JP7001947B2 - Surface shape measurement method - Google Patents

Surface shape measurement method Download PDF

Info

Publication number
JP7001947B2
JP7001947B2 JP2020215112A JP2020215112A JP7001947B2 JP 7001947 B2 JP7001947 B2 JP 7001947B2 JP 2020215112 A JP2020215112 A JP 2020215112A JP 2020215112 A JP2020215112 A JP 2020215112A JP 7001947 B2 JP7001947 B2 JP 7001947B2
Authority
JP
Japan
Prior art keywords
measurement
light
interference
measured
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020215112A
Other languages
Japanese (ja)
Other versions
JP2021051090A (en
Inventor
秀樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2020215112A priority Critical patent/JP7001947B2/en
Publication of JP2021051090A publication Critical patent/JP2021051090A/en
Priority to JP2021205187A priority patent/JP2022031956A/en
Application granted granted Critical
Publication of JP7001947B2 publication Critical patent/JP7001947B2/en
Priority to JP2023178110A priority patent/JP2023176026A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、表面形状測定方法に係り、特に、走査型白色干渉計を用いて非接触で測定対象物の表面の形状を測定する表面形状測定方法に関する。 The present invention relates to a surface shape measuring method, and more particularly to a surface shape measuring method for measuring the surface shape of a measurement object in a non-contact manner using a scanning white interferometer.

表面形状測定装置は、測定対象物の被測定面の3次元形状を測定する装置であり、走査型白色干渉計を用いたものが知られている。走査型白色干渉計は、干渉計を用いて測定対象物の被測定面の3次元形状を非接触により測定する。 The surface shape measuring device is a device that measures the three-dimensional shape of the surface to be measured of the object to be measured, and is known to use a scanning white interferometer. The scanning white interferometer measures the three-dimensional shape of the measured surface of the object to be measured by non-contact using the interferometer.

干渉計は、光学顕微鏡の構成要素としての対物レンズと、対物レンズと被測定面との間に配置されるビームスプリッタと、参照ミラーとを有する。白色光源から干渉計に入射した白色光は、対物レンズを透過してビームスプリッタにより測定光と参照光とに分割され、測定光は被測定面に照射され、参照光は参照ミラーに照射される。そして、被測定面から戻る測定光と参照ミラーから戻る参照光とが重ね合わされて干渉光が生成され、その干渉光が対物レンズを通過して干渉計からCCDカメラへと出射される。 The interferometer has an objective lens as a component of an optical microscope, a beam splitter arranged between the objective lens and the surface to be measured, and a reference mirror. The white light incident on the interferometer from the white light source passes through the objective lens and is divided into the measurement light and the reference light by the beam splitter, the measurement light is applied to the surface to be measured, and the reference light is applied to the reference mirror. .. Then, the measurement light returning from the measured surface and the reference light returning from the reference mirror are superposed to generate interference light, and the interference light passes through the objective lens and is emitted from the interference meter to the CCD camera.

これにより、CCDカメラの撮像面には、干渉縞像が結像され、その干渉縞像が干渉縞としてCCDカメラの撮像素子により取得される。そして、干渉計を被測定面に対して高さ方向に変位させながら干渉縞を取得し、干渉縞の各画素について輝度値が最大値を示すときの変位量を検出することで被測定面の各点の相対的な高さが測定される。 As a result, an interference fringe image is formed on the image pickup surface of the CCD camera, and the interference fringe image is acquired by the image pickup element of the CCD camera as interference fringes. Then, the interference fringes are acquired while the interference meter is displaced with respect to the measured surface in the height direction, and the displacement amount when the brightness value shows the maximum value for each pixel of the interference fringes is detected to detect the displacement amount of the measured surface. The relative height of each point is measured.

このように、上述のような走査型白色干渉計においては、干渉縞を取得する際、走査型白色干渉計を高さ方向に走査させながら行うが、高さ方向の走査範囲を適切に決定しないと、干渉縞が生成されない範囲も測定することになり、測定に時間がかかっていた。 As described above, in the scanning white interferometer as described above, when the interference fringes are acquired, the scanning white interferometer is scanned in the height direction, but the scanning range in the height direction is not appropriately determined. Then, the range where the interference fringes were not generated was also measured, and it took a long time to measure.

光を用いた非接触形状測定機においては、使用する対物レンズの視野等の制限により、一回の測定で測定可能な範囲に制限が多く、複数の測定を行い、後でそれらの測定データを接続する手法(スティッチング)が知られている。複数測定を接続するスティッチングにおいては、測定を複数回行うため、特に、測定時間が掛かっていた。このような課題に対して、目視にて干渉縞の消失を確認した後、測定範囲を設定する、あるいは、予備走査を行い、干渉縞の生成および消失を確認した後、測定範囲を設定することが行われている。しかしながら、これらの場合においても、測定準備に時間が掛かり、形状測定に掛かる全体の時間を大幅に減少させることはできていなかった。 In a non-contact shape measuring machine using light, there are many restrictions on the range that can be measured by one measurement due to the limitation of the field of view of the objective lens used, so multiple measurements are performed and those measurement data are used later. The method of connecting (stitching) is known. In stitching that connects multiple measurements, it takes a long time to measure because the measurements are performed multiple times. For such problems, set the measurement range after visually confirming the disappearance of the interference fringes, or perform preliminary scanning to confirm the generation and disappearance of the interference fringes, and then set the measurement range. Is being done. However, even in these cases, it takes time to prepare for measurement, and the total time required for shape measurement cannot be significantly reduced.

また、下記の特許文献1には、隣接する撮像領域との重複領域の平均値に基づいて、次の測定位置におけるZ軸方向の移動範囲を求める形状測定装置が記載されている。 Further, Patent Document 1 below describes a shape measuring device that obtains a moving range in the Z-axis direction at the next measurement position based on an average value of an overlapping region with an adjacent imaging region.

特開2014-202651号公報Japanese Unexamined Patent Publication No. 2014-202651

しかしながら、特許文献1に記載されている形状測定装置では、撮像した領域と、隣接する次に撮像する領域との重複範囲に基づいて設定しているため、隣接する領域において、段差部を有する場合は、その段差で高さが異なることになり、対応することができていなかった。 However, in the shape measuring device described in Patent Document 1, since the setting is based on the overlapping range between the imaged region and the adjacent next imaged region, the adjacent region may have a stepped portion. The height was different depending on the step, and it was not possible to cope with it.

本発明はこのような事情に鑑みてなされたものであり、表面形状測定を行う際の垂直走査範囲を高い確率で推定することができ、かつ、短時間で決定することができる表面形状測定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a surface shape measuring method capable of estimating a vertical scanning range when measuring a surface shape with a high probability and determining the surface shape in a short time. The purpose is to provide.

上記目的を達成するために、本発明に係る表面形状測定方法は、測定対象物を支持する支持部と、白色光を出射する光源部と、光源部からの白色光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に対応する複数の画素を有し、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得し測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える形状測定装置を用いた形状測定方法であって、被測定面の各点に照射される測定光の光路長を変化させながら、白色光の中心波長より長い画像取得間隔で、干渉縞を取得する干渉縞取得工程と、干渉縞取得工程で測定された被測定面の各点に対応する表面形状取得部の複数の画素から選択された基準画素と、基準画素の周辺画素の少なくとも1つの画素と、の輝度情報から、干渉縞の生成する範囲を推定し、測定光の軸方向の走査範囲を決定する走査範囲決定工程と、被測定面の各点に照射される測定光の光路長を走査範囲決定工程で決定した走査範囲内で変化させながら、干渉縞取得工程より短い画像取得間隔で干渉縞を取得し、干渉縞に基づいて被測定面の各点の測定光の光軸方向の干渉縞位置を検出することで測定対象物の表面形状を測定する表面形状測定工程と、を有する。 In order to achieve the above object, the surface shape measuring method according to the present invention uses a support portion that supports the object to be measured, a light source portion that emits white light, and white light from the light source portion as measurement light and reference light. In addition to irradiating the measured surface of the object to be measured with the measurement light, the reference light is irradiated to the reference surface, and the interference light that interferes with the measurement light returning from the measured surface and the reference light returning from the reference surface is emitted. It has an interfering part to be generated and a plurality of pixels corresponding to each point on the measured surface, and acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the measured surface. It is a shape measurement method using a shape measuring device including a surface shape acquisition unit for acquiring surface shape data of an object to be measured and an optical unit having the surface shape acquisition unit, and the measurement light applied to each point on the surface to be measured. While changing the optical path length, the interference fringe acquisition step of acquiring interference fringes at an image acquisition interval longer than the center wavelength of white light and the surface shape acquisition corresponding to each point of the measured surface measured in the interference fringe acquisition step. The range in which the interference fringes are generated is estimated from the brightness information of the reference pixel selected from the plurality of pixels of the unit and at least one pixel of the peripheral pixels of the reference pixel, and the scanning range in the axial direction of the measurement light is determined. Interference fringes at shorter image acquisition intervals than the interference fringe acquisition step while changing the optical path length of the measurement light applied to each point on the surface to be measured within the scanning range determined in the scanning range determination step. The present invention comprises a surface shape measuring step of measuring the surface shape of the object to be measured by detecting the position of the interference fringes in the optical axis direction of the measurement light at each point on the surface to be measured based on the interference fringes.

