JP7080480B2 - Non-invasive blood sugar meter - Google Patents

Non-invasive blood sugar meter Download PDF

Info

Publication number
JP7080480B2
JP7080480B2 JP2018135768A JP2018135768A JP7080480B2 JP 7080480 B2 JP7080480 B2 JP 7080480B2 JP 2018135768 A JP2018135768 A JP 2018135768A JP 2018135768 A JP2018135768 A JP 2018135768A JP 7080480 B2 JP7080480 B2 JP 7080480B2
Authority
JP
Japan
Prior art keywords
reflectance
invasive
blood
sugar
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018135768A
Other languages
Japanese (ja)
Other versions
JP2020010880A (en
JP2020010880A5 (en
Inventor
二朗 有馬
武 小坂
Original Assignee
有限会社ティ・エス・イー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ティ・エス・イー filed Critical 有限会社ティ・エス・イー
Priority to JP2018135768A priority Critical patent/JP7080480B2/en
Publication of JP2020010880A publication Critical patent/JP2020010880A/en
Publication of JP2020010880A5 publication Critical patent/JP2020010880A5/ja
Application granted granted Critical
Publication of JP7080480B2 publication Critical patent/JP7080480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

光を生体に当て生体 内部を計測する 応用生体光計測分野。 Applied biological light measurement field that measures the inside of a living body by shining light on the living body.

従来の光を利用した非侵襲血糖計のアイデアは 糖分子の吸光度に注目したものであり、典型的な例は 図1のように指に入射光I0を照射し、透過光Itを計測するものである。
すると(1)が成り立つ。
The idea of a conventional non-invasive glucose meter using light focuses on the absorbance of sugar molecules, and a typical example is to irradiate a finger with incident light I0 and measure transmitted light It as shown in Fig. 1. Is.
Then, (1) holds.

Figure 0007080480000001
Figure 0007080480000001

意図するところは Itを計測しからαを算出するものである。
ところが実用的には全て失敗している。理由はαdが大きすぎ或はItの信号レベルが小さすぎ現在の検出器ではα検知に至らないということである。
図2は従来例である。手指・耳朶の透過を狙ったものである。出典は下記の非特許文献である。
これも失敗例である。
そこで従来の透過例を鑑みて出来るだけdを小さくする目的で図3のようなアイデアが考案されている。
図3のように入射光I0を指の肉厚面に接するが如く斜入射する。透過光Itは指の肉厚面に接するが如く斜め拡散出射する。これはdの出来るだけ小さいことを狙って指の表皮に斜入射、斜拡散出射の構成になっている。
この場合 拡散反射光(=透過光=皮膚に入り再び皮膚から外の空気域に出る光)を計測している。この場合の最近出願公開されている例を下記の特許文献に示す。
その図4のなかで読み取れるように斜光線入射の工夫がされているが実用的には失敗している。
The intention is to measure It and calculate α from ( 1 ) .
However, in practice, everything has failed. The reason is that αd is too large or the signal level of It is too small to detect α with the current detector.
FIG. 2 is a conventional example. It aims to penetrate the fingers and earlobe. The source is the following non-patent document.
This is also a failure example.
Therefore, an idea as shown in FIG. 3 has been devised for the purpose of making d as small as possible in view of the conventional transmission example.
As shown in FIG. 3, the incident light I0 is obliquely incident so as to be in contact with the thick surface of the finger. The transmitted light It diffuses and emits diagonally so as to touch the thick surface of the finger. This is configured to be obliquely incident on the epidermis of the finger and obliquely diffused and emitted with the aim of making d as small as possible.
In this case, diffuse reflected light (= transmitted light = light that enters the skin and exits from the skin to the outside air area again) is measured. An example of a recently published application in this case is shown in the following patent document.
Although the oblique ray incident is devised so that it can be read in FIG. 4, it has failed practically.

M.Noda et al.:Diabetologia,35(suppl),pA204(1994)
近赤外センシング技術(株)サイエンス フォーラム
M. Noda et al. : Diabetologia, 35 (suppl), pA204 (1994)
Near Infrared Sensing Technology Science Forum Co., Ltd.

従来の光を使った 非侵襲血糖計は 皮膚内に入った透過光が再び空気域に出ていく透過光 或は 拡散反射光には注目していた。それは(1)式によって表されるα・dが大きく 結果Itの信号レベルが小さく測定精度に問題があった。
それに対して本発明は 本発明は、皮膚内に入った透過光が再び空気域に出ていく透過光
或は 拡散反射光には注目していなく、空気域と媒体(皮膚)の境界面における反射率変化と人体の間質液の糖濃度に注目する。
本発明は 人体の間質液の糖濃度と血中の糖濃度が近似していることを利用して 皮膚表面の 反射率の変化から皮膚内の間質液の糖濃度を計測して 血中の糖濃度を算定する非侵襲血糖測定装置である。
Non-invasive blood glucose meters using conventional light have focused on transmitted light or diffusely reflected light, in which transmitted light that has entered the skin exits the air region again. As a result, the signal level of It was small and there was a problem in measurement accuracy.
On the other hand, the present invention does not pay attention to the transmitted light or the diffusely reflected light in which the transmitted light entering the skin goes out to the air region again, and at the boundary surface between the air region and the medium (skin). Pay attention to the change in reflectance and the sugar concentration in the interstitial fluid of the human body.
The present invention utilizes the fact that the sugar concentration in the interstitial fluid of the human body and the sugar concentration in the blood are close to each other, and measures the sugar concentration in the interstitial fluid in the skin from the change in the reflectance of the skin surface to measure the sugar concentration in the blood. It is a non-invasive blood glucose measuring device that calculates the sugar concentration of.

