JP7074507B2 - Pollution risk assessment method for water treatment system - Google Patents

Pollution risk assessment method for water treatment system Download PDF

Info

Publication number
JP7074507B2
JP7074507B2 JP2018039537A JP2018039537A JP7074507B2 JP 7074507 B2 JP7074507 B2 JP 7074507B2 JP 2018039537 A JP2018039537 A JP 2018039537A JP 2018039537 A JP2018039537 A JP 2018039537A JP 7074507 B2 JP7074507 B2 JP 7074507B2
Authority
JP
Japan
Prior art keywords
treatment system
water treatment
water
components
risk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039537A
Other languages
Japanese (ja)
Other versions
JP2019152602A (en
Inventor
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2018039537A priority Critical patent/JP7074507B2/en
Publication of JP2019152602A publication Critical patent/JP2019152602A/en
Application granted granted Critical
Publication of JP7074507B2 publication Critical patent/JP7074507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、蛍光法による処理原水中の有機物識別法を用いた水処理システムの汚染リスク評価方法に関する。 The present invention relates to a pollution risk assessment method for a water treatment system using an organic substance identification method in treated raw water by a fluorescence method.

イオン交換樹脂を用いた水処理システムは、原水として工業用水を使用しており、河川水や湖沼水を起源とする工業用水には、糖、タンパク質、土壌由来の有機物が含まれている。土壌由来の有機物は、地域によって組成が異なることが一般的に知られており、総称してフミン質といわれている。フミン質とは植物などが微生物によって分解されるときの最終分解生成物で、直鎖の炭化水素と多環芳香族化合物(分子量100~10万程度)の難分解性高分子化合物である。土壌と同じ褐色のフミン酸やフルボ酸があり腐植質ともいう。フミン酸の多くは、凝集沈殿、急速ろ過等による一般的な処理法で除去できるが、フルボ酸等は除去できない。フミン酸は酸に不溶であるが、フルボ酸は酸に可溶でCOOH基、OH基が多く親水性が高く、分子量は小さい。このため、糖、タンパク質、フミン酸は、通常行われる前処理(凝集、pH調整、濾過等)によって除去することができ、フルボ酸以外の有機酸や低分子は、イオン交換樹脂に付着しても、通常の再生操作によって容易に剥離除去することができる。一方、活性炭を用いた吸着塔をイオン交換樹脂を充填した樹脂塔の前段に配してフルボ酸を含む有機物全般を除去することができるが、吸着能を越えると破瓜が生じて有機物がイオン交換樹脂を充填した樹脂塔に流入してしまう。したがって、処理原水中の有機物を把握することが重要となる。 Water treatment systems using ion exchange resins use industrial water as raw water, and industrial water originating from river water and lake water contains sugars, proteins, and organic substances derived from soil. It is generally known that soil-derived organic matter has different compositions depending on the region, and is collectively called humic acid. Fumin is a final decomposition product when plants and the like are decomposed by microorganisms, and is a persistent polymer compound consisting of a linear hydrocarbon and a polycyclic aromatic compound (molecular weight of about 100,000 to 100,000). It has the same brown humic acid and fulvic acid as the soil and is also called humus. Most of humic acid can be removed by a general treatment method such as coagulation precipitation and rapid filtration, but fulvic acid and the like cannot be removed. Humic acid is insoluble in acid, but fulvic acid is soluble in acid, has many COOH groups and OH groups, is highly hydrophilic, and has a small molecular weight. Therefore, sugars, proteins, and humic acid can be removed by normal pretreatment (aggregation, pH adjustment, filtration, etc.), and organic acids and small molecules other than fulvic acid adhere to the ion exchange resin. However, it can be easily peeled off and removed by a normal regeneration operation. On the other hand, an adsorption tower using activated carbon can be placed in front of the resin tower filled with ion exchange resin to remove all organic substances containing fulvic acid, but if the adsorption capacity is exceeded, deflowering will occur and the organic substances will exchange ions. It flows into the resin tower filled with resin. Therefore, it is important to understand the organic matter in the treated raw water.

原水中の有機物量や活性炭を用いた吸着塔の有機物の除去能力は、水中の全有機炭素濃度(以降TOC濃度)で管理されるのが一般的であるが、TOC濃度管理では、有機物の分類は実施できず、イオン交換樹脂の性能を低下させる可能性がある有機物であるかは評価できない。 The amount of organic matter in raw water and the ability of the adsorption tower to remove organic matter using activated charcoal are generally controlled by the total organic carbon concentration in water (hereinafter referred to as TOC concentration), but in TOC concentration control, the classification of organic matter is performed. Cannot be carried out, and it cannot be evaluated whether it is an organic substance that may reduce the performance of the ion exchange resin.

特許文献1には、イオン交換装置に供給される供給水の水質の良否を評価する評価方法と、この評価方法に基づいてイオン交換装置の運転を管理する方法が開示されている。この評価方法は、有機炭素検出型サイズ排除クロマトグラフ法(LC-OCD)による有機物評価方法が提案されており、定性分析と組み合わせることで、フルボ酸のみを分析できるとされている。 Patent Document 1 discloses an evaluation method for evaluating the quality of the supply water supplied to the ion exchange device, and a method for managing the operation of the ion exchange device based on this evaluation method. As this evaluation method, an organic matter evaluation method by an organic carbon detection type size exclusion chromatograph method (LC-OCD) has been proposed, and it is said that only fulvic acid can be analyzed by combining with qualitative analysis.