本発明の表面形状測定方法によれば、測定対象物の表面形状を測定する前に、表面形状を測定する際の、光学部の走査範囲を決定することで、測定時間を短くすることができる。また、光学部の走査範囲を決定するための干渉縞の生成および消滅を確認する際の画像取得間隔は、白色光の中心波長より長くしているので、短い時間で取得することができる。画像取得間隔を長くすることで、画素によっては、干渉縞による明暗が生成している領域においても、干渉縞による輝度値の変化が小さい場合がある。本発明においては、基準画素のみでなく、その周辺画素も用いて走査範囲を決定しているので、干渉縞の生成する範囲を高い確率で推定することができる。したがって、走査範囲を短時間で決定することができ、表面形状の測定も短時間で測定することができるので、表面形状測定全体として、測定時間を短くすることができる。 According to the surface shape measuring method of the present invention, the measurement time can be shortened by determining the scanning range of the optical unit when measuring the surface shape before measuring the surface shape of the object to be measured. .. Further, since the image acquisition interval for confirming the generation and disappearance of the interference fringes for determining the scanning range of the optical unit is longer than the center wavelength of the white light, it can be acquired in a short time. By lengthening the image acquisition interval, depending on the pixel, the change in the luminance value due to the interference fringes may be small even in the region where the light and darkness due to the interference fringes is generated. In the present invention, since the scanning range is determined not only by the reference pixel but also by the peripheral pixels thereof, the range in which the interference fringes are generated can be estimated with high probability. Therefore, the scanning range can be determined in a short time, and the surface shape can be measured in a short time, so that the measurement time can be shortened as a whole for the surface shape measurement.

本発明に係る形状測定方法の一態様は、周辺画素は、基準画素からの距離が異なる画素をランダムに選択することが好ましい。 In one aspect of the shape measuring method according to the present invention, it is preferable to randomly select pixels having different distances from the reference pixel as peripheral pixels.

この態様によれば、選択する周辺画素を基準画素からの距離がランダムに異なる画素を選択することで、被測定面の形状が、段差部を有する場合、あるいは、極端に傾斜している場合など、高さの変位が大きい場合などにおいても、干渉縞の生成する位置を安定して推定することができる。 According to this aspect, by selecting pixels whose distances from the reference pixels are randomly different from the peripheral pixels to be selected, the shape of the surface to be measured has a stepped portion, or is extremely inclined. Even when the height displacement is large, the position where the interference fringes are generated can be stably estimated.

本発明に係る形状測定方法の一態様は、干渉縞取得工程、走査範囲決定工程、および、表面形状測定工程を行った後、支持部と光学部との位置を相対的に移動させる移動工程と、移動工程後の被測定面に対して、干渉縞取得工程、走査範囲決定工程、および、表面形状測定工程を行うことで、複数の表面形状データを取得する繰り返し工程と、複数の表面形状データを接続し、測定対象物の広範囲表面形状データを取得する接続工程と、を有することが好ましい。 One aspect of the shape measuring method according to the present invention is a moving step of relatively moving the positions of the support portion and the optical portion after performing the interference fringe acquisition step, the scanning range determination step, and the surface shape measuring step. , A repeating step of acquiring a plurality of surface shape data by performing an interference fringe acquisition step, a scanning range determination step, and a surface shape measurement step on the surface to be measured after the moving step, and a plurality of surface shape data. It is preferable to have a connection step of connecting the above and acquiring a wide range surface shape data of the object to be measured.

本発明によれば、表面形状測定工程の走査範囲を決定することで、表面形状測定工程の時間を短縮することができる。したがって、表面形状測定全体の測定時間を短くすることができるので、測定対象の表面が広範囲であり、複数の表面形状データを取得し、接続する、所謂、スティッチングにより測定対象物全領域の表面形状データを取得する場合に、短時間で測定することができ効果的である。 According to the present invention, the time of the surface shape measuring step can be shortened by determining the scanning range of the surface shape measuring step. Therefore, since the measurement time of the entire surface shape measurement can be shortened, the surface of the measurement target is wide, and a plurality of surface shape data are acquired and connected, that is, the surface of the entire region of the measurement target is stitched. When acquiring shape data, it is effective because it can be measured in a short time.

本発明に係る形状測定方法の一態様は、走査範囲決定工程は、基準画素および周辺画素の輝度値の変化の絶対値の和が、所定の値以上の領域を含む範囲を走査範囲として決定することが好ましい。 In one aspect of the shape measuring method according to the present invention, in the scanning range determination step, a range including a region in which the sum of the absolute values of the changes in the luminance values of the reference pixel and the peripheral pixels includes a predetermined value or more is determined as the scanning range. Is preferable.

この態様は、走査範囲決定工程において、走査範囲を決定する方法の一態様を示すものであり、基準画素と周辺画素の輝度値の変化量の和が所定の値以上を示す垂直走査位置を含む範囲を測定する走査範囲として決定することができる。このように、基準画素によっては、干渉縞とサンプリング位置の関係で干渉縞の生成が確認できなかったとしても、周辺画素との関係で干渉縞の生成を確認することができれば、表面形状測定工程の走査範囲とすることができる。 This aspect shows one aspect of the method of determining the scanning range in the scanning range determination step, and includes a vertical scanning position in which the sum of the changes in the luminance values of the reference pixel and the peripheral pixels is equal to or greater than a predetermined value. It can be determined as a scanning range for measuring the range. In this way, even if the generation of interference fringes cannot be confirmed due to the relationship between the interference fringes and the sampling position depending on the reference pixel, if the generation of interference fringes can be confirmed in relation to the peripheral pixels, the surface shape measurement step. Can be the scanning range of.

本発明の表面形状測定方法によれば、測定対象物の表面形状を測定する前に、表面形状を測定する際の走査範囲を短時間で決定することができ、かつ、高い確率で走査範囲を推定することができるので、表面形状の測定全体の時間を短時間で行うことができる。 According to the surface shape measuring method of the present invention, the scanning range for measuring the surface shape can be determined in a short time before measuring the surface shape of the object to be measured, and the scanning range can be determined with high probability. Since it can be estimated, the entire time for measuring the surface shape can be performed in a short time.

表面形状測定装置(走査型白色干渉計)の全体構成図である。It is an overall block diagram of the surface shape measuring apparatus (scanning type white interferometer). 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of an image pickup element. 干渉部のz位置と輝度値との関係および干渉縞曲線を例示した図である。It is a figure exemplifying the relationship between the z position of an interference part and a luminance value, and an interference fringe curve. 被測定面の異なる点の異なるz座標値と干渉縞曲線との関係を例示した図である。It is a figure which exemplifies the relationship between the different z coordinate values of the different points of the measured surface, and the interference fringe curve. 画像取得位置と干渉縞曲線との関係を例示した図である。It is a figure which exemplifies the relationship between the image acquisition position and the interference fringe curve. 基準画素と周辺画素の画像取得位置と干渉縞曲線との関係を例示した図である。It is a figure which exemplifies the relationship between the image acquisition position of a reference pixel and a peripheral pixel, and an interference fringe curve. 表面形状測定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the surface shape measuring method. 予備走査のフローチャートを示す図である。It is a figure which shows the flowchart of the preliminary scan. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、基準画素の設定例を示した図である。It is a figure which showed the pixel arrangement of the interference fringes on the xy coordinate of the image pickup surface of an image pickup element, and is the figure which showed the setting example of a reference pixel. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素の選択例を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of the image pickup element, and is the figure which showed the selection example of the peripheral pixel. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素の他の選択例を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of the image pickup element, and is the figure which showed the other selection example of the peripheral pixel. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素のさらに他の選択例を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of the image pickup element, and is the figure which showed the other selection example of the peripheral pixel. 基準画素および周辺画素の輝度値を用いて測定範囲を決定する例を示す図である。It is a figure which shows the example which determines the measurement range using the luminance value of a reference pixel and the peripheral pixel.