人体の皮膚表面に光が入射し 反射し 反射率測定の様子は例えば 図6に示す。指に必要な光が入射し、正反射角で光を受光素子Dで受け 電気信号により 人体の間質液の糖濃度を反映した複素数屈折率の境界面の反射率測定を行い 血中糖濃度を非侵襲でMで表示する。
次に反射率測定が 糖濃度にいかに関係するか説明する。
人体の間質液の糖濃度は 血中糖濃度と近似しており、間質液の糖濃度が反射率測定で求め得ることを示す。
透過率計測ではないことがポイントである。
図5は air空気とa-b面で接している 複素数屈折率Nの人体の間質液媒体を模式的に示したものである。
図5のように 入射角:Ψ0、反射角:Ψ0。反射率は次式で表される。
例えば インターネットHP
home.sato-gallery.com/hikaribussei/chap3.html
より
For example, FIG. 6 shows a state in which light is incident and reflected on the skin surface of the human body and the reflectance is measured. The light required for the finger is incident, the light is received by the light receiving element D at the specular reflection angle, and the reflectance of the interface of the complex refractive index that reflects the sugar concentration of the interstitial fluid of the human body is measured by the electric signal. Is displayed as M in a non-invasive manner.
Next, we explain how reflectance measurement is related to sugar concentration.
The sugar concentration in the interstitial fluid of the human body is close to the sugar concentration in the blood, indicating that the sugar concentration in the interstitial fluid can be obtained by measuring the reflectance.
The point is that it is not a transmittance measurement.
FIG. 5 schematically shows an interstitial fluid medium of a human body having a complex index of refraction N that is in contact with air at the ab plane.
As shown in Fig. 5, the incident angle: Ψ0, the reflection angle: Ψ0. The reflectance is expressed by the following equation.
For example, Internet HP
home.sato-gallery.com/hikaribussei/chap3.html
Than

Figure 0007080480000002
Figure 0007080480000002

ここで
N=n+iK
N:複素屈折率
n:実部屈折率
K:K消衰係数:α=4πK/λ:波長依存の吸収係数:濃度に比例
このKが求めたい血中糖濃度である。
Rp:入射光線、反射光線に紙面上垂直(図5の紙面上)の電界強度の反射率、
Rs:入射光線、反射光線に紙面垂直(図5の紙面垂直)の電界強度の反射率
定性的に(3.11)を理解するために
Ψ0=0
垂直入射、垂直反射の場合をかんがえる。
すると(3.11) は
here
N = n + iK
N: Complex index of refraction
n: Refractive index of the real part
K: K extinction coefficient: α = 4πK / λ: wavelength-dependent absorption coefficient: proportional to concentration This K is the blood sugar concentration to be obtained.
Rp: Reflectance of electric field strength perpendicular to the incident ray and reflected ray on the paper surface (on the paper surface in Fig. 5),
Rs: Reflectance qualitatively (3.11) of the electric field strength perpendicular to the paper surface (vertical to the paper surface in Fig. 5) to the incident and reflected rays Ψ0 = 0
Consider the case of vertical incident and vertical reflection.
Then (3.11) is

Figure 0007080480000003
Figure 0007080480000003

Rp=Rsとなり、Rと置き直すと

Rp = Rs, and if you replace it with R

Figure 0007080480000004
Figure 0007080480000004

K消衰係数:α=4πk/λ:波長依存の吸収係数:濃度に比例:間質液糖度に比例:血中糖度に比例 K extinction coefficient: α = 4πk / λ: Wavelength-dependent absorption coefficient: Proportional to concentration: Proportional to interstitial fluid sugar content: Proportional to blood sugar content

Figure 0007080480000005
Figure 0007080480000005

(2)は Rの計測からnをパラメーターにして Kが分かることをしめしている。nは人種、性別、年齢、職種、食物などによって変わることもあり得る。
そこで 実用上は 血中糖濃度の計測範囲を前もって網羅する必要があり、実用上問題ない 条件に従った生体区分によるRとKの対応表を用意し、計測したRから Kを求めることができる。
或は 表ではなく RとKの関係を 属性に従って関数近似でも問題ない。
事前の計測で 採血方式により 血糖値とKの関係が値付けされる。
次に nの値によらず RとKの関係が成り立つことを示す。
(2) shows that K can be found from the measurement of R with n as a parameter. n may vary depending on race, gender, age, occupation, food, etc.
Therefore, in practice, it is necessary to cover the measurement range of blood sugar concentration in advance, and it is possible to prepare a correspondence table of R and K according to the conditions that do not cause any problem in practical use, and to obtain K from the measured R. ..
Alternatively, there is no problem with function approximation of the relationship between R and K according to the attributes instead of the table.
The relationship between blood glucose level and K is priced by the blood sampling method in advance.
Next, we show that the relationship between R and K holds regardless of the value of n.