特開2015-226866号公報JP-A-2015-226866

特許文献1における3D-EEM測定はあくまでも定性分析である。つまり、定性分析の結果、フルボ酸と同等の分子量を有する化合物の存在がないことを確認して、LC-OCDでの評価を行っている。 The 3D-EEM measurement in Patent Document 1 is just a qualitative analysis. That is, as a result of qualitative analysis, it is confirmed that there is no compound having a molecular weight equivalent to that of fulvic acid, and evaluation is performed by LC-OCD.

LC-OCDでの評価では、前述の通り有機物、特にフミン酸とフルボ酸は分画できないために評価できない。さらに、フルボ酸等の腐植質にしても、蛍光分析との併用によって他の同等分子量の成分が存在しない場合にのみ可能である。さらに、LC-OCD分析には100分近くの時間を要する。 In the evaluation by LC-OCD, as described above, organic substances, particularly humic acid and fulvic acid, cannot be evaluated because they cannot be fractionated. Furthermore, humus such as fulvic acid is possible only when other components of equivalent molecular weight are not present in combination with fluorescence analysis. Furthermore, LC-OCD analysis takes nearly 100 minutes.

また、処理原水は地域や季節によって含有される有機成分の組成が異なり、フルボ酸を多く含む水を活性炭処理なしで通水すると、陰イオン交換樹脂の汚染リスクが高くなる。逆に、フミン酸の方が多く、フルボ酸の量が少なければ、前段での凝集等の処理で十分な有機物除去が可能となり、吸着塔での活性炭の再生あるいは交換時期を延長できる場合もある。 In addition, the composition of organic components contained in the treated raw water differs depending on the region and season, and if water containing a large amount of fulvic acid is passed without activated carbon treatment, the risk of contamination of the anion exchange resin increases. On the contrary, if the amount of humic acid is larger and the amount of fulvic acid is smaller, it is possible to sufficiently remove organic matter by treatment such as aggregation in the previous stage, and it may be possible to extend the regeneration or replacement period of activated carbon in the adsorption tower. ..

このように、処理原水に合わせた水処理システムを構築することで、不必要な前段処理を無くしたり、減じたりしてシステムコストを抑え、必要な薬剤の注入や吸着塔内の活性炭の再生あるいは交換時期を把握することは、技術的に極めて高い意義がある。 In this way, by constructing a water treatment system that matches the treated raw water, unnecessary pre-treatment can be eliminated or reduced to reduce the system cost, and the necessary chemicals can be injected or activated carbon in the adsorption tower can be regenerated. Understanding the replacement time is technically extremely significant.

そこで、本発明では水処理システムにおける原水中の有機物、特に問題となる腐植質等について、原水中の有機物の把握が可能となる有機物識別法及び該識別法を適用した水処理システムのリスク評価方法を提供することを目的とする。 Therefore, in the present invention, an organic matter identification method capable of grasping organic matter in raw water and a risk evaluation method of a water treatment system to which the identification method is applied for organic matter in raw water in a water treatment system, particularly problematic humus, etc. The purpose is to provide.

本発明は、水処理システムにおける処理原水中の有機物を蛍光光度法により測定し、ソフト的に分画する方法を提供する。 The present invention provides a method for measuring organic substances in treated raw water in a water treatment system by a fluorometric method and fractionating them in a soft manner.

すなわち、本発明の一態様によれば、
イオン交換樹脂を用いた水処理システムの汚染リスク評価方法であって、
原水を三次元蛍光光度法により測定し、フミン質のピークを含む蛍光強度データを得る工程と、
得られた蛍光強度データを、PARAFAC解析により複数の成分に分離する工程と、
該分離された各成分のスコア値を主成分分析する工程と、
該主成分分析された結果から第1主成分と第2主成分の固有ベクトル値を、第1主成分をX軸、第2主成分をY軸とするX-Y平面にプロットして、そのプロット点の方向と基準点からの距離により、成分の分画と量を把握する工程と、
を有する有機物識別法を用いて、少なくともフミン酸とフルボ酸の成分を分画して把握し、水処理システムにおけるイオン交換樹脂の有機物による汚染リスクを予測して水処理システムにおけるイオン交換樹脂前段の処理手段および処理方法を前記原水に合わせて変更することを特徴とする水処理システムの汚染リスク評価方法、が提供される。
That is, according to one aspect of the present invention.
It is a pollution risk assessment method for water treatment systems using ion exchange resins.
The process of measuring raw water by the three-dimensional fluorometric method and obtaining fluorescence intensity data including the peak of fuminic substance, and
A step of separating the obtained fluorescence intensity data into a plurality of components by PARAFAC analysis, and
A step of principal component analysis of the score value of each separated component, and
From the results of the principal component analysis, plot the eigenvector values of the first principal component and the second principal component on the XY plane with the first principal component as the X axis and the second principal component as the Y axis, and plot the eigenvector values. The process of grasping the fractionation and amount of components based on the direction of the point and the distance from the reference point,
At least the components of fumic acid and fulboic acid are fractionated and grasped by using the organic substance identification method having the above, and the risk of contamination of the ion exchange resin by the organic substance in the water treatment system is predicted. Provided is a method for assessing the pollution risk of a water treatment system, which comprises changing the treatment means and the treatment method according to the raw water.