以下、添付図面に従って本発明の形状測定方法の好ましい実施の形態について詳説する。 Hereinafter, preferred embodiments of the shape measuring method of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る形状測定方法に用いられる形状測定装置の例を示す全体構成図である。 FIG. 1 is an overall configuration diagram showing an example of a shape measuring device used in the shape measuring method according to the present invention.

同図における表面形状測定装置1は、マイケルソン型の干渉計を用いて測定対象物の表面形状等を非接触により3次元測定する所謂、マイケルソン型の走査型白色干渉計(顕微鏡)であり、測定対象物Pの干渉画像を取得する光学部2と、測定対象物Pが載置されるステージ10と、光学部2の各制御や光学部2により取得された干渉画像に基づいて各種演算処理を行うパーソナルコンピュータ等の演算処理装置からなる処理部18などを備える。 The surface shape measuring device 1 in the figure is a so-called Michaelson-type scanning white interferometer (microscope) that measures the surface shape of an object to be measured three-dimensionally by non-contact using a Michaelson-type interferometer. , Various calculations based on the optical unit 2 that acquires the interference image of the measurement object P, the stage 10 on which the measurement object P is placed, each control of the optical unit 2, and the interference image acquired by the optical unit 2. A processing unit 18 or the like including an arithmetic processing device such as a personal computer that performs processing is provided.

なお、本実施の形態では、マイケルソン型の走査型白色干渉計の例で説明するが、周知のミロー型の走査型白色干渉計であってもよい。また、測定対象物Pが配置される測定空間において、互いに直交する水平方向の2つの座標軸をx軸(紙面に直交する軸)とy軸(紙面に平行する軸)とし、x軸およびy軸に直交する鉛直方向の座標軸をz軸(測定光軸方向)とする。z軸は、後述する測定光軸Z-0に平行である。 In this embodiment, the example of the Michaelson type scanning white interferometer will be described, but a well-known Millow type scanning white interferometer may be used. Further, in the measurement space where the measurement object P is arranged, the two horizontal coordinate axes orthogonal to each other are set as the x-axis (axis orthogonal to the paper surface) and the y-axis (axis parallel to the paper surface), and the x-axis and y-axis. The vertical coordinate axis orthogonal to is the z-axis (measurement optical axis direction). The z-axis is parallel to the measurement optical axis Z-0 described later.

ステージ10は、x軸およびy軸に略平行する平坦な上面であって測定対象物Pを支持する支持部であって、測定対象物Pを載置するステージ面10Sを有する。また、ステージ10は、ステージ面10Sの水平面に対する傾斜角度(z軸に対する傾斜角度)を変更する傾斜角度変更手段を有しており、ステージ面10S(ステージ10)は、傾斜角度変更手段により、x軸に平行なx回転軸30の周りとy軸に平行なy回転軸32の周りに回転可能に設けられる。そして、ステージ面10Sは、xアクチュエータ34の駆動によりx回転軸30周りに回転し、yアクチュエータ36の駆動によりy回転軸32周りに回転する。 The stage 10 is a flat upper surface substantially parallel to the x-axis and the y-axis, and is a support portion that supports the measurement object P, and has a stage surface 10S on which the measurement object P is placed. Further, the stage 10 has an inclination angle changing means for changing the inclination angle (inclination angle with respect to the z-axis) of the stage surface 10S with respect to the parallel plane, and the stage surface 10S (stage 10) has x by the inclination angle changing means. It is rotatably provided around the x-rotating axis 30 parallel to the axis and around the y-rotating axis 32 parallel to the y-axis. Then, the stage surface 10S rotates around the x rotation axis 30 by driving the x actuator 34, and rotates around the y rotation axis 32 by driving the y actuator 36.

なお、xアクチュエータ34およびyアクチュエータ36のように本明細書においてアクチュエータという場合には、ピエゾアクチュエータやモータなどの任意の駆動装置を示す。 The term actuator in the present specification, such as the x-actuator 34 and the y-actuator 36, means an arbitrary drive device such as a piezo actuator or a motor.

ステージ面10Sに対向する位置、即ち、ステージ10の上側には、不図示の筐体により一体的に収容保持された光学部2が配置される。 An optical unit 2 integrally housed and held by a housing (not shown) is arranged at a position facing the stage surface 10S, that is, on the upper side of the stage 10.

光学部2は、x軸に平行な光軸Z-1を有する光源部12と、z軸に平行な光軸Z-0(以下、「測定光軸Z-0」と言う)を有する干渉部14および撮影部16とを有する。光源部12の光軸Z-1は、干渉部14および撮影部16の光軸Z-0に対して直交し、干渉部14と撮影部16との間において光軸Z-0と交差する。なお、光軸Z-1は、必ずしもx軸と平行でなくてもよい。 The optical unit 2 has a light source unit 12 having an optical axis Z-1 parallel to the x-axis and an interference unit having an optical axis Z-0 parallel to the z-axis (hereinafter referred to as “measurement optical axis Z-0”). It has 14 and a photographing unit 16. The optical axis Z-1 of the light source unit 12 is orthogonal to the optical axis Z-0 of the interference unit 14 and the photographing unit 16, and intersects the optical axis Z-0 between the interference unit 14 and the photographing unit 16. The optical axis Z-1 does not necessarily have to be parallel to the x-axis.

光源部12は、測定対象物Pを照明する照明光として波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する光源40と、光源40から拡散して出射された照明光を略平行な光束に変換するコレクタレンズ42とを有する。光源40およびコレクタレンズ42の各々の中心とする軸は光源部12の光軸Z-1として同軸上に配置される。 The light source unit 12 emits white light having a wide wavelength width (low coherence light with less coherence) as illumination light for illuminating the object P to be measured, and illumination light diffused from the light source 40 and emitted. It has a collector lens 42 that converts light into a substantially parallel light source. The axis at the center of each of the light source 40 and the collector lens 42 is coaxially arranged as the optical axis Z-1 of the light source unit 12.

また、光源40としては、発光ダイオード、半導体レーザ、ハロゲンランプ、高輝度放電ランプなど、任意の種類の発光体を用いることができる。 Further, as the light source 40, any kind of light emitting body such as a light emitting diode, a semiconductor laser, a halogen lamp, and a high-intensity discharge lamp can be used.

この光源部12から出射された照明光は、干渉部14と撮影部16との間に配置され、光軸Z-1と測定光軸Z-0とが交差する位置に配置されたハーフミラー等のビームスプリッタ44に入射する。そして、ビームスプリッタ44(ビームスプリッタ44の平坦な光分割面(反射面))で反射した照明光が測定光軸Z-0に沿って進行して干渉部14に入射する。 The illumination light emitted from the light source unit 12 is arranged between the interference unit 14 and the photographing unit 16, and is a half mirror or the like arranged at a position where the optical axis Z-1 and the measurement optical axis Z-0 intersect. It is incident on the beam splitter 44 of. Then, the illumination light reflected by the beam splitter 44 (the flat light splitting surface (reflecting surface) of the beam splitter 44) travels along the measurement optical axis Z-0 and is incident on the interference portion 14.

干渉部14は、マイケルソン型干渉計により構成され、光源部12から入射した照明光を測定光と参照光とに分割する。そして、測定光を測定対象物Pに照射すると共に、参照光を参照ミラー52に照射し、測定対象物Pから戻る測定光と参照ミラー52から戻る参照光とを干渉させた干渉光を生成する。 The interference unit 14 is composed of a Michelson type interferometer, and divides the illumination light incident from the light source unit 12 into measurement light and reference light. Then, the measurement object P is irradiated with the measurement light, and the reference light is irradiated to the reference mirror 52 to generate interference light in which the measurement light returning from the measurement object P and the reference light returning from the reference mirror 52 interfere with each other. ..

