JP7013626B2 - Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules - Google Patents

Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules Download PDF

Info

Publication number
JP7013626B2
JP7013626B2 JP2018000461A JP2018000461A JP7013626B2 JP 7013626 B2 JP7013626 B2 JP 7013626B2 JP 2018000461 A JP2018000461 A JP 2018000461A JP 2018000461 A JP2018000461 A JP 2018000461A JP 7013626 B2 JP7013626 B2 JP 7013626B2
Authority
JP
Japan
Prior art keywords
sirna
peptide
cell membrane
cell
membrane penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018000461A
Other languages
Japanese (ja)
Other versions
JP2019118307A (en
Inventor
庸介 出水
隆史 三澤
伸通 大岡
幹彦 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Health Sciences
Original Assignee
National Institute of Health Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Health Sciences filed Critical National Institute of Health Sciences
Priority to JP2018000461A priority Critical patent/JP7013626B2/en
Publication of JP2019118307A publication Critical patent/JP2019118307A/en
Application granted granted Critical
Publication of JP7013626B2 publication Critical patent/JP7013626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、細胞膜透過性を有するペプチドに関し、具体的にはsiRNA等の核酸を効率的に細胞内に輸送できる細胞膜透過性を有するペプチドに関する。また、そのペプチドとカーゴ分子とからなる構築物に関する。更に、カーゴ分子を細胞内に輸送する方法に関する。 The present invention relates to a peptide having cell membrane permeability, and specifically to a peptide having cell membrane permeability capable of efficiently transporting a nucleic acid such as siRNA into a cell. It also relates to a construct consisting of the peptide and a cargo molecule. Further, the present invention relates to a method for transporting a cargo molecule into a cell.

細胞透過性を有するペプチド(以下、細胞膜透過ペプチド(Cell-Penetrating Peptides;CPPs)と略することがある。)を用いて、細胞内にsiRNA等の核酸を導入する手法が注目されている。細胞内に導入したいsiRNA等の核酸にCPPsを細胞内導入ベクターとして化学的に結合させるか、又は、遺伝子工学的にCPPsと導入したいsiRNA等の核酸との融合タンパク質を調製し、細胞培養液に混合することで、効率よく細胞内に目的分子が導入される。 Attention has been paid to a method of introducing a nucleic acid such as siRNA into a cell using a peptide having cell permeability (hereinafter, may be abbreviated as cell-penetrating Peptides (CPPs)). CPPs are chemically bound to a nucleic acid such as siRNA to be introduced into cells as an intracellular introduction vector, or a fusion protein of CPPs and a nucleic acid such as siRNA to be introduced is prepared by genetic engineering and used in a cell culture medium. By mixing, the target molecule is efficiently introduced into the cell.

CPPsとして実際に用いられている代表的なものとして、(1)アルギニン等の塩基性アミノ酸に富むもの、(2)塩基性部分と疎水性部分を有する両親媒性ペプチド、(3)疎水性配列に若干の塩基性配列を含むペプチド、(4)疎水性ペプチド等が挙げられる。 Typical examples actually used as CPPs are (1) those rich in basic amino acids such as arginine, (2) amphipathic peptides having basic and hydrophobic moieties, and (3) hydrophobic sequences. Examples thereof include peptides containing a slight basic sequence, (4) hydrophobic peptides and the like.

ペプチドベクターは様々な物質の導入に有効であるが、siRNA等の核酸の導入には不向きである場合がある。体内でsiRNAを安定に保持・保護する一方、ひとたび標的細胞に到達すればこれを速やかに放出するという、いわば相反する二つの機能を高次に満足するペプチドベクターは実現が困難である。 Peptide vectors are effective for the introduction of various substances, but may not be suitable for the introduction of nucleic acids such as siRNA. It is difficult to realize a peptide vector that highly satisfies the two contradictory functions of stably retaining and protecting siRNA in the body, while rapidly releasing it once it reaches the target cell.

非特許文献1、非特許文献2及び非特許文献3には、効率的な細胞内導入を可能とするCPPsが検討されており、CPPsの膜透過におけるカチオン性官能基の重要性や、オリゴアルギニンのペプチドヘリカル構造が細胞膜透過性の向上に寄与すること等が記載されている。 Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document 3 study CPPs that enable efficient intracellular introduction, and the importance of cationic functional groups in the membrane permeation of CPPs and oligoarginine. It is described that the peptide helical structure of the above contributes to the improvement of cell membrane permeability.