Figure 0007080480000006
Figure 0007080480000006

(7)の示唆するところはR0を前もって計測し(2)複素数Nの実数部nによらず計測時にはRから血中糖濃度Kを求めることができることをしめしている。
R0の意味するところは血中糖度(吸収係数)の波長依存性がゼロの場合の実数部屈折率に対応する反射率であり、糖分子を含めた他分子の総合実数部屈折率に対応する。吸収波長域Kが糖分子のみとすると 吸収域近傍のR0は吸収域の総合実数屈折に対応している。ここではnの波長に対する変化はKより小さいことを応用している。また(2)からnを消去する方法は 波長をパラメーターにしてRとKの独立式を実験的に複数求めることで得られる。血中糖の吸光係数(消衰係数)の波長依存性は8.5μ~10.0μ(FrontiersMed.Bio.Engng,Vol.9,No.2,pp.137-153(1999)と示されている。これによりRの計測には8.5μ~10.0μの波長を R0の計測には8.5μ未満か10.0μより長い波長を用いる。重要なことはR0が分かれば Rから総合実数屈折率を消去したKを求め得るということである。(5)によるR0とnの関係は厳密には人種、性別、年齢、食物などによって変わることもあり得る。そこで実用上は血中糖濃度の計測範囲を前もって網羅する必要があり、実用上問題ないnの生体区分によるRとKの対応表を用意し、計測したRから Kを求めることもきる。或は表ではなくRとKの関係を関数近似でも問題ない。事前の計測で 採血方式により血糖値とKの関係が値付けされる。
The suggestion of (7) is that R0 can be measured in advance and (2) the blood sugar concentration K can be obtained from R at the time of measurement regardless of the real part n of the complex number N.
The meaning of R0 is the reflectance corresponding to the real part refractive index when the wavelength dependence of the blood sugar content (absorption coefficient) is zero, and corresponds to the total real part refractive index of other molecules including sugar molecules. .. Assuming that the absorption wavelength region K is only sugar molecules, R0 near the absorption region corresponds to the total real number refraction in the absorption region. Here, we apply that the change of n with respect to the wavelength is smaller than K. Further, the method of eliminating n from (2) can be obtained by experimentally obtaining a plurality of independent equations of R and K with the wavelength as a parameter. The wavelength dependence of the absorption coefficient (extinction coefficient) of blood sugar is shown to be 8.5 μ to 10.0 μ (Frontiers Med. Bio. Engng , Vol. 9, No. 2, pp. 137-153 (1999)). As a result, a wavelength of 8.5μ to 10.0μ is used for the measurement of R, and a wavelength of less than 8.5μ or longer than 10.0μ is used for the measurement of R0. Strictly speaking, the relationship between R0 and n according to (5) may change depending on race, gender, age, food, etc. Therefore, in practice, the measurement range of blood sugar concentration should be measured in advance. It is necessary to cover it, and it is possible to prepare a correspondence table of R and K according to the biological classification of n, which is not a problem in practice, and to obtain K from the measured R. However , there is no problem. The relationship between the blood glucose level and K is priced by the blood sampling method in advance.

Figure 0007080480000007
Figure 0007080480000007

以上が基本的な本発明の理論骨子である。
しかし 実際にはRは RsとRsとは厳密には異なるRpの混在であり 境界面の微細構造も反射率に影響を与えるので 反射率Rと血中糖度(K比例)の対応データは 必要十分な実験による実用上問題ない領域(年齢分布、人種分布、男女差、食物などを考慮した)、の R、R0 、K データ或はR、n、Kデータでないといけない。
さらに被測定表面に等価的に透過フィルターに相当する、例えば 汚れとかが カバーされている場合を考慮する。このフィルターの透過因子をXとする。入射と反射の2重に因子がかかる。
すると(2)、(5)は
The above is the basic theoretical outline of the present invention.
However, in reality, R is a mixture of Rs and Rp, which are strictly different from Rs, and the fine structure of the interface also affects the reflectance, so the corresponding data of reflectance R and blood sugar content (K proportional) is necessary and sufficient. It must be R, R0, K data or R, n, K data of the area where there is no practical problem (taking into consideration age distribution, race distribution, gender difference, food, etc.) by various experiments.
Further, consider the case where the surface to be measured is equivalently covered with a transmission filter, for example, dirt. Let X be the transmission factor of this filter. There are two factors, incident and reflection.
Then (2) and (5) are

Figure 0007080480000008
Figure 0007080480000008

R’はXを踏まえた吸収波長域の反射 であり、R0’は吸収波長域外の反射率である。
(9)からXも性別、年齢、職種、人種、食物などによる区分けして使用することも可能であり、予め測定して生体のR’、X、n、K区分表をつくり R‘からK値を対応表により求めることも可能である。
(9)(10)は未知数X、nの2個であり、独立式が2個であり(Kの値は独立に選ぶことができ 2個以上の独立式が得られる)、X、nを求めることができる。
Xが求まれば(9)(10)からR,R0がもとまり(2)、(5)の展開が可能である。
この場合の生体区分にはXのデータを加味した生体区分表からR0’、R’からKを求めることも可能である。また光入射角はゼロが理想であるが 35度未満の入射角であれば実用に供すると考える。
R'is the reflection in the absorption wavelength range based on X, and R0'is the reflectance outside the absorption wavelength range.
From (9), X can also be classified according to gender, age, occupation, race, food, etc., and measured in advance to create a R', X, n, K classification table for living organisms from R'. It is also possible to obtain the K value from the correspondence table.
(9) (10) is two unknowns X and n, and there are two independent expressions (the value of K can be selected independently and two or more independent expressions can be obtained), and X and n are set. Can be asked.
If X is obtained, R and R0 can be obtained from (9) and (10), and development of (2) and (5) is possible.
In this case, it is also possible to obtain R0'from R0'and K from R'from the biological classification table including the data of X for the biological classification. Ideally, the light incident angle should be zero, but if the incident angle is less than 35 degrees, it will be put to practical use.