干渉部14は、集光作用を有する対物レンズ50と、光を反射する参照面であって平坦な反射面を有する参照ミラー52と、光を分割する平坦なビームスプリッタ54と、を有する。対物レンズ50、参照ミラー52、およびビームスプリッタ54の各々の中心とする軸は干渉部14の光軸Z-0として同軸上に配置される。参照ミラー52の反射面は、ビームスプリッタ54の側方位置に、測定光軸Z-0と平行に配置される。 The interference unit 14 includes an objective lens 50 having a light-collecting action, a reference mirror 52 which is a reference surface for reflecting light and has a flat reflection surface, and a flat beam splitter 54 for splitting light. The axis at the center of each of the objective lens 50, the reference mirror 52, and the beam splitter 54 is coaxially arranged as the optical axis Z-0 of the interference unit 14. The reflection surface of the reference mirror 52 is arranged at a lateral position of the beam splitter 54 in parallel with the measurement optical axis Z-0.

光源部12から干渉部14に入射した照明光は、対物レンズ50により集光作用を受けた後、ビームスプリッタ54に入射する。 The illumination light incident on the interference unit 14 from the light source unit 12 is condensed by the objective lens 50 and then incident on the beam splitter 54.

ビームスプリッタ54は、例えばハーフミラーであり、ビームスプリッタ54に入射した照明光は、ビームスプリッタ54を透過する測定光と、ビームスプリッタ54の光分割面で反射する参照光とに分割される。 The beam splitter 54 is, for example, a half mirror, and the illumination light incident on the beam splitter 54 is split into a measurement light that passes through the beam splitter 54 and a reference light that is reflected by the light splitting surface of the beam splitter 54.

ビームスプリッタ54を透過した測定光は、測定対象物Pの被測定面Sに照射された後、被測定面Sから干渉部14へと戻り、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54を透過した測定光が対物レンズ50に入射する。 The measurement light transmitted through the beam splitter 54 is applied to the measured surface S of the object to be measured P, then returns from the measured surface S to the interference portion 14, and is incident on the beam splitter 54 again. Then, the measurement light transmitted through the beam splitter 54 is incident on the objective lens 50.

一方、ビームスプリッタ54で反射した参照光は、参照ミラー52の光反射面で反射した後、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54で反射した参照光が対物レンズ50に入射する。 On the other hand, the reference light reflected by the beam splitter 54 is reflected by the light reflecting surface of the reference mirror 52 and then incidents on the beam splitter 54 again. Then, the reference light reflected by the beam splitter 54 is incident on the objective lens 50.

これによって、干渉部14から測定対象物Pの被測定面Sに照射されて干渉部14に戻る測定光と、参照ミラー52で反射した参照光とが重ね合わされた干渉光が生成され、その干渉光が対物レンズ50により集光作用を受けた後、干渉部14から撮影部16に向けて出射される。 As a result, interference light is generated in which the measurement light irradiated from the interference unit 14 to the measured surface S of the object P to be measured and returned to the interference unit 14 and the reference light reflected by the reference mirror 52 are superimposed, and the interference is generated. After the light is focused by the objective lens 50, it is emitted from the interference unit 14 toward the photographing unit 16.

また、照明光が測定光と参照光とに分割された後、測定光と参照光とが重ね合わされるまでの測定光と参照光の各々が通過した光路の光学的距離を、測定光の光路長および参照光の光路長といい、それらの差を測定光と参照光の光路長差というものとする。 Further, after the illumination light is divided into the measurement light and the reference light, the optical path of the optical path through which each of the measurement light and the reference light passes until the measurement light and the reference light are superimposed is determined by the optical path of the measurement light. The length and the optical path length of the reference light are called, and the difference between them is called the optical path length difference between the measured light and the reference light.

また、干渉部14は、光学部2においてz軸方向に直線移動可能に設けられる。そして、干渉部アクチュエータ56の駆動により対物レンズ50、およびビームスプリッタ54がz軸方向に移動する。これにより、対物レンズ50の焦点面の位置(高さ)がz軸方向に移動すると共に、被測定面Sとビームスプリッタ54との距離が変化することで測定光の光路長が変化し、測定光と参照光との光路長差が変化する。 Further, the interference unit 14 is provided in the optical unit 2 so as to be linearly movable in the z-axis direction. Then, the objective lens 50 and the beam splitter 54 move in the z-axis direction by driving the interference unit actuator 56. As a result, the position (height) of the focal plane of the objective lens 50 moves in the z-axis direction, and the distance between the measured surface S and the beam splitter 54 changes, so that the optical path length of the measured light changes, and the measurement is performed. The difference in optical path length between light and reference light changes.

撮影部16は、被測定面Sの各点に照射された測定光と参照光との干渉光の輝度情報から測定対象物Pの表面形状データを取得する表面形状取得部であり、例えばCCD(Charge Coupled Device)カメラに相当し、CCD型の撮像素子60と、結像レンズ62とを有する。撮像素子60と結像レンズ62の各々の中心とする軸は撮影部16の光軸Z-0として同軸上に配置される。なお、撮像素子60は、CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子等、任意の撮像手段を用いることができる。 The image pickup unit 16 is a surface shape acquisition unit that acquires surface shape data of the measurement target P from the brightness information of the interference light between the measurement light and the reference light applied to each point of the measured surface S, and is, for example, a CCD (CCD). Charge Coupled Device) Corresponds to a camera, and has a CCD type image pickup element 60 and an image pickup lens 62. The axis at the center of each of the image pickup element 60 and the image pickup lens 62 is coaxially arranged as the optical axis Z-0 of the photographing unit 16. As the image pickup device 60, any imaging means such as a CMOS (Complementary Metal Oxide Semiconductor) type image pickup device can be used.

干渉部14から出射された干渉光は、上述のビームスプリッタ44に入射し、ビームスプリッタ44を透過した干渉光が撮影部16に入射する。 The interference light emitted from the interference unit 14 is incident on the beam splitter 44 described above, and the interference light transmitted through the beam splitter 44 is incident on the photographing unit 16.

撮影部16に入射した干渉光は、結像レンズ62により撮像素子60の撮像面60Sに干渉像を結像する。ここで、結像レンズ62は、測定対象物Pの被測定面Sの光軸Z-0周辺の領域に対する干渉像を高倍率に拡大して撮像素子60の撮像面60Sに結像する。 The interference light incident on the photographing unit 16 forms an interference image on the image pickup surface 60S of the image pickup element 60 by the image pickup lens 62. Here, the image pickup lens 62 magnifies an interference image of the measured object P with respect to the region around the optical axis Z-0 of the measured surface S at a high magnification and forms an image on the image pickup surface 60S of the image pickup element 60.

また、結像レンズ62は、干渉部14の対物レンズ50の焦点面上における点を、撮像素子60の撮像面上の像点として結像する。即ち、撮影部16は、対物レンズ50の焦点面の位置にピントが合うように(合焦するように)設計されている。 Further, the image pickup lens 62 forms an image of a point on the focal plane of the objective lens 50 of the interference unit 14 as an image point on the image pickup surface of the image pickup element 60. That is, the photographing unit 16 is designed so as to be in focus (focus) on the position of the focal plane of the objective lens 50.

なお、以下において、測定対象物Pの焦点面のz軸方向の位置を単に「ピント位置」、または、「撮影部16のピント位置」というものとする。 In the following, the position of the focal plane of the object P to be measured in the z-axis direction is simply referred to as the “focus position” or the “focus position of the photographing unit 16”.

撮像素子60の撮像面60Sに結像された干渉像は、撮像素子60により電気信号に変換されて干渉画像として取得される。そして、その干渉画像は、処理部18に与えられる。 The interference image formed on the image pickup surface 60S of the image pickup element 60 is converted into an electric signal by the image pickup element 60 and acquired as an interference image. Then, the interference image is given to the processing unit 18.

