JP7097563B2 - Target substance detection device and target substance detection method - Google Patents

Target substance detection device and target substance detection method Download PDF

Info

Publication number
JP7097563B2
JP7097563B2 JP2017136826A JP2017136826A JP7097563B2 JP 7097563 B2 JP7097563 B2 JP 7097563B2 JP 2017136826 A JP2017136826 A JP 2017136826A JP 2017136826 A JP2017136826 A JP 2017136826A JP 7097563 B2 JP7097563 B2 JP 7097563B2
Authority
JP
Japan
Prior art keywords
light
detection
target substance
transmissive member
light transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017136826A
Other languages
Japanese (ja)
Other versions
JP2019020181A (en
Inventor
真 藤巻
裕樹 芦葉
雅人 安浦
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toppan Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017136826A priority Critical patent/JP7097563B2/en
Priority to EP18784840.3A priority patent/EP3594663A4/en
Priority to PCT/JP2018/015170 priority patent/WO2018190358A1/en
Priority to US16/604,877 priority patent/US11112359B2/en
Publication of JP2019020181A publication Critical patent/JP2019020181A/en
Application granted granted Critical
Publication of JP7097563B2 publication Critical patent/JP7097563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光の全反射に伴って生成されるエバネッセント場を利用して、液体中に存在する目的物質を光学的に検出可能な目的物質検出装置及び目的物質検出方法に関する。 The present invention relates to a target substance detection device and a target substance detection method capable of optically detecting a target substance existing in a liquid by utilizing an evanescent field generated by total internal reflection of light.

近年、溶液中に存在する微小物質、特にDNA、RNA、タンパク質、ウイルス、細菌等の生体関連物質を検出・定量する方法が開発されている。このような方法としては、例えば、全反射によるエバネッセント場を利用する方法が知られている。
前記全反射によるエバネッセント場を利用する方法としては、例えば、全反射照明蛍光顕微鏡が挙げられる。前記全反射照明蛍光顕微鏡は、液体試料とカバーガラス或いはスライドガラスとの界面で入射光を全反射させ、これによって生じるエバネッセント場を励起光として利用し、ノイズとなるバックグラウンド光が少ない蛍光観察を行う技術である(特許文献1参照)。また、該技術は、超解像を実現可能な技術であり、単分子観察を可能とする。
In recent years, methods for detecting and quantifying minute substances existing in a solution, particularly biological substances such as DNA, RNA, proteins, viruses, and bacteria, have been developed. As such a method, for example, a method using an evanescent field by total reflection is known.
As a method of utilizing the evanescent field by total reflection, for example, a total reflection illumination fluorescence microscope can be mentioned. The total reflection illumination fluorescence microscope totally reflects the incident light at the interface between the liquid sample and the cover glass or the slide glass, and uses the generated evanescent field as the excitation light to observe fluorescence with less background light that causes noise. This is a technique to be performed (see Patent Document 1). Further, the technique is a technique capable of realizing super-resolution and enables single molecule observation.

全反射を利用する方法について、目的物質と結合する磁性粒子を用い、検出チップ下側に配された磁石に基づく、磁場の印加により前記目的物質と前記磁性粒子との結合体を前記検出チップ表面の局所領域に引き寄せ、この局所領域に前記励起光を照射して、前記目的物質の検出を行う方法が提案されている(特許文献2参照)。この提案によれば、磁場の印加によって前記検出チップ表面に対する前記目的物質の吸着又は近接が促され、短時間での測定が可能となる。
しかしながら、この提案では、前記検出チップの下側に光学プリズムが存在するため、前記局所領域と前記磁石との間の距離を十分に近づけることができず、前記磁石により印加される磁場の強さが前記検出チップ表面上に至るまでに減衰してしまい、十分に前記目的物質を前記局所領域に引き寄せることができない問題を有する。
また、この問題を解決するために強い磁場を印加させようとすると、装置が大掛かりになるとともに製造コストが嵩む問題を発生させる。
Regarding the method using total reflection, magnetic particles that bind to the target substance are used, and a bond between the target substance and the magnetic particles is formed on the surface of the detection chip by applying a magnetic field based on a magnet arranged under the detection chip. A method has been proposed in which the target substance is detected by attracting the local region to the local region and irradiating the local region with the excitation light (see Patent Document 2). According to this proposal, the application of a magnetic field promotes the adsorption or proximity of the target substance to the surface of the detection chip, and measurement can be performed in a short time.
However, in this proposal, since the optical prism is present under the detection chip, the distance between the local region and the magnet cannot be sufficiently made, and the strength of the magnetic field applied by the magnet cannot be sufficiently reduced. However, there is a problem that the target substance cannot be sufficiently attracted to the local region because the target substance is attenuated by the time it reaches the surface of the detection chip.
Further, if an attempt is made to apply a strong magnetic field in order to solve this problem, the device becomes large and the manufacturing cost increases.

前記磁性粒子を用いた蛍光検出方法として、磁場印加部(例えば、磁石)による磁場の印加前後の様子を比較観察することで、前記磁場印加前における光信号のうち、ノイズ信号を排除した検出を行う方法が提案されている(非特許文献1,2参照)。この提案によれば、前記磁性粒子と結合した前記目的物質が前記磁場の印加により移動するのに対し、前記検出チップ表面のキズ等に生ずるノイズは、前記磁場の印加により移動しないことから、移動する光信号に着目した検出を行うことで、前記ノイズ信号を排除することができる。
しかしながら、この磁場の印加前後の様子を比較観察する方法においても、前記光学プリズムが用いられるため、前記磁場の強さの減衰によって前記目的物質を移動させにくく、また、前記磁場の強さを高めようとすると、装置が大掛かりになるとともに製造コストが嵩むこととなる。
As a fluorescence detection method using the magnetic particles, by comparing and observing the state before and after the application of the magnetic field by the magnetic field application unit (for example, a magnet), the detection excluding the noise signal from the optical signals before the application of the magnetic field can be detected. A method for doing so has been proposed (see Non-Patent Documents 1 and 2). According to this proposal, the target substance bonded to the magnetic particles moves due to the application of the magnetic field, whereas the noise generated in the scratches on the surface of the detection chip does not move due to the application of the magnetic field. The noise signal can be eliminated by performing the detection focusing on the optical signal.
However, since the optical prism is also used in the method of comparatively observing the state before and after the application of the magnetic field, it is difficult to move the target substance due to the attenuation of the strength of the magnetic field, and the strength of the magnetic field is increased. If this is the case, the equipment will become large and the manufacturing cost will increase.

特開2002-236258号公報Japanese Patent Application Laid-Open No. 2002-236258 特許第5301894号公報Japanese Patent No. 5301894

安浦 雅人、藤巻 真「微量検出のための導波モードイメージセンサの開発」電気学会研究会資料 センサ・マイクロマシン部門総合研究会(2016年6月29日,30日)、pp.45~52、一般社団法人電気学会(2016年)Masato Yasuura, Makoto Fujimaki "Development of Waveguide Mode Image Sensor for Trace Detection" Materials of the Institute of Electrical Engineers of Japan, Sensors and Micromachines Division General Study Group (June 29, 30, 2016), pp. 45-52, Institute of Electrical Engineers of Japan (2016) M. Yasuura and M. Fujimaki, Sci. Rep. Vol. 6, pp. 39241-1-39241-7 (2016)M. Yasuura and M. Fujimaki, Sci. Rep. Vol. 6, pp. 39241-1-39241-7 (2016)

本発明は、従来技術における前記諸問題を解決し、磁性粒子を用いた目的物質の検出に用いることができ、小型でかつ低コストに製造可能な目的物質検出装置及び該目的物質検出装置を用いた目的物質検出方法を提供することを課題とする。 The present invention uses a target substance detection device and a target substance detection device that can be used for detecting a target substance using magnetic particles by solving the above-mentioned problems in the prior art, and can be manufactured in a small size and at low cost. It is an object to provide a method for detecting a target substance.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 底面に対して上面側の面に配される検出面と、厚み方向に対し前記上面から前記底面側に向かうにつれて前記検出面から離れる方向に傾斜する上向き傾斜面及び前記厚み方向に対し前記底面から前記上面側に向かうにつれて前記検出面から離れる方向に傾斜する下向き傾斜面のいずれかの傾斜面と、光を受光して内部に導光可能とされる本体部とを有する全体略板状の光透過性部材を備え、前記光透過性部材が前記上面側から照射され前記上向き傾斜面を通過させた前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第1の光入射構造及び前記上面側から照射され前記下向き傾斜面で反射された前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第2の光入射構造のいずれかの光入射構造を有する検出チップと、前記光透過性部材の前記上面側に配され、前記光入射構造を介して前記検出面に全反射条件で前記光を照射可能とされる光照射部と、前記光透過性部材の前記底面側に配される磁場印加部と、前記検出面上に配され、前記検出面の表面近傍の領域を検出領域とし、前記光の照射に伴い目的物質と磁性粒子とを含む結合体から発せられる光信号を検出可能とされる光検出部と、を備え、前記光透過性部材が前記上面に形成されるとともに前記上向き傾斜面を有する断面V字状の上面側切欠き部及び前記底面に形成されるとともに前記下向き傾斜面を有する断面V字状の底面側切欠き部の少なくともいずれかの切欠き部を有することを特徴とする目的物質検出装置。
<2> 切欠き部に本体部よりも屈折率の低い低屈折材料が埋設される前記<1>に記載の目的物質検出装置。
<3> 光入射構造が、第1の光入射構造における上向き傾斜面を通過させた光及び第2の光入射構造における下向き傾斜面で反射された光の少なくともいずれかを底面で反射させた後に検出面に対し全反射条件で入射可能とされる前記<1>から<2>のいずれかに記載の目的物質検出装置。
<4> 傾斜面における光入射位置と検出面における光照射位置との間の最短距離が、1.0mm~50.0mmとされる前記<1>から<3>のいずれかに記載の目的物質検出装置。
<5> 光透過性部材の厚みが0.1mm~10.0mmとされる前記<1>から<4>のいずれかに記載の目的物質検出装置。
<6> 光透過性部材の上面に少なくとも一部を検出面とする液体試料貯留溝が形成される前記<1>から<5>のいずれかに記載の目的物質検出装置。
<7> 液体試料貯留溝が検出面として光透過性部材の厚み方向に対し上面から底面側に向かうにつれて傾斜面から離れる方向に傾斜する傾斜検出面を有する前記<6>に記載の目的物質検出装置。
<8> 光透過性部材の上面の一部が検出面とされるとともに前記検出面を底とする函状体を形成するように前記検出面の周囲に側壁部が立設される前記<1>から<5>のいずれかに記載の目的物質検出装置。
<9> 前記<1>から<8>のいずれかに記載の目的物質検出装置を用いた目的物質検出方法であって、光透過性部材の上面側から光入射構造を介して検出面に全反射条件で光を照射する光照射工程と、前記光透過性部材の底面側から磁場を印加する磁場印加工程と、前記光の照射に伴い目的物質と磁性粒子とを含む結合体から発せられる光信号を検出する光検出工程と、を含むことを特徴とする目的物質検出方法。
The means for solving the above problems are as follows. That is,
<1> With respect to the detection surface arranged on the surface on the upper surface side with respect to the bottom surface, the upwardly inclined surface inclined in the direction away from the detection surface as the upper surface toward the bottom surface side with respect to the thickness direction, and the thickness direction. An overall schematic plate having one of the inclined surfaces of the downward inclined surface that inclines in a direction away from the detection surface as it goes from the bottom surface to the upper surface side, and a main body portion that receives light and can guide light inside. A second type of light-transmitting member having a shape, the light-transmitting member is irradiated from the upper surface side and passed through the upwardly inclined surface, and the light is incident on the detection surface via the main body under full reflection conditions. One of the light incident structure 1 and the second light incident structure in which the light emitted from the upper surface side and reflected by the downward inclined surface is incident on the detection surface via the main body under all reflection conditions. A detection chip having a light incident structure, a light irradiation unit arranged on the upper surface side of the light transmissive member, and a light irradiation unit capable of irradiating the detection surface with the light under all reflection conditions via the light incident structure. A magnetic field application portion arranged on the bottom surface side of the light transmissive member and a region located on the detection surface and near the surface of the detection surface are defined as a detection region, and the target substance and magnetic particles are irradiated with the light. A V-shaped cross section comprising a light detection unit capable of detecting an optical signal emitted from a coupled body including The object material is characterized by having at least one notch of the bottom surface side notch having a V-shaped cross section formed on the upper surface side notch portion and the bottom surface and having the downward inclined surface. Detection device.
<2> The target substance detection device according to <1>, wherein a low-refractive index material having a refractive index lower than that of the main body is embedded in the notch.
<3> After the light incident structure reflects at least one of the light passed through the upward inclined surface in the first light incident structure and the light reflected on the downward inclined surface in the second light incident structure on the bottom surface. The target substance detection device according to any one of <1> to <2>, which is capable of incident on the detection surface under total reflection conditions.
<4> The target substance according to any one of <1> to <3>, wherein the shortest distance between the light incident position on the inclined surface and the light irradiation position on the detection surface is 1.0 mm to 50.0 mm. Detection device.
<5> The target substance detection device according to any one of <1> to <4>, wherein the thickness of the light transmissive member is 0.1 mm to 10.0 mm.
<6> The target substance detection device according to any one of <1> to <5>, wherein a liquid sample storage groove having at least a part as a detection surface is formed on the upper surface of the light transmissive member.
<7> The target substance detection according to <6>, wherein the liquid sample storage groove has an inclined detection surface as a detection surface, which is inclined in a direction away from the inclined surface from the upper surface toward the bottom surface in the thickness direction of the light transmissive member. Device.
<8> The above <1>, in which a part of the upper surface of the light transmissive member is used as a detection surface and a side wall portion is erected around the detection surface so as to form a box-shaped body having the detection surface as the bottom. > To the target substance detection device according to any one of <5>.
<9> The target substance detection method using the target substance detection device according to any one of <1> to <8>, from the upper surface side of the light transmissive member to the detection surface via the light incident structure. A light irradiation step of irradiating light under reflection conditions, a magnetic field application step of applying a magnetic field from the bottom surface side of the light transmissive member, and light emitted from a conjugate containing a target substance and magnetic particles due to the light irradiation. A method for detecting a target substance, which comprises an optical detection step for detecting a signal.