非特許文献4には、ロイシンとAibからなる短鎖ペプチド(Leu-Leu-Aib)3をヘリカルプロモータとしてノナアルギニン(Arg)9とコンジュゲートした細胞膜透過ペプチドF-βAla-(Arg)9-(Gly)3-(L-Leu-L-Leu-Aib)3-NH2が記載されている。しかし、この細胞膜透過ペプチドは細胞毒性が強いため、標的細胞に対するsiRNAの導入は確認されていない。 Non-Patent Document 4 describes the cell membrane penetrating peptide F-βAla- (Arg) 9- (Leu-Leu-Aib) 3 conjugated with nonaarginine (Arg) 9 using a short-chain peptide (Leu-Leu-Aib) 3 consisting of leucine and Aib as a helical promoter. Gly) 3- (L-Leu-L-Leu-Aib) 3 -NH 2 is described. However, since this cell membrane penetrating peptide is highly cytotoxic, the introduction of siRNA into target cells has not been confirmed.

M. Oba, Y. Demizu, H. Yamashita, M. Kurihara, M. Tanaka, Bioorg. Med. Chem. 2015, 23, 4911-4918.M. Oba, Y. Demizu, H. Yamashita, M. Kurihara, M. Tanaka, Bioorg. Med. Chem. 2015, 23, 4911-4918. H. Yamashita, Y. Demizu, T. Shoda, Y. Sato, M. Oba, M. Tanaka, M. Kurihara, Bioorg. Med. Chem. 2014, 22, 2403-2408.H. Yamashita, Y. Demizu, T. Shoda, Y. Sato, M. Oba, M. Tanaka, M. Kurihara, Bioorg. Med. Chem. 2014, 22, 2403-2408. H. Yamashita, M. Oba, T. Misawa, M. Tanaka, T. Hattori, M. Naito, M. Kurihara, Y. Demizu, ChemBioChem 2016, 17, 137-140.H. Yamashita, M. Oba, T. Misawa, M. Tanaka, T. Hattori, M. Naito, M. Kurihara, Y. Demizu, ChemBioChem 2016, 17, 137-140. 親水性分子の細胞内導入を志向した細胞膜高透過性ペプチドの開発 三澤隆史 日本薬学会第136回年会要旨集 2016年3月Development of Cell Membrane Highly Permeable Peptide for Intracellular Introduction of Hydrophilic Molecules Takashi Misawa Abstracts of the 136th Annual Meeting of the Pharmaceutical Society of Japan March 2016

本発明は、siRNA等の核酸の効率的な細胞内導入を可能とする細胞膜透過ペプチドを提供することを目的とする。 An object of the present invention is to provide a cell membrane penetrating peptide that enables efficient intracellular introduction of nucleic acids such as siRNA.

本発明にかかる細胞膜透過ペプチドは、細胞膜透過性を有する下記の式(I)で表されるペプチドである。
F-(L-Leu-L-Leu-Aib)l-(Gly)m-(Arg)n-NH2・・・(I)
式中、lは3~5のいずれかの整数であり、mは0~3のいずれかの整数であり、nは8~10のいずれかの整数であり、Fは、リンカーを介して又は介さないで、ペプチドのN末端に結合した蛍光標識としてのフルオロセイン化合物である。
The cell membrane penetrating peptide according to the present invention is a peptide having cell membrane permeability and represented by the following formula (I).
F- (L-Leu-L-Leu-Aib) l- (Gly) m- (Arg) n -NH 2・ ・ ・ (I)
In the equation, l is an integer of 3-5, m is an integer of 0-3, n is an integer of 8-10, and F is via a linker or It is a fluorosane compound as a fluorescent label attached to the N-terminal of the peptide without intervention.

本発明によれば、効率的な細胞内導入を可能とする細胞膜透過ペプチドが得られる。 According to the present invention, a cell membrane penetrating peptide that enables efficient intracellular introduction can be obtained.

本発明にかかる細胞膜透過ペプチドの生理的条件下における二次構造を示すCDスペクトル測定の結果である。It is the result of the CD spectrum measurement which shows the secondary structure under the physiological condition of the cell membrane penetrating peptide which concerns on this invention. 本発明にかかる細胞膜透過ペプチドを使用して修飾型siRNA又は標準型siRNAを細胞に導入したときの各タンパク質の発現量を示す電気泳動写真図と、それを定量化した棒グラフである。It is an electrophoretic photograph showing the expression level of each protein when the modified siRNA or the standard type siRNA is introduced into the cell using the cell membrane penetrating peptide which concerns on this invention, and the bar graph which quantified it. 細胞膜透過ペプチドのsiRNA導入活性に重要な部位の検討にかかる各タンパク質の発現量を示す電気泳動写真図である。It is an electrophoretic photograph showing the expression level of each protein to examine the site important for the siRNA introduction activity of a cell membrane penetrating peptide.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are for facilitating the understanding of the principles of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