以上のように光源部12、干渉部14、および撮影部16等により構成される光学部2は、全体が一体的としてz軸方向に直進移動可能に設けられる。例えば、光学部2は、z軸方向に沿って立設された不図示のz軸ガイド部に直進移動可能に支持される。そして、zアクチュエータ70の駆動により光学部2全体がz軸方向に直進移動する。これにより、干渉部14をz軸方向に移動させる場合よりも、撮影部16のピント位置をz軸方向に大きく移動させることができ、例えば、測定対象物Pの厚さ等に応じて撮影部16のピント位置を適切な位置に調整することができる。 As described above, the optical unit 2 including the light source unit 12, the interference unit 14, the photographing unit 16, and the like is provided as an integral unit so as to be movable in a straight line in the z-axis direction. For example, the optical unit 2 is supported by a z-axis guide unit (not shown) erected along the z-axis direction so as to be movable in a straight line. Then, the entire optical unit 2 moves linearly in the z-axis direction by driving the z-actuator 70. As a result, the focus position of the imaging unit 16 can be moved more in the z-axis direction than when the interference unit 14 is moved in the z-axis direction. For example, the imaging unit can be moved according to the thickness of the object P to be measured. The focus position of 16 can be adjusted to an appropriate position.

処理部18は、測定対象物Pの被測定面Sの表面形状を測定する際に、干渉部アクチュエータ56を制御して光学部2の干渉部14をz軸方向に移動させながら撮影部16の撮像素子60から干渉画像を順次取得する。そして、取得した干渉画像に基づいて被測定面Sの3次元形状データを被測定面Sの表面形状を示すデータとして取得する。 When measuring the surface shape of the surface S to be measured of the object P to be measured, the processing unit 18 controls the interference unit actuator 56 to move the interference unit 14 of the optical unit 2 in the z-axis direction of the imaging unit 16. Interference images are sequentially acquired from the image sensor 60. Then, based on the acquired interference image, the three-dimensional shape data of the measured surface S is acquired as data indicating the surface shape of the measured surface S.

ここで、処理部18が干渉縞に基づいて被測定面Sの3次元形状データを取得する処理について説明する。 Here, a process in which the processing unit 18 acquires the three-dimensional shape data of the surface S to be measured based on the interference fringes will be described.

撮影部16の撮像素子60は、x軸およびy軸からなるxy平面(水平面)に沿って2次元的に配列された多数の受光素子(画素)からなり、各画素において受光される干渉像の輝度値、即ち、撮像素子60により取得される干渉画像の各画素の輝度値は、各画素に対応する被測定面Sの各点で反射した測定光と参照光との光路長差に応じた干渉光の強度(輝度情報)を示す。 The image sensor 60 of the photographing unit 16 is composed of a large number of light receiving elements (pixels) two-dimensionally arranged along an xy plane (horizontal plane) consisting of an x-axis and a y-axis, and is an interference image received in each pixel. The brightness value, that is, the brightness value of each pixel of the interference image acquired by the image sensor 60 corresponds to the optical path length difference between the measurement light and the reference light reflected at each point of the measured surface S corresponding to each pixel. Indicates the intensity of interference light (brightness information).

ここで、図2に示すように、干渉画像(撮像素子60の撮像面)のm列目、n列目の画素を(m、n)と表すものとする。そして、画素(m、n)のx軸方向に関する位置(以下、x軸方向に関する位置を「x位置」という)を示すx座標値をx(m、n)と表し、y軸方向に関する位置(以下、y軸方向に関する位置を「y位置」という)を示すy座標値をy(m、n)と表すものとする。 Here, as shown in FIG. 2, the pixels in the m-th row and the n-th row of the interference image (the image pickup surface of the image pickup element 60) are represented as (m, n). Then, the x-coordinate value indicating the position of the pixel (m, n) in the x-axis direction (hereinafter, the position in the x-axis direction is referred to as “x position”) is expressed as x (m, n), and the position in the y-axis direction (hereinafter, the position in the y-axis direction). Hereinafter, the y coordinate value indicating the position in the y-axis direction is referred to as “y position”) is expressed as y (m, n).

また、画素(m、n)に対応する測定対象物Pの被測定面S上の点のx位置を示すx座標値をX(m,n)と表し、y位置を示すy座標値をY(m,n)と表すものとし、また、その点をxy座標値により(X(m,n),Y(m,n))と表すものとする。なお、画素(m,n)に対応する被測定面S上の点とは、ピントが合っている状態において画素(m,n)の位置に像点が結像される被測定面S上の点を意味する。 Further, the x-coordinate value indicating the x-position of the point on the measured surface S of the measurement object P corresponding to the pixel (m, n) is represented by X (m, n), and the y-coordinate value indicating the y-position is Y. It shall be expressed as (m, n), and the point shall be expressed as (X (m, n), Y (m, n)) by the xy coordinate value. The point on the measured surface S corresponding to the pixel (m, n) is the point on the measured surface S on which the image point is formed at the position of the pixel (m, n) in the focused state. Means a point.

このとき、撮像素子60により取得される干渉画像の画素(m,n)の輝度値は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差に応じた大きさを示す。 At this time, the luminance value of the pixel (m, n) of the interference image acquired by the image sensor 60 is the point (X (m, n), Y () on the measured surface S corresponding to the pixel (m, n). The magnitude corresponding to the optical path length difference between the measurement light and the reference light irradiated to m, n)) is shown.

即ち、図1の干渉部アクチュエータ56により干渉部14をz軸方向に移動させて光学部2(撮影部16)に対する干渉部14の相対的なz軸方向の位置(以下、「z位置」という)を変位させると、撮影部16のピント位置(対物レンズ50の焦点面)もz軸方向に移動し、ピント位置も干渉部14と同じ変位量で変位する。また、ピント位置が変位すると、被測定面Sの各点に照射される測定光の光路長も変化する。 That is, the interference unit 14 is moved in the z-axis direction by the interference unit actuator 56 in FIG. 1, and the position of the interference unit 14 relative to the optical unit 2 (photographing unit 16) in the z-axis direction (hereinafter referred to as “z position”). ) Is displaced, the focus position of the photographing unit 16 (the focal plane of the objective lens 50) also moves in the z-axis direction, and the focus position is also displaced by the same amount of displacement as the interference unit 14. Further, when the focus position is displaced, the optical path length of the measurement light applied to each point of the surface to be measured S also changes.

そして、干渉部14をz軸方向に移動させてピント位置を変位させながら、即ち、測定光の光路長を変化させながら、撮像素子60から干渉画像を順次取得して干渉画像の任意の画素(m,n)の輝度値を検出する。 Then, while moving the interference unit 14 in the z-axis direction to shift the focus position, that is, while changing the optical path length of the measurement light, the interference images are sequentially acquired from the image pickup element 60, and any pixel of the interference image ( The brightness value of m, n) is detected.

ここで、処理部18は、干渉部14の所定の基準位置からの変位量(干渉部14のz位置)を、ポテンショメータやエンコーダなどの不図示の位置検出手段からの検出信号により検出することができる。または、位置検出手段を使用することなく干渉部14のz位置を制御する場合、例えば、干渉部アクチュエータ56に与える駆動信号により一定変位量ずつ干渉部14を移動させる場合には、その総変位量により検出することができる。 Here, the processing unit 18 may detect the displacement amount of the interference unit 14 from a predetermined reference position (z position of the interference unit 14) by a detection signal from a position detection means (not shown) such as a potentiometer or an encoder. can. Alternatively, when the z position of the interference unit 14 is controlled without using the position detection means, for example, when the interference unit 14 is moved by a constant displacement amount by a drive signal given to the interference unit actuator 56, the total displacement amount thereof. Can be detected by.

そして、干渉部14が基準位置のときのピント位置のz位置を測定空間におけるz座標の基準位置(原点位置)として、かつ、干渉部14の基準位置からの変位量をピント位置のz座標値として取得することができる。なお、z座標値は、原点位置よりも高い位置(撮影部16に近づく位置)を正側、低い位置(ステージ面10Sに近づく位置)を負側とする。また、干渉部14の基準位置、即ち、z座標の原点位置は任意のz位置に設定、変更することができる。 Then, the z position of the focus position when the interference portion 14 is the reference position is set as the reference position (origin position) of the z coordinate in the measurement space, and the displacement amount of the interference portion 14 from the reference position is the z coordinate value of the focus position. Can be obtained as. The z-coordinate value has a positive side at a position higher than the origin position (a position closer to the photographing unit 16) and a negative side at a lower position (a position closer to the stage surface 10S). Further, the reference position of the interference unit 14, that is, the origin position of the z coordinate can be set or changed to an arbitrary z position.