本発明例として (2) 或は(9)を応用した 血中糖の吸収波長8.5μ~10.0μのいずれかの波長を用いて反射率を計測しCO2ガスレーザーを使用し光入射角ゼロ近傍の35度未満
の入射角を持つ 生体区分表をもつ血中糖濃度を計測する非侵襲血糖計である。
As an example of the present invention, the reflectance is measured using any of the absorption wavelengths of blood sugar of 8.5 μ to 10.0 μ to which (2) or (9) is applied, and the light incident angle is near zero using a CO2 gas laser. It is a non-invasive blood glucose meter that measures blood sugar concentration with a biological classification table with an incident angle of less than 35 degrees.

本発明の別例として(5)或は(10)を応用した血中糖の吸収波長8.5μ~10.0μのいずれかの波長を用いて反射率を計測し、血中糖の吸収無しの波長として8.5μに近い8.5μより短波長の波長を用いるか 10.0μより長波長を用いてCO2ガスレーザーを使用し光入射角ゼロ近傍の35度未満の入射角を持つ血中糖濃度を計測する非侵襲血糖計である。図6は本発明の別例の主要な構成ブロック図である。LはCO2ガスレーザー光源であり、波長9.2~10.8μmの複数輝線状の光束径が数mm程度の発振周波数1KHZ~100KHZで射出される。出射光のレベルはMsの分岐ミラーにより受光素子Mrにより監視する。LはCO2レーザー光源に限定するものではない。別途光パラメトリック発振器であってもよい。FはLから必要な波長を取り出す装置である。血中糖の吸光係数(消衰係数)の波長依存性は8.5μ~10.0μ(Frontiers
Med.Biol.Engng,Vol.9,No.2,pp.137-153(1999))と示されている。必要な波長は 例えば、図7に示すように 9.6μ、10.2μ、bl遮光の3種を選ぶ。rtb回転板に光通過窓をもたせ9.6μの回折フィルター、10.2μの回折フィルター、遮光の各選択が巡回する構成にする。rtb回転のサイクルは受光素子のレスポンにあわせる。熱電対の場合は概1Hzにする。これらの回折フィルターは光量レベルの調整もNDフィルターなどで行う。これら回折フィルターは干渉フィルターであってもよい。あるいは回転板は横スライドの往復機構を持つ手段であってもよい。
あるいは電磁気か音響による回折格子の定数を変化さす不動型の光学フィルターであってもよい。或は9.6μと遮光の2種であってもよい。図7のLaserはレーザー光である。図6のM1、M2、M3は光路を変更するためのミラーで1枚~複数枚使う。FXは被測定物、例えば図8に示の固定装置であり 測定時間内固定される。例えば親指の第一関節から指先までの肉厚表皮を使う場合、図8に示すように入射光穴に抑え板で第一関節から指先が動かないように固定する。抑え板はバネ性の金属で方側は固定されており親指を挿入して他の側に例えば図のように回転ネジで圧迫固定する。親指を 固定し易くするため 固定板に 指肉厚の堀の形状を設け、略中央に入射光穴をあける。この抑え板はくりかえし使用が可能なテープで少なくとも片側で例えばマジック固定であってもよい。あるいは洗濯バサミ状の 指抑えであってもよい。また この固定装置は反射光Irが最大になるように 自動的或は手動により機構が3次元的に動かし得る。メカニズムは図示していないが 組み立てロボットなどの公知手段を使う。自動化のメカニズムの原理は 例えば図9にしめす。少なくともnn法線方向に動くstm直進手段(第一手段)と入射点を中心に紙面垂直の回転軸(rt1回転1)を有する手段(第二手段)と入射点を中心に 紙面上の法線直角の回転軸(rt2回転2)を有する手段(第三手段)をもち、これら手段を用いて自動あるいは手動で最適位置にfxb固定治具とD受光素子を固定する。最適化の方法は例えば一手段の微小変動でIr反射光の増減をみながら局部最大値をもとめ、次に第二手段の微小変動でIrの増減をみながら局部最大値をもとめ、次に第三手段の微小変動でIrの増減をみながら局部最大値をもとめ て位置を固定する。これらを自動あるいは手動でおこなう。pbは圧着板である。Dは受光素子である。入射角と反射角が出来るだけ0度になるようにしかつ受光量を多くする。そのために受光素子の縁近くを入射光が通り、受光部と被測定部を近接さす。受光素子は9.2μ~10.8μに感度があり、高感度のものほどよい。強制冷却型素子でもいいしあるいは常温タイプの熱電対でもよい。Mは必要な表示を例えば血糖濃度 時刻時間などを算出表示するもので、又予め必要な生体区分ごとのRとKの対応表とか 測定ごとの記憶とか、測定ごとの出力などをする装置である。
9.6μ波長については
Ir=反射率R×I9・・・・・(11)
I9入射光はMrで計測し、IrはDで測定する。
(11)によりRが計測される。遮光については遮光によりノイズレベルを測定する。
夫々の計測値からノイズレベルを引いた値をIr、I9とする。
10.2μについては糖吸収外の近傍波長である。
As another example of the present invention, the reflectance is measured using any wavelength of the absorption wavelength of blood sugar of 8.5 μ to 10.0 μ to which (5) or (10) is applied, and the wavelength without absorption of blood sugar is measured. Use a wavelength shorter than 8.5μ, which is close to 8.5μ, or use a CO2 gas laser with a wavelength longer than 10.0μ to measure the blood sugar concentration with an incident angle of less than 35 degrees near zero light incident angle. It is a non-invasive blood meter. FIG. 6 is a main block diagram of another example of the present invention. L is a CO2 gas laser light source, and is emitted at an oscillation frequency of 1 KHZ to 100 KHZ having a wavelength of 9.2 to 10.8 μm and a luminous flux diameter of a plurality of emission lines of about several mm. The level of the emitted light is monitored by the light receiving element Mr by the branch mirror of Ms. L is not limited to CO2 laser light sources. It may be an optical parametric oscillator separately. F is a device that extracts the required wavelength from L. The wavelength dependence of the absorption coefficient (extinction coefficient) of blood sugar is 8.5μ to 10.0μ ( Frontiers ).
It is shown as Med.Biol.Engng , Vol.9, No.2, pp.137-153 (1999)). For example, as shown in Fig. 7, select three wavelengths required: 9.6μ, 10.2μ, and bl shading. The rtb rotating plate is provided with a light passage window so that the selection of 9.6μ diffraction filter, 10.2μ diffraction filter, and shading can be circulated. The cycle of rtb rotation is adjusted to the response of the light receiving element. In the case of a thermocouple, it should be approximately 1 Hz. With these diffraction filters, the light intensity level is also adjusted with an ND filter or the like. These diffraction filters may be interference filters. Alternatively, the rotating plate may be a means having a reciprocating mechanism for lateral slide.