本発明者らは、細胞膜透過性を有するオリゴアルギニン(Arg)nに対し、ヘリカル構造の形成を誘起する疎水性型ヘリカルテンプレート配列H-(L-Leu-L-Leu-Aib)l-NH2を連結させたBlockペプチドをデザインした。オリゴアルギニン(Arg)nに疎水性型ヘリカルテンプレート配列を連結させることで、アルギニン配列がヘリカル構造を形成し、両親媒性を獲得すると考えられる。 The present inventors have a hydrophobic helical template sequence H- (L-Leu-L-Leu-Aib) l -NH 2 that induces the formation of a helical structure for oligoarginine (Arg) n having cell membrane permeability. We designed a Block peptide in which By linking the hydrophobic helical template sequence to oligoarginine (Arg) n , it is considered that the arginine sequence forms a helical structure and acquires amphipathicity.

本発明にかかる細胞膜透過ペプチドは、下記式(I)で示される。 The cell membrane penetrating peptide according to the present invention is represented by the following formula (I).

F-(L-Leu-L-Leu-Aib)l-(Gly)m-(Arg)n-NH2・・・(I)
式中、lは3~5のいずれかの整数であり、mは0~3のいずれかの整数であり、nは8~10のいずれかの整数である。Fは、リンカーを介して又は介さないで、ペプチドのN末端に結合した蛍光標識としてのフルオロセイン化合物である。式(I)で示される細胞膜透過ペプチドは、細胞毒性をほとんど示さず、しかも、細胞培養液内でsiRNAを安定に保持する一方、標的細胞内に到達すれば速やかに放出する特性を有するため、効率的なsiRNAの細胞内導入と遺伝子発現抑制が可能である。
F- (L-Leu-L-Leu-Aib) l- (Gly) m- (Arg) n -NH 2・ ・ ・ (I)
In the formula, l is an integer of 3 to 5, m is an integer of 0 to 3, and n is an integer of 8 to 10. F is a fluorosane compound as a fluorescent label attached to the N-terminus of the peptide with or without a linker. The cell-penetrating peptide represented by the formula (I) shows almost no cytotoxicity, and has the property of stably retaining siRNA in the cell culture medium and rapidly releasing it when it reaches the target cell. Efficient intracellular introduction of siRNA and suppression of gene expression are possible.

Fは、リンカーを介した蛍光標識である場合が好ましく、リンカーとしては例えばβ-Ala等がある。蛍光標識としてはフルオレセイン化合物である限り、特に限定されるものではなく、例えば下記に示す化合物が挙げられる。好ましくは5-FAM若しくは6-FAM又はこれらの混合物である。 F is preferably a fluorescent label mediated by a linker, and examples of the linker include β-Ala and the like. The fluorescent label is not particularly limited as long as it is a fluorescein compound, and examples thereof include the compounds shown below. It is preferably 5-FAM or 6-FAM or a mixture thereof.

Figure 0007013626000001
Figure 0007013626000001

下記に本実施形態にかかる細胞膜透過ペプチドの好適な場合の構造式を示す。下記式においてRは例えばOHである。 The structural formula of the cell membrane penetrating peptide according to this embodiment is shown below. In the following equation, R is, for example, OH.

Figure 0007013626000002
Figure 0007013626000002

式(I)において、lは3が好ましく、mは3が好ましく、nは9が好ましい。この最も好ましい本実施形態にかかる細胞膜透過ペプチドの構造式を示す。 In the formula (I), l is preferably 3, m is preferably 3, and n is preferably 9. The structural formula of the cell membrane penetrating peptide according to this most preferable embodiment is shown.

Figure 0007013626000003
Figure 0007013626000003

本実施形態にかかる構築物は、本実施形態にかかる細胞膜透過ペプチドと、細胞内に輸送すべきカーゴ分子とを含む。細胞膜透過ペプチドとカーゴ分子とは共有結合的又は非共有結合的に結合する。 The construct according to the present embodiment includes the cell membrane penetrating peptide according to the present embodiment and the cargo molecule to be transported into the cell. The cell membrane penetrating peptide and the cargo molecule bind covalently or non-covalently.

カーゴ分子は、特に限定されるものではないが、例えば、核酸、タンパク質、薬剤、又は、ナノ粒子の何れかであり、好ましくは核酸である。 The cargo molecule is not particularly limited, but is, for example, a nucleic acid, a protein, a drug, or nanoparticles, and is preferably a nucleic acid.