図3の(A)~(C)は、干渉部14の測定対象物Pの被測定面Sに近接した位置からz軸方向に上昇させながら撮影部16の撮像素子60から画像を取得したときの干渉部14のz位置と輝度値との関係を示した図である。 3 (A) to 3 (C) are taken when an image is acquired from the image sensor 60 of the photographing unit 16 while raising the object P to be measured of the interference unit 14 from a position close to the measured surface S in the z-axis direction. It is a figure which showed the relationship between the z position of the interference part 14 and a luminance value.

図3の(A)のように、測定光の光路長L1が参照光の光路長L2より小さいと干渉は小さく、輝度値は略一定となる。そして、図3の(B)のように、測定光の光路長L1と参照光の光路長L2とが同じ、即ち光路長差が0となる場合に干渉が大きくなり、最も大きな輝度値を示す。さらに、図3(C)のように、測定光の光路長L1が参照光の光路長L2よりも大きいと再び干渉は小さくなり、輝度値は略一定となる。これにより、図3の(D)に示す干渉縞曲線Qに沿った輝度値が得られる。 As shown in FIG. 3A, when the optical path length L1 of the measurement light is smaller than the optical path length L2 of the reference light, the interference is small and the luminance value is substantially constant. Then, as shown in FIG. 3B, when the optical path length L1 of the measurement light and the optical path length L2 of the reference light are the same, that is, when the optical path length difference becomes 0, the interference becomes large and the maximum luminance value is shown. .. Further, as shown in FIG. 3C, when the optical path length L1 of the measurement light is larger than the optical path length L2 of the reference light, the interference becomes small again and the luminance value becomes substantially constant. As a result, the luminance value along the interference fringe curve Q shown in FIG. 3D is obtained.

即ち、任意の画素(m,n)における干渉縞曲線Qは、その画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差が所定値より大きい場合には略一定の輝度値を示し、光路長差がその所定値より小さいときには、光路長差が減少するにつれて輝度値が振動すると共にその振幅が大きくなる。 That is, the interference fringe curve Q in any pixel (m, n) is at a point (X (m, n), Y (m, n)) on the measured surface S corresponding to the pixel (m, n). When the optical path length difference between the irradiated measurement light and the reference light is larger than the predetermined value, a substantially constant luminance value is shown, and when the optical path length difference is smaller than the predetermined value, the luminance value increases as the optical path length difference decreases. As it vibrates, its amplitude increases.

したがって、図3の(D)に示すように、干渉縞曲線Qは、測定光と参照光との光路長が一致したときに(光路長差が0のときに)、最大値を示すと共に、その干渉縞曲線Qの包絡線における最大値を示す。 Therefore, as shown in FIG. 3D, the interference fringe curve Q shows the maximum value when the optical path lengths of the measurement light and the reference light match (when the optical path length difference is 0), and also shows the maximum value. The maximum value in the envelope of the interference fringe curve Q is shown.

また、被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長は、撮影部16のピント位置が被測定面S上の点(X(m,n),Y(m,n))のz位置に一致したときに一致する。 Further, the optical path length between the measurement light and the reference light irradiated to the points (X (m, n), Y (m, n)) on the measurement surface S is such that the focus position of the photographing unit 16 is the measurement surface S. It matches when it matches the z position of the upper point (X (m, n), Y (m, n)).

したがって、干渉縞曲線Qが最大値を示すとき(または干渉縞曲線Qの包絡線が最大値を示すとき)のピント位置は、被測定面S上の点(X(m,n),Y(m,n))のz位置に一致しており、そのときのピント位置のz座標値は、被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Therefore, when the interference fringe curve Q shows the maximum value (or when the envelope of the interference fringe curve Q shows the maximum value), the focus position is the point (X (m, n), Y () on the measured surface S. It corresponds to the z position of m, n)), and the z coordinate value of the focus position at that time is the z coordinate of the point (X (m, n), Y (m, n)) on the measured surface S. Indicates a value.

以上のことから、処理部18は、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に移動させながら(測定光の光路長を変化させながら)、撮像素子60から干渉画像を順次取得し、各画素(m,n)の輝度値をピント位置のz座標値に対応付けて取得する。即ち、ピント位置をz軸方向に走査しながら干渉画像の各画素(m,n)の輝度値を取得する。そして、各画素(m,n)について、図3(D)のような干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を、各画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値Z(m,n)として検出する。 From the above, the processing unit 18 moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 to move the focus position in the z-axis direction (while changing the optical path length of the measurement light). Interference images are sequentially acquired from 60, and the brightness value of each pixel (m, n) is acquired in association with the z-coordinate value of the focus position. That is, the luminance value of each pixel (m, n) of the interference image is acquired while scanning the focus position in the z-axis direction. Then, for each pixel (m, n), the z coordinate value of the focus position when the luminance value of the interference fringe curve Q as shown in FIG. 3D shows the maximum value corresponds to each pixel (m, n). It is detected as a z-coordinate value Z (m, n) of a point (X (m, n), Y (m, n)) on the surface to be measured S.

なお、Z(m,n)は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Note that Z (m, n) indicates the z-coordinate value of the point (X (m, n), Y (m, n)) on the measured surface S corresponding to the pixel (m, n).

また、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出する方法は周知であり、どのような方法を採用してもよい。例えば、ピント位置の微小間隔ごとのz座標値において干渉画像を取得することで、各画素(m,n)について、図3(D)のような干渉縞曲線Qを実際に描画することができる程度に輝度値を取得することができ、取得した輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Further, a method for detecting the z-coordinate value of the focus position when the luminance value of the interference fringe curve Q indicates the maximum value is well known, and any method may be adopted. For example, by acquiring an interference image at the z-coordinate value for each minute interval of the focus position, it is possible to actually draw the interference fringe curve Q as shown in FIG. 3 (D) for each pixel (m, n). The brightness value can be acquired to some extent, and by detecting the z-coordinate value of the focus position when the acquired brightness value indicates the maximum value, the focus position when the brightness value of the interference fringe curve Q indicates the maximum value. The z-coordinate value of can be detected.

または、ピント位置の各z座標値において取得した輝度値に基づいて最小二乗法等により干渉縞曲線Qを推測し、または、干渉縞曲線Qの包絡線を推測し、その推測した干渉縞曲線Qまたは包絡線に基づいて輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Alternatively, the interference fringe curve Q is estimated by the minimum square method or the like based on the brightness value acquired at each z coordinate value of the focus position, or the envelope of the interference fringe curve Q is estimated and the estimated interference fringe curve Q is estimated. Alternatively, by detecting the z-coordinate value of the focus position when the brightness value shows the maximum value based on the envelope, the z-coordinate value of the focus position when the brightness value of the interference fringe curve Q shows the maximum value is detected. be able to.

以上のようにして、処理部18は、干渉画像(撮像素子60の撮像面60S)の各画素(m,n)に対応する被測定面S上の各点(X(m,n),Y(m,n))のz座標値Z(m,n)を検出することで、被測定面S上の各点(X(m,n),Y(m,n))の相対的な高さを検出することができる。 As described above, the processing unit 18 has each point (X (m, n), Y) on the measured surface S corresponding to each pixel (m, n) of the interference image (image pickup surface 60S of the image pickup element 60). By detecting the z-coordinate value Z (m, n) of (m, n)), the relative height of each point (X (m, n), Y (m, n)) on the measured surface S Can be detected.

そして、被測定面S上の各点のx座標値X(m,n)、y座標値Y(m,n)、およびz座標値Z(m,n)を被測定面Sの3次元形状データ(表面形状を示すデータ)として取得することができる。 Then, the x-coordinate value X (m, n), y-coordinate value Y (m, n), and z-coordinate value Z (m, n) of each point on the measured surface S are the three-dimensional shapes of the measured surface S. It can be acquired as data (data indicating the surface shape).