Alternatively, it may be an immovable optical filter that changes the constant of the diffraction grating by electromagnetic or acoustic. Alternatively, there may be two types, 9.6μ and shading. The Laser in FIG. 7 is a laser beam. M1, M2, and M3 in FIG. 6 are mirrors for changing the optical path, and one or more mirrors are used. The FX is an object to be measured, for example, a fixing device shown in FIG. 8, and is fixed within the measurement time. For example, when using a thick epidermis from the first joint of the thumb to the fingertip, fix it in the incident light hole with a holding plate so that the fingertip does not move from the first joint as shown in FIG. The holding plate is fixed on one side with spring-loaded metal, and the thumb is inserted and pressed and fixed on the other side with a rotating screw, for example, as shown in the figure. In order to make it easier to fix the thumb, a moat with a thick finger is provided on the fixing plate, and an incident light hole is made in the center. This holding plate is a tape that can be used repeatedly and may be, for example, magically fixed on at least one side. Alternatively, it may be a clothespin-like finger holder. In addition, this fixing device can automatically or manually move the mechanism three-dimensionally so that the reflected light Ir is maximized. Although the mechanism is not shown, a known means such as an assembly robot is used. The principle of the automation mechanism is shown in Fig. 9 for example. At least the stm straight-ahead means (first means) that moves in the normal direction of nn, the means (second means) having a rotation axis (rt1 rotation 1) perpendicular to the paper surface around the incident point, and the normal on the paper centering on the incident point. It has means (third means) having a right-angled rotation axis (rt2 rotation 2), and uses these means to automatically or manually fix the fxb fixing jig and the D light receiving element to the optimum position. The optimization method is, for example, to obtain the local maximum value while observing the increase / decrease of Ir reflected light by the minute fluctuation of one means, then to obtain the local maximum value while observing the increase / decrease of Ir by the minute fluctuation of the second means. The position is fixed by finding the local maximum value while observing the increase / decrease of Ir by the minute fluctuation of the three means. Do these automatically or manually. pb is a crimp plate. D is a light receiving element. Make the angle of incidence and the angle of reflection as 0 degrees as possible and increase the amount of light received. Therefore, the incident light passes near the edge of the light receiving element, and the light receiving portion and the measured portion are brought close to each other. The light receiving element has a sensitivity of 9.2μ to 10.8μ, and the higher the sensitivity, the better. It may be a forced cooling type element or a normal temperature type thermocouple. M is a device that calculates and displays necessary displays such as blood glucose concentration, time, and time, and also outputs a correspondence table of R and K for each biological category, memory for each measurement, and output for each measurement, which are necessary in advance. ..
For 9.6μ wavelength
Ir = reflectance R x I9 ... (11)
I9 incident light is measured by Mr, and Ir is measured by D.
R is measured by (11). For shading, the noise level is measured by shading.
Let Ir and I9 be the values obtained by subtracting the noise level from each measured value.
For 10.2μ, it is a near wavelength outside the sugar absorption.

K=0
Ir0 =R0×I0 ・・・・・(12)
I0はMrで計測し、Ir0はDで測定する。
(12)によりR0が計測される。
K = 0
Ir0 = R0 × I0 ・ ・ ・ ・ ・ (12)
I0 is measured by Mr and Ir0 is measured by D.
R0 is measured by (12).