カーゴ分子である核酸は、ポリヌクレオチドでもオリゴヌクレオチドでもよく、DNAでもRNA分子でもよい。DNAの場合、プラスミドDNA、cDNA、ゲノミックDNA又は合成DNAでもよい。DNA及びRNAは2本鎖でも1本鎖でもよい。カーゴ分子は2本鎖RNAであるsiRNAが特に好ましい。 The nucleic acid, which is a cargo molecule, may be a polynucleotide or an oligonucleotide, or may be a DNA or an RNA molecule. In the case of DNA, it may be plasmid DNA, cDNA, genomic DNA or synthetic DNA. DNA and RNA may be double-stranded or single-stranded. The cargo molecule is particularly preferably siRNA, which is a double-stranded RNA.

本実施形態にかかるカーゴ分子を細胞内に輸送する方法は、細胞内に輸送すべきカーゴ分子と、本実施形態にかかるペプチドとを結合させて構築物を得る工程と、その構築物を細胞に導入する工程と、を有する。 The method for transporting the cargo molecule according to the present embodiment into the cell is a step of binding the cargo molecule to be transported into the cell and the peptide according to the present embodiment to obtain a structure, and introducing the structure into the cell. It has a process.

本実施形態にかかる構築物を生体(ヒトを含む動物、特に、ヒトを含む哺乳類)に投与する方法としては、経口、注射、点眼、点鼻、経肺、皮膚を介した吸収のいずれでも良く、好ましくは注射である。例えば、本実施形態にかかる構築物を静脈注射による全身投与又は患部に注射することによる局所投与が可能である。 The method for administering the construct according to the present embodiment to a living body (animals including humans, particularly mammals including humans) may be oral, injection, instillation, nasal instillation, transpulmonary, or absorption through the skin. Injection is preferred. For example, the construct according to this embodiment can be systemically administered by intravenous injection or locally administered by injecting into the affected area.

本実施形態にかかる構築物によれば、遺伝子又はタンパク質の導入される細胞内での機能を調べることが可能である。例えば、機能を調べたい遺伝子の発現を抑制するsiRNA核酸を細胞内に導入して遺伝子の発現を抑制することによってその遺伝子の機能を調べることが可能である。 According to the construct according to this embodiment, it is possible to investigate the intracellular function into which a gene or protein is introduced. For example, it is possible to investigate the function of a gene by introducing a siRNA nucleic acid that suppresses the expression of the gene whose function is desired into cells and suppressing the expression of the gene.

また本実施形態にかかる構築物によれば、細胞の性質を変えることができる。例えば、特定のmRNAを分解できるsiRNAをカーゴ分子として細胞に投与すれば、そのmRNAがコードする機能性タンパク質の発現量を低下させた細胞が得られる。 Further, according to the construct according to this embodiment, the properties of cells can be changed. For example, if siRNA capable of degrading a specific mRNA is administered to a cell as a cargo molecule, a cell having a reduced expression level of a functional protein encoded by the mRNA can be obtained.

(1)ペプチド合成
マイクロウェーブを用いたFmoc固相法により、(Arg)9、A6K、Block3~Block9のペプチドを合成した。Block3~Block9のペプチドは下記式(I’)で示され、F,l,m,nは下記表1で示される。5,6-FAMは5-FAMと6-FAMとのisomer mixtureである。5,6-TAMRAは5-TAMRAと6-TAMRAとのisomer mixtureである。Block3,4,5,9は本実施例にかかるペプチドである。(Arg)9、A6K、Block6,7,8は比較例にかかるペプチドである。
(1) Peptide synthesis Peptides of (Arg) 9 , A6K, and Block 3 to Block 9 were synthesized by the Fmoc solid phase method using microwaves. The peptides of Block 3 to Block 9 are represented by the following formula (I'), and F, l, m, n are represented by Table 1 below. 5,6-FAM is an isomer mixture of 5-FAM and 6-FAM. 5,6-TAMRA is an isomer mixture of 5-TAMRA and 6-TAMRA. Blocks 3, 4, 5, 9 are peptides according to this example. (Arg) 9 , A6K and Block6,7,8 are peptides for comparative examples.

F-β-Ala-(L-Leu-L-Leu-Aib)l-(Gly)m-(Arg)n-NH2・・・(I’) F-β-Ala-(L-Leu-L-Leu-Aib) l- (Gly) m- (Arg) n -NH 2・ ・ ・ (I')

Figure 0007013626000004
Figure 0007013626000004

(Arg)9は下記式(II)で示されるペプチドである。 (Arg) 9 is a peptide represented by the following formula (II).