本発明によれば、従来技術における前記諸問題を解決することができ、磁性粒子を用いた目的物質の検出に用いることができ、小型でかつ低コストに製造可能な目的物質検出装置及び該目的物質検出装置を用いた目的物質検出方法を提供することができる。 According to the present invention, a target substance detection device that can solve the above-mentioned problems in the prior art, can be used for detecting a target substance using magnetic particles, and can be manufactured in a small size and at low cost, and the object thereof. It is possible to provide a target substance detection method using a substance detection device.

第1実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 1st Embodiment. 第2実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 2nd Embodiment. 光の入射角度の一例を示す説明図(1)である。It is explanatory drawing (1) which shows an example of the incident angle of light. 光の入射角度の一例を示す説明図(2)である。It is explanatory drawing (2) which shows an example of the incident angle of light. 光の入射角度の一例を示す説明図(3)である。It is explanatory drawing (3) which shows an example of the incident angle of light. 第3実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 3rd Embodiment. 第4実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 4th Embodiment. 第5実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 5th Embodiment. 変形例を示す説明図(1)である。It is explanatory drawing (1) which shows the modification. 変形例を示す説明図(2)である。It is explanatory drawing (2) which shows the modification. 第6実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 6th Embodiment. 第7実施形態に係る目的物質検出装置の概要を説明する説明図である。It is explanatory drawing explaining the outline of the target substance detection apparatus which concerns on 7th Embodiment.

(目的物質検出装置)
本発明の目的物質検出装置は、検出チップと、光照射部と、磁場印加部とを有し、更に、必要に応じて、光検出部を備える。
(Target substance detector)
The target substance detection device of the present invention has a detection chip, a light irradiation unit, a magnetic field application unit, and further includes a light detection unit, if necessary.

<検出チップ>
前記検出チップは、以下に説明する光透過性部材を備える。
<Detection chip>
The detection chip includes a light transmissive member described below.

-光透過性部材-
前記光透過性部材は、底面に対して上面側の面に配される検出面と、厚み方向に対し前記上面から前記底面側に向かうにつれて前記検出面から離れる方向に傾斜する上向き傾斜面及び前記厚み方向に対し前記底面から前記上面側に向かうにつれて前記検出面から離れる方向に傾斜する下向き傾斜面のいずれかの傾斜面と、光を受光して内部に導光可能とされる本体部とを有する全体略板状の部材である。
また、前記光透過性部材は、前記上面側から照射され前記上向き傾斜面を通過させた前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第1の光入射構造及び前記上面側から照射され前記下向き傾斜面で反射された前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第2の光入射構造のいずれかの光入射構造を有するように構成される。
なお、前記光透過性部材において、光学的に作用する面、つまり、光が入射する面や光が反射する面は、光学的に平滑であることが好ましい。
-Light transmissive member-
The light transmissive member includes a detection surface arranged on a surface on the upper surface side with respect to the bottom surface, an upwardly inclined surface that inclines in a direction away from the detection surface as the upper surface toward the bottom surface side in the thickness direction, and the above. One of the inclined surfaces of the downward inclined surface that inclines in the direction away from the detection surface as it goes from the bottom surface to the upper surface side in the thickness direction, and the main body portion that receives light and can guide the inside. It is a member having a substantially plate-like shape as a whole.
Further, the light transmissive member has a first light incident structure in which the light irradiated from the upper surface side and passed through the upward inclined surface is incident on the detection surface via the main body portion under total reflection conditions. It has one of the light incident structures of the second light incident structure in which the light irradiated from the upper surface side and reflected by the downward inclined surface is incident on the detection surface via the main body under the total reflection condition. It is composed of.
In the light transmissive member, it is preferable that the surface on which the light acts, that is, the surface on which the light is incident and the surface on which the light is reflected is optically smooth.

前記光透過性部材は、従来の検出チップにおける光学プリズムの役割と、前記検出面での光の全反射に基づきエバネッセント場を形成する役割とを兼ねるとともに、前記検出チップにおける前記検出面の設定位置の下側に磁場印加部を配設可能とするため、前記光透過性部材の上面側から照射される前記光を前記検出面に導光させる役割を有する。
即ち、前記光透過性部材は、上面側から照射される前記光を前記検出面に対し全反射条件で入射させる前記光入射構造を有することを特徴とする。
The light transmissive member has both a role of an optical prism in a conventional detection chip and a role of forming an evanescent field based on total reflection of light on the detection surface, and a setting position of the detection surface in the detection chip. Since the magnetic field application portion can be arranged on the lower side, it has a role of guiding the light emitted from the upper surface side of the light transmissive member to the detection surface.
That is, the light transmissive member is characterized by having the light incident structure in which the light emitted from the upper surface side is incident on the detection surface under total reflection conditions.

前記光透過性部材の形成材料としては、特に制限はなく、目的に応じて適宜選択することができるが、射出成型により量産可能なポリスチレン、ポリカーボネート、シクロオレフィン、アクリル等のプラスチック材料、高い透明性を確保できるシリカガラス等のガラス材料が好ましい。前記ポリスチレン、前記シクロオレフィンは、自家蛍光が少なくノイズの低減が可能であり、前記ポリカーボネートは高い屈折率を実現できるため小型化が可能になる。また、前記アクリルは、高い透明性を持つため導光時の光の減衰を抑制することが可能である。
前記光透過性部材の厚みとしては、特に制限はないが、剛性、導光性能、及び、磁気の減衰度合いの観点から、0.1mm~10.0mmであることが好ましい。前記厚みが0.1mm未満であると、割れ、歪みなどが生じやすく取り扱いが難しくなることがある。また、前記厚みが入射光のビーム径より小さいと入射時に光のロスが生じると共に、ノイズ光が生じるため、前記厚みとしては、前記ビーム径よりも大きいことが好ましい。また、底面側から磁場を印加することから、前記厚みが10.0mmを超えると減衰により好適な磁場を前記検出面上に付与することが難しくなることがある。また、前記厚みが5.0mm以下であれば、磁場の減衰を大きく抑制することができる。
The material for forming the light-transmitting member is not particularly limited and may be appropriately selected depending on the intended purpose. However, plastic materials such as polystyrene, polycarbonate, cycloolefin and acrylic that can be mass-produced by injection molding and high transparency A glass material such as silica glass is preferable. The polystyrene and the cycloolefin have less autofluorescence and can reduce noise, and the polycarbonate can realize a high refractive index, so that the size can be reduced. Further, since the acrylic has high transparency, it is possible to suppress the attenuation of light at the time of guiding light.
The thickness of the light transmissive member is not particularly limited, but is preferably 0.1 mm to 10.0 mm from the viewpoint of rigidity, light guide performance, and degree of magnetic attenuation. If the thickness is less than 0.1 mm, cracks, distortions, etc. are likely to occur and handling may be difficult. Further, if the thickness is smaller than the beam diameter of the incident light, light loss occurs at the time of incident and noise light is generated. Therefore, the thickness is preferably larger than the beam diameter. Further, since the magnetic field is applied from the bottom surface side, if the thickness exceeds 10.0 mm, it may be difficult to apply a suitable magnetic field on the detection surface due to attenuation. Further, when the thickness is 5.0 mm or less, the attenuation of the magnetic field can be greatly suppressed.

前記光透過性部材としては、前記検出面が形成される領域に前記目的物質の存否等が検証される液体試料が導入される。導入される前記液体試料を保持するための構成としては、特に制限はないが、次の構成を適用することが好ましい。
即ち、一つの構成として、前記光透過性部材の上面の一部が前記検出面とされるとともに前記検出面を底とする函状体を形成するように前記検出面の周囲に側壁部が立設される構成が挙げられる。この構成では、前記函状体内に前記液体試料が保持される。なお、前記側壁部としては、例えば、前記光透過性部材と同じ材料及び形成方法で形成することができる。
また、他の一つの構成として、前記光透過性部材の前記上面に少なくとも一部を前記検出面とする液体試料貯留溝が形成される構成が挙げられる。この構成では、前記液体試料貯留溝内に前記液体試料が保持される。なお、前記液体試料貯留溝としては、前記光透過性部材を構成する板状部材の形成時に成形加工により形成してもよいし、前記板状部材形成後、切削加工により形成してもよい。
また、更に他の一つの構成として、前記液体試料貯留溝が前記光透過性部材の前記傾斜面が形成される側の側面と反対側の側面から前記傾斜面側に向けて穿設される穿設溝として形成される構成が挙げられる。この構成では、前記液体試料貯留溝(穿設溝)を構成する面のうち、前記底面と最も近い位置で対向する面が前記検出面を構成する。
なお、前記液体試料貯留溝から前記液体試料がこぼれ落ちることを防止するため、前記液体試料貯留溝の開口には、必要に応じて、カバーガラス等の蓋を設けて密閉することができる。
As the light transmissive member, a liquid sample whose presence or absence of the target substance is verified is introduced into the region where the detection surface is formed. The configuration for holding the liquid sample to be introduced is not particularly limited, but it is preferable to apply the following configuration.
That is, as one configuration, a side wall portion stands around the detection surface so that a part of the upper surface of the light transmissive member serves as the detection surface and forms a box-shaped body having the detection surface as the bottom. The configuration to be set is mentioned. In this configuration, the liquid sample is held in the box. The side wall portion can be formed, for example, by using the same material and forming method as the light transmissive member.
Further, as another configuration, there is a configuration in which a liquid sample storage groove having at least a part thereof as the detection surface is formed on the upper surface of the light transmissive member. In this configuration, the liquid sample is held in the liquid sample storage groove. The liquid sample storage groove may be formed by a molding process at the time of forming the plate-shaped member constituting the light transmissive member, or may be formed by a cutting process after the plate-shaped member is formed.
Further, as yet another configuration, the liquid sample storage groove is bored from the side surface of the light transmissive member on the side opposite to the side surface on which the inclined surface is formed toward the inclined surface side. Examples thereof include a configuration formed as a groove. In this configuration, among the surfaces constituting the liquid sample storage groove (drilling groove), the surface facing the bottom surface at the position closest to the bottom surface constitutes the detection surface.
In order to prevent the liquid sample from spilling from the liquid sample storage groove, the opening of the liquid sample storage groove can be sealed with a cover glass or the like, if necessary.

前記液体試料貯留溝を形成する場合、前記溝の形状としては、断面視で凹状、V字状、台形状等の任意の形状を適用することができるが、半円形のような平坦な面がない形状であると前記検出面を形成できないため、こうした形状は除かれる。
また、前記液体試料貯留溝としては、特に制限はないが、前記検出面として前記光透過性部材の厚み方向に対し上面から底面側に向かうにつれて前記傾斜面から離れる方向に傾斜する傾斜検出面を有する構成としてもよい。即ち、このような傾斜検出面を前記検出面として有すると、前記本体部内を伝播する前記光を前記検出面に全反射条件で照射させるために設定される前記傾斜面に対する前記光の入射角度を広範囲で設定することができ、設定の自由度を広げることができる。
When forming the liquid sample storage groove, any shape such as concave, V-shaped, trapezoidal or the like can be applied as the shape of the groove in a cross-sectional view, but a flat surface such as a semicircle is formed. If the shape is not present, the detection surface cannot be formed, so such a shape is excluded.
The liquid sample storage groove is not particularly limited, but as the detection surface, an inclined detection surface that inclines in a direction away from the inclined surface toward the bottom surface side from the upper surface in the thickness direction of the light transmissive member. It may be configured to have. That is, when such an inclined detection surface is provided as the detection surface, the incident angle of the light with respect to the inclined surface set to irradiate the detection surface with the light propagating in the main body under the total reflection condition is set. It can be set in a wide range, and the degree of freedom of setting can be expanded.

