JP7038894B2 - Method of manufacturing a stator of a rotary electric machine, a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine. - Google Patents

Method of manufacturing a stator of a rotary electric machine, a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine. Download PDF

Info

Publication number
JP7038894B2
JP7038894B2 JP2021501610A JP2021501610A JP7038894B2 JP 7038894 B2 JP7038894 B2 JP 7038894B2 JP 2021501610 A JP2021501610 A JP 2021501610A JP 2021501610 A JP2021501610 A JP 2021501610A JP 7038894 B2 JP7038894 B2 JP 7038894B2
Authority
JP
Japan
Prior art keywords
stator
coil
teeth
core
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021501610A
Other languages
Japanese (ja)
Other versions
JPWO2020174817A1 (en
Inventor
雄哉 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020174817A1 publication Critical patent/JPWO2020174817A1/en
Application granted granted Critical
Publication of JP7038894B2 publication Critical patent/JP7038894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Description

本願は、回転電機のステータ、回転電機、回転電機のステータの製造方法、および、回転電機の製造方法に関するものである。 The present application relates to a stator of a rotary electric machine, a method of manufacturing a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine.

従来、電動機または発電機等の回転電機に用いられるステータは、ステータコアとステータコアのティース間のスロットに装着されるコイルとで構成される。コイルを形成するコイル線は絶縁被覆されており、コイルはステータコアと絶縁される。しかし、回転電機のステータでは、コイルとステータコアとの十分な絶縁を確保するため、さらに、ステータコアとコイルとの接する部分に絶縁部を配設している。 Conventionally, a stator used in a rotary electric machine such as an electric motor or a generator is composed of a coil mounted in a slot between a stator core and a tooth of the stator core. The coil wire forming the coil is insulated and coated, and the coil is insulated from the stator core. However, in the stator of a rotary electric machine, in order to secure sufficient insulation between the coil and the stator core, an insulating portion is further provided at a portion where the stator core and the coil are in contact with each other.

従来のステータは、ステータコアに絶縁部を介してコイル線を巻回して、コイルが設置される。前記した絶縁部は、圧接端子を収納できるキャビティを有している。そして、ステータは、コイル線と圧接端子とを挿入して各ティース間をジャンパー線で結線する(例えば、特許文献1参照)。また、他の従来のステータは、結線部を少なくするために3ティース連続でコイル線を巻回するものがある(例えば、特許文献2参照)。また、他の従来のステータは、2ティース離間したティースに2ティース連続でコイル線を巻回するものがある(例えば、特許文献3、特許文献4、特許文献5参照)。 In a conventional stator, a coil is installed by winding a coil wire around a stator core via an insulating portion. The above-mentioned insulating portion has a cavity that can accommodate the pressure welding terminal. Then, in the stator, a coil wire and a pressure welding terminal are inserted, and each tooth is connected by a jumper wire (see, for example, Patent Document 1). Further, in other conventional stators, there is one in which a coil wire is wound continuously for 3 teeth in order to reduce the number of wiring portions (see, for example, Patent Document 2). Further, as another conventional stator, there is one in which a coil wire is continuously wound around two teeth separated by two teeth (see, for example, Patent Document 3, Patent Document 4, and Patent Document 5).

国際公開番号WO2016/51923号公報International Publication No. WO2016 / 51923 特開2016-127706号公報Japanese Unexamined Patent Publication No. 2016-127706 特開平9-191588号公報Japanese Unexamined Patent Publication No. 9-191588 特開2000-78789号公報Japanese Unexamined Patent Publication No. 2000-78789 特開2008-167604公報Japanese Unexamined Patent Publication No. 2008-167604

一般に、回転電機のステータの製造においては、品質を保った上で価格を低くするために、省材料化および製造時間の短縮が重要である。例えば、特許文献1に記載のステータでは、結線に圧接端子と各ティース間を結ぶジャンパー線とを使用している。この場合、例えば9ティースのステータでは、18個の圧接端子と8本のジャンパー線が必要となる。よって、結線部材が多く必要となり、省材料化とならず価格が高くなる。また、圧接端子を挿入する工程では絶縁部のキャビティ部に強度による問題が発生する。 Generally, in the manufacture of a stator for a rotary electric machine, it is important to save materials and shorten the manufacturing time in order to maintain the quality and lower the price. For example, in the stator described in Patent Document 1, a pressure welding terminal and a jumper wire connecting each tooth are used for connection. In this case, for example, a 9-teeth stator requires 18 pressure-displacement terminals and 8 jumper wires. Therefore, a large number of wiring members are required, which does not save materials and increases the price. Further, in the process of inserting the pressure welding terminal, a problem due to strength occurs in the cavity portion of the insulating portion.

また、特許文献2に記載のステータでは、コイル線を連続して巻線することにより結線部材は低減するものの、6極9スロットの回転電機において、3連続で同じ相の巻線を行うと、トルク脈動または振動などの問題が発生する。 Further, in the stator described in Patent Document 2, although the number of connecting members is reduced by continuously winding the coil wire, when the same phase winding is performed three times in a row in a 6-pole 9-slot rotary electric machine, Problems such as torque pulsation or vibration occur.

また、特許文献3、4に記載のステータでは、3本の巻線ノズルを使用して6ティースのステータコアを3ティースそれぞれ同時に巻線する。また2ティース離間したティース間を渡り、連続して巻線しているが、巻き始め線と渡り線とがクロスして干渉することを防ぐために、例えば、ステータを軸方向に巻き始め線を上側とした場合に、渡り線は下側の絶縁部材を介して施される。この連続した巻線を9ティースのステータで巻線する場合、2回の渡り線が必要で巻き始め線と巻き終わり線を上側にするために3回目に巻線する3ティースは巻数が半ターン多く、または少なく巻線され、脈動または振動などの電気的な問題が発生する。 Further, in the stators described in Patent Documents 3 and 4, three winding nozzles are used to wind the stator cores of 6 teeth at the same time for each of the 3 teeth. Further, the winding starts continuously across the teeth separated by 2 teeth, but in order to prevent the winding start wire and the crossover wire from crossing and interfering with each other, for example, the stator is wound axially on the upper side of the winding start wire. If so, the crossover is provided via the lower insulating member. When winding this continuous winding with a 9-teeth stator, two crossovers are required, and the number of turns of the 3 teeth that is wound the third time to turn the winding start wire and winding end wire upward is half a turn. More or less winding, causing electrical problems such as pulsation or vibration.

また、特許文献5に記載のステータでは、2ティース離れたティースへ渡り線する場合、3相の渡り線同士が干渉するために、1本毎にノズルを複雑な動作をさせて、干渉を回避する必要があり、設備費が高くなり、巻線サイクルタイムが増加する。また、渡り線の方向を逆に、ステータコア側から絶縁部材の先端部にかけて、ステータコアから離れる方向に渡り線した場合、巻き始め線を絶縁部材の先端部に配置できるため、巻き始め線が渡り線よりも上に配置され、クロスによる干渉を防止できる。しかし、3ティース連続で9ティースに巻線する場合、2ティース目から3ティース目に連続で巻線する際に、渡り線と巻き終わり線が干渉するため、2ティース連続の巻線のみでは可能であるが、3ティース以上の巻線を施すことができないという問題点があった。 Further, in the stator described in Patent Document 5, when crossovers are made to the teeth two teeth apart, the three-phase crossovers interfere with each other, so that the nozzles are operated in a complicated manner for each one to avoid the interference. This increases equipment costs and increases winding cycle time. Further, when the direction of the crossover is reversed from the stator core side to the tip of the insulating member and the crossover is made in the direction away from the stator core, the winding start wire can be arranged at the tip of the insulating member, so that the winding start wire is a crossover. It is placed above and can prevent interference due to cloth. However, when winding 3 teeth continuously to 9 teeth, the crossover wire and the winding end line interfere with each other when winding from the 2nd teeth to the 3rd teeth continuously, so it is possible to wind only with 2 teeth continuous winding. However, there is a problem that it is not possible to apply windings of 3 teeth or more.

本願は、上記のような課題を解決するための技術を開示するものであり、コイル形成時のコイル線の巻回におけるステータコアの渡り線の干渉が防止され、結線部材を低減でき、且つ、製造時間を短縮して生産性を向上できる、回転電機のステータ、回転電機、回転電機のステータの製造方法、および、回転電機の製造方法を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, in which interference of the crossover wire of the stator core in the winding of the coil wire at the time of coil formation can be prevented, the number of connecting members can be reduced, and the manufacturing can be performed. It is an object of the present invention to provide a rotary electric machine stator, a rotary electric machine, a method for manufacturing a rotary electric machine stator, and a method for manufacturing a rotary electric machine, which can shorten the time and improve the productivity.

本願に開示される回転電機のステータは、
環状に配置されたヨーク部、および、前記ヨーク部の径方向の内側の内周面に、周方向に所定の間隔を隔てて、径方向の内側に突出して形成された複数のティースを有するステータコアと、複数の前記ティースにそれぞれコイル線を巻回して形成されたコイルと、前記ステータコアと前記コイルと間に配設され前記ステータコアと前記コイルとを絶縁する絶縁部とを備えた回転電機のステータであって、
前記絶縁部は、前記ステータコアより軸方向の一方側から突出する第一突出部を有し、前記第一突出部の径方向の外側の外周面に、軸方向に複数段にてなる溝部を有し、
前記コイル線の巻始線、巻終線、および、異なる前記ティースの前記コイル同士を接続する渡り線のすべては、軸方向において同一方向の前記絶縁部の前記第一突出部に設置され、
前記巻始線は、前記絶縁部の前記第一突出部に形成された、軸方向において前記ステータコアに一番近い側の前記溝部に連続するとともに、前記第一突出部の径方向の外側から径方向の内側に連通して形成され、軸方向において前記ステータコアと反する側から前記ステータコア側に向かって、周方向の幅が漸次小さくなる軸方向に沿う傾斜面を有し前記コイル線を保持する導入溝部に配置され、
前記渡り線は、異なる前記ティース間を渡る間に前記絶縁部の軸方向の前記ステータコアと反する側から軸方向の前記ステータコア側に向かって斜めに配置される連続線であるとともに前記溝部にて保持され、
前記傾斜面は、前記溝部が設けられていない前記第一突出部に形成されるものである。
また、本願に開示される回転電機は、
上記記載の回転電機のステータと、
前記ステータにエアギャップを介して対向配置されたロータとを備えたものである。
また、本願に開示される回転電機のステータの製造方法は、
前記ステータコアの前記ヨーク部を直線状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた前記ティースまで移動させ、3本の前記渡り線を渡らせる際、3個の前記巻線ノズルを1回転させながら、3本の前記渡り線同士が干渉しないように渡り線を形成するものである。
また、本願に開示される回転電機のステータの製造方法は、
前記ステータコアの前記ヨーク部を逆反り状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた前記ティースまで移動を前記ステータコアを回転させることにより、3本の前記渡り線を渡らせる際、3本の前記渡り線同士が干渉しないように渡り線を形成するものである。
また、本願に開示された回転電機の製造方法は、
上記記載の回転電機のステータの製造方法にて製造された前記ステータに、ロータをエアギャップを介して対向配置させたものである。
The stator of the rotary electric machine disclosed in the present application is
A stator core having a plurality of teeth formed on the inner peripheral surface of the yoke portion arranged in an annular shape and the inner peripheral surface of the yoke portion in the radial direction so as to project inward in the radial direction at predetermined intervals in the circumferential direction. And a stator of a rotary electric machine provided with a coil formed by winding a coil wire around each of the plurality of teeth, and an insulating portion disposed between the stator core and the coil to insulate the stator core and the coil. And,
The insulating portion has a first protruding portion protruding from one side in the axial direction from the stator core, and has a groove portion having a plurality of steps in the axial direction on the outer peripheral surface on the outer peripheral surface in the radial direction of the first protruding portion. death,
The winding start wire, the winding end wire, and the crossover wire connecting the coils of the different teeth are all installed in the first protruding portion of the insulating portion in the same direction in the axial direction.
The winding start wire is continuous with the groove portion formed in the first protrusion of the insulation portion on the side closest to the stator core in the axial direction, and has a diameter from the outside in the radial direction of the first protrusion. An introduction that is formed so as to communicate with the inside of the direction and has an inclined surface along the axial direction in which the width in the circumferential direction gradually decreases from the side opposite to the stator core in the axial direction toward the stator core side to hold the coil wire. Placed in the groove,
The crossover is a continuous line diagonally arranged from the side opposite to the stator core in the axial direction of the insulating portion toward the stator core side in the axial direction while crossing between different teeth, and is held in the groove portion. Being done
The inclined surface is formed on the first protruding portion where the groove portion is not provided .
Further, the rotary electric machine disclosed in the present application is a rotary electric machine.
With the stator of the rotary electric machine described above,
The stator is provided with a rotor arranged so as to face each other via an air gap.
Further, the method for manufacturing a stator of a rotary electric machine disclosed in the present application is as follows.
The yoke portion of the stator core is deformed in a straight line, and the three coil wires are simultaneously wound by three winding nozzles along a trajectory along the shape of the three teeth continuous in the circumferential direction. After forming the coil on the tooth, the three coil wires are held in the groove portion of the first protrusion of the three teeth as the crossover wire, and the coil wires are separated from each other by three in the circumferential direction. When moving to the teeth and crossing the three crossovers, the crossovers are formed so that the three crossovers do not interfere with each other while rotating the three winding nozzles once .
Further, the method for manufacturing a stator of a rotary electric machine disclosed in the present application is as follows.
The yoke portion of the stator core is deformed in a reverse warp shape, and the three coil wires are simultaneously wound by three winding nozzles along a trajectory along the shape of three consecutive teeth in the circumferential direction. After forming the coil on the teeth, the three coil wires were held in the grooves of the first protrusions of the three teeth as the crossovers, respectively, and separated by three in the circumferential direction. By rotating the stator core to move to the teeth, the crossovers are formed so that the three crossovers do not interfere with each other when the three crossovers are crossed .
Further, the method for manufacturing a rotary electric machine disclosed in the present application is as follows.
A rotor is arranged to face the stator manufactured by the method for manufacturing a stator of a rotary electric machine as described above via an air gap.