5,6-FAM-βAla-(Arg)9-NH2・・・(II)
Argは下記で示される。
5,6-FAM-βAla- (Arg) 9 -NH 2・ ・ ・ (II)
Arg is shown below.

Figure 0007013626000005
Figure 0007013626000005

またA6Kのペプチドは下記式(III)で示される。Aはアラニンであり、Kはリシンである。 The A6K peptide is represented by the following formula (III). A is alanine and K is lysine.

5,6-FAM-β-Ala-AAAAAAK-NH2・・・(III)
(2)ペプチドの二次構造解析
得られたペプチドは逆相HPLCにより精製し、MALDI-MS及びLC-TOFMSによって同定した。ペプチドの溶液状態における二次構造は20 mM PBS buffer solution (pH = 7.4):メタノール=1:1溶媒を用い、CDスペクトル測定(190~260 nm)によって解析を行なった。その結果、本発明にかかるblockペプチドはヘリカル構造を形成していることが示された(図1)。
5,6-FAM-β-Ala-AAAAAAK-NH 2・ ・ ・ (III)
(2) Secondary structure analysis of peptide The obtained peptide was purified by reverse phase HPLC and identified by MALDI-MS and LC-TOFMS. The secondary structure of the peptide in solution was analyzed by CD spectrum measurement (190-260 nm) using 20 mM PBS buffer solution (pH = 7.4): methanol = 1: 1 solvent. As a result, it was shown that the block peptide according to the present invention forms a helical structure (Fig. 1).

(3)siRNAの導入
siRNA導入効果に関しては、エストロゲン受容体ERα及びアポトーシス阻害タンパク質XIAPに対する化学修飾を施したsiRNA(Stealth RNAiTM siRNA(Thermo Fisher Scientific); 25-mer)各3種をOpti-MEM(登録商標)(Thermo Fisher Scientific)上で各種ペプチドと懸濁し、10分後に細胞に添加した。XIAPやERαに対するsiRNAには標的特異性や血清中における安定性の高い修飾型siRNA(25-mer)を用いた。また、芳香族炭化水素受容体(Aryl hydrocarbon receptor; AhR)及び転写因子Notch1に対する非修飾標準siRNA(21-mer)3種もしくは2種をOpti-MEM(登録商標)(Thermo Fisher Scientific)上で各種ペプチドと懸濁し、10分後に細胞に添加した。
(3) Introduction of siRNA
Regarding the siRNA introduction effect, 3 types of siRNA (Stealth RNAiTM siRNA (Thermo Fisher Scientific); 25-mer) chemically modified for estrogen receptor ERα and XIAP, which inhibits apoptosis, are used in Opti-MEM (registered trademark) (Thermo Fisher). Scientific) was suspended with various peptides and added to cells 10 minutes later. Modified siRNA (25-mer) with high target specificity and serum stability was used as siRNA for XIAP and ERα. In addition, three or two unmodified standard siRNAs (21-mer) for the aromatic hydrocarbon receptor (AhR) and the transcription factor Notch1 are available on Opti-MEM® (Thermo Fisher Scientific). It was suspended with the peptide and added to the cells 10 minutes later.