本発明によれば、極めて短時間で測定可能な蛍光光度法により特定の有機物の蛍光強度を測定し、ソフト的に2段階に処理することで、通常分画困難な有機成分の分画が可能となる。
この結果、水処理システムにおける有機物汚染リスクが予測可能となり、使用する原水に適したシステムの構築ができ、さらには活性炭塔などのメンテナンスの時期が予測可能となる。
According to the present invention, by measuring the fluorescence intensity of a specific organic substance by a fluorometric method that can be measured in an extremely short time and treating it in two steps in a soft manner, it is possible to fractionate organic components that are normally difficult to fractionate. It becomes.
As a result, the risk of organic matter contamination in the water treatment system can be predicted, a system suitable for the raw water to be used can be constructed, and the timing of maintenance of the activated carbon tower and the like can be predicted.

3D-EEMの一例を示すスペクトル図である。It is a spectrum figure which shows an example of 3D-EEM. 3成分に分離したスペクトル図である。It is a spectrum diagram separated into three components. PCA処理後のデータをプロットした図である。It is a figure which plotted the data after PCA processing. 本発明の有機物識別方法のフローチャートである。It is a flowchart of the organic substance identification method of this invention. 都道府県別の原水データをプロットした図である。It is the figure which plotted the raw water data by prefecture. 本発明を適用する水処理システムの概要を示すフロー図である。It is a flow figure which shows the outline of the water treatment system to which this invention is applied.

三次元蛍光光度法(3D-EEM)では、測定対象物に対して励起波長となる光を照射し、励起波長に対して化合物が発する蛍光波長および蛍光強度を測定する。本発明では、処理原水のサンプルを透明セルに入れて行う。 In the three-dimensional fluorescence photometric method (3D-EEM), the object to be measured is irradiated with light having an excitation wavelength, and the fluorescence wavelength and fluorescence intensity emitted by the compound are measured with respect to the excitation wavelength. In the present invention, a sample of treated raw water is placed in a transparent cell.

土壌分解性の有機物を含む水を蛍光光度法にて測定した場合、土壌由来のフミン質は、励起波長305-330nm/蛍光波長415-435nm、励起波長255-275nm/蛍光波長440-455nmに2つのピークが見られる。文献等では、前者がフミン酸、後者がフルボ酸とされているが、実際には励起波長200-380nmにおいて、蛍光波長370-480nm内に広く分布しており、場所や起源によってピーク位置が変化する。また、ピークのすそ野での重なりにより、一方のピークが他方のピークのすそ野によりピーク位置が不明確になっていることが多い。 When water containing soil-degradable organic substances was measured by the fluorescence photometric method, the soil-derived fuminate had an excitation wavelength of 305-330 nm / fluorescence wavelength of 415-435 nm and an excitation wavelength of 255-275 nm / fluorescence wavelength of 440-455 nm. Two peaks can be seen. In the literature, the former is humic acid and the latter is fulvic acid, but in reality, it is widely distributed within the fluorescence wavelength of 370-480 nm at the excitation wavelength of 200-380 nm, and the peak position changes depending on the location and origin. do. Also, due to the overlap of peaks in the skirts, the peak position of one peak is often unclear due to the skirts of the other peak.

図1は処理原水を三次元蛍光光度法で測定した際の蛍光強度を、蛍光波長を横軸、励起波長を縦軸として、強度を等高線で示した図である。ここでは、蛍光波長420nm付近に一つの強いピークと弱いピークの2つのピークが観測される。紡錘状に伸びる2つの領域は散乱光と2次光である。 FIG. 1 is a diagram showing the fluorescence intensity when the treated raw water is measured by the three-dimensional fluorometric method, with the fluorescence wavelength on the horizontal axis and the excitation wavelength on the vertical axis, and the intensity shown by contour lines. Here, two peaks, one strong peak and one weak peak, are observed near the fluorescence wavelength of 420 nm. The two spindle-shaped regions are scattered light and secondary light.

三次元蛍光光度の測定は、以下の条件で行った。
測定機器:分光蛍光光度計 F-7000 (日立製)
測定条件:励起開始波長 200nm
励起終了波長 600nm
蛍光開始波長 200nm
蛍光終了波長 600nm
スキャンスピード 60000nm/min
励起側スリット 10.0nm
蛍光側スリット 10.0nm
ホトマル電圧 400V
The three-dimensional fluorescence intensity was measured under the following conditions.
Measuring equipment: Spectral fluorometer F-7000 (manufactured by Hitachi)
Measurement conditions: Excitation start wavelength 200 nm
Excitation end wavelength 600 nm
Fluorescence start wavelength 200 nm
Fluorescence end wavelength 600 nm
Scan speed 60,000 nm / min
Excited side slit 10.0 nm
Fluorescent side slit 10.0 nm
Photomal voltage 400V