本願に開示される回転電機のステータ、回転電機、回転電機のステータの製造方法、および、回転電機の製造方法によれば、
コイル形成時のコイル線の巻回におけるステータコアの渡り線の干渉が防止され、結線部材を低減でき、且つ、製造時間を短縮して生産性を向上できる。
According to the rotary electric machine stator, the rotary electric machine, the method for manufacturing the rotary electric machine stator, and the method for manufacturing the rotary electric machine disclosed in the present application.
Interference of the crossover of the stator core in the winding of the coil wire at the time of coil formation can be prevented, the number of wiring members can be reduced, the manufacturing time can be shortened, and the productivity can be improved.

実施の形態1における回転電機のステータのステータコアのヨーク部を直線状に変形した状態を示す背面図である。It is a rear view which shows the state which the yoke part of the stator core of the stator of the rotary electric machine is deformed linearly in Embodiment 1. FIG. 図1に示したステータの構成を示す正面斜視図である。It is a front perspective view which shows the structure of the stator shown in FIG. 図1に示したステータのステータコアを構成する1枚のコア板の構成を示す斜視図である。It is a perspective view which shows the structure of one core plate which constitutes the stator core of the stator shown in FIG. 図3に示したコア板を積層したステータコアの構成を示す斜視図である。It is a perspective view which shows the structure of the stator core which laminated the core plate shown in FIG. 図4に示したステータコアの1個のティースを含むコア部を上面から見た平面図である。FIG. 4 is a plan view of the core portion including one tooth of the stator core shown in FIG. 4 as viewed from above. 図1に示したステータに用いられる絶縁部の第一突出部を有する第一巻枠の構成を示した斜視図である。It is a perspective view which showed the structure of the 1st winding frame which has the 1st protrusion of the insulating part used for the stator shown in FIG. 図1に示したステータに用いられる絶縁部の第二突出部を有する第二巻枠の構成を示した斜視図である。It is a perspective view which showed the structure of the 2nd winding frame which has the 2nd protrusion of the insulating part used for the stator shown in FIG. 図4に示したコア部に図6に示した第一巻枠と図7に示した第二巻枠とを装着した構成を示す斜視図である。It is a perspective view which shows the structure which attached the 1st winding frame shown in FIG. 6 and the 2nd winding frame shown in FIG. 7 to the core part shown in FIG. 図8に示したコア部を矢印Aで示す方向から見た構成を示す正面図である。It is a front view which shows the structure which looked at the core part shown in FIG. 8 from the direction indicated by the arrow A. 図8に示したコア部を矢印Bで示す方向から見た構成を示す背面図である。It is a rear view which shows the structure which looked at the core part shown in FIG. 8 from the direction indicated by the arrow B. 図8に示したコア部を矢印Cで示す方向から見た構成を示す側面図である。It is a side view which shows the structure which looked at the core part shown in FIG. 8 from the direction indicated by the arrow C. 図8に示したコア部を矢印Dで示す方向から見た構成を示す平面図である。FIG. 3 is a plan view showing a configuration of the core portion shown in FIG. 8 as viewed from the direction indicated by the arrow D. 図1に示したステータの製造方法を示す図である。It is a figure which shows the manufacturing method of the stator shown in FIG. 図1に示したステータの製造方法を示す図である。It is a figure which shows the manufacturing method of the stator shown in FIG. 図1に示したステータの製造方法を示す図である。It is a figure which shows the manufacturing method of the stator shown in FIG. 図1に示したステータの他の製造方法を示す図である。It is a figure which shows the other manufacturing method of the stator shown in FIG. 実施の形態2における回転電機のステータのステータコアのヨーク部を直線状に変形した状態を示す正面斜視図である。FIG. 5 is a front perspective view showing a state in which the yoke portion of the stator core of the stator of the rotary electric machine in the second embodiment is linearly deformed. 図17に示したステータコアに絶縁部を装着する前の状態を示す分解斜視図である。It is an exploded perspective view which shows the state before attaching the insulating part to the stator core shown in FIG. 図17に示したフィルム部の構成を示す斜視図である。It is a perspective view which shows the structure of the film part shown in FIG. 図17に示した上巻枠の構成を示す斜視図である。It is a perspective view which shows the structure of the upper winding frame shown in FIG. 図17に示した下巻枠の構成を示す斜視図である。It is a perspective view which shows the structure of the lower winding frame shown in FIG. 実施の形態1における回転電機の構成を示す側面断面図である。It is a side sectional view which shows the structure of the rotary electric machine in Embodiment 1. FIG. 図22に示した回転電機の構成を示す上面断面図である。It is a top sectional view showing the structure of the rotary electric machine shown in FIG. 22. 図22に示した回転電機の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotary electric machine shown in FIG. 図22に示した回転電機の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotary electric machine shown in FIG.

実施の形態1.
図1は実施の形態1における回転電機のステータのステータコアのヨーク部を直線状に変形した状態を示す背面図である。図2は図1に示したステータの構成を示す正面斜視図である。図3は図1に示したステータのステータコアを構成する1枚のコア板の構成を示す斜視図である。図4は図3に示した1枚のコア板を複数枚軸方向に積層して形成されたステータコアの構成を示す斜視図である。図5は図4に示したステータコアの1つのティースを含むコア部を上面から見た構成を示す平面図である。
Embodiment 1.
FIG. 1 is a rear view showing a state in which the yoke portion of the stator core of the stator of the rotary electric machine in the first embodiment is linearly deformed. FIG. 2 is a front perspective view showing the configuration of the stator shown in FIG. FIG. 3 is a perspective view showing the configuration of one core plate constituting the stator core of the stator shown in FIG. FIG. 4 is a perspective view showing a configuration of a stator core formed by laminating a plurality of core plates shown in FIG. 3 in the axial direction. FIG. 5 is a plan view showing a configuration of a core portion including one tooth of the stator core shown in FIG. 4 as viewed from above.

図6は図1に示したステータに用いられる絶縁部の第一突出部を有する第一巻枠の構成を示した斜視図である。図7は図1に示したステータに用いられる絶縁部の第二突出部を有する第二巻枠の構成を示した斜視図である。図8は図4に示したコア部に図6に示した第一巻枠と図7に示した第二巻枠とを装着した構成を示す斜視図である。 FIG. 6 is a perspective view showing the configuration of the first winding frame having the first protruding portion of the insulating portion used for the stator shown in FIG. 1. FIG. 7 is a perspective view showing the configuration of the second winding frame having the second protruding portion of the insulating portion used for the stator shown in FIG. 1. FIG. 8 is a perspective view showing a configuration in which the first winding frame shown in FIG. 6 and the second winding frame shown in FIG. 7 are attached to the core portion shown in FIG.

図9は図8に示したコア部を矢印Aで示す方向から見た構成を示す正面図である。図10は図8に示したコア部を矢印Bで示す方向から見た構成を示す背面図である。図11は図8に示したコア部を矢印Cで示す方向から見た構成を示す側面図である。図12は図8に示したコア部を矢印Dで示す方向から見た構成を示す平面図である。図13から図15は図1に示したステータの製造方法を示す図である。図16は図1に示したステータの他の製造方法を示す図である。 FIG. 9 is a front view showing a configuration in which the core portion shown in FIG. 8 is viewed from the direction indicated by the arrow A. FIG. 10 is a rear view showing a configuration in which the core portion shown in FIG. 8 is viewed from the direction indicated by the arrow B. FIG. 11 is a side view showing a configuration in which the core portion shown in FIG. 8 is viewed from the direction indicated by the arrow C. FIG. 12 is a plan view showing a configuration of the core portion shown in FIG. 8 as viewed from the direction indicated by the arrow D. 13 to 15 are views showing a method of manufacturing the stator shown in FIG. 1. FIG. 16 is a diagram showing another manufacturing method of the stator shown in FIG.

以下の説明において、回転電機のステータ100における各方向は、ステータ100のヨーク部11が環状に配置された際の状態を基準として、それぞれ周方向Z、軸方向Y、径方向X、径方向Xの外側X1、径方向Xの内側X2として示す。よって、ステータ100のステータコア1のヨーク部11を直線状に変形した場合、または、ティース12の突出する方向を逆にする逆反り状に変形した場合であっても、ステータ100のヨーク部11が環状に配置された際の状態の方向を基準として各方向を各図に示して説明する。尚、他の実施の形態においても当該方向は同様の基準にて図示および説明する。 In the following description, the directions of the stator 100 of the rotary electric machine are the circumferential direction Z, the axial direction Y, the radial direction X, and the radial direction X, respectively, with reference to the state when the yoke portion 11 of the stator 100 is arranged in an annular shape. It is shown as the outer side X1 of the above and the inner side X2 in the radial direction X. Therefore, even if the yoke portion 11 of the stator core 1 of the stator 100 is deformed linearly, or even when the yoke portion 11 of the stator 100 is deformed in a reverse warp shape in which the protruding direction of the teeth 12 is reversed, the yoke portion 11 of the stator 100 is deformed. Each direction will be described in each figure with reference to the direction of the state when arranged in a ring shape. In addition, in other embodiments, the direction is illustrated and described with the same reference.

図1および図2に示すように、ステータ100は、ステータコア1と、コイル7と、ステータコア1とコイル7とを絶縁するために配置された絶縁部としての上巻枠2および下巻枠3とを備える。ステータコア1は、環状に配置されたヨーク部11(但し、各図においては、先にも示したようにヨーク部11を直線状に変形した状態にて示している。)と、ヨーク部11の径方向Xの内側X2の内周面112(図5参照)に、周方向Zに所定の間隔を隔てて、径方向Xの内側X2に突出して形成された複数のティース12(図4参照)とを有する。 As shown in FIGS. 1 and 2, the stator 100 includes a stator core 1, a coil 7, and an upper winding frame 2 and a lower winding frame 3 as insulating portions arranged to insulate the stator core 1 and the coil 7. .. The stator core 1 includes a yoke portion 11 arranged in an annular shape (however, in each figure, the yoke portion 11 is shown in a linearly deformed state as shown above) and the yoke portion 11. A plurality of teeth 12 (see FIG. 4) formed on the inner peripheral surface 112 (see FIG. 5) of the inner X2 in the radial direction so as to project to the inner X2 in the radial direction X at a predetermined interval in the circumferential direction Z. And have.

ステータコア1は、図3に示す薄肉の磁性鋼板を打ち抜いて形成されたコア板6を、図4に示すように軸方向Yに複数枚積層して形成される。ここで、ヨーク部11において1つのティース12する箇所をコア部60として以下説明する。ステータコア1は複数のコア部60のヨーク部11が周方向Zにおいて連結部111にて連結され形成される。ここではステータコア1は、9個のコア部60が連結部111にて連結され構成される。当該連結部111にてステータコア1のヨーク部11は自由に折り曲げ可能であり、これにより、直線状、または、ティース12の径方向Xに突出する方向を逆にする逆反り状に変形可能に形成される。 The stator core 1 is formed by laminating a plurality of core plates 6 formed by punching a thin magnetic steel plate shown in FIG. 3 in the axial direction Y as shown in FIG. Here, a portion of the yoke portion 11 where one tooth 12 is formed will be described below as a core portion 60. The stator core 1 is formed by connecting the yoke portions 11 of the plurality of core portions 60 at the connecting portion 111 in the circumferential direction Z. Here, the stator core 1 is configured by connecting nine core portions 60 with a connecting portion 111. The yoke portion 11 of the stator core 1 can be freely bent at the connecting portion 111, whereby the yoke portion 11 can be deformed into a straight line or a reverse warp shape in which the direction of protrusion in the radial direction X of the teeth 12 is reversed. Will be done.

また、図1、図2および図4に示すように、周方向Zに並んでいるコア部60をコイル線70の巻き始め側から、第一コア部61、第二コア部62、第三コア部63、第四コア部64、第五コア部65、第六コア部66、第七コア部67、第八コア部68、第九コア部69とする。ここでは、U相、V相、W相の三相で構成され、周方向Zに隣接コア部60毎に異なる相が並ぶスター結線の結線構造である。そして、第一コア部61はU相(U1)、第二コア部62はV相(V1)、第三コア部63はW相(W1)、第四コア部64はU相(U2)、第五コア部65はV相(V2)、第六コア部66はW相(W2)、第七コア部67はU相(U3)、第八コア部68はV相(V3)、第九コア部69はW相(W3)である。 Further, as shown in FIGS. 1, 2 and 4, the core portions 60 arranged in the circumferential direction Z are connected to the first core portion 61, the second core portion 62, and the third core from the winding start side of the coil wire 70. Section 63, fourth core section 64, fifth core section 65, sixth core section 66, seventh core section 67, eighth core section 68, and ninth core section 69. Here, it is a star connection connection structure composed of three phases, a U phase, a V phase, and a W phase, in which different phases are arranged for each adjacent core portion 60 in the circumferential direction Z. The first core portion 61 is the U phase (U1), the second core portion 62 is the V phase (V1), the third core portion 63 is the W phase (W1), and the fourth core portion 64 is the U phase (U2). The fifth core portion 65 is the V phase (V2), the sixth core portion 66 is the W phase (W2), the seventh core portion 67 is the U phase (U3), the eighth core portion 68 is the V phase (V3), and the ninth core portion 68. The core portion 69 is the W phase (W3).

尚、当該順番の説明を必要としない場合には、コア部60として総称して説明する。また、各コア部61~69には、コイル7、および絶縁部としての上巻枠2および下巻枠3が同様に設置される。但し、各コア部61~69は、当該コア部61~69に、コイル7、絶縁部としての上巻枠2および下巻枠3が設置されている状態、または、設置されていない状態に関係無く当該記載を採用する。 When it is not necessary to explain the order, the core unit 60 will be collectively described. Further, a coil 7 and an upper winding frame 2 and a lower winding frame 3 as insulating portions are similarly installed in the core portions 61 to 69. However, each core portion 61 to 69 corresponds to the core portion 61 to 69 regardless of the state in which the coil 7, the upper winding frame 2 and the lower winding frame 3 as insulating portions are installed or not installed. Adopt the description.

次に、図5に基づいてコア部60の各箇所について説明する。ヨーク部11の径方向Xの外側X1の軸方向Yに沿う面を外周面113とする。ヨーク部11の外周面113には、軸方向Yに延在する第一凹部114が形成される。第一凹部114は、コイル7を形成する巻線機へステータコア1を取り付ける際の位置決めに用いられる。また、ティース12には、径方向Xの内側X2の先端に周方向Zにそれぞれ突出したシュー部13を備える。 Next, each part of the core portion 60 will be described with reference to FIG. The outer peripheral surface 113 is a surface of the yoke portion 11 along the axial direction Y of the outer side X1 of the radial direction X. A first recess 114 extending in the axial direction Y is formed on the outer peripheral surface 113 of the yoke portion 11. The first recess 114 is used for positioning when the stator core 1 is attached to the winding machine forming the coil 7. Further, the teeth 12 are provided with shoe portions 13 protruding in the circumferential direction Z at the tips of the inner X2 in the radial direction X.