上述したsiRNAの塩基配列を以下に示す。なお、末端のttはオーバーハングであり、DNAのチミジン2塩基である。
XIAP siRNA#1: 5’-ACACUGGCACGAGCAGGGUUUCUUU-3’(配列番号1)
XIAP siRNA#2: 5’-GAAGGAGAUACCGUGCGGUGCUUUA-3’ (配列番号2)
XIAP siRNA#3: 5’-CCAGAAUGGUCAGUACAAAGUUGAA-3’ (配列番号3)
ERalpha siRNA#1: 5’-CGACAUGCUGCUGGCUACAUCAUCU-3’ (配列番号4)
ERalpha siRNA#2: 5’-UCACAGACACUUUGAUCCACCUGAU-3’ (配列番号5)
ERalpha siRNA#3: 5’-GACCGAAGAGGAGGGAGAAUGUUGA-3’ (配列番号6)
AhR siRNA#1: 5’-GCUCUGAAUGGCUUUGUAUtt-3’ (配列番号7)
AhR siRNA#2: 5’-GCUACCACAUCCACUCUAAtt-3’ (配列番号8)
AhR siRNA#3: 5’-CCUGUAAUCAGCCUGUAUUtt-3’ (配列番号9)
NOTCH1 siRNA#1: 5’-GCAACAGCUCCUUCCACUUtt-3’ (配列番号10)
NOTCH1 siRNA#2: 5’-GCAUGGUGCCGAACCAAUAtt-3’ (配列番号11)
各標的タンパク質の細胞内発現量をウェスタンブロット法により検出し、定量化することで輸送効率を評価した。
The base sequence of the above-mentioned siRNA is shown below. The terminal tt is an overhang and is a thymidine 2 base in DNA.
XIAP siRNA # 1: 5'-ACACUGGCACGAGCAGGGUUUCUUU-3' (SEQ ID NO: 1)
XIAP siRNA # 2: 5'-GAAGGAGAUACCGUGCGGUGCUUUA-3' (SEQ ID NO: 2)
XIAP siRNA # 3: 5'-CCAGAAUGGUCAGUACAAAGUUGAA-3' (SEQ ID NO: 3)
ERalpha siRNA # 1: 5'-CGACAUGCUGCUGGCUACAUCAUCU-3' (SEQ ID NO: 4)
ERalpha siRNA # 2: 5'-UCACAGACACUUUGAUCCACCUGAU-3' (SEQ ID NO: 5)
ERalpha siRNA # 3: 5'-GACCGAAGGAGGGAGAAUGUUGA-3' (SEQ ID NO: 6)
AhR siRNA # 1: 5'-GCUCUGAAUGGCUUUGUAUtt-3' (SEQ ID NO: 7)
AhR siRNA # 2: 5'-GCUACCACAUCCACUCUAAtt-3' (SEQ ID NO: 8)
AhR siRNA # 3: 5'-CCUGUAAUCAGCCUGUAUUtt-3' (SEQ ID NO: 9)
NOTCH1 siRNA # 1: 5'-GCAACAGCUCCUUCCACUUtt-3' (SEQ ID NO: 10)
NOTCH1 siRNA # 2: 5'-GCAUGGUGCCGAACCAAUAtt-3' (SEQ ID NO: 11)
The intracellular expression level of each target protein was detected by Western blotting and quantified to evaluate the transport efficiency.

(4)Block3の実験結果
Block3は、修飾型siRNAと共にMCF-7細胞に処理すると、siRNA配列依存的に標的タンパク質(XIAP、ERα)の発現量を減少させることが明らかになった(図2(a))。
(4) Block 3 experimental results
Block3 was found to reduce the expression level of target proteins (XIAP, ERα) in a siRNA sequence-dependent manner when treated with modified siRNA in MCF-7 cells (Fig. 2 (a)).

またBlock3は、標準型siRNA(化学修飾を施した修飾型siRNAに対して、化学修飾を施していないsiRNAを標準型siRNAと記載することがある。)と共にMCF-7細胞に処理しても、siRNA配列依存的に標的タンパク質(AhR、NOTCH1))の発現量を減少させることが明らかになった(図2(b))。 Block 3 can also be treated with MCF-7 cells together with standard siRNA (chemically modified modified siRNA may be referred to as standard siRNA, but unmodified siRNA may be referred to as standard siRNA). It was revealed that the expression level of the target protein (AhR, NOTCH1)) was reduced in an siRNA sequence-dependent manner (Fig. 2 (b)).

またBlock3は、修飾型siRNAと共にHeLa細胞又はHepG2細胞に処理しても、siRNA配列依存的に標的タンパク質(XIAP)の発現量を減少させることが明らかになった(図2(c))。 It was also revealed that Block 3 reduces the expression level of the target protein (XIAP) in a siRNA sequence-dependent manner even when treated with modified siRNA into HeLa cells or HepG2 cells (Fig. 2 (c)).

(5)その他のペプチドの実験結果
Block3のどの構造がsiRNA導入活性に重要であるか調べるためにその他のペプチドと活性を比較した(図3)。
(5) Experimental results of other peptides
The activity was compared with other peptides to determine which structure of Block 3 is important for siRNA transduction activity (Fig. 3).

図3(a)のLane 8,10,12,14を参照するに、グリシンリンカーを持たないBlock4は、Block3と比較するとそのsiRNA導入効果はやや減弱することが明らかになった。 With reference to Lane 8,10,12,14 in Fig. 3 (a), it was clarified that Block4 without a glycine linker has a slightly diminished siRNA introduction effect as compared with Block3.