この場合も遮光時のノイズレベルを計測する。
このノイズ値を 夫々の入射値、反射値 から引く。
その値がIr0、I0であり(12)からR0を求める。
更に(3.11)は人体の血中糖度だけに適用され得るものではなく、同様の応用は植物の果物などの生体糖度計測にも適用できる。
被計測体を植物の生体に変えればよい。
本発明は 具体例として糖分子に注目したものであるが、非糖分子であっても(3.11)で示唆される分子が吸収波長をもち液中に混在する場合の分子量計測にも適用され得る。
In this case as well, the noise level at the time of shading is measured.
This noise value is subtracted from the incident value and reflection value, respectively.
The values are Ir0 and I0, and R0 is obtained from (12).
Furthermore, (3.11) can be applied not only to the blood sugar content of the human body, but a similar application can be applied to the measurement of the biosugar content of fruits of plants and the like.
The object to be measured may be changed to a living body of a plant.
Although the present invention focuses on sugar molecules as a specific example, it can also be applied to molecular weight measurement when molecules suggested in (3.11) have an absorption wavelength and are mixed in a liquid even if they are non-sugar molecules. ..

透過光の血中糖度計測の代わり 境界面の反射率を計測して非侵襲血中糖度計測をする。
Instead of measuring the blood sugar content of transmitted light, the reflectance of the boundary surface is measured to measure the non-invasive blood sugar content.

透過率計測の概念図Conceptual diagram of transmittance measurement 近赤外光を利用する従来例Conventional example using near infrared light 表皮の透過光を利用する概念図Conceptual diagram using the transmitted light of the epidermis 斜入射光を利用する従来例Conventional example using oblique incident light 境界面の反射率の説明図Explanatory drawing of the reflectance of the boundary surface 本発明の主ブロック図Main block diagram of the present invention 本発明の選択波長の説明図Explanatory drawing of selection wavelength of this invention 本発明の指固定説明図Explanatory drawing of finger fixing of this invention 本発明の指固定の調整説明図Adjustment explanatory view of finger fixation of this invention

図6に示す必要な手段から成る。 It consists of the necessary means shown in FIG.

I0:入射光、It:透過光、air:空気、N:複素数屈折率、n:実部屈折率
K:虚数部屈折率=消耗係数(∝血中糖濃度)、Ms:分岐ミラー
L:レーザー光源、F:フィルター、Mr:受光部、M1:ミラー
M2:ミラー、M3:ミラー、Fx:固定装置、D:受光部、M:表示演算装置
Laser:レーザー光、rtb:回転板、bl:遮光板、9.6μ:9.6μレーザー
10.2μ:10.2μレーザー、rt:回転、rta:回転軸、stm:直進移動、
fxb:固定板、rt1:回転1、rt2:回転2、pb:圧着板、D:受光部、
I9:入射光、nn:法線、Ir:反射光
I0: incident light, It: transmitted light, air: air, N: complex index of refraction, n: real index of refraction
K: Refractive index of imaginary part = Consumption coefficient (∝ Blood sugar concentration), Ms: Branched mirror
L: Laser light source, F: Filter, Mr: Light receiving part, M1: Mirror
M2: Mirror, M3: Mirror, Fx: Fixed device, D: Light receiving part, M: Display arithmetic unit
Laser: laser light, rtb: rotating plate, bl: shading plate, 9.6μ: 9.6μ laser
10.2μ: 10.2μ laser, rt: rotation, rta: rotation axis, stm: straight movement,
fxb: Fixed plate, rt1: Rotation 1, rt2: Rotation 2, pb: Crimping plate, D: Light receiving part,
I9: Incident light, nn: Normal, Ir: Reflected light

Claims (18)