次に、ノイズ情報となる励起光の散乱光及びその2次光を削除し、さらに複数の蛍光波長ピークの中から強い蛍光強度の検出されるピークを抽出し、ピーク分離および補正処理を行う。この処理は測定されたデータをテキスト処理した後、PARAFAC解析(Parallel Factor Analysis; Hitchcock、1927; Carrol and Chang、1970; Harshman、1970)と呼ばれ、多次元配列を分解して目的の特徴に焦点を当て、結果を明確に説明する統計的方法により行う。実際にこのPARAFAC解析には解析ソフトとしてMatlab製の「Solo」を用いて行う。本発明では、図2に示すように、成分1~3の3つの成分にピークを分離する。なお、分離する成分数は特に制限はなく、分割した成分数が妥当な数となるように行う。分割した成分数が妥当な数であるかどうかは、Core consistencyの値が100%に近くなるかどうかで判別できる。 Next, the scattered light of the excitation light and the secondary light thereof, which are noise information, are deleted, and the peak in which the strong fluorescence intensity is detected is extracted from the plurality of fluorescence wavelength peaks, and peak separation and correction processing are performed. This process is called PARAFAC analysis (Parallel Factor Analysis; Hitchcock, 1927; Carrol and Chang, 1970; Harshman, 1970) after text-processing the measured data, and decomposes the multidimensional array to focus on the desired features. And do it by a statistical method that clearly explains the results. Actually, this PARAFAC analysis is performed using "Solo" manufactured by MATLAB as analysis software. In the present invention, as shown in FIG. 2, the peak is separated into three components 1 to 3. The number of components to be separated is not particularly limited, and the number of components to be separated is an appropriate number. Whether or not the number of divided components is a reasonable number can be determined by whether or not the value of Core consistency is close to 100%.

次に、主成分分析(Principal Component Analysis:PCA)を行う。これは、多変量解析により多波長の蛍光強度データ(説明変数)を基に主成分を算出し、群分けする手法である。この群分けには解析ソフトとして統計ソフトJMP(SAS Institute Japan(株))を用い、PARAFAC解析で得られた成分1~3のスコア値について主成分解析を行う。PARAFACの成分1はフルボ酸由来、成分2はタンパク質由来、成分3はフミン酸由来のスコア値であり、これを解析すると、例えば、下記表1のような固有ベクトルが得られる。成分1~3の由来は、それらの蛍光波長、及び励起波長に基づき判断される。
ここで、スコア値とは、試料に含まれる成分1、成分2、成分3の蛍光強度の強さをピークの重なりを考慮し数値化したものである。
Next, a principal component analysis (PCA) is performed. This is a method of calculating principal components based on multi-wavelength fluorescence intensity data (explanatory variables) by multivariate analysis and grouping them. For this grouping, statistical software JMP (SAS Institute Japan Co., Ltd.) is used as analysis software, and principal component analysis is performed on the score values of components 1 to 3 obtained by PARAFAC analysis. Component 1 of PARAFAC is a score value derived from fulvic acid, component 2 is derived from protein, and component 3 is a score value derived from humic acid. When this is analyzed, for example, an eigenvector as shown in Table 1 below can be obtained. The origin of components 1 to 3 is determined based on their fluorescence wavelength and excitation wavelength.
Here, the score value is a numerical value obtained by considering the overlap of peaks in the intensity of fluorescence intensity of component 1, component 2, and component 3 contained in the sample.

Figure 0007074507000001
Figure 0007074507000001

第1主成分は、フルボ酸、フミン酸、タンパク質のいずれも多いと+方向に、第2主成分は、フルボ酸が多いと+方向、フミン酸が多いと-方向、タンパク質が多いと+方向となる。 The first main component is in the + direction when all of fulvic acid, humic acid, and protein are abundant, the second main component is in the + direction when there is a lot of fulvic acid, in the-direction when there is a lot of humic acid, and in the + direction when there is a lot of protein. It becomes.

図3(A)は、水処理システムに用いられる工業用水、地下水、河川水、湖沼水、水道水等の様々な処理原水について、PCA処理後のデータを、第1主成分(PC1)をX軸(横軸)、第2主成分(PC2)をY軸(縦軸)としてプロットした図である。PC1とPC2の寄与率はそれぞれ63.5%と36.5%となり、計100%となった。いずれも、基準点となるX,Y=0,0から遠ざかるほど、成分量が多いことを示している。図3(B)は図3(A)の結果から各成分のベクトルを示した図である。
なお、寄与率とは、データ全体のデータの散らばり具合をどれくらいカバーしているかを表している。PC1の寄与率は、第一主成分の分散(固有値)p1をすべてのデータの固有値pで割った値になる。今回は3成分なのでPC1の分散p1、PC2の分散p2、PC3の分散p3とするとp=p1+p2+p3となる。本発明では、PC1をX軸とPC2をY軸としてX-Y平面にプロットして評価するため、両者の寄与率の合計が100%に近いほど、元データを十分に表現できているといえる。
FIG. 3A shows data after PCA treatment for various treated raw waters such as industrial water, groundwater, river water, lake water, tap water, etc. used in the water treatment system, and the first main component (PC1) is X. It is a figure which plotted the axis (horizontal axis) and the second principal component (PC2) as a Y axis (vertical axis). The contribution rates of PC1 and PC2 were 63.5% and 36.5%, respectively, for a total of 100%. In each case, the farther away from the reference point X, Y = 0, 0, the larger the amount of the component. FIG. 3B is a diagram showing a vector of each component from the result of FIG. 3A.
The contribution rate indicates how much the data is scattered over the entire data. The contribution rate of PC1 is the value obtained by dividing the variance (eigenvalue) p1 of the first principal component by the eigenvalue p of all the data. Since there are three components this time, the dispersion p1 of PC1, the dispersion p2 of PC2, and the dispersion p3 of PC3 are p = p1 + p2 + p3. In the present invention, since PC1 is plotted on the XY plane with PC1 as the X-axis and PC2 as the Y-axis for evaluation, it can be said that the closer the total contribution ratio of both is to 100%, the more the original data can be sufficiently expressed. ..