ティース12の周方向Zの両端の軸方向Yに沿う面を第一側面121、ティース12の径方向Xの内側X2の先端の、軸方向Yに沿う面を先端面122とする。シュー部13の径方向Xの外側X1の軸方向Yに沿う面を、第二側面131とする。第一側面121、第二側面131、および、先端面122がティース12の軸方向Yに沿う側面である。そして、内周面112、第一側面121、および、第二側面131にて囲まれた領域が、コイル線70が巻回されてコイル7が形成されるスロット14となる。 The surface along the axial direction Y at both ends of the circumferential direction Z of the teeth 12 is defined as the first side surface 121, and the surface of the tip of the inner side X2 of the radial direction X of the teeth 12 along the axial direction Y is defined as the tip surface 122. The surface of the shoe portion 13 along the axial direction Y of the outer side X1 of the radial direction X is referred to as a second side surface 131. The first side surface 121, the second side surface 131, and the tip surface 122 are side surfaces along the axial direction Y of the teeth 12. The region surrounded by the inner peripheral surface 112, the first side surface 121, and the second side surface 131 becomes the slot 14 in which the coil wire 70 is wound to form the coil 7.

次に、絶縁部として上巻枠2および下巻枠3にてついて、図6から図12を用いて説明する。図6に示すように上巻枠2は、第一突出部21と第一脚部22とにて構成される。図7に示すように下巻枠3は、第二突出部31と第二脚部32とにて構成される。図8はコア部60に上巻枠2および下巻枠3を設置した状態を示す図であり、第一突出部21はコア部60より軸方向Yの一方側から突出して形成される。また、第二突出部31はコア部60より軸方向Yの他方側から突出して形成される。 Next, the upper winding frame 2 and the lower winding frame 3 will be described as insulating portions with reference to FIGS. 6 to 12. As shown in FIG. 6, the upper winding frame 2 is composed of a first protruding portion 21 and a first leg portion 22. As shown in FIG. 7, the lower winding frame 3 is composed of a second protruding portion 31 and a second leg portion 32. FIG. 8 is a diagram showing a state in which the upper winding frame 2 and the lower winding frame 3 are installed on the core portion 60, and the first protruding portion 21 is formed so as to project from one side in the axial direction Y from the core portion 60. Further, the second protruding portion 31 is formed so as to protrude from the other side in the axial direction Y from the core portion 60.

図9に示すように、上巻枠2の第一突出部21の径方向Xの外側X1の外周面201には、軸方向Yに複数段にてなる溝部9が形成される。ここでは溝部9は軸方向Yにおいてステータコア1から離れた側から、第一溝部91、第二溝部92、第三溝部93および第四溝部94の4段にて形成される。各溝部91、92、93、94は、軸方向Yに傾斜して形成される。例えば、図1および図9を参照すると、第一コア部61の第一溝部91の周方向Zに隣接する第二コア部62側の軸方向Yの位置と、第二コア部62の第二溝部92の周方向Zに隣接する第一コア部61側の軸方向Yの位置とが近接するように形成される。 As shown in FIG. 9, a groove portion 9 having a plurality of steps in the axial direction Y is formed on the outer peripheral surface 201 of the outer side X1 in the radial direction X of the first protruding portion 21 of the upper winding frame 2. Here, the groove portion 9 is formed by four stages of a first groove portion 91, a second groove portion 92, a third groove portion 93, and a fourth groove portion 94 from the side separated from the stator core 1 in the axial direction Y. Each groove 91, 92, 93, 94 is formed so as to be inclined in the axial direction Y. For example, referring to FIGS. 1 and 9, the position of the axial direction Y on the side of the second core portion 62 adjacent to the circumferential direction Z of the first groove portion 91 of the first core portion 61 and the second position of the second core portion 62. It is formed so as to be close to the position of the axial direction Y on the first core portion 61 side adjacent to the circumferential direction Z of the groove portion 92.

また、第一コア部61の第二溝部92の周方向Zに隣接する第二コア部62側の軸方向Yの位置と、第二コア部62の第三溝部93の周方向Zに隣接する第一コア部61側の軸方向Yの位置とが近接するように形成される。さらに、第一コア部61の第三溝部93の周方向Zに隣接する第二コア部62側の軸方向Yの位置と、第二コア部62の第四溝部94の周方向Zに隣接する第一コア部61側の軸方向Yの位置とが近接するように形成される。 Further, the position of the axial direction Y on the second core portion 62 side adjacent to the circumferential direction Z of the second groove portion 92 of the first core portion 61 and the position adjacent to the circumferential direction Z of the third groove portion 93 of the second core portion 62. It is formed so as to be close to the position in the axial direction Y on the first core portion 61 side. Further, the position of the axial direction Y on the second core portion 62 side adjacent to the circumferential direction Z of the third groove portion 93 of the first core portion 61 and the position adjacent to the circumferential direction Z of the fourth groove portion 94 of the second core portion 62. It is formed so as to be close to the position in the axial direction Y on the first core portion 61 side.

また、上巻枠2の第一突出部21は、軸方向Yにおいてステータコア1に一番近い側の第四溝部94に連続するとともに、第一突出部21の径方向Xの外側X1から径方向Xの内側X2に連通して形成され、軸方向Yにおいてステータコア1と反する側から前記ステータコア1側に向かって、周方向Zの幅が漸次小さくなる軸方向Yに沿う傾斜面950を備えた導入溝部95を有する。また、上巻枠2の第一突出部21は、軸方向Yにおいてステータコア1から一番離れた側の第一溝部91に連続するとともに、第一突出部21の径方向Xの内側X2から径方向Xの外側X1に連続して形成される導出溝部96を有する。よって、導入溝部95および導出溝部96は、第一突出部21の外周面201から径方向Xの内側X2の内周面202まで連続して形成される。 Further, the first protruding portion 21 of the upper winding frame 2 is continuous with the fourth groove portion 94 on the side closest to the stator core 1 in the axial direction Y, and is radially X from the outer side X1 of the radial direction X of the first protruding portion 21. An introduction groove portion provided with an inclined surface 950 along the axial direction Y, which is formed in communication with the inner side X2 of the above and is formed in the axial direction Y from the side opposite to the stator core 1 toward the stator core 1 side, and the width of the circumferential direction Z gradually decreases. Has 95. Further, the first protruding portion 21 of the upper winding frame 2 is continuous with the first groove portion 91 on the side farthest from the stator core 1 in the axial direction Y, and is radially from the inner side X2 of the radial direction X of the first protruding portion 21. It has a lead-out groove 96 continuously formed on the outer side X1 of X. Therefore, the introduction groove portion 95 and the lead-out groove portion 96 are continuously formed from the outer peripheral surface 201 of the first protrusion 21 to the inner peripheral surface 202 of the inner X2 in the radial direction X.

また、上巻枠2の第一突出部21は、軸方向Yにおいてステータコア1から一番離れた側の第一溝部91以外の第二溝部92、第三溝部93、および第四溝部94の周方向Zの一端に、第一突出部21の径方向Xの外側X1から径方向Xの内側X2に連続する第一電源溝部97、第二電源溝部98、および第三電源溝部99を有する。よって、第一電源溝部97、第二電源溝部98、および第三電源溝部99は、第一突出部21の外周面201から内周面202が切り欠いて形成される。 Further, the first protruding portion 21 of the upper winding frame 2 is in the circumferential direction of the second groove portion 92, the third groove portion 93, and the fourth groove portion 94 other than the first groove portion 91 on the side farthest from the stator core 1 in the axial direction Y. At one end of Z, a first power supply groove portion 97, a second power supply groove portion 98, and a third power supply groove portion 99 continuous from the outer side X1 in the radial direction X of the first protrusion 21 to the inner side X2 in the radial direction X are provided. Therefore, the first power supply groove portion 97, the second power supply groove portion 98, and the third power supply groove portion 99 are formed by cutting out the inner peripheral surface 202 from the outer peripheral surface 201 of the first protruding portion 21.

第一溝部91、第二溝部92、第三溝部93および第四溝部94は、異なるティース12のコイル7同士を接続する渡り線8を保持する。当該渡り線8はコイル7同士との連続線である。導入溝部95は、コイル線70をティース12に巻回するために、ステータコア1の径方向Xの外側X1から径方向Xの内側X2に導入するために保持する。この際、導入溝部95には、傾斜面950を有しているため、コイル線70の導入が容易かつ簡便にできる。導出溝部96は、ティース12に巻回してコイル7を形成した後の渡り線8を、ステータコア1の径方向Xの内側X2から径方向Xの外側X1に導出するために保持し、緩み防止を行う。第一電源溝部97、第二電源溝部98、および、第三電源溝部99は、コイル線70の巻き始め部分を、ステータコア1の径方向Xの外側X1から径方向Xの内側X2に導入するために保持する。 The first groove portion 91, the second groove portion 92, the third groove portion 93, and the fourth groove portion 94 hold a crossover line 8 that connects the coils 7 of different teeth 12. The crossover line 8 is a continuous line between the coils 7. The introduction groove portion 95 is held for introducing the coil wire 70 from the outer side X1 in the radial direction X to the inner side X2 in the radial direction X in order to wind the coil wire 70 around the teeth 12. At this time, since the introduction groove portion 95 has an inclined surface 950, the introduction of the coil wire 70 can be easily and easily performed. The lead-out groove portion 96 holds the crossover wire 8 after winding around the teeth 12 to form the coil 7 from the inner side X2 in the radial direction X of the stator core 1 to the outer side X1 in the radial direction X to prevent loosening. conduct. The first power supply groove portion 97, the second power supply groove portion 98, and the third power supply groove portion 99 introduce the winding start portion of the coil wire 70 from the outer side X1 of the stator core 1 in the radial direction X to the inner side X2 in the radial direction X. Hold on.

上巻枠2の第一脚部22および下巻枠3の第二脚部32は、コア部60の内周面112、第一側面121および第二側面131を覆うように構成される。すなわち、各脚部22、32は、スロット14に嵌合して、コイル7とステータコア1とを絶縁する。尚、本実施の形態1においては、第一脚部22と第二脚部32との軸方向Yの長さをほぼ同一の長さにて形成する例を示しているが、これに限られることはなく、両脚部22、32でステータコア1とコイル7との絶縁ができればよく、各脚部22、32の軸方向Yの長さは適宜変更可能である。 The first leg portion 22 of the upper winding frame 2 and the second leg portion 32 of the lower winding frame 3 are configured to cover the inner peripheral surface 112, the first side surface 121, and the second side surface 131 of the core portion 60. That is, the legs 22 and 32 are fitted in the slot 14 to insulate the coil 7 and the stator core 1. In the first embodiment, an example is shown in which the lengths of the first leg portion 22 and the second leg portion 32 in the axial direction Y are formed to have substantially the same length, but the present invention is limited to this. It suffices that the stator core 1 and the coil 7 can be insulated from each other by the legs 22 and 32, and the length of each leg 22 and 32 in the axial direction Y can be appropriately changed.

次に、コイル線70について図1を用いて説明する。コイル線70はコイル7を形成するための線である。ここでは、第一コイル線71、第二コイル線72および第三コイル線73の三本のコイル線70を使用する。各コイル線71、72、73において、コイル7の巻回を始める線を、第一巻始線711、第二巻始線721、および第三巻始線731とする。また、第一巻始線711、第二巻始線721、および第三巻始線731を、ステータコア1の径方向Xの外側X1から内側X2に移動して、電源線として使用する場合、第一電源線713、第二電源線723、および第三電源線733とする。尚、第一電源線713、第二電源線723、および第三電源線733は破線にて示すとともに、詳細は後述する。 Next, the coil wire 70 will be described with reference to FIG. The coil wire 70 is a wire for forming the coil 7. Here, three coil wires 70 of the first coil wire 71, the second coil wire 72, and the third coil wire 73 are used. In each of the coil wires 71, 72, and 73, the wires that start winding the coil 7 are the first winding start wire 711, the second winding start wire 721, and the third winding start wire 731. Further, when the first winding start wire 711, the second winding start wire 721, and the third winding start wire 731 are moved from the outer side X1 to the inner side X2 in the radial direction X of the stator core 1 and used as a power supply line, the first One power supply line 713, a second power supply line 723, and a third power supply line 733. The first power supply line 713, the second power supply line 723, and the third power supply line 733 are indicated by broken lines, and the details will be described later.

また、各コイル線71、72、73において、コイル7の巻回が終わった線を、第一巻終線712、第二巻終線722、および第三巻終線732とする。第一巻終線712、第二巻終線722、および第三巻終線732は結線され中性点700が形成される。尚、上記に示したように、当該コイル線70の各箇所を用いて説明を必要としない場合には、コイル線70として総称して説明する。 Further, in each of the coil wires 71, 72, and 73, the wires at which the coil 7 has been wound are referred to as the first winding ending wire 712, the second winding ending wire 722, and the third winding ending wire 732. The first volume ending line 712, the second volume ending line 722, and the third volume ending line 732 are connected to form a neutral point 700. As shown above, when it is not necessary to explain using each part of the coil wire 70, the coil wire 70 will be generically described.

次に、渡り線8について図1を用いて説明する。尚、渡り線8は、コイル線70にて形成されている。渡り線8は、第一渡り線81、第二渡り線82、第三渡り線83、第四渡り線84、第五渡り線85、および第六渡り線86がある。第一渡り線81は第一コア部61のコイル7と、周方向Zに3個離れた第四コア部64のコイル7とを接続する。第二渡り線82は第二コア部62のコイル7と、周方向Zに3個離れた第五コア部65のコイル7とを接続する。第三渡り線83は第三コア部63のコイル7と、周方向Zに3個離れた第六コア部66のコイル7とを接続する。 Next, the crossover line 8 will be described with reference to FIG. The crossover wire 8 is formed of a coil wire 70. The crossover 8 includes a first crossover 81, a second crossover 82, a third crossover 83, a fourth crossover 84, a fifth crossover 85, and a sixth crossover 86. The first crossover 81 connects the coil 7 of the first core portion 61 and the coil 7 of the fourth core portion 64 separated by three in the circumferential direction Z. The second crossover 82 connects the coil 7 of the second core portion 62 and the coil 7 of the fifth core portion 65 separated by three in the circumferential direction Z. The third crossover line 83 connects the coil 7 of the third core portion 63 and the coil 7 of the sixth core portion 66 separated by three in the circumferential direction Z.