光の入射角にほぼ対応する正反射角で計測する、測定部位として人体の表皮膚内部に間質液が存在する部位の皮膚面の反射率を計測する計測部と、
式1のRpと式2のRsが等しくなると仮定した式3から実部屈折率nを消去した計算式に基づいて、前記計測部により計測された反射率と、血中の糖濃度の波長依存性がゼロの場合の実部屈折率に対応する反射率とから、消衰係数Kに対応する血中の糖濃度を算出する演算算出部を備えた非侵襲血糖計。
Figure 0007080480000009
n:実部屈折率(N=n+iK、Nは複素屈折率)
K:消衰係数
Rp:入射光線、反射光線に紙面上垂直の電界強度の反射率
Rs:入射光線、反射光線に紙面垂直の電界強度の反射率
A measuring unit that measures the reflectance of the skin surface of the part where interstitial fluid exists inside the surface skin of the human body as a measuring part, which measures at a specular reflection angle that almost corresponds to the incident angle of light.
The reflectance measured by the measuring unit and the wavelength dependence of the sugar concentration in the blood are based on the calculation formula in which the real refractive index n is eliminated from the formula 3 assuming that the Rp of the formula 1 and the Rs of the formula 2 are equal. A non-invasive blood glucose meter equipped with an arithmetic calculation unit that calculates the sugar concentration in the blood corresponding to the extinction coefficient K from the reflectance corresponding to the real refractive index when the sex is zero .
Figure 0007080480000009
n: Real index of refraction (N = n + iK, N is complex index of refraction)
K: Extinction coefficient
Rp: Reflectance of electric field strength perpendicular to the incident and reflected rays on the paper
Rs: Reflectance of electric field strength perpendicular to the incident and reflected rays
反射率の計測にCO2ガスレーザーを使用し、入射角35度未満で使用される請求項1に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 1, wherein a CO2 gas laser is used for measuring the reflectance and the angle of incidence is less than 35 degrees. 反射率の計測に血中糖の吸収波長8.5μ~10.0μのいずれかの波長を用いて反射率を計測する請求項2に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 2, wherein the reflectance is measured by using any wavelength of blood sugar absorption wavelengths of 8.5μ to 10.0μ for measuring the reflectance. 血中糖の吸収波長8.5μ~10.0μのいずれかの波長を用いて反射率を計測し、血中糖の吸収無しの波長として8.5μに近い8.5μより短波長の波長を使うか10.0μに近い10.0μより長波長を使用するCO2ガスレーザーを使用する請求項3に記載の非侵襲血糖計。 Measure the reflectance using one of the wavelengths of blood sugar absorption wavelength of 8.5μ to 10.0μ, and use a wavelength shorter than 8.5μ, which is close to 8.5μ, as the wavelength without blood sugar absorption, or 10.0μ. The non-invasive blood glucose meter according to claim 3, wherein a CO2 gas laser using a wavelength longer than 10.0 μ is used. 被計測部位を固定板に圧着板などで 固定する手段を有する請求項3に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 3, further comprising a means for fixing the measured part to the fixing plate with a crimping plate or the like. 被計測部位を固定板に圧着板などで固定する手段を有する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 4 , further comprising a means for fixing the measured part to the fixing plate with a crimping plate or the like. 被計測部位と入射光と反射光と受光素子の関係を正反射光が受光素子で受けられるように調整機能を有する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 6 , which has a function of adjusting the relationship between the measured portion, the incident light, the reflected light, and the light receiving element so that the specular reflected light can be received by the light receiving element. 血中糖の吸収波長9.3μ、9.4μ、9.5μ或は9.6μいずれかの波長を用いて反射率を計測し、夫々の回折フィルターと遮光板を回転板に取り付けた請求項に記載の非侵襲血糖計。 The 7 . Non-invasive blood glucose meter. 血中糖の吸収無しの波長として10.2μを用いる手段として、夫々の回折フィルターと遮光板を回転板に取り付けた請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 8 , wherein a diffraction filter and a light-shielding plate are attached to a rotating plate as a means of using 10.2μ as a wavelength without absorption of blood sugar. 予め血中糖の吸収波長による反射率と糖濃度の対応表を対象生体区分により作り、反射率から血糖値を算出する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 9 , wherein a correspondence table of the reflectance and the sugar concentration according to the absorption wavelength of blood sugar is prepared in advance according to the target biological category, and the blood glucose level is calculated from the reflectance. 予め血中糖の吸収波長による反射率と糖濃度の対応表を対象生体区分により作り、反射率から血糖値を算出する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 7 , wherein a correspondence table of the reflectance and the sugar concentration according to the absorption wavelength of blood sugar is prepared in advance according to the target biological category, and the blood glucose level is calculated from the reflectance. 予め血中糖の吸収波長による反射率と糖濃度の対応表を対象生体区分により作り、反射率から血糖値を算出する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 8 , wherein a correspondence table of the reflectance and the sugar concentration according to the absorption wavelength of blood sugar is prepared in advance according to the target biological category, and the blood glucose level is calculated from the reflectance. 被計測部位と入射光と反射光と受光素子の関係を正反射光が受光素子で受けられるように調整機能を有する請求項に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 4 , which has a function of adjusting the relationship between the measured part, the incident light, the reflected light, and the light receiving element so that the specular reflected light can be received by the light receiving element. 血中糖の吸収波長9.3μ、9.4μ、9.5μ或は9.6μいずれかの波長を用いて反射率を計測し、夫々の回折フィルターと遮光板を回転板に取り付けた請求項13に記載の非侵襲血糖計。 The thirteenth aspect of claim 13 , wherein the reflectance is measured using any of the absorption wavelengths of blood sugar of 9.3 μ, 9.4 μ, 9.5 μ, or 9.6 μ, and each diffraction filter and light-shielding plate are attached to a rotating plate. Non-invasive blood glucose meter. 予め血中糖の吸収波長による反射率と糖濃度の対応表を対象生体区分により作り、反射率から血糖値を算出する請求項14に記載の非侵襲血糖計。 The non-invasive glucose meter according to claim 14 , wherein a correspondence table of the reflectance and the sugar concentration according to the absorption wavelength of blood sugar is prepared in advance according to the target biological category, and the blood glucose level is calculated from the reflectance. 光の入射角にほぼ対応する正反射角で計測する、測定部位として人体を除いた生体の表皮膚内部に間質液が存在する部位の皮膚面の反射率を計測する計測部と、
式1のRpと式2のRsが等しくなると仮定した式3から実部屈折率nを消去した計算式に基づいて、前記計測部により計測された反射率と、血中の糖濃度の波長依存性がゼロの場合の実部屈折率に対応する反射率とから、消衰係数Kに対応する生体中の糖濃度を算出する演算算出部を備えた非侵襲糖度計。
Figure 0007080480000010
n:実部屈折率(N=n+iK、Nは複素屈折率)
K:消衰係数
Rp:入射光線、反射光線に紙面上垂直の電界強度の反射率
Rs:入射光線、反射光線に紙面垂直の電界強度の反射率
A measuring unit that measures the reflectance of the skin surface of the part where interstitial fluid exists inside the surface skin of the living body excluding the human body, which measures at the specular reflection angle that almost corresponds to the incident angle of light.
The reflectance measured by the measuring unit and the wavelength dependence of the sugar concentration in the blood are based on the calculation formula in which the real refractive index n is eliminated from the formula 3 assuming that the Rp of the formula 1 and the Rs of the formula 2 are equal. A non-invasive sugar content meter equipped with an arithmetic calculation unit that calculates the sugar concentration in the living body corresponding to the extinction coefficient K from the reflectance corresponding to the real part refractive index when the sex is zero .
Figure 0007080480000010
n: Real index of refraction (N = n + iK, N is complex index of refraction)
K: Extinction coefficient
Rp: Reflectance of electric field strength perpendicular to the incident and reflected rays on the paper
Rs: Reflectance of electric field strength perpendicular to the incident and reflected rays
反射率の計測にCO2ガスレーザーを使用し、入射角35度未満で使用される請求項16に記載の非侵襲糖度計。 The non-invasive sugar content meter according to claim 16 , wherein a CO2 gas laser is used for measuring the reflectance and the angle of incidence is less than 35 degrees. 糖の吸収波長8.5μ~10.0μのいずれかの波長を用いて反射率を計測し、 糖の吸収無しの波長として8.5μに近い8.5μより短波長の波長を使うか10.0μに近い10.0μより長波長を使用する請求項17に記載の非侵襲糖度計。 The reflectance is measured using one of the sugar absorption wavelengths of 8.5μ to 10.0μ, and the wavelength without sugar absorption is either shorter than 8.5μ, which is close to 8.5μ, or 10.0μ, which is close to 10.0μ. The non-invasive sugar content meter according to claim 17 , which uses a longer wavelength.
JP2018135768A 2018-07-19 2018-07-19 Non-invasive blood sugar meter Active JP7080480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135768A JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135768A JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Publications (3)