例えば、図4に示すようにx軸方向に並ぶ3つの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3が相違する場合に、ピント位置をz軸方向に走査しながら干渉画像のそれらの画素の輝度値を取得すると、それらの画素の各々に関してピント位置がz座標値Z1、Z2、Z3のときに輝度値が最大値を示す干渉縞曲線Q1、Q2、Q3が取得される。したがって、それらの干渉縞曲線Q1、Q2、Q3の輝度値が最大値を示すときのピント位置のz座標値を検出することで、それらの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3を検出することができる。このようにして、被測定面Sの3次元形状データを取得することにより、測定対象物Pの表面形状測定を行う。 For example, as shown in FIG. 4, when the z-coordinate values Z1, Z2, and Z3 at three points on the measured surface S corresponding to the three pixels arranged in the x-axis direction are different, the focus position is scanned in the z-axis direction. While acquiring the brightness values of those pixels of the interference image, the interference fringe curves Q1, Q2, and Q3 showing the maximum brightness values when the focus position is the z coordinate values Z1, Z2, and Z3 for each of those pixels. Is obtained. Therefore, by detecting the z-coordinate value of the focus position when the luminance values of the interference fringe curves Q1, Q2, and Q3 show the maximum values, z at three points on the measured surface S corresponding to those pixels. The coordinate values Z1, Z2, and Z3 can be detected. By acquiring the three-dimensional shape data of the surface to be measured S in this way, the surface shape of the object to be measured P is measured.

上述のように測定対象物Pの表面形状測定を行う際に、測定前の準備作業として、表面形状測定におけるz軸方向の走査範囲を決定する予備走査を行う。表面形状測定のz軸方向の走査範囲を適切に決定することで、干渉縞の発生しない範囲で表面形状測定を行うことを省略できるので、測定時間を短縮することができる。 When measuring the surface shape of the object P to be measured as described above, as a preparatory work before the measurement, a preliminary scan for determining the scanning range in the z-axis direction in the surface shape measurement is performed. By appropriately determining the scanning range in the z-axis direction of the surface shape measurement, it is possible to omit performing the surface shape measurement in a range where interference fringes do not occur, so that the measurement time can be shortened.

この予備走査は、できるだけ短時間で行うことが表面形状の測定効率を向上させるうえで好ましい。 It is preferable to perform this preliminary scan in as short a time as possible in order to improve the measurement efficiency of the surface shape.

しかし、表面形状の測定効率を向上させるために測定準備を短時間で行うには、光学部2での画像取得間隔(画像サンプリング間隔)を広くする必要があるが、画像取得間隔を広くすると、干渉縞の探索が難しくなる。図5は、サンプリング間隔を波長より長くした場合の画像取得位置と干渉縞曲線との関係を例示した図である。z軸方向(垂直走査軸方向)に上昇させながら、短いサンプリング間隔で画像を取得すると、図5に示す干渉縞曲線Qが得られるとする。しかしながら、図5に示すサンプリング間隔で画像を取得すると、輝度値の変化が少ない位置でのみ画像の取得が行われ、輝度値が大きくなる位置では、サンプリングが行われず、干渉縞の生成が確認できない場合がある。 However, in order to prepare for measurement in a short time in order to improve the measurement efficiency of the surface shape, it is necessary to widen the image acquisition interval (image sampling interval) in the optical unit 2. However, if the image acquisition interval is widened, Searching for interference fringes becomes difficult. FIG. 5 is a diagram illustrating the relationship between the image acquisition position and the interference fringe curve when the sampling interval is longer than the wavelength. It is assumed that the interference fringe curve Q shown in FIG. 5 can be obtained by acquiring an image at a short sampling interval while raising the image in the z-axis direction (vertical scanning axis direction). However, when the image is acquired at the sampling interval shown in FIG. 5, the image is acquired only at the position where the change in the luminance value is small, and the sampling is not performed at the position where the luminance value is large, and the generation of the interference fringes cannot be confirmed. In some cases.

本実施形態においては、画像取得間隔を測定波長よりも長くすると共に、予備走査を行う際の、基準画素と、その周辺画素の情報を利用し、統計処理を行うことで、表面形状測定におけるz軸方向の走査範囲を適切に決定する。図6は、基準画素と周辺画素の画像取得位置と干渉縞曲線の関係を例示した図である。図6の基準画素において、図5に示す場合と同様に、輝度値の変化が見られない場合においても、周辺画素の輝度値の情報を利用することで、周辺画素においては、高い輝度値が得られているので、この範囲を含むように、走査範囲を決定することができる。 In the present embodiment, the image acquisition interval is made longer than the measurement wavelength, and the information of the reference pixel and its peripheral pixels is used for preliminary scanning to perform statistical processing, thereby performing z in the surface shape measurement. Appropriately determine the axial scan range. FIG. 6 is a diagram illustrating the relationship between the image acquisition positions of the reference pixel and the peripheral pixels and the interference fringe curve. Similar to the case shown in FIG. 5, in the reference pixel of FIG. 6, even when no change in the luminance value is observed, by using the information of the luminance value of the peripheral pixel, a high luminance value can be obtained in the peripheral pixel. Since it is obtained, the scanning range can be determined to include this range.

本発明の実施の形態の表面形状測定装置1の処理部18には、予備走査の測定準備動作プログラムを制御する測定準備制御部18Aが内蔵される構成とする。 The processing unit 18 of the surface shape measuring device 1 according to the embodiment of the present invention is configured to include a measurement preparation control unit 18A for controlling a measurement preparation operation program for preliminary scanning.

図7は、表面形状測定方法の一例を示すフローチャート図であり、図8は、予備走査の一例を示すフローチャート図である。 FIG. 7 is a flowchart showing an example of a surface shape measuring method, and FIG. 8 is a flowchart showing an example of preliminary scanning.

表面形状測定方法は、図7に示すように、先ず、測定対象物をステージ10上に載置する(ステップS10)。 In the surface shape measuring method, as shown in FIG. 7, first, the object to be measured is placed on the stage 10 (step S10).

次に、処理部18は、干渉縞(撮像素子60の撮像面)の全ての画素について取得される干渉縞曲線の輝度値が適切な大きさとなるように測定光量などの調整を行う(ステップS12)。即ち、光源部12の光源40の強さ、撮像素子60における電子シャッタの速度(電荷蓄積時間の長さ)、撮像素子60により得られる画像信号に対するゲインなどを調整する。 Next, the processing unit 18 adjusts the measured light amount and the like so that the luminance value of the interference fringe curve acquired for all the pixels of the interference fringe (the image pickup surface of the image pickup element 60) becomes an appropriate size (step S12). ). That is, the strength of the light source 40 of the light source unit 12, the speed of the electronic shutter in the image sensor 60 (the length of the charge accumulation time), the gain for the image signal obtained by the image sensor 60, and the like are adjusted.

次に、表面形状の測定(ステップS16)の測定走査範囲(干渉部14をz軸方向に移動させる範囲)が短くなるように、予備走査を行う(ステップS14)。このステップは、予め測定対象物の表面形状の概要を把握することで、測定走査範囲を必要最小限に短くするものである。予備走査については、図8を用いて説明する。 Next, preliminary scanning is performed so that the measurement scanning range (range in which the interference portion 14 is moved in the z-axis direction) of the surface shape measurement (step S16) is shortened (step S14). In this step, the measurement scanning range is shortened to the minimum necessary by grasping the outline of the surface shape of the object to be measured in advance. Preliminary scanning will be described with reference to FIG.

予備走査は、図9に示すように、まず、基準画素を選択する(ステップS30)。測定準備制御部18Aは、図9に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞の生成および消失の基準とする基準画素100を予め設定する。基準画素は、本実施形態の場合には、予備走査の前に予め決められた画素とした。しかし、測定準備制御部18Aが図1の表示部20に表示する図9のような干渉縞(撮像素子60の撮像面60S)における画素配列の画素を参照しながら操作者が入力部22により指定するようにしてもよい。 In the preliminary scan, as shown in FIG. 9, first, the reference pixel is selected (step S30). As shown in FIG. 9, the measurement preparation control unit 18A presets the reference pixel 100 as a reference for the generation and disappearance of the interference fringes on the xy coordinates of the image pickup surface 60S of the image pickup element 60. In the case of this embodiment, the reference pixel is a predetermined pixel before the preliminary scan. However, the operator designates the measurement preparation control unit 18A by the input unit 22 while referring to the pixels of the pixel arrangement in the interference fringe (imaging surface 60S of the image pickup element 60) as shown in FIG. 9 displayed on the display unit 20 of FIG. You may try to do it.

