したこと以外は、実施例1と同様に、実施例4の二次電池用正極及び二次電池を製造した。
[Example 4]
In "1. Production of positive electrode for secondary battery" in Example 1, LiMnxNiyCozO2 ( x = y = z = 1/3) was used as the positive electrode active material, and hydrophilic carbon black ( CB, average particle diameter: 110 nm) and carbon nanotubes (CNT, fiber diameter: 10 to 15 nm, length: 10 μm, manufactured by Cnano) are prepared, and these positive electrode materials are used as positive electrode active material: CB: CNT A positive electrode for a secondary battery and a secondary battery of Example 4 were manufactured in the same manner as in Example 1, except that they were mixed in a ratio of =90% by mass:5% by mass:5% by mass.

[比較例1]
実施例1の「1.二次電池用正極の製造」中、正極用材料溶液を、コンマコーターによりアルミニウム箔(正極集電体、厚さ:15μm)表面へ塗工したこと以外は、実施例1と同様に、比較例1の二次電池用正極及び二次電池を製造した。
[Comparative Example 1]
Production of positive electrode for secondary battery” in Example 1, except that the positive electrode material solution was applied to the surface of aluminum foil (positive electrode current collector, thickness: 15 μm) with a comma coater. 1, a positive electrode for a secondary battery and a secondary battery of Comparative Example 1 were manufactured.

[比較例2]
実施例1の「1.二次電池用正極の製造」中、ポリビニルアルコール水溶液の濃度を5質量%から1.5質量%に変更したこと、及び、炭素繊維集合体中の炭素繊維の繊維径を280nmから110nmに変更したこと以外は、実施例1と同様に、比較例2の二次電池用正極及び二次電池を製造した。
[Comparative Example 2]
In "1. Production of positive electrode for secondary battery" in Example 1, the concentration of the polyvinyl alcohol aqueous solution was changed from 5% by mass to 1.5% by mass, and the fiber diameter of the carbon fibers in the carbon fiber aggregate A positive electrode for a secondary battery and a secondary battery of Comparative Example 2 were manufactured in the same manner as in Example 1, except that the thickness was changed from 280 nm to 110 nm.

[比較例3]
実施例1の「1.二次電池用正極の製造」中、炭素原料として親水性カーボンブラック(CB、平均粒径:110nm)の替わりにカーボンナノファイバー(VGCF、繊維径:150nm、長さ:6μm、昭和電工社製)を用いたこと、及び正極用材料溶液をコンマコーターによりアルミニウム箔(正極集電体、厚さ:15μm)表面へ塗工したこと以外は、実施例1と同様に、比較例3の二次電池用正極及び二次電池を製造した。
[Comparative Example 3]
In "1. Production of positive electrode for secondary battery" in Example 1, instead of hydrophilic carbon black (CB, average particle diameter: 110 nm) as a carbon raw material, carbon nanofibers (VGCF, fiber diameter: 150 nm, length: 6 μm, manufactured by Showa Denko), and the positive electrode material solution was applied to the surface of the aluminum foil (positive electrode current collector, thickness: 15 μm) with a comma coater. A positive electrode for a secondary battery and a secondary battery of Comparative Example 3 were manufactured.

[比較例4]
実施例1の「1.二次電池用正極の製造」中、炭素原料として親水性カーボンブラック(CB、平均粒径:110nm)の替わりにメゾフェーズピッチ系炭素繊維(MCF、繊維径:8.5μm、長さ:20μm、ペトカマテリアルズ社製)を用いたこと、及び正極用材料溶液をコンマコーターによりアルミニウム箔(正極集電体、厚さ:15μm)表面へ塗工したこと以外は、実施例1と同様に、比較例4の二次電池用正極及び二次電池を製造した。
[Comparative Example 4]
In "1. Production of positive electrode for secondary battery" of Example 1, instead of hydrophilic carbon black (CB, average particle diameter: 110 nm), mesophase pitch carbon fiber (MCF, fiber diameter: 8.0 nm) was used as the carbon raw material. 5 μm, length: 20 μm, Petka Materials Co., Ltd.), and the positive electrode material solution was applied to the surface of aluminum foil (positive electrode current collector, thickness: 15 μm) with a comma coater. In the same manner as in Example 1, a positive electrode for a secondary battery and a secondary battery of Comparative Example 4 were produced.