前記検出チップは、前記光透過性部材の底面側に配される前記磁場印加部との競合を避ける観点に基づき、前記光透過性部材の上面側に配された光照射部から前記光が照射されることを前提とした構成とされる。
即ち、前記光入射構造では、前記光透過性部材の上面側から照射される前記光の進行方向を前記傾斜面により変更させることで、前記検出面に対して前記光を全反射条件で入射可能とする。
前記傾斜面としては、このような役割を果たす限り、前記光透過性部材の側面として形成されていてもよく、また、前記光透過性部材の上面及び底面の少なくともいずれかに形成される切欠き部の構成面として形成されていてもよい。
The detection chip is irradiated with the light from the light irradiation unit arranged on the upper surface side of the light transmissive member from the viewpoint of avoiding competition with the magnetic field application portion arranged on the bottom surface side of the light transmissive member. It is assumed that it will be done.
That is, in the light incident structure, the light can be incident on the detection surface under the total reflection condition by changing the traveling direction of the light emitted from the upper surface side of the light transmissive member by the inclined surface. And.
The inclined surface may be formed as a side surface of the light transmitting member as long as it plays such a role, and a notch formed on at least one of the upper surface and the bottom surface of the light transmitting member. It may be formed as a constituent surface of the portion.

前記切欠き部としては、前記光透過性部材の上面に形成されるとともに前記上向き傾斜面を有する上面側切欠き部及び前記光透過性部材の底面に形成されるとともに前記下向き傾斜面を有する底面側切欠き部の少なくともいずれかとして形成される。なお、前記切欠き部としては、前記光透過性部材を構成する板状部材の形成時に成形加工により形成してもよいし、前記板状部材形成後、切削加工により形成してもよい。 The notch is formed on the upper surface of the light transmissive member and has an upward inclined surface on the upper surface side, and is formed on the bottom surface of the light transmissive member and has a downward inclined surface. It is formed as at least one of the side notches. The cutout portion may be formed by a molding process at the time of forming the plate-shaped member constituting the light transmissive member, or may be formed by a cutting process after the plate-shaped member is formed.

また、前記上面側切欠き部としては、切欠かれた部分が空隙とされてもよいが、この部分に前記液体試料が侵入した場合に洗浄しにくいため、前記本体部よりも屈折率の低い低屈折材料が埋設されてもよい。即ち、前記上面側切欠き部が前記低屈折材料で埋設されると、前記上面側切欠き部内に前記液体試料が侵入することを防止することができる。
また、前記低屈折材料を用いるため、前記上面側切欠き部の前記上向き傾斜面と前記本体部との界面における屈折を利用して前記検出面に前記光を導光させることができる。
なお、前記上面側切欠き部に前記低屈折材料を埋設させる場合、例えば、屈折率が1.4程度の公知のプラスチック材料を前記上面側切欠き部に埋設させ、前記本体部を屈折率が1.6程度の公知のプラスチック材料で形成することで、前記光透過性部材を構成することができる。
Further, as the notch portion on the upper surface side, the notched portion may be a void, but since it is difficult to clean the notched portion when the liquid sample invades this portion, the refractive index is lower than that of the main body portion. A refracting material may be embedded. That is, when the upper surface side notch is embedded in the low refraction material, it is possible to prevent the liquid sample from invading the upper surface side notch.
Further, since the low refraction material is used, the light can be guided to the detection surface by utilizing the refraction at the interface between the upward inclined surface of the notch on the upper surface side and the main body portion.
When the low refractive index material is embedded in the notch on the upper surface side, for example, a known plastic material having a refractive index of about 1.4 is embedded in the notch on the upper surface side, and the main body portion has a refractive index. The light transmissive member can be formed by forming it from a known plastic material of about 1.6.

また、前記底面側切欠き部では、前記光透過性部材の底面に形成されることから、上面側に導入される前記液体試料が切欠かれた部分に侵入することがない。
ただし、前記底面側切欠き部の前記下向き傾斜面が外部に露出して大気中の塵などの付着により汚れることを防止する観点から、前記上面側切欠き部と同様、切欠かれた部分に前記低屈折材料を埋設させることが好ましい。
Further, since the bottom surface side notch portion is formed on the bottom surface of the light transmissive member, the liquid sample introduced to the top surface side does not invade the notched portion.
However, from the viewpoint of preventing the downwardly inclined surface of the bottom surface side notch portion from being exposed to the outside and becoming dirty due to adhesion of dust or the like in the atmosphere, the notch portion is the same as the top surface side notch portion. It is preferable to embed a low refraction material.

ところで、前記傾斜面における光入射位置と前記検出面における光照射位置(前記上面側における前記検出面の設定位置)との間の距離が長い場合、前記本体部内を進行する前記光が弱められ、また、前記本体部での前記光の反射が生じるごとに前記光が弱められる。一方で、光入射位置と前記検出面における光照射位置の距離が近すぎると、入射時に生じる散乱などによるノイズが光信号中に混じり、検出精度を落とす原因になる。
したがって、前記傾斜面における光入射位置と前記検出面における光照射位置との間の距離としては、好適な範囲が存在し、具体的には、最短距離で1.0mm~50.0mmとされることが好ましい。
このような距離とすると、前記本体部内を進行する前記光が弱まることを抑制することができ、かつ、ノイズを抑制し、また、前記本体部で前記光が反射する回数を減らし、最適には、前記回数が1回となるように設定できる。また、前記傾斜面が前記下向き傾斜面として形成される場合も、前記本体部で前記光が反射する回数を減らすことが好ましく、前記本体部での前記光が反射する回数をゼロとし、前記下向き傾斜面における1回の反射だけで前記検出面に前記光を入射させるように設定されることが最適である。
なお、本明細書において「光透過性」とは、可視光透過率が0.5%以上であることを示す。
By the way, when the distance between the light incident position on the inclined surface and the light irradiation position on the detection surface (the set position of the detection surface on the upper surface side) is long, the light traveling in the main body portion is weakened. Further, each time the light is reflected by the main body, the light is weakened. On the other hand, if the distance between the light incident position and the light irradiation position on the detection surface is too close, noise due to scattering or the like generated at the time of incident is mixed in the optical signal, which causes a decrease in detection accuracy.
Therefore, there is a suitable range for the distance between the light incident position on the inclined surface and the light irradiation position on the detection surface, and specifically, the shortest distance is 1.0 mm to 50.0 mm. Is preferable.
With such a distance, it is possible to suppress the weakening of the light traveling in the main body, suppress noise, and reduce the number of times the light is reflected by the main body, which is optimal. , The number of times can be set to be one. Further, even when the inclined surface is formed as the downward inclined surface, it is preferable to reduce the number of times the light is reflected by the main body portion, and the number of times the light is reflected by the main body portion is set to zero and the downward direction is set. It is optimally set so that the light is incident on the detection surface with only one reflection on the inclined surface.
In addition, in this specification, "light transmittance" means that the visible light transmittance is 0.5% or more.

<コーティング層>
前記光透過性部材としては、前記検出面上にコーティング層が形成されていてもよい。
前記コーティング層の形成材料としては、前記光透過性部材と同様、光透過性を有していれば特に制限はなく、公知の樹脂材料、ガラス材料等が挙げられる。
前記コーティング層の形成方法としては、特に制限はなく、スパッタリング法、蒸着法、スピンコート法、塗布、貼り付け、ラミネート等の公知の方法が挙げられる。
前記コーティング層としては、前記光透過性部材の前記検出面を被覆するように形成され、前記コーティング層の上面が前記検出面の役割を有する。
このコーティング層によれば、前記光透過性部材が比較的柔らかい樹脂で形成されている場合、キズの付きにくい硬い樹脂やガラス材料でコートすることによって前記光透過性部材の前記検出面にキズが付くのを防止することができる。
また、前記コーティング層をフッ素樹脂等で形成する場合、前記検出面の汚れを防止する防汚効果も得られる。加えて、この防汚効果により、前記コーティング層の上面に目的物質や磁性粒子が吸着することを防止することができ、延いては、後述の磁場印加部によって前記磁性粒子と結合した前記目的物質を移動させて検出する場合、前記磁性粒子と前記目的物質の結合体が前記コーティング層の表面に吸着して移動しなくなることを防ぐことができる。
また、前記光透過性部材の加工精度が悪く、その検出面に荒れが発生している場合には、前記コーティング層によって前記検出面の荒れを緩和し、全反射時の光散乱を抑制して、ノイズを低減することができる。この場合、特に制限はないが、平滑性に優れた前記検出面を得る観点から前記コーティング層として薄いガラスフィルムを選択し、前記光透過性部材の前記検出面上にラミネートすることが特に好ましい。
また、樹脂製の前記光透過性部材の前記検出面上にガラスによる前記コーティング層を形成する場合、耐薬品性が高く、有機溶媒や強酸、強アルカリに強い検出チップを得ることができる。
<Coating layer>
As the light transmissive member, a coating layer may be formed on the detection surface.
The material for forming the coating layer is not particularly limited as long as it has light transmission as in the case of the light transmitting member, and examples thereof include known resin materials and glass materials.
The method for forming the coating layer is not particularly limited, and examples thereof include known methods such as a sputtering method, a vapor deposition method, a spin coating method, coating, pasting, and laminating.
The coating layer is formed so as to cover the detection surface of the light transmissive member, and the upper surface of the coating layer serves as the detection surface.
According to this coating layer, when the light-transmitting member is made of a relatively soft resin, the detection surface of the light-transmitting member is scratched by coating with a hard resin or a glass material which is hard to be scratched. It can be prevented from sticking.
Further, when the coating layer is formed of a fluororesin or the like, an antifouling effect for preventing the detection surface from becoming dirty can also be obtained. In addition, due to this antifouling effect, it is possible to prevent the target substance and magnetic particles from adsorbing on the upper surface of the coating layer, and by extension, the target substance bonded to the magnetic particles by a magnetic field application portion described later. When the magnetic particles and the target substance are adsorbed on the surface of the coating layer and are detected, it is possible to prevent the magnetic particles from adhering to the surface of the coating layer and not moving.
Further, when the processing accuracy of the light transmissive member is poor and the detection surface is roughened, the coating layer alleviates the roughness of the detection surface and suppresses light scattering during total reflection. , Noise can be reduced. In this case, although there is no particular limitation, it is particularly preferable to select a thin glass film as the coating layer and laminate it on the detection surface of the light transmissive member from the viewpoint of obtaining the detection surface having excellent smoothness.
Further, when the coating layer made of glass is formed on the detection surface of the light transmissive member made of resin, it is possible to obtain a detection chip having high chemical resistance and resistance to organic solvents, strong acids and strong alkalis.

なお、前記光入射構造としては、前記傾斜面の傾斜角度、前記傾斜面に対する前記光の照射角度、前記光透過性部材の材質(屈折率)、前記傾斜面における光入射位置と前記検出面における光照射位置との間の距離及び前記光透過性部材の厚み等の条件を与えて、前記光透過性部材の上面側から照射される前記光の前記検出面に対する経路を公知の光学的算出方法で算出することで設定することができる。 The light incident structure includes an inclination angle of the inclined surface, an irradiation angle of the light with respect to the inclined surface, a material (refractive index) of the light transmissive member, a light incident position on the inclined surface, and the detection surface. A known optical calculation method for a path of the light emitted from the upper surface side of the light transmissive member to the detection surface by giving conditions such as a distance from the light irradiation position and the thickness of the light transmissive member. It can be set by calculating with.

<光照射部>
光照射部は、前記光透過性部材の前記上面側に配され、前記光透過性部材の前記光入射構造を介して前記検出面に全反射条件で前記光を照射可能とされる部である。
<Light irradiation part>
The light irradiation unit is a unit arranged on the upper surface side of the light transmissive member and capable of irradiating the detection surface with the light under total reflection conditions via the light incident structure of the light transmissive member. ..

前記光照射部の光源としては、特に制限はなく、目的に応じて適宜選択することができ、公知のランプ、LED、レーザー等が挙げられる。前記目的物質検出装置では、前記検出面に対し前記全反射条件で前記光を照射することで前記検出面の表面近傍に前記エバネッセント場を形成し、前記目的物質と磁性粒子とを含む結合体から光信号を発生させることを検出原理とする。そのため前記光照射部に求められる役割としては、前記検出面に対し前記全反射条件で前記光を照射することのみであり、このような役割を担うものであれば光源の選択に制限がない。 The light source of the light irradiation unit is not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include known lamps, LEDs, and lasers. In the target substance detection device, the detection surface is irradiated with the light under the total reflection conditions to form the evanescent field in the vicinity of the surface of the detection surface, and the combination containing the target substance and magnetic particles is formed. The detection principle is to generate an optical signal. Therefore, the role required of the light irradiation unit is only to irradiate the detection surface with the light under the total reflection conditions, and there is no limitation on the selection of the light source as long as it plays such a role.

なお、ランプ、LED等の放射光源を用いる場合には、照射光の照射方向を特定の方位に規制するコリメートレンズ等の案内部を用いて、前記光入射部に前記照射光を入射させることができる。
また、前記光入射部に入射させる前記光としては、前記結合体に対して、蛍光を励起可能な波長を持つ単色光か、または、ランプ、LED等の広い波長帯域を持つ光源からの光をバンドパスフィルタ等の光学フィルタに透過させて単色化し、前記蛍光を励起可能な波長のみとした光とすることが好ましい。
When a radiation light source such as a lamp or an LED is used, the irradiation light may be incident on the light incident portion by using a guide portion such as a collimating lens that regulates the irradiation direction of the irradiation light to a specific direction. can.
Further, as the light incident on the light incident portion, monochromatic light having a wavelength capable of exciting fluorescence or light from a light source having a wide wavelength band such as a lamp or an LED is used for the conjugate. It is preferable that the light is transmitted through an optical filter such as a bandpass filter to make it monochromatic, and the light has only a wavelength that can excite the fluorescence.