第四渡り線84は第四コア部64のコイル7と第七コア部67のコイル7とを接続する。第五渡り線85は第五コア部65のコイル7と、周方向Zに3個離れた第八コア部68のコイル7とを接続する。第六渡り線86は第六コア部66のコイル7と、周方向Zに3個離れた第九コア部69のコイル7とを接続する。尚、上記に示したように、当該渡り線8の各箇所の説明を必要としない場合には、渡り線8として総称して説明する。 The fourth crossover 84 connects the coil 7 of the fourth core portion 64 and the coil 7 of the seventh core portion 67. The fifth crossover 85 connects the coil 7 of the fifth core portion 65 and the coil 7 of the eighth core portion 68 separated by three in the circumferential direction Z. The sixth crossover 86 connects the coil 7 of the sixth core portion 66 and the coil 7 of the ninth core portion 69 separated by three in the circumferential direction Z. As shown above, when it is not necessary to explain each part of the crossover line 8, the crossover line 8 will be generically described.

図22および図23に示すように、回転電機10は、上記に示したステータ100と、ステータ100の径方向Xの内側X2に所定のエアギャップ(間隙)107を設けて対向配設されたロータ102と、ロータ102とステータ100を固定するハウジング101とを備えている。ロータ102は、ハウジング101の軸方向Yの両端に設けられた軸受103の内輪にシャフト104が嵌め合わされて回転自在に保持される。また、シャフト104の外周に固定されたロータコア106には、永久磁石105がV字状に埋め込まれている。 As shown in FIGS. 22 and 23, the rotary electric machine 10 is a rotor arranged so as to face the stator 100 shown above with a predetermined air gap (gap) 107 provided on the inner side X2 of the stator 100 in the radial direction X. It includes a 102 and a housing 101 for fixing the rotor 102 and the stator 100. The rotor 102 is rotatably held by fitting the shaft 104 to the inner rings of the bearings 103 provided at both ends of the housing 101 in the axial direction Y. Further, a permanent magnet 105 is embedded in a V shape in the rotor core 106 fixed to the outer periphery of the shaft 104.

尚、永久磁石105はV字状に配置されている例を示しているが、これに限られるものではなく、直線状または他の形状に配置されてもよい。また、永久磁石105は埋め込まれて形成する例を示しているが、これに限られることはなく、ロータコア106の径方向Xの外側X1の外周表面に貼り付けてステータ100に対向するように配置してもよい。尚、永久磁石105によって生じる磁極の個数は、図22に示すように6極に限られるものではなく、ステータ100のティース12の個数に応じて適宜設定すればよい。 Although the permanent magnet 105 is shown in an example of being arranged in a V shape, the present invention is not limited to this, and the permanent magnet 105 may be arranged in a straight line or in another shape. Further, the permanent magnet 105 is shown as an example of being embedded and formed, but the present invention is not limited to this, and the permanent magnet 105 is attached to the outer peripheral surface of the outer surface X1 of the radial direction X of the rotor core 106 and arranged so as to face the stator 100. You may. The number of magnetic poles generated by the permanent magnet 105 is not limited to 6 poles as shown in FIG. 22, and may be appropriately set according to the number of teeth 12 of the stator 100.

次に、上記のように構成された実施の形態1の回転電機のステータの製造方法および回転電機の製造方法について、図24に示した実施の形態1の回転電機の製造方法のフローチャートを用いて説明する。まず、コイル形成工程の前工程を説明する。磁性鋼板を打ち抜いて図3に示したようなコア板6を形成する。そして、形成されたコア板6を、軸方向Yに複数枚積層するとともにヨーク部11の連結部111で連結してステータコア1を形成する(図24のステップST1)。次に、上巻枠2および下巻枠3を、例えば、絶縁性樹脂の射出成型により形成する。次に、ステータコア1の軸方向Yの両端からスロット14に上巻枠2の第一脚部22、および、下巻枠3の第二脚部32を挿入して嵌め、上巻枠2および下巻枠3をステータコア1に装着する(図24のステップST2)。 Next, regarding the method of manufacturing the stator of the rotary electric machine of the first embodiment and the method of manufacturing the rotary electric machine configured as described above, the flowchart of the method of manufacturing the rotary electric machine of the first embodiment shown in FIG. 24 is used. explain. First, the pre-process of the coil forming process will be described. The magnetic steel plate is punched out to form the core plate 6 as shown in FIG. Then, a plurality of the formed core plates 6 are laminated in the axial direction Y and connected by the connecting portion 111 of the yoke portion 11 to form the stator core 1 (step ST1 in FIG. 24). Next, the upper winding frame 2 and the lower winding frame 3 are formed by, for example, injection molding of an insulating resin. Next, the first leg portion 22 of the upper winding frame 2 and the second leg portion 32 of the lower winding frame 3 are inserted and fitted into the slots 14 from both ends of the stator core 1 in the axial direction Y, and the upper winding frame 2 and the lower winding frame 3 are fitted. It is attached to the stator core 1 (step ST2 in FIG. 24).

次に、コイル7を形成する(図24のステップST3)工程について、図25の回転電機の製造方法のフローチャートを用いて説明する。まず、図1および図15、図9参照に示すように、第一コイル線71を第一コア部61の導入溝部95を用いて、径方向Xの外側X1から内側X2に導入する。この際、導入溝部95には、傾斜面950を有しているため、コイル線70の導入が容易かつ簡便にできる。尚、このことは他の場所におけるコイル線70の導入溝部95を用いた導入においても同様であるため、その説明は適宜省略する。 Next, the step of forming the coil 7 (step ST3 in FIG. 24) will be described with reference to the flowchart of the manufacturing method of the rotary electric machine of FIG. First, as shown in FIGS. 1, 15, and 9, the first coil wire 71 is introduced from the outer side X1 to the inner side X2 in the radial direction X by using the introduction groove portion 95 of the first core portion 61. At this time, since the introduction groove portion 95 has an inclined surface 950, the introduction of the coil wire 70 can be easily and easily performed. Since this is the same in the case of introduction using the introduction groove portion 95 of the coil wire 70 in another place, the description thereof will be omitted as appropriate.

また、第二コイル線72、および第三コイル線73も同様に、第二コア部62および第三コア部63のそれぞれの導入溝部95を用いて、径方向Xの外側X1から内側X2に導入する。そして、図13に示すように、3本の巻線ノズル51、52、53を用いて、第一コア部61、第二コア部62、および第三コア部63のそれぞれのティース12に第一コイル線71、第二コイル線72および第三コイル線73を同時に矢視511、521、531のように巻回する(但し、図11は第七コア部67、第八コア部68および第九コア部69に巻回する例を図示している)。 Similarly, the second coil wire 72 and the third coil wire 73 are also introduced from the outer side X1 to the inner side X2 in the radial direction X by using the introduction groove portions 95 of the second core portion 62 and the third core portion 63, respectively. do. Then, as shown in FIG. 13, three winding nozzles 51, 52, and 53 are used to first attach the first to each tooth 12 of the first core portion 61, the second core portion 62, and the third core portion 63. The coil wire 71, the second coil wire 72, and the third coil wire 73 are simultaneously wound in the same manner as the arrows 511, 521, and 513 (however, FIG. 11 shows the seventh core portion 67, the eighth core portion 68, and the ninth core portion. An example of winding around the core portion 69 is illustrated).

そして、第一コア部61、第二コア部62および第三コア部63のそれぞれのティース12にコイル7を形成した後に、第一コイル線71、第二コイル線72、第三コイル線73を第一コア部61、第二コア部62および第三コア部63のそれぞれの導出溝部96にて緩みを防止するように保持させ、径方向Xの内側X2から外側X1に導出する(図14、図25のステップST31)。次に、全てのコア部60にコイル線70を巻回したか否かを判断する(図25のステップST32)。そして、ここでは、NOとなり次の工程へ移る。次に、各巻線ノズル51、52、53を矢印Eの方向に移動させ、次の巻回工程を行うために、第一コイル線71は第四コア部64に、第二コイル線72は第五コア部65に、第三コイル線73は第六コア部66のそれぞれの位置まで移動させる(図25のステップST33)。 Then, after forming the coil 7 in the teeth 12 of the first core portion 61, the second core portion 62, and the third core portion 63, the first coil wire 71, the second coil wire 72, and the third coil wire 73 are formed. Each of the lead-out groove portions 96 of the first core portion 61, the second core portion 62, and the third core portion 63 is held so as to prevent loosening, and is led out from the inner side X2 in the radial direction X to the outer side X1 (FIG. 14, FIG. Step ST31 in FIG. 25). Next, it is determined whether or not the coil wire 70 is wound around all the core portions 60 (step ST32 in FIG. 25). Then, here, it becomes NO and the process proceeds to the next process. Next, in order to move the winding nozzles 51, 52, 53 in the direction of arrow E and perform the next winding step, the first coil wire 71 is connected to the fourth core portion 64, and the second coil wire 72 is connected to the fourth core portion 64. The third coil wire 73 is moved to the five core portions 65 to the respective positions of the sixth core portion 66 (step ST33 in FIG. 25).

矢印Eの方向に移動させる際、各巻線ノズル51、52、53を有したノズルユニットは、図14に示す矢印Fの方向に1回転させながら、異なる相間で渡り線同士が干渉しないように渡り線を形成する。すなわち、巻線ノズル51は軌道G、巻線ノズル52は軌道H、巻線ノズル53は軌道Iの動作をする。巻線ノズル51を移動させる際、巻線ノズル51が第一コア部61から第九コア部69の全てに干渉しないように、巻線ノズル51全体が第一突出部21より径方向Xの外側X1に位置している。 When moving in the direction of arrow E, the nozzle unit having the winding nozzles 51, 52, and 53 makes one rotation in the direction of arrow F shown in FIG. 14, and crossovers so that the crossovers do not interfere with each other between different phases. Form a line. That is, the winding nozzle 51 operates on the track G, the winding nozzle 52 operates on the track H, and the winding nozzle 53 operates on the track I. When moving the winding nozzle 51, the entire winding nozzle 51 is outside the first protruding portion 21 in the radial direction X so that the winding nozzle 51 does not interfere with all of the first core portion 61 to the ninth core portion 69. It is located at X1.

これによって、巻線ノズル51を巻線ノズル52および巻線ノズル53から出る渡り線よりもコア部60側に配置でき、巻線ノズル52を巻線ノズル53から出る渡り線よりもコア部60側に配置できる。このため、巻線ノズル51が巻線ノズル52および巻線ノズル53から出る渡り線に、かつ巻線ノズル52が巻線ノズル53から出る渡り線に干渉(クロス)するのを防止できる。 As a result, the winding nozzle 51 can be arranged on the core portion 60 side of the crossover wire coming out of the winding nozzle 52 and the winding nozzle 53, and the winding nozzle 52 can be arranged on the core portion 60 side of the crossover wire coming out of the winding nozzle 53. Can be placed in. Therefore, it is possible to prevent the winding nozzle 51 from interfering (crossing) with the crossover wire coming out of the winding nozzle 52 and the winding nozzle 53 and the winding nozzle 52 with the crossover wire coming out of the winding nozzle 53.

この際、第一コア部61のコイル7と第四コア部64のコイル7とを接続する第一渡り線81は導出溝部96から第一コア部61の第一溝部91に保持され、周方向Zに連接する第二コア部62の第二溝部92に保持され、さらに周方向Zに連接する第三コア部63の第三溝部93に保持され、さらに周方向Zに連接する第四コア部64の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第四コア部64の径方向Xの外側X1から内側X2に導入される(図25のステップST31)。 At this time, the first crossover 81 connecting the coil 7 of the first core portion 61 and the coil 7 of the fourth core portion 64 is held from the lead-out groove portion 96 to the first groove portion 91 of the first core portion 61, and is held in the circumferential direction. A fourth core portion held by the second groove portion 92 of the second core portion 62 connected to Z, further held by the third groove portion 93 of the third core portion 63 connected to the circumferential direction Z, and further connected to the circumferential direction Z. From the introduction groove portion 95 held by the fourth groove portion 94 of 64 and connected to the fourth groove portion 94, the fourth core portion 64 is introduced from the outer side X1 to the inner side X2 in the radial direction X (step ST31 in FIG. 25).

これと同様に、第二コア部62のコイル7と第五コア部65のコイル7とを接続する第二渡り線82は導出溝部96から第二コア部62の第一溝部91に保持され、周方向Zに連接する第三コア部63の第二溝部92に保持され、さらに周方向Zに連接する第四コア部64の第三溝部93に保持され、さらに周方向Zに連接する第五コア部65の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第五コア部65の径方向Xの外側X1から内側X2に導入される。 Similarly, the second crossover wire 82 connecting the coil 7 of the second core portion 62 and the coil 7 of the fifth core portion 65 is held from the lead-out groove portion 96 to the first groove portion 91 of the second core portion 62. A fifth that is held by the second groove 92 of the third core portion 63 that is connected to the circumferential direction Z, is further held by the third groove portion 93 of the fourth core portion 64 that is connected to the circumferential direction Z, and is further connected to the circumferential direction Z. From the introduction groove portion 95 held by the fourth groove portion 94 of the core portion 65 and connected to the fourth groove portion 94, the fifth core portion 65 is introduced from the outer side X1 to the inner side X2 in the radial direction X.

また、さらに、第三コア部63のコイル7と第六コア部66のコイル7とを接続する第三渡り線83は導出溝部96から第三コア部63の第一溝部91に保持され、周方向Zに連接する第四コア部64の第二溝部92に保持され、さらに周方向Zに連接する第五コア部65の第三溝部93に保持され、さらに周方向Zに連接する第六コア部66の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第六コア部66の径方向Xの外側X1から内側X2に導入される。 Further, the third crossover wire 83 connecting the coil 7 of the third core portion 63 and the coil 7 of the sixth core portion 66 is held from the lead-out groove portion 96 to the first groove portion 91 of the third core portion 63, and is connected to the circumference. The sixth core is held by the second groove 92 of the fourth core 64 connected to the direction Z, further held by the third groove 93 of the fifth core 65 connected to the circumferential Z, and further connected to the circumferential Z. From the introduction groove portion 95 held by the fourth groove portion 94 of the portion 66 and connected to the fourth groove portion 94, the sixth core portion 66 is introduced from the outer side X1 to the inner side X2 in the radial direction X.