Publication Number Publication Date
JP2020010880A JP2020010880A (en) 2020-01-23
JP2020010880A5 JP2020010880A5 (en) 2021-09-09
JP7080480B2 true JP7080480B2 (en) 2022-06-06

Family

ID=69170568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135768A Active JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Country Status (1)

Country Link
JP (1) JP7080480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102511907B1 (en) * 2021-05-26 2023-03-20 건국대학교 글로컬산학협력단 Non-invasive biomaterial sugar concentration measurement system and method using optical module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175794A (en) 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009201852A (en) 2008-02-29 2009-09-10 Panasonic Corp Living body composition concentration measuring instrument
JP2012191969A (en) 2011-03-14 2012-10-11 Shinshu Univ Biological information measuring apparatus
US20130155410A1 (en) 2010-07-07 2013-06-20 Melys Diagnostics Ltd Optical Assembly and Method for Determining Analyte Concentration
JP2016117520A (en) 2014-12-22 2016-06-30 リンテック株式会社 Sheet feeder and feeding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215679A (en) * 1996-02-09 1997-08-19 Matsushita Electric Works Ltd Concentration measuring apparatus for humor component
US10806385B2 (en) * 2015-01-21 2020-10-20 National Institutes For Quantum And Radiological Science And Technology Device for measuring concentration of substance in blood, and method for measuring concentration of substance in blood

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175794A (en) 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009201852A (en) 2008-02-29 2009-09-10 Panasonic Corp Living body composition concentration measuring instrument
US20130155410A1 (en) 2010-07-07 2013-06-20 Melys Diagnostics Ltd Optical Assembly and Method for Determining Analyte Concentration
JP2012191969A (en) 2011-03-14 2012-10-11 Shinshu Univ Biological information measuring apparatus
JP2016117520A (en) 2014-12-22 2016-06-30 リンテック株式会社 Sheet feeder and feeding method

Also Published As

Publication number Publication date
JP2020010880A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CA1247397A (en) Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues
EP0948284B1 (en) Monitoring of tissue analytes by infrared radiation
AU711422B2 (en) Process and device for determining an analyte contained in a scattering matrix
JP3433534B2 (en) Method and apparatus for measuring scattering and absorption characteristics in scattering medium
Pickering et al. Double-integrating-sphere system for measuring the optical properties of tissue
JP4033900B2 (en) Improved diffuse reflectance monitor device
JP3107927B2 (en) Apparatus and method for measuring optical information of scattering medium
CN101557752B (en) Method for the glucose concentration in pulsational blood
JP3526652B2 (en) Optical measuring method and optical measuring device
KR20010090791A (en) Methods and apparatus for tailoring spectorscopic calibration models
JP5581222B2 (en) Apparatus and method for non-invasive measurement of the concentration of a substance in the blood of a subject
WO2001075421A1 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
JP2005513491A (en) Method and apparatus for the determination of light transport parameters and analytes in biological matrices
WO2007072300A2 (en) System for non-invasive measurement of blood glucose concentration
JPH06186159A (en) Non-destructive measurement method for fruits sugar degree with near-infrared transmission spectrum
JP2011511694A (en) Apparatus and method for noninvasively measuring substance concentration in blood using light retroreflected from the retina
JP7080480B2 (en) Non-invasive blood sugar meter
US5694930A (en) Device for qualitative and/or quantative analysis of a sample
WO2003071254A1 (en) Apparatus for measuring biological information and method for measuring biological information
JP2020010880A5 (en)
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP2013088138A (en) Refraction factor measuring device, concentration measuring device and method thereof
WO2015167417A1 (en) Optical measurement system having an integrated internal reflection element and array detector
Di Rocco et al. CW laser transilluminance in turbid media with cylindrical inclusions
Hlavác Measurement of tissue optical properties

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7080480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150