<磁場印加部>
前記磁場印加部は、前記光透過性部材の前記底面側に配される部である。
前記磁場印加部として、特に制限はないが、前記液体試料に強い磁場を及ぼす観点から、前記検出チップにおける前記検出面と前記厚み方向で対向する位置における前記光透過性部材底面の直下に配されることが好ましい。
<Magnetic field application part>
The magnetic field application portion is a portion arranged on the bottom surface side of the light transmissive member.
The magnetic field application portion is not particularly limited, but is arranged directly below the bottom surface of the light transmissive member at a position facing the detection surface of the detection chip in the thickness direction from the viewpoint of exerting a strong magnetic field on the liquid sample. Is preferable.

前記磁場印加部の構成部材としては、前記液体試料が導入される領域に磁場を印加可能であれば、特に制限はなく、公知の永久磁石、電磁石等を挙げることができる。 The constituent member of the magnetic field application portion is not particularly limited as long as the magnetic field can be applied to the region where the liquid sample is introduced, and known permanent magnets, electromagnets, and the like can be mentioned.

前記液体試料には、磁気ビーズ等の公知の磁性粒子が添加され、前記目的物質が存在する場合、前記目的物質と前記磁性粒子との結合体が形成される。なお、前記目的物質が蛍光を生じにくい物質である場合には、前記目的物質と特異的に吸着ないし結合して前記目的物質を標識化する蛍光標識物質を用いてもよい。前記蛍光標識物質としては、例えば、蛍光色素、量子ドット、蛍光染色剤等の公知の蛍光物質を用いることができる。
また、前記目的物質の検出方法としては、蛍光検出に加え、前記エバネッセント場におけるエバネッセント光を受けて前記結合体から発せられる散乱光を検出する方法も挙げられる。
前記散乱光を検出する場合、前記目的物質が散乱光を生じにくい物質である場合には、前記目的物質と特異的に吸着ないし結合して光を散乱する光散乱物質を用いてもよい。前記光散乱物質としては、例えば、ナノ粒子、例えばポリスチレンビーズや金ナノ粒子などが挙げられる。
なお、前記目的物質、前記磁性粒子、前記蛍光標識物質及び前記光散乱物質の結合方法としては、特に制限はなく、物質に応じて、物理吸着、抗原-抗体反応、DNAハイブリダイゼーション、ビオチン-アビジン結合、キレート結合、アミノ結合などの公知の結合方法を適用することができる。
Known magnetic particles such as magnetic beads are added to the liquid sample, and when the target substance is present, a bond between the target substance and the magnetic particles is formed. When the target substance is a substance that does not easily generate fluorescence, a fluorescent labeling substance that specifically adsorbs or binds to the target substance to label the target substance may be used. As the fluorescent labeling substance, for example, a known fluorescent substance such as a fluorescent dye, a quantum dot, or a fluorescent dye can be used.
Further, as a method for detecting the target substance, in addition to fluorescence detection, there is also a method of detecting scattered light emitted from the conjugate by receiving the evanescent light in the evanescent field.
When detecting the scattered light, if the target substance is a substance that does not easily generate scattered light, a light scattering substance that specifically adsorbs or combines with the target substance and scatters the light may be used. Examples of the light scattering substance include nanoparticles such as polystyrene beads and gold nanoparticles.
The method for binding the target substance, the magnetic particles, the fluorescent labeling substance, and the light scattering substance is not particularly limited, and depending on the substance, physical adsorption, antigen-antibody reaction, DNA hybridization, biotin-avidin. Known binding methods such as binding, chelate binding, and amino binding can be applied.

前記目的物質等からの光は、前記検出面の表面近傍に形成される前記エバネッセント場内で生じるため、短時間で前記光信号の検出を行うためには、前記液体試料中を浮遊する前記結合体を前記検出面の表面近傍まで引き寄せることが必要となる。
前記磁場印加部では、前記磁場の印加により、前記液体試料中を浮遊する前記結合体を前記検出面の表面に引き寄せ、短時間での検出を可能とする。
Since light from the target substance or the like is generated in the evanescent field formed near the surface of the detection surface, the conjugate floating in the liquid sample is required to detect the optical signal in a short time. It is necessary to draw the light to the vicinity of the surface of the detection surface.
In the magnetic field application unit, the magnetic field is applied to attract the conjugate floating in the liquid sample to the surface of the detection surface, enabling detection in a short time.

ところで、前記検出では、前記検出面におけるキズ等を原因とするノイズを排除した検出を行うため、前記磁場印加部による前記磁場の印加を伴う前記結合体の移動前後の様子を比較観察することで、前記結合体移動前における光信号に含まれるノイズ信号を排除した検出を行うこととしてもよい。このような検出によれば、前記磁性粒子と結合した前記目的物質が前記磁場印加部により移動するのに対し、前記検出面のキズ等に生ずるノイズは、前記磁場印加部により移動しないことから、移動する光信号に着目した検出を行うことで、前記ノイズ信号を排除することができる。
このような検出を行う場合、前記磁場印加部としては、前記結合体の移動前後の様子を比較観察するため、前記光透過性部材の底面側において、前記磁場を印加した状態で前記検出面の面内方向と平行な方向のベクトル成分を持つ方向に移動可能な部材とされ、例えば、前記永久磁石等と前記永久磁石等を支持した状態でスライド移動可能なスライド部材とで構成することができる。
By the way, in the detection, in order to perform detection excluding noise caused by scratches or the like on the detection surface, the state before and after the movement of the coupled body accompanied by the application of the magnetic field by the magnetic field application portion is compared and observed. , The detection may be performed excluding the noise signal included in the optical signal before the movement of the conjugate. According to such detection, the target substance bonded to the magnetic particles moves by the magnetic field application portion, whereas noise generated in scratches or the like on the detection surface does not move by the magnetic field application portion. The noise signal can be eliminated by performing detection focusing on the moving optical signal.
In the case of performing such detection, the magnetic field applying portion of the detection surface on the bottom surface side of the light transmissive member in a state where the magnetic field is applied in order to compare and observe the state before and after the movement of the coupled body. It is a member that can move in a direction having a vector component in a direction parallel to the in-plane direction, and can be composed of, for example, a permanent magnet or the like and a slide member that can slide and move while supporting the permanent magnet or the like. ..

<光検出部>
前記光検出部は、前記検出面上に配され、前記検出面の表面近傍の領域を検出領域とし、前記光の照射に伴い前記目的物質を含む前記結合体から発せられる光信号を検出可能とされる。
前記光検出部としては、特に制限はなく、目的に応じて適宜選択することができ、公知のフォトダイオード、光電子増倍管等の公知の光検出器やCCDイメージセンサ、CMOSイメージセンサ等の公知の撮像デバイスを用いることができる。
<Light detector>
The photodetector is arranged on the detection surface, has a region near the surface of the detection surface as a detection region, and can detect an optical signal emitted from the conjugate containing the target substance upon irradiation with the light. Will be done.
The photodetector is not particularly limited and may be appropriately selected depending on the intended purpose. Known photodetectors such as known photodiodes and photomultiplier tubes, CCD image sensors, CMOS image sensors and the like are known. Imaging device can be used.

(目的物質検出方法)
本発明の目的物質検出方法は、本発明の前記目的物質検出装置を用いて目的物質を検出する方法であり、少なくとも、光照射工程と、磁場印加工程とを含み、更に、必要に応じて、光検出工程を含む。
(Target substance detection method)
The target substance detection method of the present invention is a method of detecting a target substance using the target substance detection device of the present invention, and includes at least a light irradiation step and a magnetic field application step, and further, if necessary, Includes a light detection step.

<光照射工程>
前記光照射工程は、前記光透過性部材の前記上面側から前記光透過性部材の前記光入射構造を介して前記検出面に全反射条件で光を照射する工程である。
なお、前記光照射工程の実施方法としては、本発明の前記目的物質検出装置における前記光照射部について説明した事項を適用することができるため、重複した説明を省略することとする。
<Light irradiation process>
The light irradiation step is a step of irradiating the detection surface with light from the upper surface side of the light transmissive member via the light incident structure of the light transmissive member under total reflection conditions.
As the method for carrying out the light irradiation step, the matters described for the light irradiation unit in the target substance detection device of the present invention can be applied, so duplicate description will be omitted.

<磁場印加工程>
前記磁場印加工程は、前記磁場印加部により前記光透過性部材の底面側から磁場を印加する工程であり、好適には、前記磁場を印加した状態で前記磁場印加部を前記検出面の面内方向と平行なベクトル成分を持つ方向に移動させる工程である。
なお、前記磁場印加工程の実施方法としては、本発明の前記目的物質検出装置における前記磁場印加部について説明した事項を適用することができるため、重複した説明を省略することとする。
<Magnetic field application process>
The magnetic field application step is a step of applying a magnetic field from the bottom surface side of the light transmissive member by the magnetic field application portion, and preferably, the magnetic field application portion is placed in the plane of the detection surface in a state where the magnetic field is applied. This is a process of moving in a direction having a vector component parallel to the direction.
As the method for carrying out the magnetic field application step, the matters described for the magnetic field application unit in the target substance detection device of the present invention can be applied, so duplicate description will be omitted.

<光検出工程>
前記光検出工程は、前記光の照射に伴い前記結合体から発せられる光信号を検出する工程である。
なお、前記光検出工程の実施方法としては、本発明の前記目的物質検出装置における前記光検出部について説明した事項を適用することができるため、重複した説明を省略することとする。
<Light detection process>
The light detection step is a step of detecting an optical signal emitted from the conjugate in connection with the irradiation of the light.
As the method for carrying out the light detection step, the matters described for the photodetector in the target substance detection device of the present invention can be applied, so duplicate description will be omitted.

なお、本発明に係る前記目的物質検出装置及び前記目的物質検出方法について、前記光透過性部材における「上面」、「底面」及び「側面」の各位置関係に基づき、位置関係の説明を行ったが、これらの位置関係は、相対的な位置関係を示すものであり、前記目的物質検出装置が逆さ又は傾けて使用される場合であっても、前記相対的な位置関係に変更がない場合には、本発明の技術的範囲に含まれる。例えば、前記目的物質検出装置を90°傾けて使用し、「上面」及び「底面」が側方、「側面」が上方又は下方に位置する場合であっても、前記磁場印加部が配される側の前記光透過性部材の面を「底面」として視たときの「上面」及び「側面」の前記相対的な位置関係に変更がない場合には、本発明の技術的範囲に含まれる(例えば、後述の第7実施形態、図12参照)。 Regarding the target substance detection device and the target substance detection method according to the present invention, the positional relationship was explained based on the positional relationships of the "top surface", "bottom surface", and "side surface" of the light transmissive member. However, these positional relationships indicate relative positional relationships, and even when the target substance detection device is used upside down or tilted, there is no change in the relative positional relationships. Is included in the technical scope of the present invention. For example, even when the target substance detection device is used at an angle of 90 ° and the "top surface" and "bottom surface" are located laterally and the "side surface" is located above or below, the magnetic field application portion is arranged. If there is no change in the relative positional relationship between the "top surface" and the "side surface" when the surface of the light transmissive member on the side is viewed as the "bottom surface", it is included in the technical scope of the present invention ( For example, see the seventh embodiment described later, FIG. 12).

[第1実施形態]
以下では、本発明の前記目的物質検出装置の構成例を図面を参照しつつ、具体的に説明する。
先ず、第1実施形態に係る目的物質検出装置を図1を参照しつつ、説明する。なお、図1は、第1実施形態に係る目的物質検出装置の概要を説明する説明図である。
[First Embodiment]
Hereinafter, a configuration example of the target substance detection device of the present invention will be specifically described with reference to the drawings.
First, the target substance detection device according to the first embodiment will be described with reference to FIG. Note that FIG. 1 is an explanatory diagram illustrating an outline of the target substance detection device according to the first embodiment.

図1に示すように、第1実施形態における検出チップ1は、光透過性部材2を有する。光透過性部材2は、板状の部材であり、上面の一部が検出面2aとされ、側面が上向き傾斜面2bとされ、胴部が上面から光を受光して内部に導光可能な本体部2cとされる。ここで、検出面2aは、光透過性部材2の上面の一部に設定される面であり、裏面(光透過性部材2の底面側)に対し、全反射条件で光を照射したときに、表面(光透過性部材2の上面側)近傍にエバネッセント場を形成する。
また、光透過性部材2の上面には、検出面2aを底とする函状体を形成するように検出面2aの周囲に側壁部4が立設され、前記函状体内に液体試料Aが導入される。
As shown in FIG. 1, the detection chip 1 in the first embodiment has a light transmitting member 2. The light transmissive member 2 is a plate-shaped member, a part of the upper surface is a detection surface 2a, the side surface is an upward inclined surface 2b, and the body portion receives light from the upper surface and can guide the inside. The main body is 2c. Here, the detection surface 2a is a surface set on a part of the upper surface of the light transmissive member 2, and when the back surface (the bottom surface side of the light transmissive member 2) is irradiated with light under total reflection conditions. , An evanescent field is formed near the surface (upper surface side of the light transmissive member 2).
Further, on the upper surface of the light transmissive member 2, a side wall portion 4 is erected around the detection surface 2a so as to form a box-shaped body having the detection surface 2a as the bottom, and the liquid sample A is placed in the box-shaped body. be introduced.