図3(a)のLane 2,4,6を参照するに、蛍光標識をFITCに変更したBlock5は、Block3と比較するとそのsiRNA導入効果はやや減弱することが明らかになった。図3(c)のLane 8を参照するに、蛍光標識をTAMRAに変更したBlock9は、Block3と比較するとそのsiRNA導入効果はやや減弱することが明らかになった。これらの結果から、フルオロセイン化合物は、5-FAM又は6-FAMであることがsiRNA導入効率に好ましいことが判明した。 With reference to Lanes 2, 4, and 6 in Fig. 3 (a), it was clarified that Block 5 in which the fluorescent label was changed to FITC had a slightly diminished siRNA introduction effect as compared with Block 3. With reference to Lane 8 in Fig. 3 (c), it was clarified that Block 9 in which the fluorescent label was changed to TAMRA had a slightly diminished siRNA introduction effect as compared with Block 3. From these results, it was found that the fluorosane compound is preferably 5-FAM or 6-FAM for the siRNA introduction efficiency.

図3(c)のLane 2を参照するに、(Arg)9はXIAPの発現量を抑制できなかった。図3(c)のLane 4を参照するに、A6KはXIAPの発現量を抑制できなかった。図3(b)を参照するに、Block6,7,8はXIAPの発現量を抑制できなかった。これらの結果から、(Arg)9やヘリカルプロモータ配列単独ではsiRNA導入効果を示さず、(Arg)9に対して適切な長さ(l=3~5)のヘリカルプロモータ配列の連結が、siRNA導入活性に必須であることが判明した。 Referring to Lane 2 in FIG. 3 (c), (Arg) 9 could not suppress the expression level of XIAP. With reference to Lane 4 in FIG. 3 (c), A6K was unable to suppress the expression level of XIAP. With reference to FIG. 3 (b), Blocks 6, 7 and 8 could not suppress the expression level of XIAP. From these results, (Arg) 9 and the helical promoter sequence alone did not show the siRNA introduction effect, and the ligation of the helical promoter sequence of appropriate length (l = 3-5) for (Arg) 9 was the siRNA introduction. It turned out to be essential for activity.

標的細胞における遺伝子機能の調査、標的細胞の改変等に利用できる。 It can be used for investigating gene functions in target cells, modifying target cells, and the like.

配列番号1~4:プライマー SEQ ID NOs: 1-4: Primers

Claims (5)

細胞膜透過性を有する下記の式(I)
F-(L-Leu-L-Leu-Aib)l-(Gly)m-(Arg)n-NH2・・・(I)
〔式中、
lは3~5のいずれかの整数であり、
mは0~3のいずれかの整数であり、
nは8~10のいずれかの整数であり、
Fは、リンカーを介して又は介さないで、ペプチドのN末端に結合した蛍光標識としてのフルオロセイン化合物である。〕で表されるペプチド。
The following formula (I) with cell membrane permeability
F- (L-Leu-L-Leu-Aib) l- (Gly) m- (Arg) n -NH 2・ ・ ・ (I)
[In the formula,
l is an integer of 3 to 5,
m is an integer of 0 to 3 and is
n is an integer of 8 to 10.
F is a fluorosane compound as a fluorescent label attached to the N-terminus of the peptide with or without a linker. ] Peptide represented by.
前記フルオロセイン化合物は、5-FAM又は6-FAMである請求項1記載のペプチド。 The peptide according to claim 1, wherein the fluorescein compound is 5-FAM or 6-FAM. 請求項1又は2記載のペプチドと、細胞内に輸送すべきカーゴ分子とを含む構築物。 A construct comprising the peptide according to claim 1 or 2 and a cargo molecule to be transported into a cell. 前記カーゴ分子は、核酸である請求項3記載の構築物。 The construct according to claim 3, wherein the cargo molecule is a nucleic acid. 前記核酸はsiRNAである請求項4記載の構築物。 The construct according to claim 4, wherein the nucleic acid is siRNA.
JP2018000461A 2018-01-05 2018-01-05 Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules Active JP7013626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018000461A JP7013626B2 (en) 2018-01-05 2018-01-05 Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018000461A JP7013626B2 (en) 2018-01-05 2018-01-05 Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules

Publications (2)

Publication Number Publication Date
JP2019118307A JP2019118307A (en) 2019-07-22
JP7013626B2 true JP7013626B2 (en) 2022-02-01

Family

ID=67305490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018000461A Active JP7013626B2 (en) 2018-01-05 2018-01-05 Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules

Country Status (1)