3.二次電池用正極の評価
実施例1~実施例4及び比較例1~比較例4の二次電池用正極について、下記測定を行った。
3. Evaluation of Positive Electrode for Secondary Battery The positive electrodes for secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 4 were subjected to the following measurements.

(1)正極の電子伝導度
乾燥した2枚の正極を重ね合わせ、所定の圧力をかけることにより積層体を作製した。得られた積層体について抵抗値を測定し、得られた抵抗値から電子伝導度を算出した。
(1) Electron Conductivity of Positive Electrode Two dried positive electrodes were placed one on top of the other, and a predetermined pressure was applied to produce a laminate. The resistance value of the obtained laminate was measured, and the electronic conductivity was calculated from the obtained resistance value.

(2)正極の液浸透速度の評価
使用した非水電解液とほぼ同等の粘度であり、かつ低揮発性の電解液用溶媒であるプロピレンカーボネート(PC)を準備した。正極を所定のサイズの短冊状に加工し、電極の長軸方向の一端をPCに浸漬させた。PCが浸透する質量(液浸透質量)と、PCが浸透する時間とから、下記式(A)に基づき液浸透速度を算出した。
式(A)
v = m / (t1/2
(上記式(A)中、vは液浸透速度(g/(h1/2))、mは液浸透質量(g)、tは液浸透時間(h)をそれぞれ示す。)
(2) Evaluation of Liquid Permeation Rate of Positive Electrode Propylene carbonate (PC), which has almost the same viscosity as the non-aqueous electrolyte used and is a low-volatility electrolyte solvent, was prepared. The positive electrode was processed into a strip of a predetermined size, and one end of the electrode in the longitudinal direction was immersed in PC. The liquid permeation rate was calculated based on the following formula (A) from the permeation mass of PC (liquid permeation mass) and the permeation time of PC.
Formula (A)
v = m/( t1 /2)
(In the above formula (A), v represents liquid permeation speed (g/(h 1/2 )), m represents liquid permeation mass (g), and t represents liquid permeation time (h).)

4.二次電池の評価
実施例1~実施例4及び比較例1~比較例4の二次電池について、下記測定を行った。
まず、下記条件下で二次電池のコンディショニングを3サイクル繰り返した。
・電流密度:0.2mA/cm
・電位窓:3.0~4.1V
3サイクル目の放電容量を、その二次電池のセル容量とした。当該セル容量に基づき、二次電池をSOC60%の状態まで充電した。その後、順次、以下の電流密度で各10秒間放電した。
・電流密度:0.2mA/cm,2.0mA/cm,4.0mA/cm,10mA/cm,20mA/cm
各電流密度での電圧降下△Vと電流値から、セル抵抗(IV抵抗)を算出した。
4. Evaluation of Secondary Battery The secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 4 were subjected to the following measurements.
First, the conditioning of the secondary battery was repeated for 3 cycles under the following conditions.
・Current density: 0.2 mA/cm 2
・Potential window: 3.0 to 4.1 V
The discharge capacity at the third cycle was taken as the cell capacity of the secondary battery. Based on the cell capacity, the secondary battery was charged to an SOC of 60%. After that, the batteries were sequentially discharged at the following current densities for 10 seconds each.
・Current density: 0.2 mA/cm 2 , 2.0 mA/cm 2 , 4.0 mA/cm 2 , 10 mA/cm 2 , 20 mA/cm 2
The cell resistance (IV resistance) was calculated from the voltage drop ΔV at each current density and the current value.