ここで、光透過性部材2の側面として構成される上向き傾斜面2bは、光透過性部材2の厚み方向Yに対し上面から底面側に向かうにつれて検出面2aから離れる方向に傾斜する面とされ、上向き傾斜面2bと対向して配される光照射部Bから照射される光が光透過性部材2の厚み方向Yと直交する長さ方向Xに対して傾斜する状態で本体部2c内に入射される。
本体部2c内に入射される光は、本体部2cの上面及び底面で複数回反射されつつ、本体部2c内を長さ方向Xに沿って伝播される。
本体部2c内を伝播する光は、検出面2aの位置で全反射され、検出面2aの表面近傍にエバネッセント場を形成させる(第1の光入射構造)。
Here, the upward inclined surface 2b configured as the side surface of the light transmitting member 2 is a surface inclined in a direction away from the detection surface 2a from the upper surface to the bottom surface side with respect to the thickness direction Y of the light transmitting member 2. In the main body 2c, the light emitted from the light irradiation unit B arranged to face the upward inclined surface 2b is inclined with respect to the length direction X orthogonal to the thickness direction Y of the light transmissive member 2. Being incident.
The light incident on the main body 2c is reflected a plurality of times on the upper surface and the bottom surface of the main body 2c and propagates in the main body 2c along the length direction X.
The light propagating in the main body 2c is totally reflected at the position of the detection surface 2a to form an evanescent field near the surface of the detection surface 2a (first light incident structure).

検出チップ1を用いて目的物質検出装置を構成する場合、図1に示すように、光照射部Bが光透過性部材2の上面側における、光透過性部材2側面の上向き傾斜面2bと対向した位置に配され、磁場印加部Cが検出面2aと厚み方向Yで対向する位置における光透過性部材2底面の直下に配され、光検出部Dが光透過性部材2の上面側に配される。
磁場印加部Cでは、磁場の印加により、液体試料A中を浮遊する目的物質と磁性粒子とを含む結合体を前記結合体が光信号を発することが可能な検出面2aの表面近傍に引き寄せ、短時間での測定を可能とする。また、磁場印加部Cを例えば長さ方向Xにスライド移動させ、スライド移動前後の光信号の検出を行うことで、磁場印加部Cのスライド移動に追従する前記結合体のみを検出可能とし、検出面2aにおけるキズ等を原因とするノイズ信号を排除した検出を行うことができる。
また、光検出部Dでは、検出面2aの表面近傍における前記結合体からの光を検出可能とされる。
When the target substance detection device is configured by using the detection chip 1, as shown in FIG. 1, the light irradiation unit B faces the upward inclined surface 2b on the side surface of the light transmissive member 2 on the upper surface side of the light transmissive member 2. The magnetic field application unit C is arranged directly below the bottom surface of the light transmissive member 2 at a position facing the detection surface 2a in the thickness direction Y, and the light detection unit D is arranged on the upper surface side of the light transmissive member 2. Will be done.
In the magnetic field application unit C, the application of the magnetic field attracts the conjugate containing the target substance and the magnetic particles suspended in the liquid sample A to the vicinity of the surface of the detection surface 2a on which the conjugate can emit an optical signal. Enables measurement in a short time. Further, by sliding the magnetic field application unit C, for example, in the length direction X and detecting the optical signals before and after the slide movement, it is possible to detect only the coupled body that follows the slide movement of the magnetic field application unit C, and the detection is possible. It is possible to perform detection excluding noise signals caused by scratches or the like on the surface 2a.
Further, the photodetection unit D can detect the light from the conjugate in the vicinity of the surface of the detection surface 2a.

このように構成される第1の実施形態に係る目的物質検出装置では、光照射部Bと磁場印加部Cとの配設位置を競合させず、磁場印加部Cを光透過性部材2底面における検出面2aとの距離が近い位置に配設させることができ、かつ、光照射部Bから照射される光を検出面2aに対し全反射条件で照射させることができるため、検出面2aと離れた位置から磁場を印加可能な強力な磁場印加部材を用いる必要がなく、装置が大掛かりになることを避けることができ、小型で低コストに製造することができる。 In the target substance detection device according to the first embodiment configured as described above, the magnetic field application unit C is placed on the bottom surface of the light transmissive member 2 without competing for the arrangement positions of the light irradiation unit B and the magnetic field application unit C. Since it can be arranged at a position close to the detection surface 2a and the light emitted from the light irradiation unit B can be irradiated to the detection surface 2a under all reflection conditions, it is separated from the detection surface 2a. It is not necessary to use a strong magnetic field applying member capable of applying a magnetic field from a vertical position, it is possible to avoid a large-scale device, and it can be manufactured in a small size and at low cost.

[第2実施形態]
次に、第2実施形態に係る目的物質検出装置を図2を参照しつつ、説明する。なお、図2は、第2実施形態に係る目的物質検出装置の概要を説明する説明図である。
[Second Embodiment]
Next, the target substance detection device according to the second embodiment will be described with reference to FIG. Note that FIG. 2 is an explanatory diagram illustrating an outline of the target substance detection device according to the second embodiment.

図2に示すように、第2実施形態における検出チップ10は、光透過性部材12を有する。光透過性部材12では、第1実施形態における光透過性部材2と異なり、上面に液体試料Aを導入する液体試料貯留溝14が形成される。液体試料貯留溝14は断面凹状の形状で形成され、その底面が検出面12aとされる。
また、光透過性部材12では、第1実施形態における光透過性部材2と異なり、上面に形成されるとともに上向き傾斜面12bを有する上面側切欠き部15が形成される。上面側切欠き部15は、断面略V字状の形状で形成される。
As shown in FIG. 2, the detection chip 10 in the second embodiment has a light transmitting member 12. In the light transmitting member 12, unlike the light transmitting member 2 in the first embodiment, a liquid sample storage groove 14 for introducing the liquid sample A is formed on the upper surface thereof. The liquid sample storage groove 14 is formed in a concave cross section, and the bottom surface thereof is a detection surface 12a.
Further, unlike the light transmitting member 2 in the first embodiment, the light transmitting member 12 is formed on the upper surface and has an upper surface side notch portion 15 having an upward inclined surface 12b. The notch portion 15 on the upper surface side is formed in a shape having a substantially V-shaped cross section.

ここで、上向き傾斜面12bは、光透過性部材12の厚み方向Yに対し上面から底面側に向かうにつれて検出面12aから離れる方向に傾斜する面とされ、上向き傾斜面12bと対向して配される光照射部Bから照射される光が光透過性部材12の厚み方向Yと直交する長さ方向Xに対して傾斜する状態で本体部12c内に入射される。
また、上向き傾斜面12bにおける光入射位置と検出面12aにおける光照射位置との間の距離Wは、最短距離として1.0mm~50.0mmが好適である。
また、本体部12c内に入射される光は、本体部12cの底面で可能な限り少ない回数、好ましくは1度だけ反射された状態で、検出面12aに導光され、検出面12aの裏面で全反射されるとともに検出面12aの表面近傍にエバネッセント場を形成させる(第1の光入射構造)。
Here, the upward inclined surface 12b is a surface that inclines in a direction away from the detection surface 12a from the upper surface toward the bottom surface side with respect to the thickness direction Y of the light transmitting member 12, and is arranged so as to face the upward inclined surface 12b. The light emitted from the light irradiation unit B is incident on the main body portion 12c in a state of being inclined with respect to the length direction X orthogonal to the thickness direction Y of the light transmissive member 12.
Further, the distance W between the light incident position on the upward inclined surface 12b and the light irradiation position on the detection surface 12a is preferably 1.0 mm to 50.0 mm as the shortest distance.
Further, the light incident on the main body 12c is guided to the detection surface 12a in a state of being reflected by the bottom surface of the main body 12c as few times as possible, preferably only once, and is guided to the detection surface 12a on the back surface of the detection surface 12a. It is totally reflected and an evanescent field is formed near the surface of the detection surface 12a (first light incident structure).

検出チップ10を用いて目的物質検出装置を構成する場合、図2に示すように、光照射部Bが光透過性部材12の上面側における、上向き傾斜面12bと対向した位置に配される。 When the target substance detection device is configured by using the detection chip 10, the light irradiation unit B is arranged at a position on the upper surface side of the light transmissive member 12 facing the upward inclined surface 12b, as shown in FIG.

このように構成される検出チップ10では、上向き傾斜面12bにおける光入射位置と検出面12aにおける光照射位置との間の距離Wが、第1実施形態における検出チップ1における上向き傾斜面2b(光透過性部材2の側面)における光入射位置と検出面2aにおける光照射位置との間の距離よりも短いことから、本体部12c内を進行する光の減衰を抑えることができる。
なお、これ以外の構成及び効果については、第1実施形態に係る目的物質検出装置と同様であるため、説明を省略する。
In the detection chip 10 configured as described above, the distance W between the light incident position on the upward inclined surface 12b and the light irradiation position on the detection surface 12a is the upward inclined surface 2b (light) in the detection chip 1 in the first embodiment. Since it is shorter than the distance between the light incident position on the side surface of the transmissive member 2) and the light irradiation position on the detection surface 2a, it is possible to suppress the attenuation of the light traveling in the main body portion 12c.
Since the other configurations and effects are the same as those of the target substance detection device according to the first embodiment, the description thereof will be omitted.

続いて、第1実施形態における検出チップ1の光透過性部材2の上向き傾斜面2bに対する光の入射角度に関し、図3~5を参照しつつ、補足説明を行う。なお、図3~5の各図は、光の入射角度の一例を示す説明図である。
図3に示すように、検出チップ1’は、光透過性部材2’の上面の一部が検出面2aとされた構造とされる。
ここで、図3に示す例では、光透過性部材2’の側面として構成される上向き傾斜面2b’に対し、法線方向、即ち、上向き傾斜面2b’と垂直な方向から光が光透過性部材2’内に入射されるよう、光照射部Bの光照射方向が設定され、光透過性部材2’の上面側を開放させたV字の溝角としてみたときの上向き傾斜面2b’と光照射部Bの光照射方向との成す角度であるθが90°とされる。
このように、θを90°として、上向き傾斜面2b’と垂直な方向から光を入射させると、上向き傾斜面2b’での光の屈折が生じない。また、光透過性部材2’の厚み方向Yと光透過性部材2’の底面に対する光の入射方向との成す角度θと、光透過性部材2’の底面と側面(上向き傾斜面2b’)との成す角度αとが等しくなる(θ=α)。そして、これらの事象は、光透過性部材2’の材質に依らずに生じることから、角度αの設定に基づき、一意に光透過性部材2’の本体部における光の反射位置を特定して検出チップにおける検出面2a’の位置設定及び目的物質検出装置における光学系の設定を簡単化させることができる。図3に示す例では、角度αが小さすぎるとθも小さくなりすぎ、入射された光が光透過性部材2’の底面で全反射されず、そのまま光透過性部材2’外に透過する成分を生じさせる。この状態になると、入射された前記光が検出面2a’に対し全反射条件で照射されなくなってしまうことから、留意する必要がある。一方、角度αが大きすぎると上面側からの光の入射が困難になることから、角度αとしては、50°~80°が好ましい。
Subsequently, a supplementary explanation will be given with reference to FIGS. 3 to 5 regarding the incident angle of light with respect to the upwardly inclined surface 2b of the light transmitting member 2 of the detection chip 1 in the first embodiment. It should be noted that each figure of FIGS. 3 to 5 is an explanatory view showing an example of the incident angle of light.
As shown in FIG. 3, the detection chip 1'has a structure in which a part of the upper surface of the light transmissive member 2'is a detection surface 2a.
Here, in the example shown in FIG. 3, light is transmitted from the normal direction, that is, the direction perpendicular to the upward inclined surface 2b'with respect to the upward inclined surface 2b' configured as the side surface of the light transmitting member 2'. The light irradiation direction of the light irradiation unit B is set so that it is incident inside the sex member 2', and the upwardly inclined surface 2b'when viewed as a V-shaped groove angle with the upper surface side of the light transmissive member 2'opened. It is assumed that θ 1 , which is an angle formed between the light irradiation unit B and the light irradiation direction of the light irradiation unit B, is 90 °.
As described above, when the light is incident from the direction perpendicular to the upward inclined surface 2b'with θ 1 set to 90 °, the light is not refracted on the upward inclined surface 2b'. Further, the angle θ 2 formed by the thickness direction Y of the light transmitting member 2'and the incident direction of light with respect to the bottom surface of the light transmitting member 2', and the bottom surface and side surfaces (upward inclined surface 2b') of the light transmitting member 2'. ) Is equal to the angle α (θ 2 = α). Since these events occur regardless of the material of the light transmissive member 2', the light reflection position in the main body of the light transmissive member 2'is uniquely specified based on the setting of the angle α. It is possible to simplify the setting of the position of the detection surface 2a'on the detection chip and the setting of the optical system on the target substance detection device. In the example shown in FIG. 3, if the angle α is too small, θ 2 is also too small, and the incident light is not totally reflected by the bottom surface of the light transmitting member 2'and is transmitted to the outside of the light transmitting member 2'as it is. Produces ingredients. In this state, it should be noted that the incident light will not be applied to the detection surface 2a'under the total reflection condition. On the other hand, if the angle α is too large, it becomes difficult for light to enter from the upper surface side, so the angle α is preferably 50 ° to 80 °.