図4に、本発明に係るデータ処理の流れをフローチャートとして示す。
S1は、原水を三次元蛍光光度法により測定し、目的の有機物のピークを含む蛍光強度を得る工程(処理原水の3D-EEM測定)である。
S2は、得られた蛍光強度ピークを、PARAFAC解析により複数の成分に分離する工程(成分分離)である。
S3は該分離された各成分のスコア値を主成分分析する工程である。
S4は、該主成分分析された結果から第1主成分と第2主成分の固有ベクトル値を、第1主成分をX軸、第2主成分をY軸とするX-Y平面にプロットする工程(プロット工程)であり、S5は、そのプロット点の方向と基準点からの距離により、成分の分画と量を把握する工程である。
S6は、X-Y平面における対象サンプルの分布エリアから水処理システムにおけるイオン交換樹脂の汚染リスクを把握する工程である。
S2~S6の工程はコンピュータを用いて実行され得る。
FIG. 4 shows a flow chart of data processing according to the present invention.
S1 is a step (3D-EEM measurement of treated raw water) of measuring raw water by a three-dimensional fluorometric method and obtaining fluorescence intensity including a peak of a target organic substance.
S2 is a step (component separation) of separating the obtained fluorescence intensity peak into a plurality of components by PARAFAC analysis.
S3 is a step of principal component analysis of the score value of each separated component.
S4 is a step of plotting the eigenvector values of the first principal component and the second principal component from the results of the principal component analysis on an XY plane having the first principal component as the X axis and the second principal component as the Y axis. (Plot step), and S5 is a step of grasping the fractionation and the amount of the components from the direction of the plot point and the distance from the reference point.
S6 is a step of grasping the contamination risk of the ion exchange resin in the water treatment system from the distribution area of the target sample on the XY plane.
The steps S2 to S6 can be performed using a computer.

S6の工程について、さらに詳細に説明する。
図5は、工業用水、井戸水、河川水を地域別(都道府県別)に種別化した結果を示している。この場合、PC1とPC2のそれぞれの寄与率は62.6%、37.4%となった。この場合も合計寄与率が100%となることから十分に元データを表現していることが分かる。また、フルボ酸由来成分、フミン酸由来成分及びタンパク質由来成分のベクトルも図3とは多少異なっている。
The process of S6 will be described in more detail.
FIG. 5 shows the results of classifying industrial water, well water, and river water by region (by prefecture). In this case, the contribution rates of PC1 and PC2 were 62.6% and 37.4%, respectively. In this case as well, the total contribution rate is 100%, which indicates that the original data is sufficiently expressed. Further, the vectors of the fulvic acid-derived component, the humic acid-derived component, and the protein-derived component are also slightly different from those in FIG.

図5に示すようにフルボ酸由来成分が多い領域AR1は、イオン交換樹脂を用いた水処理システムにおいては、陰イオン交換樹脂の汚染リスクが高くなることを示している。つまり、十分な活性炭処理が必要であり、活性炭塔における活性炭の交換又は再生に注意が必要となる。一方、フルボ酸由来成分が少なく、フミン酸由来成分が多い領域AR2では、前段の凝集処理によりフミン酸の凝集処理が可能であり、陰イオン交換樹脂の汚染リスクはやや低下する。X,Y=0,0に近い領域AR3の場合、有機物自体が少なく、陰イオン交換樹脂の汚染リスクはかなり低くなる。前段の凝集処理を無くして活性炭処理での対応が可能となり、活性炭塔における活性炭の交換又は再生頻度も少なくなる。 As shown in FIG. 5, the region AR1 having a large amount of fluboic acid-derived components shows that the risk of contamination of the anion exchange resin is high in the water treatment system using the ion exchange resin. That is, sufficient activated carbon treatment is required, and care must be taken in the replacement or regeneration of activated carbon in the activated carbon tower. On the other hand, in the region AR2 in which the amount of fulvic acid-derived components is small and the amount of humic acid-derived components is large, humic acid can be aggregated by the aggregation treatment in the previous stage, and the risk of contamination of the anion exchange resin is slightly reduced. In the case of the region AR3 close to X, Y = 0,0, the organic matter itself is small, and the risk of contamination of the anion exchange resin is considerably low. It is possible to eliminate the coagulation treatment in the previous stage and use activated carbon treatment, and the frequency of replacement or regeneration of activated carbon in the activated carbon tower is reduced.