5.考察
下記表1は、実施例1~実施例4及び比較例1~比較例4の二次電池用正極及び二次電池のデータをまとめたものである。下記表1中、液浸透速度、電子伝導度及びセル抵抗の値は、いずれも、比較例1を基準(100%)として規格化した値を示す。
下記表1中、炭素原料の種類の詳細は以下の通りである。
・CB:親水性カーボンブラック(平均粒径:110nm)
・CNT:カーボンナノチューブ(繊維径:10~15nm、長さ:10μm、Cnano社製)
・VGCF:カーボンナノファイバー(繊維径:150nm、長さ:6μm、昭和電工社製)
・MCF:メゾフェーズピッチ系炭素繊維(繊維径:8.5μm、長さ:20μm、ペトカマテリアルズ社製)
5. Discussion Table 1 below summarizes the data of the positive electrodes for secondary batteries and the secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 4. In Table 1 below, the values of liquid permeation rate, electronic conductivity and cell resistance are all normalized values with Comparative Example 1 as the standard (100%).
In Table 1 below, the details of the types of carbon raw materials are as follows.
・ CB: hydrophilic carbon black (average particle size: 110 nm)
・ CNT: carbon nanotube (fiber diameter: 10 to 15 nm, length: 10 μm, manufactured by Cnano)
・VGCF: carbon nanofiber (fiber diameter: 150 nm, length: 6 μm, manufactured by Showa Denko)
・MCF: Mesophase pitch carbon fiber (fiber diameter: 8.5 μm, length: 20 μm, manufactured by Petka Materials)

Figure 0007107809000001
Figure 0007107809000001

まず、比較例2について検討する。比較例2の液浸透速度は107%と遅く、電子伝導度は107%と低く、セル抵抗は88%と高かった。比較例2のこれらの物性は、比較例1よりも良好である一方、後述する実施例1~実施例4よりも劣るものであった。その理由は、炭素繊維の繊維径が110nmと細すぎる結果、110nmよりも粒径の大きい炭素原料(使用したカーボンブラックの約半分)を炭素繊維集合体中に取り込むことができなかったためと考えられる。これは、繊維径が細すぎる炭素繊維集合体を用いた場合、電界紡糸法の効果が十分享受できないことを意味するものと考えられる。 First, Comparative Example 2 will be examined. Comparative Example 2 had a slow liquid permeation rate of 107%, a low electronic conductivity of 107%, and a high cell resistance of 88%. These physical properties of Comparative Example 2 were better than those of Comparative Example 1, but inferior to those of Examples 1 to 4, which will be described later. The reason for this is thought to be that as a result of the fiber diameter of the carbon fibers being too thin at 110 nm, the carbon raw material having a particle size larger than 110 nm (approximately half of the carbon black used) could not be incorporated into the carbon fiber aggregate. . This is considered to mean that when a carbon fiber aggregate having too small a fiber diameter is used, the effects of the electrospinning method cannot be fully enjoyed.

次に、比較例3について検討する。比較例3の液浸透速度は105%と遅く、電子伝導度は105%と低く、セル抵抗は90%と高かった。比較例3のこれらの物性は、いずれも上記比較例2よりも劣るものであった。その想定される理由は以下の通りである。
CBやVGCF等の従来の炭素繊維を、正極活物質と混合して通常の方法で塗工し、プレスした場合は、これらの炭素繊維をランダムに集積化することは困難である。比較例3が比較例2よりも上記3つの物性に劣る理由は、CBやVGCFを塗工法により正極の製造に供したことにより、このようなランダムな集積化が生じなかったことに加え、炭素繊維同士が凝集及び偏析して、得られる正極内部のイオン伝導性を悪化させたためと考えられる。
Next, Comparative Example 3 will be examined. Comparative Example 3 had a slow liquid permeation rate of 105%, a low electronic conductivity of 105%, and a high cell resistance of 90%. All of these physical properties of Comparative Example 3 were inferior to those of Comparative Example 2 above. The reason assumed for this is as follows.
When conventional carbon fibers such as CB and VGCF are mixed with a positive electrode active material, coated by a normal method, and pressed, it is difficult to randomly integrate these carbon fibers. The reason why Comparative Example 3 is inferior to Comparative Example 2 in the above three physical properties is that the use of CB and VGCF in the production of the positive electrode by the coating method did not cause such random accumulation, and in addition, carbon This is probably because the fibers agglomerate and segregate to deteriorate the ionic conductivity inside the obtained positive electrode.