そして、上記と同様に、図13に示すように、3本の巻線ノズル51、52、53を用いて、第四コア部64、第五コア部65、および第六コア部66のそれぞれのティース12に第一コイル線71、第二コイル線72および第三コイル線73を同時に矢視511、521、531のように巻回する。 Then, similarly to the above, as shown in FIG. 13, using the three winding nozzles 51, 52, 53, each of the fourth core portion 64, the fifth core portion 65, and the sixth core portion 66, respectively. The first coil wire 71, the second coil wire 72, and the third coil wire 73 are simultaneously wound around the teeth 12 as shown by arrows 511, 521, and 513.

そして、第四コア部64、第五コア部65および第六コア部66のそれぞれのティース12にコイル7を形成した後に、第一コイル線71、第二コイル線72、第三コイル線73を第四コア部64、第五コア部65および第六コア部66のそれぞれの導出溝部96に緩みを防止するように保持させ、径方向Xの内側X2から外側X1に導出する。そして、各巻線ノズル51、52、53を矢印Eの方向に移動させ、次の巻回工程を行うために、第一コイル線71は第七コア部67に、第二コイル線72は第八コア部68に、第三コイル線73は第九コア部69のそれぞれの位置まで移動させる。尚、矢印Eの方向に移動させる際、上記に示した1回目の渡り線処理と同様に各巻線ノズル51、52、53を有したノズルユニットは、図14に示す矢印Fの方向に1回転させながら渡り線処理を行う。 Then, after forming the coil 7 in the teeth 12 of the fourth core portion 64, the fifth core portion 65, and the sixth core portion 66, the first coil wire 71, the second coil wire 72, and the third coil wire 73 are formed. Each of the lead-out groove portions 96 of the fourth core portion 64, the fifth core portion 65, and the sixth core portion 66 is held so as to prevent loosening, and is led out from the inner side X2 in the radial direction X to the outer side X1. Then, in order to move the winding nozzles 51, 52, 53 in the direction of arrow E and perform the next winding step, the first coil wire 71 is connected to the seventh core portion 67, and the second coil wire 72 is connected to the eighth core portion 67. The third coil wire 73 is moved to the core portion 68 to each position of the ninth core portion 69. When moving in the direction of arrow E, the nozzle unit having the winding nozzles 51, 52, and 53 has one rotation in the direction of arrow F shown in FIG. 14, as in the first crossover processing shown above. Perform crossover processing while letting it.

この際、第四コア部64のコイル7と第七コア部67のコイル7とを接続する第四渡り線84は導出溝部96から第四コア部64の第一溝部91に保持され、周方向Zに連接する第五コア部65の第二溝部92に保持され、さらに周方向Zに連接する第六コア部66の第三溝部93に保持され、さらに周方向Zに連接する第七コア部67の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第七コア部67の径方向Xの外側X1から内側X2に導入される。 At this time, the fourth crossover wire 84 connecting the coil 7 of the fourth core portion 64 and the coil 7 of the seventh core portion 67 is held from the lead-out groove portion 96 to the first groove portion 91 of the fourth core portion 64, and is held in the circumferential direction. A seventh core portion held by the second groove portion 92 of the fifth core portion 65 connected to Z, further held by the third groove portion 93 of the sixth core portion 66 connected to the circumferential direction Z, and further connected to the circumferential direction Z. From the introduction groove portion 95 held by the fourth groove portion 94 of 67 and connected to the fourth groove portion 94, the seventh core portion 67 is introduced from the outer side X1 to the inner side X2 in the radial direction X.

これと同様に、第五コア部65のコイル7と第八コア部68のコイル7とを接続する第五渡り線85は導出溝部96から第五コア部65の第一溝部91に保持され、周方向Zに連接する第六コア部66の第二溝部92に保持され、さらに周方向Zに連接する第七コア部67の第三溝部93に保持され、さらに周方向Zに連接する第八コア部68の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第八コア部68の径方向Xの外側X1から内側X2に導入される。 Similarly, the fifth crossover wire 85 connecting the coil 7 of the fifth core portion 65 and the coil 7 of the eighth core portion 68 is held from the lead-out groove portion 96 to the first groove portion 91 of the fifth core portion 65. The eighth core portion 66 connected to the circumferential direction Z is held by the second groove portion 92 of the sixth core portion 66, further held by the third groove portion 93 of the seventh core portion 67 connected to the circumferential direction Z, and further connected to the circumferential direction Z. It is introduced from the introduction groove portion 95 held in the fourth groove portion 94 of the core portion 68 and connected to the fourth groove portion 94 from the outer side X1 to the inner side X2 of the eighth core portion 68 in the radial direction X.

また、さらに、第六コア部66のコイル7と第九コア部69のコイル7とを接続する第六渡り線86は導出溝部96から第六コア部66の第一溝部91に保持され、周方向Zに連接する第七コア部67の第二溝部92に保持され、さらに周方向Zに連接する第八コア部68の第三溝部93に保持され、さらに周方向Zに連接する第九コア部69の第四溝部94に保持され、第四溝部94に連接される導入溝部95から、第九コア部69の径方向Xの外側X1から内側X2に導入される。 Further, the sixth crossing wire 86 connecting the coil 7 of the sixth core portion 66 and the coil 7 of the ninth core portion 69 is held from the lead-out groove portion 96 to the first groove portion 91 of the sixth core portion 66, and is peripheral. The ninth core is held by the second groove 92 of the seventh core 67 connected to the direction Z, further held by the third groove 93 of the eighth core 68 connected to the circumferential Z, and further connected to the circumferential Z. It is introduced from the introduction groove portion 95 held in the fourth groove portion 94 of the portion 69 and connected to the fourth groove portion 94 from the outer side X1 to the inner side X2 of the ninth core portion 69 in the radial direction X.

そして、上記と同様に、図13に示すように、3本の巻線ノズル51、52、53を用いて、第七コア部67、第八コア部68、および第九コア部69のそれぞれのティース12に第一コイル線71、第二コイル線72および第三コイル線73を同時に矢視511、521、531のように巻回する。 Then, similarly to the above, as shown in FIG. 13, using the three winding nozzles 51, 52, 53, each of the seventh core portion 67, the eighth core portion 68, and the ninth core portion 69, respectively. The first coil wire 71, the second coil wire 72, and the third coil wire 73 are simultaneously wound around the teeth 12 as in the arrows 511, 521, and 513.

そして、第七コア部67、第八コア部68および第九コア部69のそれぞれのティース12にコイル7を形成した後に(図25のステップST32の判断がYES)、第一コイル線71、第二コイル線72、第三コイル線73を切断して、第一巻終線712、第二巻終線722、第三巻終線732が形成される(図15、図25のステップST34)。そしてこれら各巻終線712、722、732をまとめてかしめ、スター結線の中性点700を形成する(図1)。まとめる方法としては、ロウ付けまたははんだ付けなどの結線処理を用いてもよい。 Then, after forming the coil 7 on each tooth 12 of the seventh core portion 67, the eighth core portion 68, and the ninth core portion 69 (the determination in step ST32 in FIG. 25 is YES), the first coil wire 71 and the second coil wire 71. The two-coil wire 72 and the third coil wire 73 are cut to form the first volume end line 712, the second volume end line 722, and the third volume end line 732 (step ST34 in FIGS. 15 and 25). Then, the end lines 712, 722, and 732 of each volume are crimped together to form the neutral point 700 of the star connection (FIG. 1). As a method of putting together, a wiring process such as brazing or soldering may be used.

このように形成され、第一コイル線71は、切断せずに連続線として、第一巻始線711、第一コア部61のコイル7、第一渡り線81、第四コア部64のコイル7、第四渡り線84、第七コア部67のコイル7、そして、第一巻終線712となる。第二コイル線72は、切断せずに連続線として、第二巻始線721、第二コア部62のコイル7、第二渡り線82、第五コア部65のコイル7、第五渡り線85、第八コア部68のコイル7、そして、第二巻終線722となる。第三コイル線73は、切断せずに連続線として、第三巻始線731、第三コア部63のコイル7、第三渡り線83、第六コア部66のコイル7、第六渡り線86、第九コア部69のコイル7、そして、第三巻終線732となる。 The first coil wire 71 is formed in this way as a continuous wire without cutting, and is the coil of the first winding start wire 711, the coil 7 of the first core portion 61, the first crossover wire 81, and the coil of the fourth core portion 64. 7, the fourth crossover wire 84, the coil 7 of the seventh core portion 67, and the first volume final wire 712. The second coil wire 72 is a continuous wire without being cut, and is the second winding start wire 721, the coil 7 of the second core portion 62, the second crossover wire 82, the coil 7 of the fifth core portion 65, and the fifth crossover wire. 85, the coil 7 of the eighth core portion 68, and the second volume final line 722. The third coil wire 73 is a continuous wire without being cut, and the third winding start wire 731, the coil 7 of the third core portion 63, the third crossover wire 83, the coil 7 of the sixth core portion 66, and the sixth crossover wire. 86, the coil 7 of the ninth core portion 69, and the third volume final line 732.

次に、第一巻始線711、第二巻始線721および第三巻始線731の電源線として使用する場合の処理を行う。この3本の第一巻始線711、第二巻始線721および第三巻始線731はステータ100を円環状にした際に、ステータ100の径方向Xの内側X2に配置する必要がある。上記のとおりコイル7を形成すると、第一コア部61の第二溝部92、第三溝部93、および第四溝部94、第二コア部62の第三溝部93、第四溝部94、および第三コア部63の第四溝部94は渡り線8の保持に利用されていない。 Next, processing is performed when the power line is used as the power supply line for the first volume start line 711, the second volume start line 721, and the third volume start line 731. The three first winding start wires 711, the second winding start wire 721, and the third winding start wire 731 need to be arranged inside X2 in the radial direction X of the stator 100 when the stator 100 is made into an annular shape. .. When the coil 7 is formed as described above, the second groove portion 92, the third groove portion 93, and the fourth groove portion 94 of the first core portion 61, the third groove portion 93, the fourth groove portion 94, and the third of the second core portion 62 are formed. The fourth groove portion 94 of the core portion 63 is not used for holding the crossover line 8.

よってこれらを利用して、第一コア部61の第一巻始線711は、第一コア部61の第四溝部94に保持させ、第四溝部94に連通する第三電源溝部99を用いて、径方向Xの外側X1から内側X2に導入する。また、第二コア部62の第二巻始線721は、第二コア部62の第四溝部94に保持させ、周方向Zに隣接する第一コア部61の第三溝部93に保持させ、当該第三溝部93に連通する第二電源溝部98を用いて、径方向Xの外側X1から内側X2に導入する。 Therefore, utilizing these, the first winding start line 711 of the first core portion 61 is held by the fourth groove portion 94 of the first core portion 61, and the third power supply groove portion 99 communicating with the fourth groove portion 94 is used. , Introduces from the outer side X1 to the inner side X2 in the radial direction X. Further, the second winding start line 721 of the second core portion 62 is held by the fourth groove portion 94 of the second core portion 62 and held by the third groove portion 93 of the first core portion 61 adjacent to the circumferential direction Z. Using the second power supply groove portion 98 communicating with the third groove portion 93, the second power supply groove portion 98 is introduced from the outer side X1 to the inner side X2 in the radial direction X.

また、第三コア部63の第三巻始線731は、第三コア部63の第四溝部94に保持させ、周方向Zに隣接する第二コア部62の第三溝部93に保持させ、さらに、周方向Zに隣接する第一コア部61の第二溝部92に保持させ、当該第二溝部92に連通する第一電源溝部97を用いて、径方向Xの外側X1から内側X2に導入する。各電源線713、723、733は、径方向Xの内側X2で、絶縁チューブをかぶせて絶縁を保ち配線処理を行う。 Further, the third winding start line 731 of the third core portion 63 is held by the fourth groove portion 94 of the third core portion 63 and held by the third groove portion 93 of the second core portion 62 adjacent to the circumferential direction Z. Further, it is introduced from the outer side X1 to the inner side X2 in the radial direction X by using the first power supply groove portion 97 which is held in the second groove portion 92 of the first core portion 61 adjacent to the circumferential direction Z and communicates with the second groove portion 92. do. Each power line 713, 723, 733 is covered with an insulating tube on the inner side X2 in the radial direction X to maintain insulation and perform wiring processing.

次に、ステータコア1を円環状にし、ステータコア1の端部同士を溶接等で固定する。これらの工程によりステータ100が形成される(図24のステップST4)。次に、ハウジング101の径方向Xの内側X2の内周面にステータ100の径方向Xの外側X1の外周面を固定する(図24のステップST5)。次に、軸受103によって、ハウジング101にロータ102を回転自在に支持し、ロータ102をステータ100にエアギャップ107を介して対向配置する(図24のステップST6)。これらの工程により回転電機10が形成される。 Next, the stator core 1 is formed into an annular shape, and the ends of the stator core 1 are fixed to each other by welding or the like. The stator 100 is formed by these steps (step ST4 in FIG. 24). Next, the outer peripheral surface of the outer side X1 of the stator 100 in the radial direction X is fixed to the inner peripheral surface of the inner peripheral surface X2 in the radial direction X of the housing 101 (step ST5 in FIG. 24). Next, the rotor 102 is rotatably supported on the housing 101 by the bearing 103, and the rotor 102 is arranged to face the stator 100 via the air gap 107 (step ST6 in FIG. 24). The rotary electric machine 10 is formed by these steps.