一方、図4に示す例では、光透過性部材2’の上面側を開放させたV字の溝角としてみたときの上向き傾斜面2b’と光照射部Bの光照射方向との成す角度であるθが90°未満とされる。
このように、θを90°未満として、上向き傾斜面2b’に光を入射させると、上向き傾斜面2b’で屈折された光が光透過性部材2’の底面で反射され、上面に導かれる。
ただし、光入射角度θが90°よりも小さすぎると、上向き傾斜面2b’で屈折された光が光透過性部材2’の底面で全反射されず、そのまま光透過性部材2’外に透過する成分を生じさせる。この状態になると、入射された前記光が検出面2a’に対し全反射条件で照射されなくなってしまうことから、留意する必要がある。
また、θが90°よりも小さすぎると、反射光が導かれる上面の位置が側面(上向き傾斜面2b’)に近づきすぎとなり、この上面の位置を検出面2a’として設定し難くなることに留意する必要がある。
したがって、θを90°未満とする場合、その下限としては、角度αに依存するものの、検出面2a’側における、光照射部Bの光照射方向と光透過性部材2’の長さ方向Xとの成す角が90°以上となる角度であることが好ましい。
On the other hand, in the example shown in FIG. 4, the angle formed by the upwardly inclined surface 2b'when viewed as a V-shaped groove angle with the upper surface side of the light transmissive member 2'open and the light irradiation direction of the light irradiation unit B. It is assumed that a certain θ 1 is less than 90 °.
In this way, when light is incident on the upward inclined surface 2b'with θ 1 set to less than 90 °, the light refracted by the upward inclined surface 2b'is reflected by the bottom surface of the light transmitting member 2'and guided to the upper surface. Be taken.
However, if the light incident angle θ 1 is too smaller than 90 °, the light refracted by the upward inclined surface 2b'is not totally reflected by the bottom surface of the light transmitting member 2', and is directly outside the light transmitting member 2'. Produces a transparent component. In this state, it should be noted that the incident light will not be applied to the detection surface 2a'under the total reflection condition.
Further, if θ 1 is too smaller than 90 °, the position of the upper surface to which the reflected light is guided becomes too close to the side surface (upward inclined surface 2b'), and it becomes difficult to set the position of this upper surface as the detection surface 2a'. It is necessary to keep in mind.
Therefore, when θ 1 is set to less than 90 °, the lower limit thereof depends on the angle α, but is the light irradiation direction of the light irradiation unit B and the length direction of the light transmission member 2'on the detection surface 2a'side. It is preferable that the angle formed with X is 90 ° or more.

一方、図5に示す例では、光透過性部材2’の上面側を開放させたV字の溝角としてみたときの上向き傾斜面2b’と光照射部Bの光照射方向との成す角度であるθが90°を超える角度とされる。
このように、θを90°を超える角度として、上向き傾斜面2b’に光を入射させると、上向き傾斜面2b’で屈折された光が光透過性部材2’の底面で反射され、上面に導かれる。反射の際、上向き傾斜面2b’で屈折された光が光透過性部材2’の底面で全反射され易く好ましい。
ただし、θが90°よりも大きすぎると、反射光が導かれる上面の位置が上向き傾斜面2b’と遠ざかる結果、検出チップ1’が大型化することに留意する必要がある。
θを90°を超える角度とする場合、その上限としては、角度αに依存するものの、光照射部Bの光照射方向が検出チップ1’の長さ方向Xに対し平行に至らない角度である。
On the other hand, in the example shown in FIG. 5, the angle formed by the upwardly inclined surface 2b'when viewed as a V-shaped groove angle with the upper surface side of the light transmitting member 2'open and the light irradiation direction of the light irradiation unit B. It is assumed that a certain θ 1 is an angle exceeding 90 °.
In this way, when light is incident on the upward inclined surface 2b'with θ 1 as an angle exceeding 90 °, the light refracted by the upward inclined surface 2b'is reflected by the bottom surface of the light transmitting member 2'and is reflected on the upper surface. Is guided by. At the time of reflection, the light refracted by the upward inclined surface 2b'is easily totally reflected by the bottom surface of the light transmissive member 2', which is preferable.
However, it should be noted that if θ 1 is larger than 90 °, the position of the upper surface from which the reflected light is guided moves away from the upward inclined surface 2b', resulting in an increase in the size of the detection chip 1'.
When θ 1 is set to an angle exceeding 90 °, the upper limit thereof is an angle that does not reach parallel to the length direction X of the detection chip 1', although the upper limit depends on the angle α. be.

なお、ここでは、図3~5を挙げ、第1実施形態における検出チップ1の光透過性部材2の上向き傾斜面2bに対する光の入射角度の補足説明を行ったが、θとしては、第2実施形態における検出チップ10の光透過性部材12の上向き傾斜面12bに対しても、適用することができる。
ただし、θを90°を超える角度とする場合、θが90°よりも大きすぎると、V字状の上面側切欠き部15の上向き傾斜面12bと反対側の面をなす光透過性部材12の構成部分が光照射の障害となり、θの角度設定に制約が生じることに留意する必要がある。逆に、θを90°及び90°未満とする場合には、このような制約が生じにくい。
Here, FIGS. 3 to 5 are given to supplementarily explain the incident angle of light with respect to the upwardly inclined surface 2b of the light transmitting member 2 of the detection chip 1 in the first embodiment. It can also be applied to the upward inclined surface 12b of the light transmitting member 12 of the detection chip 10 in the second embodiment.
However, when θ 1 is an angle exceeding 90 °, if θ 1 is too larger than 90 °, the light transmissivity forming the surface opposite to the upward inclined surface 12b of the V-shaped upper surface side notch portion 15. It should be noted that the constituent parts of the member 12 obstruct the light irradiation, and the angle setting of θ 1 is restricted. On the contrary, when θ 1 is 90 ° and less than 90 °, such a restriction is unlikely to occur.

<第3実施形態>
次に、第3実施形態に係る目的物質検出装置を図6を参照しつつ、説明する。なお、図6は、第3実施形態に係る目的物質検出装置の概要を説明する説明図である。
図6に示すように、第3実施形態における検出チップ20は、光透過性部材22を有する。光透過性部材22は、板状の部材であり、上面の一部が検出面22aとされ、胴部が上面から光を受光して内部に導光可能とされる本体部22cとされる。また、光透過性部材22の上面には、検出面22aを底とする函状体を形成するように検出面22aの周囲に側壁部24が立設され、函状体内に液体試料Aが導入される。
光透過性部材22では、第1実施形態における光透過性部材2と異なり、側面が厚み方向Yに対し底面から上面側に向かうにつれて検出面22aから離れる方向に傾斜する下向き傾斜面22bとされ、側面と厚み方向Yで対向する位置における光透過性部材22の上面に前記光が入射される。
<Third Embodiment>
Next, the target substance detection device according to the third embodiment will be described with reference to FIG. Note that FIG. 6 is an explanatory diagram illustrating an outline of the target substance detection device according to the third embodiment.
As shown in FIG. 6, the detection chip 20 in the third embodiment has a light transmitting member 22. The light transmissive member 22 is a plate-shaped member, and a part of the upper surface thereof is a detection surface 22a, and the body portion receives light from the upper surface and is a main body portion 22c capable of guiding the inside. Further, on the upper surface of the light transmissive member 22, a side wall portion 24 is erected around the detection surface 22a so as to form a box-shaped body having the detection surface 22a as the bottom, and the liquid sample A is introduced into the box-shaped body. Will be done.
Unlike the light transmissive member 2 in the first embodiment, the light transmissive member 22 has a downwardly inclined surface 22b that inclines in a direction away from the detection surface 22a as the side surface moves from the bottom surface to the upper surface side with respect to the thickness direction Y. The light is incident on the upper surface of the light transmissive member 22 at a position facing the side surface in the thickness direction Y.

ここで、上面に対して光照射部Bから照射される光は、本体部22cに導入後、例えば、図示のように下向き傾斜面22b、底面の順で反射され、検出面22aの位置で全反射されるとともに検出面22aの表面近傍にエバネッセント場を形成させる(第2の光入射構造)。 Here, the light radiated from the light irradiation unit B to the upper surface is reflected in the order of the downward inclined surface 22b and the bottom surface as shown in the figure after being introduced into the main body portion 22c, and is totally reflected at the position of the detection surface 22a. It is reflected and forms an evanescent field near the surface of the detection surface 22a (second light incident structure).

このように、光透過性部材2の側面が上面側を向く第1実施形態における検出チップ1と異なり、光透過性部材2の側面が底面側を向くように形成される第3実施形態における検出チップ20においても、第1実施形態における検出チップ1と同様にエバネッセント場を得ることができる。 As described above, unlike the detection chip 1 in the first embodiment in which the side surface of the light transmissive member 2 faces the upper surface side, the detection in the third embodiment in which the side surface of the light transmissive member 2 faces the bottom surface side. Also in the chip 20, an evanescent field can be obtained as in the detection chip 1 in the first embodiment.

<第4実施形態>
次に、第4実施形態に係る目的物質検出装置を図7を参照しつつ、説明する。なお、図7は、第4実施形態に係る目的物質検出装置の概要を説明する説明図である。
<Fourth Embodiment>
Next, the target substance detection device according to the fourth embodiment will be described with reference to FIG. 7. Note that FIG. 7 is an explanatory diagram illustrating an outline of the target substance detection device according to the fourth embodiment.

図7に示すように、第4実施形態における検出チップ30は、光透過性部材32を有する。光透過性部材32では、第1実施形態における光透過性部材2と異なり、上面に液体試料Aを導入する液体試料貯留溝34が形成される。液体試料貯留溝34は、断面略V字状の形状で形成され、前記断面略V字状の溝の一辺を形成する面が検出面32aとされる。 As shown in FIG. 7, the detection chip 30 in the fourth embodiment has a light transmitting member 32. In the light transmissive member 32, unlike the light transmissive member 2 in the first embodiment, a liquid sample storage groove 34 for introducing the liquid sample A is formed on the upper surface thereof. The liquid sample storage groove 34 is formed in a shape having a substantially V-shaped cross section, and a surface forming one side of the groove having a substantially V-shaped cross section is referred to as a detection surface 32a.

ここで、光透過性部材32では、第1実施形態における光透過性部材2と異なり、側面が厚み方向Yに対し底面から上面側に向かうにつれて検出面32aから離れる方向に傾斜する下向き傾斜面32bとされ、側面と厚み方向Yで対向する位置における光透過性部材32の上面に前記光が入射される。
光照射部Bでは、光透過性部材32の上面に対し、厚み方向Yの方向、つまり、上面と垂直な方向から光を照射し、本体部32c内に入射される光は、下向き傾斜面32bで1度だけ反射され、即ち、本体部32cの上面及び底面で反射されることなく、本体部32c内を長さ方向Xに沿って伝播され、検出面32aの位置で全反射されるとともに検出面32aの表面近傍にエバネッセント場を形成させる(第2の光入射構造)。
Here, unlike the light transmissive member 2 in the first embodiment, the light transmissive member 32 has a downwardly inclined surface 32b that inclines in a direction away from the detection surface 32a as the side surface moves from the bottom surface to the upper surface side with respect to the thickness direction Y. The light is incident on the upper surface of the light transmissive member 32 at a position facing the side surface in the thickness direction Y.
The light irradiation unit B irradiates the upper surface of the light transmissive member 32 with light from the direction Y in the thickness direction, that is, from the direction perpendicular to the upper surface, and the light incident on the main body portion 32c is the downward inclined surface 32b. Is reflected only once, that is, it is propagated in the main body 32c along the length direction X without being reflected on the upper surface and the bottom surface of the main body 32c, and is totally reflected and detected at the position of the detection surface 32a. An evanescent field is formed near the surface of the surface 32a (second light incident structure).

このように構成される検出チップ30では、本体部32c内に入射される光が本体部32cの上面及び底面で反射されることなく、検出面32aに導光されることから、上面及び底面での反射に伴う前記光の劣化を抑制することができる。
また、これ以外の構成及び効果については、第1実施形態に係る目的物質検出装置と同様であるため、説明を省略する。
In the detection chip 30 configured in this way, the light incident on the main body 32c is guided to the detection surface 32a without being reflected by the upper surface and the bottom surface of the main body 32c, so that the light is guided to the detection surface 32a on the upper surface and the bottom surface. It is possible to suppress the deterioration of the light due to the reflection of the light.
Further, since the other configurations and effects are the same as those of the target substance detection device according to the first embodiment, the description thereof will be omitted.