続いて、比較例4について検討する。比較例4の液浸透速度は97%と遅く、電子伝導度は97%と低く、セル抵抗は106%と高かった。比較例3のこれらの物性は、比較例1よりも劣るものであった。その想定される理由は以下の通りである。
比較例4のように太すぎる繊維径の炭素繊維を用いた場合、当該炭素繊維自体によってイオン伝導が阻害されるため、セル抵抗を低減することが困難となるものと考えられる。
Next, Comparative Example 4 will be examined. Comparative Example 4 had a slow liquid permeation rate of 97%, a low electronic conductivity of 97%, and a high cell resistance of 106%. These physical properties of Comparative Example 3 were inferior to those of Comparative Example 1. The reason assumed for this is as follows.
When carbon fibers having a fiber diameter that is too large as in Comparative Example 4 are used, ion conduction is inhibited by the carbon fibers themselves, so it is considered difficult to reduce the cell resistance.

これに対し、実施例1~実施例4の液浸透速度は111%以上と従来よりも速く、電子伝導度は115%以上と従来よりも高く、セル抵抗は81%以下と従来よりも低かった。その想定される理由は以下の通りである。
まず、比較対象である比較例1については、正極活物質と炭素原料との単なる混合物を正極の製造に供したため、上述したように正極断面の直線距離よりも実際のイオン伝導経路は長い。その結果、比較例1の二次電池用正極におけるイオン伝導度は低い。
On the other hand, in Examples 1 to 4, the liquid permeation rate was 111% or more, which was faster than the conventional one, the electronic conductivity was 115% or more, which was higher than the conventional one, and the cell resistance was 81% or less, which was lower than the conventional one. . The reason assumed for this is as follows.
First, in Comparative Example 1, which is a comparison target, a simple mixture of the positive electrode active material and the carbon raw material was used for the production of the positive electrode, so the actual ion conduction path is longer than the linear distance of the cross section of the positive electrode as described above. As a result, the ion conductivity of the positive electrode for a secondary battery of Comparative Example 1 is low.

一方、実施例1~実施例4のように、不織布構造を有する炭素繊維集合体、好適には炭素原料を電界紡糸法により長繊維化して集積させることにより形成された不織布構造を有する炭素繊維集合体は、当該炭素繊維集合体内部の空隙構造が、断面方向に沿って貫通した状態であると考えられる。そのため、当該炭素繊維集合体を正極に含む二次電池の充放電の際、イオン伝導が速やかに進行する結果、イオン伝導度が従来よりも向上し、かつセル抵抗が従来よりも低減したと考えられる。実施例1~実施例4において、液浸透速度が比較例1より速い理由も、上記のような炭素繊維集合体内部の空隙構造によるものと考えられる。このような空隙構造を持つことにより、二次電池製造工程において、電解液を注液する工程、及び電池を活性化する工程の両方の時間を短縮することができると考えられる。 On the other hand, as in Examples 1 to 4, a carbon fiber aggregate having a non-woven structure, preferably a carbon fiber aggregate having a non-woven structure formed by making a carbon raw material into long fibers by an electrospinning method and accumulating them. The body is considered to be in a state in which the void structure inside the carbon fiber assembly penetrates along the cross-sectional direction. Therefore, it is thought that ion conduction progresses rapidly during charging and discharging of a secondary battery that includes the carbon fiber aggregate in the positive electrode, resulting in higher ion conductivity and lower cell resistance than before. be done. In Examples 1 to 4, the reason why the liquid permeation rate is higher than that in Comparative Example 1 is considered to be due to the void structure inside the carbon fiber assembly as described above. By having such a void structure, it is considered that the time required for both the step of injecting the electrolytic solution and the step of activating the battery can be shortened in the secondary battery manufacturing process.