このように、本発明では処理原水中の有機物の主要な成分を把握することが可能となり、それに合わせた水処理システムの構築およびその運用方法を選択することができる。 As described above, in the present invention, it is possible to grasp the main components of the organic matter in the treated raw water, and it is possible to construct a water treatment system and select an operation method thereof according to the main components.

図6は、本発明に係る水処理システムの概要を説明するフロー図である。ここでは、純水製造システムの一例について説明するが、本発明はこれに限定されず、様々な水処理システムに適用できる。 FIG. 6 is a flow chart illustrating an outline of the water treatment system according to the present invention. Here, an example of a pure water production system will be described, but the present invention is not limited to this, and can be applied to various water treatment systems.

図6に示すように、まず、工業用水などの原水は砂ろ過装置10により粗ろ過される。砂ろ過装置10は必須ではなく、必要に応じて設けられる。ろ過後の被処理水に含まれる有機物は、凝集処理槽20により凝集処理が行われ、続いて活性炭を用いた吸着塔30にて吸着される。その後、陽イオン交換樹脂を充填したカチオン塔40にて、被処理水に含まれるカチオン種の除去が行われる。カチオン塔40を通過した処理水は次の陰イオン交換樹脂を充填したアニオン塔60でさらに処理されるが、その前に陰イオン交換樹脂に影響する炭酸が脱炭酸塔50で除去される。凝集処理槽20では、凝集ろ過、凝集沈殿、凝集加圧浮上などの処理が行われ、フミン酸は酸に不溶であることから酸性にして、PAC又は塩化鉄などで凝集される。 As shown in FIG. 6, first, raw water such as industrial water is roughly filtered by the sand filtration device 10. The sand filtration device 10 is not essential and is provided as needed. The organic matter contained in the water to be treated after filtration is subjected to a coagulation treatment by the coagulation treatment tank 20, and subsequently adsorbed by the adsorption tower 30 using activated carbon. After that, the cation species contained in the water to be treated are removed in the cation tower 40 filled with the cation exchange resin. The treated water that has passed through the cation tower 40 is further treated by the anion tower 60 filled with the next anion exchange resin, but before that, the carbonic acid that affects the anion exchange resin is removed by the decarbonation tower 50. In the coagulation treatment tank 20, treatments such as coagulation filtration, coagulation precipitation, and coagulation pressure levitation are performed. Since humic acid is insoluble in acid, it is acidified and aggregated with PAC or iron chloride.

原水サンプルは、取水口2(砂ろ過装置10がある場合はろ過後の被処理水の取水口12からでもよい)から、3D-EEM測定装置1に送られ、図4に示すS1工程を実施する。3D-EEM測定データ3、例えば、CSV形式のテキストデータがコンピュータ4に送られ、図4に示すS2~S6の工程を実施する。3D-EEM測定装置1及びコンピュータ4のそれぞれは、純水製造システムの設置される現場に設置されていても、離れた遠隔地に設置されていてもよい。コンピュータ4は、インターネット等を介して様々な地域のデータを取り込むことができる。 The raw water sample is sent from the intake port 2 (or from the intake port 12 of the water to be treated after filtration if there is a sand filtration device 10) to the 3D-EEM measuring device 1, and the S1 step shown in FIG. 4 is carried out. do. The 3D-EEM measurement data 3, for example, text data in CSV format is sent to the computer 4, and the steps S2 to S6 shown in FIG. 4 are carried out. Each of the 3D-EEM measuring device 1 and the computer 4 may be installed at the site where the pure water production system is installed, or may be installed at a remote location. The computer 4 can take in data of various regions via the Internet or the like.

また、本発明では、未知試料について汚染リスクを予測する際には、複数の既知試料に基づく3D-EEM測定データに未知試料の3D-EEM測定データを併せてPARAFAC解析及び主成分分析を行うことで、3D-EEM測定のみでイオン交換樹脂の有機物による汚染リスクを予測することができる。汚染リスクの予測に際しては、原水中の炭素量(TOC)やLC-OCDの結果も考慮して総合的に評価することが好ましい。つまり、未知試料のX-Y平面でのプロット点の方向と基準点からの距離から、既知試料の汚染リスクと比較することで未知試料の汚染リスクを予測することが可能となる。 Further, in the present invention, when predicting the contamination risk of an unknown sample, PARAFAC analysis and main component analysis are performed by combining the 3D-EEM measurement data of the unknown sample with the 3D-EEM measurement data based on a plurality of known samples. Therefore, the risk of contamination of the ion exchange resin by organic substances can be predicted only by 3D-EEM measurement. When predicting the pollution risk, it is preferable to make a comprehensive evaluation in consideration of the carbon content (TOC) of the raw water and the result of LC-OCD. That is, it is possible to predict the contamination risk of the unknown sample by comparing it with the contamination risk of the known sample from the direction of the plot point on the XY plane of the unknown sample and the distance from the reference point.