[第5実施形態]
次に、第5実施形態に係る目的物質検出装置を図8を参照しつつ、説明する。なお、図8は、第5実施形態に係る目的物質検出装置の概要を説明する説明図である。
[Fifth Embodiment]
Next, the target substance detection device according to the fifth embodiment will be described with reference to FIG. Note that FIG. 8 is an explanatory diagram illustrating an outline of the target substance detection device according to the fifth embodiment.

第5実施形態における検出チップ40は、第2実施形態における検出チップ10の変形例であり、第2実施形態における検出チップ10と同様、検出面42a、上向き傾斜面42b、本体部42c及び液体試料貯留溝44を有する光透過性部材42を備える。
第5実施形態における検出チップ40では、上面側切欠き部45が第2実施形態に係る検出チップ10と相違し、上面側切欠き部45に本体部42cの形成材料よりも屈折率の低い低屈折材料45aが埋設される。
The detection chip 40 in the fifth embodiment is a modification of the detection chip 10 in the second embodiment, and like the detection chip 10 in the second embodiment, the detection surface 42a, the upward inclined surface 42b, the main body portion 42c, and the liquid sample. A light transmitting member 42 having a storage groove 44 is provided.
In the detection chip 40 in the fifth embodiment, the upper surface side notch portion 45 is different from the detection chip 10 according to the second embodiment, and the upper surface side notch portion 45 has a lower refractive index than the material for forming the main body portion 42c. The refraction material 45a is embedded.

このように構成される検出チップ40では、上面側切欠き部45に低屈折材料45aが埋設され、光透過性部材42の上面全体がフラットな状態とされるため、液体試料Aの導入及び排出時に液体試料貯留溝44から侵入等する液体試料Aにより、上面側切欠き部45内が汚れることがない。
また、このように上面側切欠き部45を構成する場合でも、低屈折材料45aと高屈折材料で形成される本体部42cとの界面をなす上向き傾斜面42bにおける光の屈折を利用して、第2実施形態における検出チップ10と同様に、光照射部Bから照射される光を本体部42c内で1度だけ反射させる状態で検出面42aに導光させることができる。
なお、これ以外の構成及び効果については、第2実施形態に係る目的物質検出装置と同様であるため、説明を省略する。
In the detection chip 40 configured in this way, the low refraction material 45a is embedded in the notch portion 45 on the upper surface side, and the entire upper surface of the light transmissive member 42 is in a flat state, so that the liquid sample A is introduced and discharged. The inside of the notch 45 on the upper surface side is not contaminated by the liquid sample A that sometimes invades from the liquid sample storage groove 44.
Further, even when the upper surface side notch portion 45 is configured in this way, the refraction of light on the upwardly inclined surface 42b forming the interface between the low refraction material 45a and the main body portion 42c formed of the high refraction material is utilized. Similar to the detection chip 10 in the second embodiment, the light emitted from the light irradiation unit B can be guided to the detection surface 42a in a state of being reflected only once in the main body portion 42c.
Since the other configurations and effects are the same as those of the target substance detection device according to the second embodiment, the description thereof will be omitted.

続いて、第5実施形態における検出チップ40について、図9,10に示す変形例を交えつつ、補足説明を行う。なお、図9,10の各図は、変形例を示す説明図である。
図9に示すように、検出チップ40’は、光透過性部材42’の上面の一部が検出面42’とされ、かつ、上面側切欠き部45’が配された構造とされる。
ここで、図9に示す例では、図8に示す例と比較して、光照射部Bが上面側切欠き部45’の上向き傾斜面42b’に対し、光透過性部材42’の上面側から光を照射することとされ、光透過性部材42’の上面側を開放させたV字の溝角としてみたときの上向き傾斜面42b’と光照射部Bの光照射方向との成す角度(図9中の角度β)が比較的小さな角度で設定される。
βが小さい場合、上向き傾斜面42b’から導入される光が光透過性部材42’の底面で全反射されず、そのまま光透過性部材42’における本体部42c’の外に透過する成分を生じさせることから(図9中の点線矢印参照)、この状態になると、入射された前記光が前記裏面に対し前記全反射条件で照射されなくなってしまうことに留意する必要がある。
したがって、βとしては、入射された前記光が検出面42’に対し全反射条件を満たしうる最小角度以上でなければならない。
なお、上面側切欠き部45’に低屈折材料45a’が埋設されない場合も、光透過性部材42’の屈折率が高くないと、上向き傾斜面42b’で屈折された光が光透過性部材42’の底面で全反射されず、そのまま光透過性部材42’外に透過する成分を生じさせることに留意する必要がある。
Subsequently, the detection chip 40 in the fifth embodiment will be supplementarily described with reference to the modified examples shown in FIGS. 9 and 10. It should be noted that each of FIGS. 9 and 10 is an explanatory diagram showing a modified example.
As shown in FIG. 9, the detection chip 40'has a structure in which a part of the upper surface of the light transmissive member 42'is a detection surface 42'and a notch portion 45'on the upper surface side is arranged.
Here, in the example shown in FIG. 9, as compared with the example shown in FIG. 8, the light irradiation unit B is on the upper surface side of the light transmitting member 42'with respect to the upward inclined surface 42 b'of the upper surface side notch portion 45'. The angle formed by the upwardly inclined surface 42b'and the light irradiation direction of the light irradiation unit B when viewed as a V-shaped groove angle in which the upper surface side of the light transmissive member 42'is opened. The angle β) in FIG. 9 is set at a relatively small angle.
When β is small, the light introduced from the upward inclined surface 42b'is not totally reflected by the bottom surface of the light transmitting member 42', and a component is generated which is transmitted to the outside of the main body portion 42c' in the light transmitting member 42'as it is. Therefore, it should be noted that in this state (see the dotted arrow in FIG. 9), the incident light is not emitted to the back surface under the total reflection condition.
Therefore, β must be at least the minimum angle at which the incident light can satisfy the total reflection condition with respect to the detection surface 42'.
Even when the low refraction material 45a'is not embedded in the notch portion 45'on the upper surface side, if the refractive index of the light transmissive member 42'is not high, the light refracted by the upward inclined surface 42b'is the light transmissive member. It should be noted that a component that is not totally reflected at the bottom surface of the 42'and is transmitted to the outside of the light transmitting member 42' as it is is generated.

また、光入射角度βを比較的小さな角度とする場合であっても、図10に示すように、光透過性部材42’の底面の面内方向に対して傾斜して形成され、下向き傾斜面46aを有する底面側切欠き部46を光透過性部材42’の底面に形成することで、上面に設定される検出面42a’に対して全反射条件となるように反射光を導くように構成してもよい。なお、底面側切欠き部46は、上面側切欠き部45’と同様の方法で形成することができる。また、底面側切欠き部46には、上面側切欠き部45’と同様に低屈折材料46aが埋設されていてもよい。 Further, even when the light incident angle β is set to a relatively small angle, as shown in FIG. 10, the light transmissive member 42'is formed to be inclined with respect to the in-plane direction of the bottom surface, and is a downwardly inclined surface. By forming the bottom surface side notch 46 having 46a on the bottom surface of the light transmitting member 42', the reflected light is guided to the detection surface 42a'set on the upper surface so as to be a total reflection condition. You may. The bottom surface side notch portion 46 can be formed in the same manner as the top surface side notch portion 45'. Further, the low refraction material 46a may be embedded in the bottom surface side notch portion 46 as in the case of the top surface side notch portion 45'.

[第6実施形態]
次に、第6実施形態に係る目的物質検出装置を図11を参照しつつ、説明する。なお、図11は、第6実施形態に係る目的物質検出装置の概要を説明する説明図である。
[Sixth Embodiment]
Next, the target substance detection device according to the sixth embodiment will be described with reference to FIG. Note that FIG. 11 is an explanatory diagram illustrating an outline of the target substance detection device according to the sixth embodiment.

第6実施形態における検出チップ50は、第3実施形態における検出チップ20の変形例である。
図11に示すように、第6実施形態における検出チップ50は、光透過性部材52を有する。光透過性部材52では、第3実施形態における光透過性部材22と異なり、上面に液体試料Aを導入する液体試料貯留溝54が形成される。液体試料貯留溝54は断面凹状の形状で形成され、その底面が検出面52aとされる。
また、光透過性部材52では、第3実施形態における光透過性部材22と異なり、底面に形成されるとともに下向き傾斜面52bを有する底面側切欠き部56が形成され、底面側切欠き部56には、必要に応じて本体部52cの形成材料よりも屈折率の低い低屈折材料56aが埋設される。
The detection chip 50 in the sixth embodiment is a modification of the detection chip 20 in the third embodiment.
As shown in FIG. 11, the detection chip 50 in the sixth embodiment has a light transmitting member 52. In the light transmitting member 52, unlike the light transmitting member 22 in the third embodiment, a liquid sample storage groove 54 for introducing the liquid sample A is formed on the upper surface thereof. The liquid sample storage groove 54 is formed in a concave cross section, and the bottom surface thereof is a detection surface 52a.
Further, unlike the light transmitting member 22 in the third embodiment, the light transmitting member 52 is formed on the bottom surface and has a bottom surface side notch 56 having a downward inclined surface 52b, and the bottom surface side notch portion 56 is formed. A low-refractive-index material 56a having a refractive index lower than that of the material for forming the main body 52c is embedded in the body, if necessary.

このように構成される検出チップ50では、光透過性部材52の底面に底面側切欠き部56が形成されるため、液体試料Aの導入及び排出時に液体試料貯留溝54から侵入等する液体試料Aにより、底面側切欠き部56内が汚れることがない。
また、底面側切欠き部56が低屈折材料56aを埋設させて構成されると、下向き傾斜面52bが外部に露出して大気中の塵などの付着により汚れることを防止することができる。
また、底面側切欠き部56においても、下向き傾斜面52bにおける光の反射を利用して、光照射部Bから照射される光を下向き傾斜面52b及び底面で1度ずつ反射させて検出面52aに導光させることができる(第2の光入射構造)。
なお、これ以外の構成及び効果については、第3実施形態に係る目的物質検出装置と同様であるため、説明を省略する。
In the detection chip 50 configured in this way, since the bottom surface side notch 56 is formed on the bottom surface of the light transmissive member 52, the liquid sample that invades from the liquid sample storage groove 54 when the liquid sample A is introduced and discharged. Due to A, the inside of the notch portion 56 on the bottom surface side is not contaminated.
Further, when the bottom surface side notch 56 is configured by embedding the low refraction material 56a, it is possible to prevent the downward inclined surface 52b from being exposed to the outside and being contaminated by adhesion of dust or the like in the atmosphere.
Further, also in the bottom surface side notch 56, the light emitted from the light irradiation unit B is reflected once by the downward inclined surface 52b and the bottom surface by utilizing the reflection of the light on the downward inclined surface 52b, and the detection surface 52a is also used. Can be guided to (second light incident structure).
Since the other configurations and effects are the same as those of the target substance detection device according to the third embodiment, the description thereof will be omitted.

[第7実施形態]
次に、第7実施形態に係る目的物質検出装置を図12を参照しつつ、説明する。なお、図12は、第7実施形態に係る目的物質検出装置の概要を説明する説明図である。
[7th Embodiment]
Next, the target substance detection device according to the seventh embodiment will be described with reference to FIG. Note that FIG. 12 is an explanatory diagram illustrating an outline of the target substance detection device according to the seventh embodiment.

第7実施形態に係る目的物質検出装置は、第1実施形態に係る目的物質検出装置を90°傾けて使用する変形例に係る。そのため、第7実施形態に係る目的物質検出装置では、第1実施形態に係る目的物質検出装置における「上面」及び「底面」が側方、「側面」が上方に位置するが、磁場印加部Cが配される側の光透過性部材62の面を「底面」として視たものとして、第1実施形態に係る目的物質検出装置における「上面」、「底面」及び「側面」の位置関係を維持した説明を行う。
第7実施形態における検出チップ60は、第1実施形態における検出チップ1の変形例である。
図12に示すように、第7実施形態における検出チップ60は、光透過性部材62を有する。光透過性部材62では、第1実施形態における光透過性部材2と異なり、側面に液体試料Aを導入する液体試料貯留溝64が形成される。
液体試料貯留溝64は、断面凹状の穿設溝として形成され、前記穿設溝を構成する面のうち、前記底面と最も近い位置で対向する面が検出面62aとされる。
このように本発明に係る前記目的物質検出装置及び前記目的物質検出方法は、「上面」、「底面」及び「側面」の相対的な位置関係を維持すれば、任意の方向に前記目的物質検出装置の姿勢を変化させて用いることができる。
なお、これ以外の構成及び効果については、第1実施形態に係る目的物質検出装置と同様であるため、説明を省略する。
The target substance detection device according to the seventh embodiment relates to a modified example in which the target substance detection device according to the first embodiment is used at an angle of 90 °. Therefore, in the target substance detection device according to the seventh embodiment, the "top surface" and "bottom surface" of the target substance detection device according to the first embodiment are located sideways, and the "side surface" is located above, but the magnetic field application unit C The positional relationship between the "top surface", "bottom surface", and "side surface" in the target substance detection device according to the first embodiment is maintained, assuming that the surface of the light transmissive member 62 on the side to which is arranged is viewed as the "bottom surface". I will give an explanation.
The detection chip 60 in the seventh embodiment is a modification of the detection chip 1 in the first embodiment.
As shown in FIG. 12, the detection chip 60 in the seventh embodiment has a light transmitting member 62. Unlike the light-transmitting member 2 in the first embodiment, the light-transmitting member 62 is formed with a liquid sample storage groove 64 on the side surface for introducing the liquid sample A.
The liquid sample storage groove 64 is formed as a drilling groove having a concave cross section, and among the surfaces constituting the drilling groove, the surface facing the bottom surface at the position closest to the bottom surface is referred to as a detection surface 62a.
As described above, the target substance detection device and the target substance detection method according to the present invention can detect the target substance in any direction as long as the relative positional relationship between the “top surface”, “bottom surface” and “side surface” is maintained. It can be used by changing the posture of the device.
Since the other configurations and effects are the same as those of the target substance detection device according to the first embodiment, the description thereof will be omitted.