尚、本実施の形態1では、永久磁石105によって生じる磁極の個数は、図22に示すように6極の例を示したが、これに限られることはなく、ステータ100のティース12の個数に応じた個数でもよい。例えば、周方向Zに2ティース離れたティース12へ渡り線が必要な本案(UVWUVW・・・)において、ティース12の個数を3・N個(Nは2以上の整数)とした場合、磁極の個数は((3±1)・N)個でもよい。また、周方向Zに隣り合うティース12へ周方向Zに3ティース連続で巻線する方式(UU’UVV’VWW’W・・・)において、2ティース目を巻線する際に1ティース、3ティース目と逆回転の巻線に必要になり、ティース12の個数を9・N個(Nは1以上の整数)とした場合、磁極の個数は((9±1)・N)個でもよい。また、周方向Zに隣り合うティース12へ2ティース連続で巻線する方式(UU’VV’WW’・・・)において、ティース12の個数を6・N個(Nは1以上の整数)とした場合、磁極の個数は((6±1)・N)個でもよい。 In the first embodiment, the number of magnetic poles generated by the permanent magnet 105 is limited to the number of teeth 12 of the stator 100, although the example of 6 poles is shown as shown in FIG. It may be the corresponding number. For example, in this proposal (UVWUVW ...), which requires a crossover to the teeth 12 that are two teeth apart in the circumferential direction Z, when the number of teeth 12 is 3.N (N is an integer of 2 or more), the magnetic poles The number may be ((3 ± 1) · N). Further, in a method (UU'UVV'VWW'W ...) in which 3 teeth are continuously wound in the circumferential direction Z to the teeth 12 adjacent to the circumferential direction Z, 1 tooth and 3 are used when winding the second tooth. It is required for windings that rotate in the opposite direction to the teeth, and if the number of teeth 12 is 9.N (N is an integer of 1 or more), the number of magnetic poles may be ((9 ± 1) / N). .. Further, in the method of continuously winding two teeth 12 adjacent teeth 12 in the circumferential direction (UU'VV'WW'...), the number of teeth 12 is 6.N (N is an integer of 1 or more). If so, the number of magnetic poles may be ((6 ± 1) · N).

磁極の個数が((9±1)・N)個の場合、Nが2以上となる場合は、周方向Zに3ティース連続で巻線した後、周方向Zに6ティース離れた次のティース12へ巻線する必要があるため、6ティース離れた渡り線処理が必要となる。磁極の個数が((6±1)・N)個の場合は、周方向Zに2ティース連続で巻線した後、周方向Zに4ティース離れた次のティース12へ巻線する必要があるため、周方向Zに4ティース離れた渡り線処理が必要となる。尚、このことは以下の実施の形態においても同様であるため、その説明は適宜省略する。 When the number of magnetic poles is ((9 ± 1) · N) and N is 2 or more, after winding 3 teeth continuously in the circumferential direction Z, the next teeth separated by 6 teeth in the circumferential direction Z. Since it is necessary to wind the wire to 12, it is necessary to process the crossover at a distance of 6 teeth. When the number of magnetic poles is ((6 ± 1) · N), it is necessary to wind two teeth continuously in the circumferential direction Z and then wind the next teeth 12 four teeth apart in the circumferential direction Z. Therefore, it is necessary to process the crossover line 4 teeth apart in the circumferential direction Z. Since this is the same in the following embodiments, the description thereof will be omitted as appropriate.

上記実施の形態1では、ステータコア1のヨーク部11を直線状に変形してコイル線70をティース12に巻回してコイル7を形成する方法を示したが、これに限られることはなく、他の方法として、ステータコア1のヨーク部11を連結部111を用いてティースの径方向Xに突出する方向を逆にする逆反り状に変形させて行う場合について説明する。 In the first embodiment, a method of linearly deforming the yoke portion 11 of the stator core 1 and winding the coil wire 70 around the teeth 12 to form the coil 7 is shown, but the present invention is not limited to this. As a method of the above, a case will be described in which the yoke portion 11 of the stator core 1 is deformed into a reverse warp shape in which the direction of protrusion in the radial direction X of the teeth is reversed by using the connecting portion 111.

図16は本実施の形態1のステータ100は、巻線の方式が異なる以外、実施の形態1のステータ100と同様である。巻線機400は六角形のチャック機構40を有する。チャック機構40は、チャック41、42、43、44、45、46を有する。チャック機構40のうち、チャック41、42、43と対向する位置に、コイル線70を巻回する巻線ノズル54、55、56が設置される。各巻線ノズル54、55、56は回転軸T、回転軸M、回転軸Nにて回転されコイル線70を各ティース12に巻回する。但し、図16は図1の場合と異なり、軸方向Yを逆転して示している。すなわち、図16はコア部60の下巻枠3が見えている状態を示した図である。 FIG. 16 shows that the stator 100 of the first embodiment is the same as the stator 100 of the first embodiment except that the winding method is different. The winding machine 400 has a hexagonal chuck mechanism 40. The chuck mechanism 40 has chucks 41, 42, 43, 44, 45, 46. Winding nozzles 54, 55, 56 for winding the coil wire 70 are installed at positions of the chuck mechanism 40 facing the chucks 41, 42, and 43. Each winding nozzle 54, 55, 56 is rotated by a rotation shaft T, a rotation shaft M, and a rotation shaft N, and the coil wire 70 is wound around each tooth 12. However, unlike the case of FIG. 1, FIG. 16 shows the axial direction Y reversed. That is, FIG. 16 is a diagram showing a state in which the lower winding frame 3 of the core portion 60 is visible.

最初に、ステータコア1は図16に示すようにチャック41、チャック42、チャック43に第一コア部61、第二コア部62、第三コア部63をそれぞれ固定する。そして、巻線ノズル54、55、56を回転軸T、M、Nにて回転させ、コイル線70を各ティース12に巻回してコイル7を形成する。そして、1回目の巻回が完了した後、巻線ノズル54、55、56を前後上下させるとともに、チャック機構40を回転させることで、渡り線8を上記示した場合と同様に、所定のコア部60に渡らせる。この際、チャック機構40が60°ピッチで回転する。すなわち、第四コア部64が1回目の巻回で第一コア部61が固定されていたチャック41の位置まで60°ピッチの回転を3回繰り返され移動する。他のコア部60も同時に移動する。チャック46の位置からは排出されていくため、チャック45の位置にはステータコア1は固定されない。 First, as shown in FIG. 16, the stator core 1 fixes the first core portion 61, the second core portion 62, and the third core portion 63 to the chuck 41, the chuck 42, and the chuck 43, respectively. Then, the winding nozzles 54, 55, and 56 are rotated by the rotation shafts T, M, and N, and the coil wire 70 is wound around each tooth 12 to form the coil 7. Then, after the first winding is completed, the winding nozzles 54, 55, 56 are moved back and forth, and the chuck mechanism 40 is rotated, so that the crossover wire 8 is formed into a predetermined core in the same manner as shown above. Let it pass to part 60. At this time, the chuck mechanism 40 rotates at a pitch of 60 °. That is, the fourth core portion 64 moves by repeating the rotation of 60 ° pitch three times to the position of the chuck 41 to which the first core portion 61 is fixed in the first winding. The other core portion 60 also moves at the same time. Since the material is discharged from the position of the chuck 46, the stator core 1 is not fixed at the position of the chuck 45.

この方法によれば、周方向Zに隣接するティース12同士の間を広く確保してコイル線70をティース12に巻回してコイル7を形成できる。すなわち、図16に示すとおり、巻線ノズル54、55、56の回転軸T、M、Nを常にティース12側に向けて巻回できる。よって、ティース12に対して高速でコイル線70を巻回でき、巻回のサイクルタイムを短縮できる。尚、当該実施の形態1にて示した回転電機のステータの製造方法は以下の実施の形態においても同様に行うことができるため、その説明は適宜省略する。 According to this method, the coil wire 70 can be wound around the teeth 12 to form the coil 7 by ensuring a wide space between the teeth 12 adjacent to each other in the circumferential direction Z. That is, as shown in FIG. 16, the rotation shafts T, M, and N of the winding nozzles 54, 55, and 56 can always be wound toward the teeth 12. Therefore, the coil wire 70 can be wound around the teeth 12 at high speed, and the winding cycle time can be shortened. Since the method for manufacturing the stator of the rotary electric machine shown in the first embodiment can be similarly performed in the following embodiments, the description thereof will be omitted as appropriate.

上記のように構成された実施の形態1の回転電機のステータによれば、
環状に配置されたヨーク部、および、前記ヨーク部の径方向の内側の内周面に、周方向に所定の間隔を隔てて、径方向の内側に突出して形成された複数のティースを有するステータコアと、複数の前記ティースにそれぞれコイル線を巻回して形成されたコイルと、前記ステータコアと前記コイルと間に配設され前記ステータコアと前記コイルとを絶縁する絶縁部とを備えた回転電機のステータであって、
前記絶縁部は、前記ステータコアより軸方向の一方側から突出する第一突出部を有し、前記第一突出部の径方向の外側の外周面に、軸方向に複数段にてなる溝部を有し、
前記コイル線の巻始線、巻終線、および、異なる前記ティースの前記コイル同士を接続する渡り線のすべては、軸方向において同一方向の前記絶縁部の前記第一突出部に設置され、
前記巻始線は、前記絶縁部の前記第一突出部に形成された、軸方向において前記ステータコアに一番近い側の前記溝部に連続するとともに、前記第一突出部の径方向の外側から径方向の内側に連通して形成され、軸方向において前記ステータコアと反する側から前記ステータコア側に向かって、周方向の幅が漸次小さくなる軸方向に沿う傾斜面を有し前記コイル線を保持する導入溝部に配置され、
前記渡り線は、異なる前記ティース間を渡る間に前記絶縁部の軸方向の前記ステータコアと反する側から軸方向の前記ステータコア側に向かって斜めに配置される連続線であるとともに前記溝部にて保持されるので、
また、回転電機によれば、
前記ステータにエアギャップを介して対向配置されたロータとを備えるので、
また、回転電機の製造方法によれば、
上記記載の回転電機のステータの製造方法にて製造された前記ステータに、ロータをエアギャップを介して対向配置させたので、
渡り線の干渉が防止され、結線部材を低減でき、且つ、製造時間を短縮して生産性を向上できる。
According to the stator of the rotary electric machine of the first embodiment configured as described above,
A stator core having a plurality of teeth formed on the inner peripheral surface of the yoke portion arranged in an annular shape and the inner peripheral surface of the yoke portion in the radial direction so as to project inward in the radial direction at predetermined intervals in the circumferential direction. And a stator of a rotary electric machine provided with a coil formed by winding a coil wire around each of the plurality of teeth, and an insulating portion disposed between the stator core and the coil to insulate the stator core and the coil. And,
The insulating portion has a first protruding portion protruding from one side in the axial direction from the stator core, and has a groove portion having a plurality of steps in the axial direction on the outer peripheral surface on the outer peripheral surface in the radial direction of the first protruding portion. death,
The winding start wire, the winding end wire, and the crossover wire connecting the coils of the different teeth are all installed in the first protruding portion of the insulating portion in the same direction in the axial direction.
The winding start wire is continuous with the groove portion formed in the first protrusion of the insulation portion on the side closest to the stator core in the axial direction, and has a diameter from the outside in the radial direction of the first protrusion. An introduction that is formed so as to communicate with the inside of the direction and has an inclined surface along the axial direction in which the width in the circumferential direction gradually decreases from the side opposite to the stator core in the axial direction toward the stator core side to hold the coil wire. Placed in the groove,
The crossover is a continuous line diagonally arranged from the side opposite to the stator core in the axial direction of the insulating portion toward the stator core side in the axial direction while crossing between different teeth, and is held in the groove portion. Because it will be done
Also, according to the rotary electric machine,
Since the stator is provided with a rotor arranged so as to face each other via an air gap,
In addition, according to the manufacturing method of the rotary electric machine,
Since the rotor was placed facing the stator manufactured by the method for manufacturing a stator of a rotary electric machine described above via an air gap,
Interference of crossovers can be prevented, wiring members can be reduced, manufacturing time can be shortened, and productivity can be improved.

また、前記溝部は、軸方向に傾斜して形成されるので、
溝部の傾斜により、ステータコアの渡り線の干渉が確実に防止できる。
Further, since the groove portion is formed so as to be inclined in the axial direction,
The inclination of the groove can reliably prevent the interference of the crossover of the stator core.

また、前記絶縁部の前記第一突出部の前記溝部は、軸方向において前記ステータコアから離れた側から第一溝部、第二溝部、第三溝部、第四溝部の4段にて形成され、
前記渡り線は、周方向に3個離れた前記ティースの前記コイル同士を接続するとともに、周方向に3個離れた前記ティースまで、前記第一溝部から、周方向に順次隣接する前記第一突出部の前記第二溝部、前記第三溝部、前記第四溝部に連続して保持されるので、
周方向に3個離れたティース間同士でコイル線が巻回されコイルが形成されるので、他の相の渡り線とコイル線の巻始線が干渉しないため、結線部材の材料原価および加工費を抑制した上で、脈動および振動が防止でき電気特性が安定したステータを得ることができる。
Further, the groove portion of the first protruding portion of the insulating portion is formed by four stages of a first groove portion, a second groove portion, a third groove portion, and a fourth groove portion from a side away from the stator core in the axial direction.
The crossover connects the coils of the teeth separated by three in the circumferential direction, and the first protrusions sequentially adjacent to the first groove portion in the circumferential direction up to the teeth separated by three in the circumferential direction. Since it is continuously held in the second groove portion, the third groove portion, and the fourth groove portion of the portion,
Since the coil wire is wound between three teeth separated in the circumferential direction to form a coil, the crossover wire of another phase and the winding start wire of the coil wire do not interfere with each other. It is possible to obtain a stator in which pulsation and vibration can be prevented and the electrical characteristics are stable, while suppressing the above.

また、前記絶縁部の前記第一突出部は、軸方向において前記ステータコアに一番近い側の前記溝部に連続するとともに、前記第一突出部の径方向の外側から径方向の内側に連通して形成され、前記コイル線を保持する導入溝部を有するので、
コイル線をティース側に容易に誘導できる。
Further, the first protruding portion of the insulating portion is continuous with the groove portion on the side closest to the stator core in the axial direction, and communicates from the radial outer side to the radial inner side of the first protruding portion. Since it is formed and has an introduction groove for holding the coil wire,
The coil wire can be easily guided to the teeth side.

また、前記絶縁部の前記第一突出部は、軸方向において前記ステータコアから一番離れた側の前記溝部に連続するとともに、前記第一突出部の径方向の内側から径方向の外側に連続して形成され、前記渡り線を保持する導出溝部を有するので、
渡り線を第一突出部の溝部が形成されている箇所に容易に誘導できる。
Further, the first protruding portion of the insulating portion is continuous with the groove portion on the side farthest from the stator core in the axial direction, and is continuous from the radial inside to the radial outside of the first protruding portion. And has a lead-out groove that holds the crossover.
The crossover can be easily guided to the place where the groove of the first protrusion is formed.