本発明では、上記の有機物識別法により処理原水中における有機物を把握し、水処理システムにおけるイオン交換樹脂の有機物による汚染リスクを予測して水処理システムにおけるイオン交換樹脂前段の処理手段および処理方法を前記原水に合わせて変更する。この結果、凝集処理槽20の有無および活性炭塔30における活性炭の交換/再生頻度を制御して、イオン交換樹脂の有機物の汚染リスクを低減することができる。なお、図6における〔〕はその構成が任意であることを示している。 In the present invention, the organic matter in the treated raw water is grasped by the above-mentioned organic matter identification method, the risk of contamination of the ion exchange resin by the organic matter in the water treatment system is predicted, and the treatment means and the treatment method in the first stage of the ion exchange resin in the water treatment system are used. Change according to the raw water. As a result, the presence or absence of the coagulation treatment tank 20 and the exchange / regeneration frequency of the activated carbon in the activated carbon tower 30 can be controlled to reduce the risk of contamination of the organic matter of the ion exchange resin. Note that [] in FIG. 6 indicates that the configuration is arbitrary.

1 3D-EEM測定装置
2,12 取水口
3 データ
4 コンピュータ
10 砂ろ過装置
20 凝集処理槽
30 活性炭を含む吸着塔
40 カチオン塔
50 脱炭酸塔
60 アニオン塔
1 3D-EEM measuring device 2, 12 Intake port 3 Data 4 Computer 10 Sand filtration device 20 Coagulation treatment tank 30 Adsorption tower containing activated carbon 40 Cation tower 50 Decarbonization tower 60 Anion tower

Claims (5)

イオン交換樹脂を用いた水処理システムの汚染リスク評価方法であって、
原水を三次元蛍光光度法により測定し、フミン質のピークを含む蛍光強度データを得る工程と、
得られた蛍光強度データを、PARAFAC解析により複数の成分に分離する工程と、
該分離された各成分のスコア値を主成分分析する工程と、
該主成分分析された結果から第1主成分と第2主成分の固有ベクトル値を、第1主成分をX軸、第2主成分をY軸とするX-Y平面にプロットして、そのプロット点の方向と基準点からの距離により、成分の分画と量を把握する工程と、
を有する有機物識別法を用いて、少なくともフミン酸とフルボ酸の成分を分画して把握し、水処理システムにおけるイオン交換樹脂の有機物による汚染リスクを予測して水処理システムにおけるイオン交換樹脂前段の処理手段および処理方法を前記原水に合わせて変更することを特徴とする水処理システムの汚染リスク評価方法。
It is a pollution risk assessment method for water treatment systems using ion exchange resins.
The process of measuring raw water by the three-dimensional fluorometric method and obtaining fluorescence intensity data including the peak of fuminic substance, and
A step of separating the obtained fluorescence intensity data into a plurality of components by PARAFAC analysis, and
A step of principal component analysis of the score value of each separated component, and
From the results of the principal component analysis, plot the eigenvector values of the first principal component and the second principal component on the XY plane with the first principal component as the X axis and the second principal component as the Y axis, and plot the eigenvector values. The process of grasping the fractionation and amount of components based on the direction of the point and the distance from the reference point,
At least the components of fumic acid and fulboic acid are fractionated and grasped by using the organic substance identification method having the above, and the risk of contamination of the ion exchange resin by the organic substance in the water treatment system is predicted. A method for assessing a pollution risk of a water treatment system, which comprises changing a treatment means and a treatment method according to the raw water.
PARAFAC解析により複数の成分に分離する工程は、フミン酸由来の成分と、フルボ酸由来の成分と、タンパク質由来の成分の3つに分離する工程である請求項1に記載の水処理システムの汚染リスク評価方法。 The contamination of the water treatment system according to claim 1, wherein the step of separating into a plurality of components by PARAFAC analysis is a step of separating into three components, a humic acid-derived component, a fulvic acid-derived component, and a protein-derived component. Risk assessment method. 三次元蛍光光度法における励起波長が、200~600nmである請求項1又は2に記載の水処理システムの汚染リスク評価方法。 The pollution risk assessment method for a water treatment system according to claim 1 or 2, wherein the excitation wavelength in the three-dimensional fluorometric method is 200 to 600 nm. 未知試料の蛍光強度データを、複数の既知試料の蛍光強度データと併せてPARAFAC解析及び主成分分析を行うことによって、未知試料の前記X-Y平面でのプロット点の方向と基準点からの距離から、既知試料の汚染リスクと比較することで未知試料の汚染リスクを予測することを特徴とする請求項1~3のいずれか1項に記載の水処理システムの汚染リスク評価方法。 By performing PARAFAC analysis and main component analysis by combining the fluorescence intensity data of the unknown sample with the fluorescence intensity data of a plurality of known samples, the direction of the plot point and the distance from the reference point of the unknown sample in the XY plane. The method for assessing the pollution risk of a water treatment system according to any one of claims 1 to 3, wherein the risk of contamination of an unknown sample is predicted by comparing with the risk of contamination of a known sample. 前記イオン交換樹脂前段の処理手段および処理方法が、原水を酸性にしてフミン酸を凝集処理により除く方法と、活性炭処理により原水中から有機物を吸着除去する手段との少なくとも一方を含む請求項1~4のいずれか1項に記載の水処理システムの汚染リスク評価方法。 The treatment means and the treatment method in the first stage of the ion exchange resin include at least one of a method of acidifying raw water to remove humic acid by agglomeration treatment and a means of adsorbing and removing organic substances from raw water by activated carbon treatment. The method for assessing the pollution risk of the water treatment system according to any one of 4.
JP2018039537A 2018-03-06 2018-03-06 Pollution risk assessment method for water treatment system Active JP7074507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018039537A JP7074507B2 (en) 2018-03-06 2018-03-06 Pollution risk assessment method for water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039537A JP7074507B2 (en) 2018-03-06 2018-03-06 Pollution risk assessment method for water treatment system