実施例1~実施例4の正極の製造工程においては、炭素原料と正極活物質との混合溶液を用いてこれら異種材料を同時に紡糸化した。したがって、得られる炭素繊維集合体の不織布構造中に正極活物質が絡まりながら取り込まれた。そのため、正極活物質と炭素繊維集合体との接触状態も良好となり、得られる正極内部の電子伝導性が従来よりも向上したと考えられる。 In the manufacturing process of the positive electrode of Examples 1 to 4, a mixed solution of the carbon raw material and the positive electrode active material was used to spin these different materials at the same time. Therefore, the positive electrode active material was entangled in the non-woven fabric structure of the resulting carbon fiber assembly. Therefore, it is considered that the contact state between the positive electrode active material and the carbon fiber aggregate is improved, and the electron conductivity inside the obtained positive electrode is improved as compared with the conventional one.

特に実施例1~実施例3の正極においては、炭素繊維集合体と正極活物質との接触面積が従来よりも広く、かつ正極活物質同士を炭素繊維により最短距離で接続しているため、得られる二次電池においてより低いセル抵抗が実現できた。それと共に、炭素繊維集合体中の炭素繊維の繊維径が180nm以上850nm以下の範囲内であるため、得られる二次電池用正極において空隙を十分に確保でき、当該空隙中に電解液等をより多く蓄えられる結果、当該正極全体のイオン伝導度等を増加させることができた。
特に実施例4の正極においては、カーボンブラックとカーボンナノチューブとを組み合わせることにより、得られる炭素繊維集合体を補強できた。その結果、当該炭素繊維集合体の持つ不織布構造を長期間維持し得ると考えられる。
In particular, in the positive electrodes of Examples 1 to 3, the contact area between the carbon fiber assembly and the positive electrode active material is wider than before, and the positive electrode active materials are connected to each other by the carbon fibers at the shortest distance. A lower cell resistance could be realized in the secondary battery that was developed. At the same time, since the fiber diameter of the carbon fibers in the carbon fiber aggregate is in the range of 180 nm or more and 850 nm or less, sufficient voids can be secured in the obtained positive electrode for secondary batteries, and the electrolyte solution etc. can be more easily absorbed in the voids. As a result of being able to store a large amount, it was possible to increase the ionic conductivity and the like of the entire positive electrode.
In particular, in the positive electrode of Example 4, the carbon fiber assembly obtained was reinforced by combining carbon black and carbon nanotubes. As a result, it is believed that the non-woven fabric structure of the carbon fiber aggregate can be maintained for a long period of time.

また、実施例1~実施例4の正極においては、炭素繊維集合体と正極活物質とが複合化しているため、炭素繊維と正極活物質との単なる混合物を用いる場合よりも、炭素繊維集合体と正極活物質とがより良好に接触するため、得られる正極内の電子伝導性も良好となると考えられる。 In addition, in the positive electrodes of Examples 1 to 4, since the carbon fiber aggregate and the positive electrode active material are composited, the carbon fiber aggregate is more effective than the case of using a simple mixture of the carbon fiber and the positive electrode active material. and the positive electrode active material are in better contact with each other.

なお、実施例1~実施例3の正極を比較すると、より細い繊維径の炭素繊維集合体を含む実施例2の正極において、液浸透速度が最も速く、電子伝導度が最も高く、セル抵抗が最も低いことが分かる。その理由は、繊維径が180nm以上であれば、繊維径がより細いほど、当該炭素繊維集合体内部に空隙をより多く確保できるためと考えられる。 When the positive electrodes of Examples 1 to 3 are compared, the positive electrode of Example 2, which includes a carbon fiber assembly having a smaller fiber diameter, has the fastest liquid permeation rate, the highest electronic conductivity, and the highest cell resistance. found to be the lowest. The reason for this is thought to be that when the fiber diameter is 180 nm or more, the finer the fiber diameter, the more voids can be secured inside the carbon fiber aggregate.