また、前記絶縁部の前記第一突出部は、軸方向において前記ステータコアから一番離れた側の前記溝部以外の前記溝部の周方向の一端に、前記第一突出部の径方向の外側から径方向の内側に連続して形成され、前記コイル線を保持する電源溝部を有するので、
コイル線をステータコアの径方向の内側に容易に誘導できる。
Further, the first protruding portion of the insulating portion has a diameter at one end in the circumferential direction of the groove portion other than the groove portion on the side farthest from the stator core in the axial direction from the outside in the radial direction of the first protruding portion. Since it is continuously formed inside the direction and has a power supply groove for holding the coil wire,
The coil wire can be easily guided inward in the radial direction of the stator core.

また、前記ヨーク部は、直線状、または、前記ティースの径方向に突出する方向を逆にする逆反り状に変形可能に形成されるので、
ステータコアのティースへのコイル線の巻回を簡便にできる。
Further, since the yoke portion is formed so as to be deformable in a linear shape or in a reverse warp shape in which the direction in which the teeth project in the radial direction is reversed.
The coil wire can be easily wound around the teeth of the stator core.

また、回転電機のステータの製造方法によれば、
前記ステータコアの前記ヨーク部を直線状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた前記ティースまで移動するので、
周方向に連続する3ティースに対して連続するコイル線を巻回してコイルを形成できる。これにより、結線部材を低減することができ、製品コストを抑制する。
尚、コア部の個数であるティースの個数は、3・N個(Nは2以上の整数)であればよい。
Further, according to the manufacturing method of the stator of the rotary electric machine,
The yoke portion of the stator core is deformed in a straight line, and the three coil wires are simultaneously wound by three winding nozzles along a trajectory along the shape of the three teeth continuous in the circumferential direction. After forming the coil on the tooth, the three coil wires are held in the groove portion of the first protrusion of the three teeth as the crossover wire, and the coil wires are separated from each other by three in the circumferential direction. I will move to Teeth, so
A coil can be formed by winding a continuous coil wire around three consecutive teeth in the circumferential direction. As a result, the number of wiring members can be reduced, and the product cost can be suppressed.
The number of teeth, which is the number of core portions, may be 3.N (N is an integer of 2 or more).

また、回転電機のステータの製造方法によれば、
前記ステータコアの前記ヨーク部を逆反り状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた前記ティースまで移動するので、
周方向に連続する3ティースに対して連続するコイル線を高速で巻回してコイルを形成できる。これにより、結線部材を低減することができ、製品コストを抑制する。
Further, according to the manufacturing method of the stator of the rotary electric machine,
The yoke portion of the stator core is deformed in a reverse warp shape, and the three coil wires are simultaneously wound by three winding nozzles along a trajectory along the shape of three consecutive teeth in the circumferential direction. After forming the coil on the teeth, the three coil wires were held in the grooves of the first protrusions of the three teeth as the crossovers, respectively, and separated by three in the circumferential direction. As it moves to the teeth,
A coil can be formed by winding a continuous coil wire for three consecutive teeth in the circumferential direction at high speed. As a result, the number of wiring members can be reduced, and the product cost can be suppressed.

実施の形態2.
図17は実施の形態2における回転電機のステータにおいてステータコア1のヨーク部11を直線状に変形し、絶縁部としての上巻枠20、下巻枠30およびフィルム部230を装着した状態を示す斜視図である。図18は図17に示したステータに上巻枠20、下巻枠30、および、フィルム部230をステータコア1に装着する前の状態を示す分解斜視図である。図19は図17に示したフィルム部230の構成を示す斜視図である。図20は図17に示した上巻枠20の構成を示す斜視図である。図21は図17に示した下巻枠30の構成を示す斜視図である。
Embodiment 2.
FIG. 17 is a perspective view showing a state in which the yoke portion 11 of the stator core 1 is linearly deformed in the stator of the rotary electric machine according to the second embodiment, and the upper winding frame 20, the lower winding frame 30, and the film portion 230 are attached as insulating portions. be. FIG. 18 is an exploded perspective view showing a state before the upper winding frame 20, the lower winding frame 30, and the film portion 230 are mounted on the stator core 1 on the stator shown in FIG. FIG. 19 is a perspective view showing the configuration of the film portion 230 shown in FIG. FIG. 20 is a perspective view showing the configuration of the upper winding frame 20 shown in FIG. FIG. 21 is a perspective view showing the configuration of the lower winding frame 30 shown in FIG.

図において、上記実施の形態1と同様の部分は同一符号を付して説明を省略する。図に示すように、実施の形態2のステータ100は、上記実施の形態1に示したステータコア1とコイル7とを絶縁する絶縁部としての上巻枠2および下巻枠3の構成が異なる。本実施の形態2において、ステータコア1とコイル7とを絶縁するために絶縁部は、上巻枠20、下巻枠30およびフィルム部230にて構成される。 In the figure, the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. As shown in the figure, the stator 100 of the second embodiment has a different configuration of the upper winding frame 2 and the lower winding frame 3 as an insulating portion for insulating the stator core 1 and the coil 7 shown in the first embodiment. In the second embodiment, in order to insulate the stator core 1 and the coil 7, the insulating portion is composed of an upper winding frame 20, a lower winding frame 30, and a film portion 230.

上巻枠20および下巻枠30は、上記実施の形態1における上巻枠2の第一突出部21および下巻枠3の第二突出部31を有し、第一脚部22および第二脚部32を有していない構成である。さらに、第一突出部21は後述するフィルム部230を固定するための、爪部211、212、213、214を備える。また、第二突出部31はフィルム部230を固定するための、爪部311、312、313、314を備える。また、下巻枠30は凸部315を備える。ステータコア1は、ティース12に軸方向Yに形成された第二凹部115を備える。下巻枠30の凸部315は、ステータコア1の第二凹部115に嵌合して設置される。 The upper winding frame 20 and the lower winding frame 30 have a first protruding portion 21 of the upper winding frame 2 and a second protruding portion 31 of the lower winding frame 3 in the first embodiment, and the first leg portion 22 and the second leg portion 32 are provided. It is a configuration that does not have. Further, the first protruding portion 21 includes claw portions 211, 212, 213, and 214 for fixing the film portion 230, which will be described later. Further, the second protruding portion 31 includes a claw portion 311, 312, 313, 314 for fixing the film portion 230. Further, the lower winding frame 30 includes a convex portion 315. The stator core 1 includes a second recess 115 formed in the tooth 12 in the axial direction Y. The convex portion 315 of the lower winding frame 30 is fitted and installed in the second concave portion 115 of the stator core 1.

フィルム部230は、薄肉の絶縁性を有するフィルム材にて形成され、例えば、厚みが0.125mmのフィルム材を用いることが考えられる。そして、当該フィルム材に、図19に示すような形状に折り目をつけて形成される。この折り目により、フィルム部230は、ヨーク部11の径方向Xの内側X2の軸方向Yの側面である内周面112を覆う第一側面231、ティース12の軸方向Yの側面である、第一側面121、および、第二側面131を覆う第二側面232、および、ティース12の軸方向Yの側面である、先端面122を覆う第三側面233を備える。また、フィルム部230は、ステータコア1に装着されると、第一突出部21および第二突出部31に軸方向Yに連接する。また、フィルム部230は、ステータコア1の各コア部61~69の全てに対応して連続して形成される。 The film portion 230 is formed of a thin-walled insulating film material, and it is conceivable to use, for example, a film material having a thickness of 0.125 mm. Then, the film material is formed by making creases in the shape as shown in FIG. Due to this crease, the film portion 230 is a side surface of the first side surface 231 covering the inner peripheral surface 112 which is the side surface of the inner X2 of the yoke portion 11 in the radial direction X in the axial direction Y, and the side surface of the teeth 12 in the axial direction Y. It includes one side surface 121, a second side surface 232 covering the second side surface 131, and a third side surface 233 covering the tip surface 122, which is the side surface of the teeth 12 in the axial direction Y. Further, when the film portion 230 is attached to the stator core 1, it is connected to the first protruding portion 21 and the second protruding portion 31 in the axial direction Y. Further, the film portion 230 is continuously formed corresponding to all of the core portions 61 to 69 of the stator core 1.

フィルム部230の上巻枠20の第一突出部21および下巻枠30の第二突出部31に対する軸方向Yの連接は、具体的には、フィルム部230の軸方向Yの両端において、ステータコア1の軸方向Yの長さよりも長く形成され対応している。そして、フィルム部230のステータコア1の軸方向Yの両端より長く形成された部分が、上巻枠20の爪部212、212、213、214および下巻枠30の爪部311、312、313、314にそれぞれ固定される。尚、他の構成および回転電機のステータの製造方法は上記実施の形態1と同様である。 The connection of the film portion 230 with respect to the first protruding portion 21 of the upper winding frame 20 and the second protruding portion 31 of the lower winding frame 30 in the axial direction is specifically such that the stator core 1 is connected at both ends of the axial direction Y of the film portion 230. It is formed longer than the length in the axial direction Y and corresponds to it. A portion formed longer than both ends of the stator core 1 of the film portion 230 in the axial direction is formed on the claw portions 212, 212, 213, 214 of the upper winding frame 20 and the claw portions 311, 312, 313, 314 of the lower winding frame 30. Each is fixed. The other configurations and the method for manufacturing the stator of the rotary electric machine are the same as those in the first embodiment.

上記のように構成された実施の形態2の回転電機のステータは、
前記絶縁部は、前記ステータコアより軸方向の他方側から突出する第二突出部と、
前記第一突出部および前記第二突出部に軸方向に連接するとともに、前記ティースの軸方向の側面および前記ヨーク部の径方向の内側の軸方向の側面を覆うフィルム部とを備えたので、薄肉のフィルム部にて絶縁部を構成でき、上記実施の形態1と同様の効果を奏することができる。
The stator of the rotary electric machine of the second embodiment configured as described above is
The insulating portion includes a second protruding portion protruding from the other side in the axial direction from the stator core, and a second protruding portion.
Since it is provided with a film portion that is axially connected to the first protrusion and the second protrusion and that covers the axial side surface of the tooth and the radial inner axial side surface of the yoke portion. The insulating portion can be formed of a thin film portion, and the same effect as that of the first embodiment can be obtained.

本開示は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
The present disclosure describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 ステータコア、10 回転電機、11 ヨーク部、12 ティース、13 シュー部、100 ステータ、101 ハウジング、102 ロータ、103 軸受、104 シャフト、105 永久磁石、106 ロータコア、107 エアギャップ、111 連結部、112 内周面、113 外周面、114 第一凹部、115 第二凹部、121 第一側面、122 先端面、131 第二側面、14 スロット、2 上巻枠、20 上巻枠、201 外周面、202 内周面、21 第一突出部、211 爪部、212 爪部、213 爪部、214 爪部、22 第一脚部、230 フィルム部、3 下巻枠、30 下巻枠、31 第二突出部、311 爪部、312 爪部、313 爪部、314 爪部、315 凸部、32 第二脚部、40 チャック機構、400 巻線機、41 チャック、42 チャック、43 チャック、44 チャック、45 チャック、46 チャック、51 巻線ノズル、52 巻線ノズル、53 巻線ノズル、54 巻線ノズル、55 巻線ノズル、56 巻線ノズル、6 コア板、60 コア部、61 第一コア部、62 第二コア部、63 第三コア部、64 第四コア部、65 第五コア部、66 第六コア部、67 第七コア部、68 第八コア部、69 第九コア部、7 コイル、70 コイル線、700 中性点、71 第一コイル線、711 第一巻始線、712 第一巻終線、713 第一電源線、72 第二コイル線、721 第二巻始線、722 第二巻終線、723 第二電源線、73 第三コイル線、731 第三巻始線、732 第三巻終線、733 第三電源線、8 渡り線、81 第一渡り線、82 第二渡り線、83 第三渡り線、84 第四渡り線、85 第五渡り線、86 第六渡り線、9 溝部、91 第一溝部、92 第二溝部、93 第三溝部、94 第四溝部、95 導入溝部、950 傾斜面、96 導出溝部、97 第一電源溝部、98 第二電源溝部、99 第三電源溝部、T 回転軸、M 回転軸、N 回転軸、X 径方向、X1 外側、X2 内側、Y 軸方向、Z 周方向。 1 Stator core, 10 rotary electric machine, 11 yoke part, 12 teeth, 13 shoe part, 100 stator, 101 housing, 102 rotor, 103 bearing, 104 shaft, 105 permanent magnet, 106 rotor core, 107 air gap, 111 connection part, 112 inside Peripheral surface, 113 outer peripheral surface, 114 first concave portion, 115 second concave portion, 121 first side surface, 122 tip surface, 131 second side surface, 14 slots, 2 upper winding frame, 20 upper winding frame, 201 outer peripheral surface, 202 inner peripheral surface , 21 1st protruding part, 211 claw part, 212 claw part, 213 claw part, 214 claw part, 22 1st leg part, 230 film part, 3 lower winding frame, 30 lower winding frame, 31 second protruding part, 311 claw part 312 claws, 313 claws, 314 claws, 315 convex parts, 32 second legs, 40 chuck mechanism, 400 winding machines, 41 chucks, 42 chucks, 43 chucks, 44 chucks, 45 chucks, 46 chucks, 51 winding nozzle, 52 winding nozzle, 53 winding nozzle, 54 winding nozzle, 55 winding nozzle, 56 winding nozzle, 6 core plate, 60 core part, 61 first core part, 62 second core part, 63 3rd core part, 64 4th core part, 65 5th core part, 66 6th core part, 67 7th core part, 68 8th core part, 69 9th core part, 7 coils, 70 coil wires, 700 Neutral point, 71 1st coil line, 711 1st volume start line, 712 1st volume end line, 713 1st power supply line, 72 2nd coil line, 721 2nd volume start line, 722 2nd volume end line, 723 2nd power supply line, 73 3rd coil line, 731 3rd volume start line, 732 3rd volume end line, 733 3rd power supply line, 8 crossover line, 81 1st crossover line, 82 2nd crossover line, 83rd Three crossovers, 84 fourth crossovers, 85 fifth crossovers, 86 sixth crossovers, 9 grooves, 91 first grooves, 92 second grooves, 93 third grooves, 94 fourth grooves, 95 introduction grooves, 950. Inclined surface, 96 Outlet groove, 97 1st power groove, 98 2nd power groove, 99 3rd power groove, T rotation axis, M rotation axis, N rotation axis, X radial direction, X1 outside, X2 inside, Y axis direction , Z circumference Mukai.