Publications (2)

Publication Number Publication Date
JP2019152602A JP2019152602A (en) 2019-09-12
JP7074507B2 true JP7074507B2 (en) 2022-05-24

Family

ID=67948900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039537A Active JP7074507B2 (en) 2018-03-06 2018-03-06 Pollution risk assessment method for water treatment system

Country Status (1)

Country Link
JP (1) JP7074507B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567401B (en) * 2020-04-28 2022-09-30 中国环境科学研究院 Rapid detection method and application of landfill leachate polluted underground water condition
CN115575368B (en) * 2022-10-11 2024-03-26 北京工业大学 Method for judging adsorption affinity of granular activated carbon to organic pollution components
CN117557099A (en) * 2023-11-23 2024-02-13 无锡市政公用检测有限公司 Method, device and system for evaluating running condition of biological activated carbon in water plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020145425A1 (en) 2000-12-22 2002-10-10 Ebbels Timothy Mark David Methods for spectral analysis and their applications: spectral replacement
JP2014136210A (en) 2013-01-18 2014-07-28 Toshiba Corp Film fouling diagnosis/control device, film fouling diagnosis/control method, and film fouling diagnosis/control program
JP2015226866A (en) 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
US20160123882A1 (en) 2014-10-29 2016-05-05 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
JP2017227577A (en) 2016-06-24 2017-12-28 オルガノ株式会社 Evaluation method for organic matter in water in water treatment system and water treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020145425A1 (en) 2000-12-22 2002-10-10 Ebbels Timothy Mark David Methods for spectral analysis and their applications: spectral replacement
JP2004526130A (en) 2000-12-22 2004-08-26 メタボメトリックス リミテッド Spectral analysis method and its application: spectrum exchange
JP2014136210A (en) 2013-01-18 2014-07-28 Toshiba Corp Film fouling diagnosis/control device, film fouling diagnosis/control method, and film fouling diagnosis/control program
JP2015226866A (en) 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
US20160123882A1 (en) 2014-10-29 2016-05-05 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
JP2017227577A (en) 2016-06-24 2017-12-28 オルガノ株式会社 Evaluation method for organic matter in water in water treatment system and water treatment system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤 由紀,励起蛍光マトリクスと多変量解析を用いた新生代堆積岩地域の地下水流動評価,THE HITACHI SCIENTIFIC INSTRUMENT NEWS,日本,2016年,Vol.59 No.2,5164-5169

Also Published As

Publication number Publication date
JP2019152602A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
Xu et al. Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly
Shi et al. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry
JP7074507B2 (en) Pollution risk assessment method for water treatment system
Ly et al. Tracking fluorescent dissolved organic matter in hybrid ultrafiltration systems with TiO2/UV oxidation via EEM-PARAFAC
Wu et al. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate
Pifer et al. Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control
Ma et al. Influences of dissolved organic matter characteristics on trihalomethanes formation during chlorine disinfection of membrane bioreactor effluents
Ding et al. Differences in behaviour of three biopolymer constituents in coagulation with polyaluminium chloride: Implications for the optimisation of a coagulation–membrane filtration process
JP6421461B2 (en) Ion exchanger supply water evaluation method and operation management method
JP6719292B2 (en) Method for evaluating organic matter in water in water treatment system and water treatment system
Hong et al. Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China
Shiu et al. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system
Lee et al. Fouling behavior of marine organic matter in reverse osmosis membranes of a real-scale seawater desalination plant in South Korea
Harfouchi et al. Response surface methodology for the elimination of humic substances from water by coagulation using powdered Saddled sea bream scale as coagulant-aid
Zhou et al. Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through Al (III)-dissolved organic matter (DOM) binding
Phungsai et al. Changes in dissolved organic matter during water treatment by sequential solid-phase extraction and unknown screening analysis
Shutova et al. Characterisation of dissolved organic matter to optimise powdered activated carbon and clarification removal efficiency
Wells et al. Application of a fluorescence EEM-PARAFAC model for direct and indirect potable water reuse monitoring: Multi-stage ozone–biofiltration without reverse osmosis at Gwinnett County, Georgia, USA
Sharp et al. Application of zeta potential measurements for coagulation control: pilot-plant experiences from UK and US waters with elevated organics
Kong et al. Coal chemical industry membrane concentrates: characterisation and treatment by ozonation and catalytic ozonation processes
Xue et al. Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment
CN108732158A (en) The remaining MIPs-SERS detection methods of triazine suitable for detection agricultural product
Grefte et al. Improving the biological stability of drinking water by ion exchange
He et al. Compositional and structural identification of organic matter contributing to high residual soluble aluminum after coagulation
AU682892B2 (en) A method and apparatus for determining the concentration of a component present in a fluid stream in dispersed form

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150