Claims (1)

二次電池用正極であって、
繊維径が180nm以上850nm以下の炭素繊維を含有し、不織布構造を有する炭素繊維集合体と、
前記炭素繊維集合体に包含されかつ当該炭素繊維集合体と複合化した正極活物質とを含むことを特徴とする、二次電池用正極。
A positive electrode for a secondary battery,
a carbon fiber aggregate containing carbon fibers having a fiber diameter of 180 nm or more and 850 nm or less and having a nonwoven fabric structure;
A positive electrode for a secondary battery, comprising a positive electrode active material that is included in the carbon fiber aggregate and composited with the carbon fiber aggregate.
JP2018196863A 2018-10-18 2018-10-18 Positive electrode for secondary battery Active JP7107809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196863A JP7107809B2 (en) 2018-10-18 2018-10-18 Positive electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196863A JP7107809B2 (en) 2018-10-18 2018-10-18 Positive electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2020064790A JP2020064790A (en) 2020-04-23
JP7107809B2 true JP7107809B2 (en) 2022-07-27

Family

ID=70388358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196863A Active JP7107809B2 (en) 2018-10-18 2018-10-18 Positive electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP7107809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266400A1 (en) * 2022-01-27 2023-10-25 Contemporary Amperex Technology Co., Limited Carbon fiber lithium replenishment film and preparation method therefor and secondary battery and electrical device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086116A (en) 2004-08-16 2006-03-30 Showa Denko Kk Cathode for lithium based battery and lithium based battery using it
WO2011089754A1 (en) 2010-01-21 2011-07-28 平松産業株式会社 Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
JP2016188159A (en) 2015-03-30 2016-11-04 国立大学法人信州大学 Production method of carbon nanofiber nonwoven fabric, carbon nanofiber nonwoven fabric, and carbon nanofiber
JP2019153431A (en) 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery
JP2020529102A (en) 2017-11-08 2020-10-01 エルジー・ケム・リミテッド Three-dimensional structural electrodes and electrochemical devices containing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086116A (en) 2004-08-16 2006-03-30 Showa Denko Kk Cathode for lithium based battery and lithium based battery using it
WO2011089754A1 (en) 2010-01-21 2011-07-28 平松産業株式会社 Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
JP2016188159A (en) 2015-03-30 2016-11-04 国立大学法人信州大学 Production method of carbon nanofiber nonwoven fabric, carbon nanofiber nonwoven fabric, and carbon nanofiber
JP2020529102A (en) 2017-11-08 2020-10-01 エルジー・ケム・リミテッド Three-dimensional structural electrodes and electrochemical devices containing them
JP2019153431A (en) 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery

Also Published As

Publication number Publication date
JP2020064790A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6367713B2 (en) Separator, manufacturing method thereof, and lithium ion secondary battery
TWI539648B (en) Lithium electrode and lithium secondary battery comprising the same
US9728759B2 (en) Separator for electrochemical cell and method for its manufacture
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
US10700341B2 (en) Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP4803984B2 (en) Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
JP5754004B2 (en) Lithium secondary battery liquid holder and lithium secondary battery
EP3345232B1 (en) Li-s battery with carbon coated separator
KR20150021033A (en) Lithium-ion secondary battery and method of producing same
KR101825921B1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
KR20130085915A (en) Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP7107809B2 (en) Positive electrode for secondary battery
JP7338234B2 (en) Non-aqueous electrolyte storage element
JP5489184B2 (en) Branched carbon fiber, branched carbon fiber manufacturing method, material having the branched carbon fiber
CN110168796A (en) Electrochemical appliance
JP2013218926A (en) Separator and lithium-ion secondary battery using the same
US20200274201A1 (en) Weavable, conformable, wearable and flexible components for advanced battery technology
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
JP2022024870A (en) Non-aqueous secondary battery
WO2014119332A1 (en) Non-aqueous electrolyte secondary battery separator and non-aqueous electrolyte secondary battery
JP6413347B2 (en) Electricity storage element
WO2024095810A1 (en) Negative electrode for secondary battery, secondary battery, and method for producing same
JP2023110219A (en) Battery and method of manufacturing the same
JP2019096475A (en) Lithium metal secondary battery
JP2018092764A (en) Secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R151 Written notification of patent or utility model registration

Ref document number: 7107809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151