1,1’,10,20,30,40,40’,50,60 検出チップ
2,2’,12,22,32,42,42’,52,62 光透過性部材
2a,2a’,12a,22a,32a,42a,42a’,52a,62a 検出面
2b,2b’,12b,42b,42b’,62b 上向き傾斜面
2c,12c,22c,32c,42c,42c’,52c,62c 本体部
4,24 側壁部
14,34,44,54,64 液体試料貯留溝
15,45,45’ 上面側切欠き部
45a,45a’,56a 低屈折材料
46,56 底面側切欠き部
22b,32b,46a,52b 下向き傾斜面
A 液体試料
B 光照射部
C 磁場印加部
D 光検出部
W 距離
X 長さ方向
Y 厚み方向
θ,θ,α,β 角度
1,1', 10,20,30,40,40', 50,60 Detection chip 2,2', 12,22,32,42,42', 52,62 Light transmitting member 2a, 2a', 12a , 22a, 32a, 42a, 42a', 52a, 62a Detection surface 2b, 2b', 12b, 42b, 42b', 62b Upward inclined surface 2c, 12c, 22c, 32c, 42c, 42c', 52c, 62c Main body 4 , 24 Side wall portion 14, 34, 44, 54, 64 Liquid sample storage groove 15, 45, 45'Top side notch 45a, 45a', 56a Low refraction material 46, 56 Bottom side notch 22b, 32b, 46a , 52b Downward inclined surface A Liquid sample B Light irradiation part C Magnetic field application part D Light detection part W Distance X Length direction Y Thickness direction θ 1 , θ 2 , α, β Angle

Claims (9)

底面に対して上面側の面に配される検出面と、厚み方向に対し前記上面から前記底面側に向かうにつれて前記検出面から離れる方向に傾斜する上向き傾斜面及び前記厚み方向に対し前記底面から前記上面側に向かうにつれて前記検出面から離れる方向に傾斜する下向き傾斜面のいずれかの傾斜面と、光を受光して内部に導光可能とされる本体部とを有する全体略板状の光透過性部材を備え、前記光透過性部材が前記上面側から照射され前記上向き傾斜面を通過させた前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第1の光入射構造及び前記上面側から照射され前記下向き傾斜面で反射された前記光を前記本体部を介して前記検出面に対し全反射条件で入射させる第2の光入射構造のいずれかの光入射構造を有する検出チップと、
前記光透過性部材の前記上面側に配され、前記光入射構造を介して前記検出面に全反射条件で前記光を照射可能とされる光照射部と、
前記光透過性部材の前記底面側に配される磁場印加部と、
前記検出面上に配され、前記検出面の表面近傍の領域を検出領域とし、前記光の照射に伴い目的物質と磁性粒子とを含む結合体から発せられる光信号を検出可能とされる光検出部と、
を備え、
前記光透過性部材が前記上面に形成されるとともに前記上向き傾斜面を有する断面V字状の上面側切欠き部及び前記底面に形成されるとともに前記下向き傾斜面を有する断面V字状の底面側切欠き部の少なくともいずれかの切欠き部を有することを特徴とする目的物質検出装置。
A detection surface arranged on the surface on the upper surface side with respect to the bottom surface, an upwardly inclined surface that inclines in a direction away from the detection surface as it goes from the upper surface to the bottom surface side in the thickness direction, and from the bottom surface in the thickness direction. Overall substantially plate-like light having one of the inclined surfaces of the downward inclined surface that inclines toward the upper surface side and away from the detection surface, and a main body portion that receives light and can guide the inside. A first light having a transmissive member and having the light transmissive member irradiated from the upper surface side and passing through the upwardly inclined surface is incident on the detection surface through the main body under all reflection conditions. Any of the incident structure and the light incident structure of the second light incident structure in which the light emitted from the upper surface side and reflected by the downward inclined surface is incident on the detection surface via the main body under all reflection conditions. With a detection chip that has
A light irradiation unit arranged on the upper surface side of the light transmissive member and capable of irradiating the detection surface with the light under total reflection conditions via the light incident structure.
A magnetic field application portion arranged on the bottom surface side of the light transmissive member,
Light detection that is arranged on the detection surface and has a region near the surface of the detection surface as a detection region, and is capable of detecting an optical signal emitted from a conjugate containing a target substance and magnetic particles upon irradiation with the light. Department and
Equipped with
A cross section in which the light transmissive member is formed on the upper surface and has a V-shaped upper surface side notch having an upward inclined surface and a bottom surface having the downward inclined surface. A target substance detection device having at least one notch of a V-shaped bottom surface side notch.
切欠き部に本体部よりも屈折率の低い低屈折材料が埋設される請求項1に記載の目的物質検出装置。 The target substance detection device according to claim 1, wherein a low-refractive index material having a refractive index lower than that of the main body is embedded in the notch. 光入射構造が、第1の光入射構造における上向き傾斜面を通過させた光及び第2の光入射構造における下向き傾斜面で反射された光の少なくともいずれかを底面で反射させた後に検出面に対し全反射条件で入射可能とされる請求項1から2のいずれかに記載の目的物質検出装置。 The light incident structure reflects at least one of the light passed through the upwardly inclined surface in the first light incident structure and the light reflected by the downwardly inclined surface in the second light incident structure on the detection surface after being reflected by the bottom surface. The target substance detection device according to any one of claims 1 to 2, which is capable of incident light under total reflection conditions. 傾斜面における光入射位置と検出面における光照射位置との間の最短距離が、1.0mm~50.0mmとされる請求項1から3のいずれかに記載の目的物質検出装置。 The target substance detection device according to any one of claims 1 to 3, wherein the shortest distance between the light incident position on the inclined surface and the light irradiation position on the detection surface is 1.0 mm to 50.0 mm. 光透過性部材の厚みが0.1mm~10.0mmとされる請求項1から4のいずれかに記載の目的物質検出装置。 The target substance detection device according to any one of claims 1 to 4, wherein the thickness of the light transmissive member is 0.1 mm to 10.0 mm. 光透過性部材の上面に少なくとも一部を検出面とする液体試料貯留溝が形成される請求項1から5のいずれかに記載の目的物質検出装置。 The target substance detection device according to any one of claims 1 to 5, wherein a liquid sample storage groove having at least a part as a detection surface is formed on the upper surface of the light transmissive member. 液体試料貯留溝が検出面として光透過性部材の厚み方向に対し上面から底面側に向かうにつれて傾斜面から離れる方向に傾斜する傾斜検出面を有する請求項6に記載の目的物質検出装置。 The target substance detection device according to claim 6, wherein the liquid sample storage groove has an inclined detection surface as a detection surface, which is inclined in a direction away from the inclined surface from the upper surface toward the bottom surface side with respect to the thickness direction of the light transmissive member. 光透過性部材の上面の一部が検出面とされるとともに前記検出面を底とする函状体を形成するように前記検出面の周囲に側壁部が立設される請求項1から5のいずれかに記載の目的物質検出装置。 Claims 1 to 5 in which a part of the upper surface of the light transmissive member is used as a detection surface and a side wall portion is erected around the detection surface so as to form a box-shaped body having the detection surface as the bottom. The target substance detection device according to any one. 請求項1から8のいずれかに記載の目的物質検出装置を用いた目的物質検出方法であって、
光透過性部材の上面側から光入射構造を介して検出面に全反射条件で光を照射する光照射工程と、
前記光透過性部材の底面側から磁場を印加する磁場印加工程と、
前記光の照射に伴い目的物質と磁性粒子とを含む結合体から発せられる光信号を検出する光検出工程と、
を含むことを特徴とする目的物質検出方法。
A method for detecting a target substance using the target substance detecting device according to any one of claims 1 to 8.
A light irradiation step of irradiating the detection surface with light from the upper surface side of the light transmissive member via a light incident structure under total reflection conditions, and
A magnetic field application step of applying a magnetic field from the bottom surface side of the light transmissive member, and
A light detection step of detecting an optical signal emitted from a conjugate containing a target substance and magnetic particles upon irradiation with light, and a light detection step.
A method for detecting a target substance, which comprises.
JP2017136826A 2017-04-14 2017-07-13 Target substance detection device and target substance detection method Active JP7097563B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017136826A JP7097563B2 (en) 2017-07-13 2017-07-13 Target substance detection device and target substance detection method
EP18784840.3A EP3594663A4 (en) 2017-04-14 2018-04-11 Desired-substance detection chip, desired-substance detection device, and desired-substance detection method
PCT/JP2018/015170 WO2018190358A1 (en) 2017-04-14 2018-04-11 Desired-substance detection chip, desired-substance detection device, and desired-substance detection method
US16/604,877 US11112359B2 (en) 2017-04-14 2018-04-11 Target substance detection chip, target substance detection device, and target substance detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136826A JP7097563B2 (en) 2017-07-13 2017-07-13 Target substance detection device and target substance detection method

Publications (2)

Publication Number Publication Date
JP2019020181A JP2019020181A (en) 2019-02-07
JP7097563B2 true JP7097563B2 (en) 2022-07-08

Family

ID=65354190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136826A Active JP7097563B2 (en) 2017-04-14 2017-07-13 Target substance detection device and target substance detection method

Country Status (1)

Country Link
JP (1) JP7097563B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195477A (en) 2004-01-07 2005-07-21 Rohm Co Ltd Surface plasmon resonance sensor
JP2007248253A (en) 2006-03-15 2007-09-27 Omron Corp Optical part, optical sensor, surface plasmon sensor, and fingerprint authentication
JP2010512534A (en) 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic sensor device for detecting label particles
JP5301894B2 (en) 2008-06-27 2013-09-25 富士フイルム株式会社 Detection method
WO2015030833A1 (en) 2013-08-31 2015-03-05 Pandata Research Llc Spectrometer with multiple waveguides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484738A (en) * 1990-07-27 1992-03-18 Hitachi Ltd Cell for total-reflection attenuation prism
JPH04178539A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Attenuated total reflection prism cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195477A (en) 2004-01-07 2005-07-21 Rohm Co Ltd Surface plasmon resonance sensor
JP2007248253A (en) 2006-03-15 2007-09-27 Omron Corp Optical part, optical sensor, surface plasmon sensor, and fingerprint authentication
JP2010512534A (en) 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic sensor device for detecting label particles
JP5301894B2 (en) 2008-06-27 2013-09-25 富士フイルム株式会社 Detection method
WO2015030833A1 (en) 2013-08-31 2015-03-05 Pandata Research Llc Spectrometer with multiple waveguides

Also Published As

Publication number Publication date
JP2019020181A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP7008334B2 (en) Optical detection method and optical detection device
JP2015121552A (en) Microelectronic sensor device for detecting label particles
EP2726852B1 (en) Multiple examinations of a sample
US9863863B2 (en) Apparatus for cluster detection
WO2007077218A1 (en) An optical system; an optical chip for an optical system and a method of using an optical chip for an analytical operation
JP2010127624A (en) Total reflection illuminated sensor chip
JP7028455B2 (en) Target substance detection device and target substance detection method
JP5920692B2 (en) Target substance detection chip, target substance detection device, and target substance detection method
JP2012510628A (en) Sensor device for detecting target particles by attenuated total reflection
CN103907010B (en) The collimating optics detection of sample
WO2018190358A1 (en) Desired-substance detection chip, desired-substance detection device, and desired-substance detection method
JP6928930B2 (en) Target substance detection chip, target substance detection device and target substance detection method
JP7097563B2 (en) Target substance detection device and target substance detection method
WO2018100779A1 (en) Target substance detection device and target substance detection method
JP7246085B2 (en) Target substance detector
JP7411219B2 (en) Target substance detection device and target substance detection method using magnetic field and gravity
JP7029121B2 (en) Target substance detection chip, target substance detection device and target substance detection method
JP6991504B2 (en) Target substance detection device and target substance detection method
US20140217267A1 (en) Method and device for coupling a light beam into a foil
JP6936987B2 (en) Target substance detection chip, target substance detection device and target substance detection method
JPWO2019049817A1 (en) Sensor chip, target substance detection device and target substance detection method
JP7320845B2 (en) Target substance detection method and target substance detection kit
JP2020190428A (en) Counting method of target substance and counting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220617

R150 Certificate of patent or registration of utility model

Ref document number: 7097563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350