Claims (12)

環状に配置されたヨーク部、および、前記ヨーク部の径方向の内側の内周面に、周方向に所定の間隔を隔てて、径方向の内側に突出して形成された複数のティースを有するステータコアと、複数の前記ティースにそれぞれコイル線を巻回して形成されたコイルと、前記ステータコアと前記コイルと間に配設され前記ステータコアと前記コイルとを絶縁する絶縁部とを備えた回転電機のステータであって、
前記絶縁部は、前記ステータコアより軸方向の一方側から突出する第一突出部を有し、前記第一突出部の径方向の外側の外周面に、軸方向に複数段にて成る溝部を有し、
前記コイル線の巻始線、巻終線、および、異なる前記ティースの前記コイル同士を接続する渡り線のすべては、軸方向において同一方向の前記絶縁部の前記第一突出部に設置され、
前記巻始線は、前記絶縁部の前記第一突出部に形成された、軸方向において前記ステータコアに一番近い側の前記溝部に連続するとともに、前記第一突出部の径方向の外側から径方向の内側に連通して形成され、軸方向において前記ステータコアと反する側から前記ステータコア側に向かって、周方向の幅が漸次小さくなる軸方向に沿う傾斜面を有し前記コイル線を保持する導入溝部に配置され、
前記渡り線は、異なる前記ティース間を渡る間に前記絶縁部の軸方向の前記ステータコアと反する側から軸方向の前記ステータコア側に向かって斜めに配置される連続線であるとともに前記溝部にて保持され、
前記傾斜面は、前記溝部が設けられていない前記第一突出部に形成される回転電機のステータ。
A stator core having a plurality of teeth formed on the inner peripheral surface of the yoke portion arranged in an annular shape and the inner peripheral surface of the yoke portion in the radial direction so as to project inward in the radial direction at predetermined intervals in the circumferential direction. And a stator of a rotary electric machine provided with a coil formed by winding a coil wire around each of the plurality of teeth, and an insulating portion disposed between the stator core and the coil to insulate the stator core and the coil. And,
The insulating portion has a first protruding portion protruding from one side in the axial direction from the stator core, and has a groove portion having a plurality of steps in the axial direction on the outer peripheral surface on the outer peripheral surface in the radial direction of the first protruding portion. death,
The winding start wire, the winding end wire, and the crossover wire connecting the coils of the different teeth are all installed in the first protruding portion of the insulating portion in the same direction in the axial direction.
The winding start wire is continuous with the groove portion formed in the first protrusion of the insulation portion on the side closest to the stator core in the axial direction, and has a diameter from the outside in the radial direction of the first protrusion. An introduction that is formed so as to communicate with the inside of the direction and has an inclined surface along the axial direction in which the width in the circumferential direction gradually decreases from the side opposite to the stator core in the axial direction toward the stator core side to hold the coil wire. Placed in the groove,
The crossover is a continuous line diagonally arranged from the side opposite to the stator core in the axial direction of the insulating portion toward the stator core side in the axial direction while crossing between different teeth, and is held in the groove portion. Being done
The inclined surface is a stator of a rotary electric machine formed in the first protruding portion where the groove portion is not provided .
前記溝部は、軸方向に傾斜して形成される請求項1に記載の回転電機のステータ。 The stator of a rotary electric machine according to claim 1, wherein the groove portion is formed so as to be inclined in the axial direction. 前記絶縁部の前記第一突出部の前記溝部は、軸方向において前記ステータコアから離れた側から第一溝部、第二溝部、第三溝部、第四溝部の4段にて形成され、
前記渡り線は、周方向に3個離れた前記ティースの前記コイル同士を接続するとともに、周方向に3個離れた前記ティースまで、前記第一溝部から、周方向に順次隣接する前記第一突出部の前記第二溝部、前記第三溝部、前記第四溝部に連続して保持される請求項1または請求項2に記載の回転電機のステータ。
The groove portion of the first protruding portion of the insulating portion is formed by four stages of a first groove portion, a second groove portion, a third groove portion, and a fourth groove portion from a side away from the stator core in the axial direction.
The crossover connects the coils of the teeth separated by three in the circumferential direction, and the first protrusions sequentially adjacent to the first groove portion in the circumferential direction up to the teeth separated by three in the circumferential direction. The stator of the rotary electric machine according to claim 1 or 2, which is continuously held in the second groove portion, the third groove portion, and the fourth groove portion.
前記渡り線は、1つの前記ティースの前記コイルと、周方向に3個離れた他の前記ティースの前記コイル同士を接続し、さらに、他の前記ティースの前記コイルと他の前記ティースから周方向の更に3個離れた更なる他の前記ティースの前記コイル同士を接続する請求項1から請求項3のいずれか1項に記載の回転電機のステータ。The crossover connects the coil of one tooth and the coils of the other teeth three apart in the circumferential direction, and further, the coil of the other teeth and the coil of the other teeth in the circumferential direction. The stator of the rotary electric machine according to any one of claims 1 to 3, wherein the coils of the other teeth, which are further separated by three, are connected to each other. 前記絶縁部の前記第一突出部は、軸方向において前記ステータコアから一番離れた側の前記溝部に連続するとともに、前記第一突出部の径方向の内側から径方向の外側に連続して形成され、前記渡り線を保持する導出溝部を有する請求項1から請求項4のいずれか1項に記載の回転電機のステータ。 The first protruding portion of the insulating portion is continuously formed in the groove portion on the side farthest from the stator core in the axial direction, and is continuously formed from the radial inside to the radial outside of the first protruding portion. The stator of the rotary electric machine according to any one of claims 1 to 4 , further comprising a lead-out groove portion for holding the crossover. 前記絶縁部の前記第一突出部は、軸方向において前記ステータコアから一番離れた側の前記溝部以外の前記溝部の周方向の一端に、前記第一突出部の径方向の外側から径方向の内側に連続して形成され、前記コイル線を保持する電源溝部を有する請求項1から請求項5のいずれか1項に記載の回転電機のステータ。 The first protruding portion of the insulating portion is radially located at one end in the circumferential direction of the groove portion other than the groove portion on the side farthest from the stator core in the axial direction from the radial outside of the first protruding portion. The stator of a rotary electric machine according to any one of claims 1 to 5 , which is continuously formed inside and has a power supply groove portion for holding the coil wire. 前記絶縁部は、前記ステータコアより軸方向の他方側から突出する第二突出部と、
前記第一突出部および前記第二突出部に軸方向に連接するとともに、前記ティースの軸方向の側面および前記ヨーク部の径方向の内側の軸方向の側面を覆うフィルム部とを備えた請求項1から請求項6のいずれか1項に記載の回転電機のステータ。
The insulating portion includes a second protruding portion protruding from the other side in the axial direction from the stator core, and a second protruding portion.
A claim comprising a film portion that is axially connected to the first protrusion and the second protrusion and that covers the axial side surface of the tooth and the radial inner axial side surface of the yoke portion. The stator of the rotary electric machine according to any one of claims 1 to 6 .
前記ヨーク部は、直線状、または、前記ティースの径方向に突出する方向を逆にする逆反り状に変形可能に形成される請求項1から請求項7のいずれか1項に記載の回転電機のステータ。 The rotary electric machine according to any one of claims 1 to 7 , wherein the yoke portion is deformably formed in a linear shape or in a reverse warp shape in which the direction in which the teeth protrude in the radial direction is reversed. Stator. 請求項1から請求項8のいずれか1項に記載の回転電機のステータと、
前記ステータにエアギャップを介して対向配置されたロータとを備えた回転電機。
The stator of the rotary electric machine according to any one of claims 1 to 8 ,
A rotary electric machine provided with a rotor arranged opposite to the stator via an air gap.
請求項8に記載の回転電機のステータの製造方法において、
前記ステータコアの前記ヨーク部を直線状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた前記ティースまで移動させ、3本の前記渡り線を渡らせる際、3個の前記巻線ノズルを1回転させながら、3本の前記渡り線同士が干渉しないように渡り線を形成する回転電機のステータの製造方法。
In the method for manufacturing a stator of a rotary electric machine according to claim 8 .
The yoke portion of the stator core is deformed in a straight line, and the three coil wires are simultaneously wound by three winding nozzles along a trajectory along the shape of the three teeth continuous in the circumferential direction. After forming the coil on the tooth, the three coil wires are held in the groove of the first protrusion of the three teeth as the crossover, and the coil wires are separated by three in the circumferential direction. When moving to the teeth and crossing the three crossovers, the stator of the rotary electric machine forms the crossover so that the three crossovers do not interfere with each other while rotating the three winding nozzles once. Manufacturing method.
請求項8に記載の回転電機のステータの製造方法において、
前記ステータコアの前記ヨーク部を逆反り状に変形し、3本の前記コイル線を3個の巻線ノズルにて周方向に連続した3個の前記ティースの形状に沿う軌道で同時に巻回して3個の前記ティースに前記コイルを形成した後、3本の前記コイル線を3個の前記ティースの前記第一突出部の前記溝部に前記渡り線としてそれぞれ保持させて、周方向に3個離れた
前記ティースまで移動を前記ステータコアを回転させることにより、3本の前記渡り線を渡らせる際、3本の前記渡り線同士が干渉しないように渡り線を形成する回転電機のステータの製造方法。
In the method for manufacturing a stator of a rotary electric machine according to claim 8 ,
The yoke portion of the stator core is deformed in a reverse warp shape, and the three coil wires are simultaneously wound by three winding nozzles along a track along the shape of three consecutive teeth in the circumferential direction. After forming the coil on the teeth, the three coil wires were held in the grooves of the first protrusions of the three teeth as the crossovers, respectively, and separated by three in the circumferential direction. A method for manufacturing a stator of a rotary electric machine, which forms a crossover so that the three crossovers do not interfere with each other when the three crossovers are crossed by rotating the stator core to move to the teeth.
請求項10または請求項11に記載の回転電機のステータの製造方法にて製造された前記ステータに、ロータをエアギャップを介して対向配置させた回転電機の製造方法。 A method for manufacturing a rotary electric machine in which a rotor is arranged so as to face the stator manufactured by the method for manufacturing a stator for a rotary electric machine according to claim 10 or 11 .
JP2021501610A 2019-02-27 2019-12-16 Method of manufacturing a stator of a rotary electric machine, a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine. Active JP7038894B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019033550 2019-02-27
JP2019033550 2019-02-27
PCT/JP2019/049126 WO2020174817A1 (en) 2019-02-27 2019-12-16 Dynamo-electric machine stator, dynamo-electric machine, method for manufacturing dynamo-electric machine stator, and method for manufacturing dynamo-electric machine

Publications (2)

Publication Number Publication Date
JPWO2020174817A1 JPWO2020174817A1 (en) 2021-09-13
JP7038894B2 true JP7038894B2 (en) 2022-03-18

Family

ID=72240069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501610A Active JP7038894B2 (en) 2019-02-27 2019-12-16 Method of manufacturing a stator of a rotary electric machine, a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine.

Country Status (3)

Country Link
JP (1) JP7038894B2 (en)
CN (1) CN113454880A (en)
WO (1) WO2020174817A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017023A (en) * 2020-07-13 2022-01-25 ミネベアミツミ株式会社 Rotary electric machine
JPWO2023149252A1 (en) * 2022-02-02 2023-08-10
WO2023162357A1 (en) * 2022-02-28 2023-08-31 三菱電機株式会社 Stator of dynamo-electrical machine, and method for manufacturing stator of dynamo-electrical machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167604A (en) 2006-12-28 2008-07-17 Ichinomiya Denki:Kk Stator of inner rotor type mold brushless motor
JP2010110048A (en) 2008-10-28 2010-05-13 Asmo Co Ltd Insulator, stator, and manufacturing method for stators
JP2011103705A (en) 2009-11-10 2011-05-26 Mitsubishi Electric Corp Stator of rotary electric machine and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850431B2 (en) * 2012-12-25 2016-02-03 三菱電機株式会社 Method for manufacturing stator for electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167604A (en) 2006-12-28 2008-07-17 Ichinomiya Denki:Kk Stator of inner rotor type mold brushless motor
JP2010110048A (en) 2008-10-28 2010-05-13 Asmo Co Ltd Insulator, stator, and manufacturing method for stators
JP2011103705A (en) 2009-11-10 2011-05-26 Mitsubishi Electric Corp Stator of rotary electric machine and method of manufacturing the same

Also Published As

Publication number Publication date
WO2020174817A1 (en) 2020-09-03
JPWO2020174817A1 (en) 2021-09-13
CN113454880A (en) 2021-09-28

Similar Documents

Publication Publication Date Title
US7952245B2 (en) Power distribution unit for rotary electric machine with linear conductor connecting ring having terminal section with axially extending hole for connecting stator coil, and method for assembling rotary electric machine
JP7038894B2 (en) Method of manufacturing a stator of a rotary electric machine, a rotary electric machine, a stator of a rotary electric machine, and a method of manufacturing a rotary electric machine.
JP5070248B2 (en) Rotating electric machine and manufacturing method thereof
JP5573327B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP5215737B2 (en) Insulator, stator and stator manufacturing method
JPWO2020017133A1 (en) Distributed winding radial gap type rotary electric machine and its stator
JP2009131092A (en) Stator of dynamo electric machine, and dynamo electric machine
JP5232547B2 (en) Rotating electric machine
JP4502041B2 (en) Stator for rotating electric machine and method for manufacturing the same
US20120001516A1 (en) Stator for electric rotating machine and method of manufacturing the same
JP7297102B2 (en) Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
JP2003164089A (en) Stator of rotating field electric motor and its production method
JP5309674B2 (en) Stator coil manufacturing method
JP2012170295A (en) Stator of rotary electric machine and method of manufacturing the same
JP2006187164A (en) Rotary electric machine
JP2010183660A (en) Stator, brushless motor, method of manufacturing the stator, and method of manufacturing the brushless motor
JP2021168531A (en) Iron core and coil assembly and manufacturing method thereof, rotary electric machine using iron core and coil assembly and manufacturing method thereof
JP7176394B2 (en) Rotating electric machine
JP2008236978A (en) Claw-pole motor
JP7254140B1 (en) Rotating electric machine
JP7270846B2 (en) Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
WO2023149252A1 (en) Rotating electric machine stator, rotating electric machine, rotating electric machine stator manufacturing method, and rotating electric machine manufacturing method
JP7058698B2 (en) Rotating electric machine
JP2019205230A (en) Rotary electric machine stator manufacturing method
JP6968215B2 (en) Rotating machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R151 Written notification of patent or utility model registration

Ref document number: 7038894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151