Country Link
JP (1) JP7013626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210064254A (en) * 2018-09-26 2021-06-02 가부시키가이샤 가네카 cell membrane-permeable peptide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308423A (en) 2007-06-13 2008-12-25 Gunma Univ Polymer complex stabilized by amphipathic polymer ligand, composition for use in inspection, and pharmaceutical composition
JP2009519033A (en) 2005-12-16 2009-05-14 ディアト Cell penetrating peptide conjugates for delivering nucleic acids to cells
US20090280058A1 (en) 2006-09-15 2009-11-12 Troy Carol M Delivery Of Double-Stranded RNA Into The Central Nervous System
JP2010532168A (en) 2007-06-29 2010-10-07 エーブイアイ バイオファーマ インコーポレイテッド Tissue-specific peptide conjugates and methods
JP2013531988A (en) 2010-06-14 2013-08-15 エフ.ホフマン−ラ ロシュ アーゲー Cell penetrating peptides and uses thereof
US20140140929A1 (en) 2008-09-16 2014-05-22 Kariem Ahmed Chemically modified cell-penetrating peptides for improved delivery of gene modulating compounds
JP2017137256A (en) 2016-02-02 2017-08-10 公益財団法人ヒューマンサイエンス振興財団 Peptide having cell membrane permeability, construct, and method for transporting cargo molecule into cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519033A (en) 2005-12-16 2009-05-14 ディアト Cell penetrating peptide conjugates for delivering nucleic acids to cells
US20090280058A1 (en) 2006-09-15 2009-11-12 Troy Carol M Delivery Of Double-Stranded RNA Into The Central Nervous System
JP2008308423A (en) 2007-06-13 2008-12-25 Gunma Univ Polymer complex stabilized by amphipathic polymer ligand, composition for use in inspection, and pharmaceutical composition
JP2010532168A (en) 2007-06-29 2010-10-07 エーブイアイ バイオファーマ インコーポレイテッド Tissue-specific peptide conjugates and methods
US20140140929A1 (en) 2008-09-16 2014-05-22 Kariem Ahmed Chemically modified cell-penetrating peptides for improved delivery of gene modulating compounds
JP2013531988A (en) 2010-06-14 2013-08-15 エフ.ホフマン−ラ ロシュ アーゲー Cell penetrating peptides and uses thereof
JP2017137256A (en) 2016-02-02 2017-08-10 公益財団法人ヒューマンサイエンス振興財団 Peptide having cell membrane permeability, construct, and method for transporting cargo molecule into cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioorg. Med. Chem., 2015, Vol.23, pp.4911-4918
Eur. J. Org. Chem., 2016, pp.2815-2820
第15回 次世代を担う有機化学シンポジウム 講演要旨集, 2017.05.19, pp.28-29 (1-14)

Also Published As

Publication number Publication date
JP2019118307A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
Valeur et al. New modalities for challenging targets in drug discovery
Verdine et al. Stapled peptides for intracellular drug targets
JP5926739B2 (en) Peptide-based in vivo siRNA delivery system
AU2012300633B2 (en) Cell- penetrating peptides having a central hydrophobic domain
GB2545898B (en) Improved drug delivery by conjugating oligonucleotides to stitched/stapled peptides
JP2020525462A (en) Compounds containing staple or stitch peptides for improved drug delivery
JP6300212B2 (en) Double-stranded nucleic acid binding agent, binding agent-double-stranded nucleic acid complex, pharmaceutical composition containing the complex, and method for producing the complex
JP7013626B2 (en) Methods for intracellularly transporting cell membrane penetrating peptides, constructs, and cargo molecules
US20090162857A1 (en) Pharmaceutical Compositions and Methods for Delivering Nucleic Acids Into Cells
US10640539B2 (en) Recombinant protein-based method for the delivery of silencer RNA to target the brain
JP6840914B2 (en) A method for intracellularly transporting peptides, constructs, and cargo molecules having cell membrane permeability.
WO2013134249A1 (en) Adipose tissue targeted peptides
US11865181B2 (en) Peptidic materials that traffic efficiently to the cell cytosol and nucleus
JPWO2019002875A5 (en)
JP2016535600A5 (en)
KR20220117091A (en) An Expression cassette encoding a polypeptide of interest synthesized and secreted from cells in vivo and penetrating into cells, and uses thereof
Valeur Classes, Modes of Action and Selection of New Modalities in Drug Discovery
VALEUR MA 02142, USA
Alabi et al. Bioreversible anionic cloaking enables intracellular protein delivery with ionizable lipid nanoparticles
Alamgir et al. Bioreversible anionic cloaking enables intracellular protein delivery with ionizable lipid nanoparticles
JP2022502347A (en) Cell-permeable peptide
JP2022173834A (en) artificial virus capsid

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214