次に、干渉部14をz軸方向に規定範囲で走査駆動を行い、干渉縞取得工程を行う(ステップS32)。この工程においては、干渉縞をサンプリングする間隔(画像取得間隔)を、測定する白色光の中心波長より長い間隔で行う。また、この画像取得間隔は、後述する表面形状測定工程における画像取得間隔より長い間隔である。この画像取得間隔を長くすることで、予備走査の時間を短縮することができる。一方で、画像取得間隔が長くなると、上述したように、干渉縞が生成されている範囲であるにも関わらず、輝度値が大きくなる位置では、画像の取得が行われず、干渉縞の生成が確認できない場合がある。そこで、本発明においては、周辺画素の輝度値の変化も用いることで、干渉縞の生成、消失を高い確率で推定することができ、走査範囲を決定することができる。画像取得間隔の上限は、周辺画素の輝度値を用いることで、表面形状の概要を把握することができれば、特に限定されないが、波長の2.5倍以下とすることが好ましい。また、波長の整数倍とすると、干渉縞曲線における輝度値の変化が同じになるため、整数倍を避けることが好ましい。なお、ここで、規定範囲とは、光学部2に対する干渉部14のz軸方向の移動によるピント位置のz軸方向の最大走査範囲をいう。 Next, the interference unit 14 is scanned and driven in a predetermined range in the z-axis direction, and an interference fringe acquisition step is performed (step S32). In this step, the interval for sampling the interference fringes (image acquisition interval) is set at an interval longer than the center wavelength of the white light to be measured. Further, this image acquisition interval is longer than the image acquisition interval in the surface shape measuring step described later. By lengthening the image acquisition interval, the time for preliminary scanning can be shortened. On the other hand, when the image acquisition interval becomes long, as described above, the image is not acquired at the position where the luminance value becomes large even though the interference fringes are generated, and the interference fringes are generated. It may not be possible to confirm. Therefore, in the present invention, the generation and disappearance of interference fringes can be estimated with high probability and the scanning range can be determined by also using the change in the luminance value of the peripheral pixels. The upper limit of the image acquisition interval is not particularly limited as long as the outline of the surface shape can be grasped by using the luminance value of the peripheral pixels, but it is preferably 2.5 times or less the wavelength. Further, when the wavelength is an integral multiple, the change in the luminance value in the interference fringe curve is the same, so it is preferable to avoid the integer multiple. Here, the defined range means the maximum scanning range in the z-axis direction of the focus position due to the movement of the interference unit 14 with respect to the optical unit 2 in the z-axis direction.

測定準備制御部18Aは、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に走査しながら(即ち、測定光の光路長を変化させながら)撮像素子60から干渉縞を順次取得し、各画素の輝度値をピント位置のz座標値に対応付けて取得する。 The measurement preparation control unit 18A moves the interference unit 14 in the z-axis direction by the interference unit actuator 56, scans the focus position in the z-axis direction (that is, changes the optical path length of the measurement light) from the image sensor 60. The interference fringes are sequentially acquired, and the brightness value of each pixel is acquired in association with the z-coordinate value of the focus position.

各画素の輝度値を取得したら、基準画素およびその種変画素の輝度値から本測定の垂直走査方向の測定走査範囲を決定する走査範囲決定工程を行う(ステップS34)。 After acquiring the luminance value of each pixel, a scanning range determination step of determining the measurement scanning range in the vertical scanning direction of the main measurement is performed from the luminance values of the reference pixel and its type variation pixel (step S34).

本実施形態によれば、基準画素のみでなく、その周辺画素の輝度値も用いて測定走査範囲を決定することで、サンプリング間隔を長くすることにより、基準画素で干渉縞の生成、消失が十分に確認できなくても、その周辺画素から推定することができる。 According to the present embodiment, by determining the measurement scanning range using not only the reference pixel but also the luminance values of the peripheral pixels thereof, the sampling interval is lengthened, so that the reference pixel can sufficiently generate and eliminate interference fringes. Even if it cannot be confirmed, it can be estimated from the peripheral pixels.

図10~12は、基準画素100と、基準画素100の周辺画素102の選択方法を示す図である。図10は、基準画素100に隣接する画素のみを周辺画素102として用いる例である。また、図11は、基準画素100から等間隔で周辺画素102を選択する例である。図12は、周辺画素102を基準画素100からの距離がランダムになるように選択する例である。 10 to 12 are diagrams showing a method of selecting the reference pixel 100 and the peripheral pixels 102 of the reference pixel 100. FIG. 10 is an example in which only the pixels adjacent to the reference pixel 100 are used as the peripheral pixels 102. Further, FIG. 11 is an example of selecting peripheral pixels 102 at equal intervals from the reference pixel 100. FIG. 12 is an example of selecting peripheral pixels 102 so that the distance from the reference pixel 100 is random.

基準画素の周辺画素を選択する方法は特に限定されない。例えば、図10~12に示す選択方法で選択することができる。ただし、予備走査は、サンプリング間隔を広くしているので、図10または図11に示すように、周辺画素102を、基準画素100から一定距離にある画素とした場合、例えば、基準画素から選択した周辺画素に対応する測定対象物の表面形状が段差部を有するなど、z軸方向の変位が大きい場合、予備走査において、干渉縞の生成が確認できない場合がる。図12に示すように、基準画素100からランダムに周辺画素102を選択し、複数の周辺画素102の情報を利用し統計的に処理することで、安定して表面形状の概要の推定が可能となる。なお、周辺画素とは、図10に示すように、基準画素に隣接する隣接画素、および、図11、12に示すように基準画素から数画素離れた位置にある近傍画素をいう。 The method of selecting peripheral pixels of the reference pixel is not particularly limited. For example, it can be selected by the selection method shown in FIGS. 10 to 12. However, since the preliminary scan widens the sampling interval, when the peripheral pixels 102 are pixels at a certain distance from the reference pixel 100 as shown in FIG. 10 or 11, for example, they are selected from the reference pixels. If the displacement in the z-axis direction is large, such as when the surface shape of the object to be measured corresponding to the peripheral pixels has a stepped portion, it may not be possible to confirm the generation of interference fringes in the preliminary scan. As shown in FIG. 12, by randomly selecting peripheral pixels 102 from the reference pixel 100 and statistically processing using the information of the plurality of peripheral pixels 102, it is possible to stably estimate the outline of the surface shape. Become. The peripheral pixels refer to adjacent pixels adjacent to the reference pixel as shown in FIG. 10 and neighboring pixels located several pixels away from the reference pixel as shown in FIGS. 11 and 12.

また、本実施形態においては、周辺画素を選択し、これらに統計処理を施すことで、測定走査範囲を決定している。一般的に予備走査を実施する際には、カメラのフレームレートを最大限高速になるように設定する。そのため、撮像面内の全画素に対して統計処理を実施しようとすると、処理がフレームの時間間隔内に収まらない問題が発生する。そのため、基準画素の選択、基準画素の周辺画素を選択し、これらに統計処理を施すことで、予備走査の時間を短縮している。 Further, in the present embodiment, the measurement scanning range is determined by selecting peripheral pixels and performing statistical processing on them. Generally, when performing a preliminary scan, the frame rate of the camera is set to be as high as possible. Therefore, when an attempt is made to perform statistical processing on all pixels in the imaging surface, there arises a problem that the processing does not fit within the time interval of the frame. Therefore, the time for preliminary scanning is shortened by selecting the reference pixel and the peripheral pixels of the reference pixel and performing statistical processing on them.

基準画素および周辺画素の輝度値から測定走査範囲を決定する統計処理について説明する。統計処理の一例として、例えば、次のように単純和を取ることで、決定することができる。 Statistical processing for determining the measurement scanning range from the luminance values of the reference pixel and the peripheral pixels will be described. As an example of statistical processing, it can be determined by taking a simple sum as follows, for example.

予備走査を行う際の基準画素、および、選択した周辺画素の輝度値をx(i:ピクセル番号)、干渉縞が生成していない領域での平均的な輝度値を<x>とすると、i番目の画素に対する干渉縞による輝度値の変化は、Δx=|x-<x>|で表される。 Let x i (i: pixel number) be the luminance value of the reference pixel and the selected peripheral pixel when performing the preliminary scan, and let <x> be the average luminance value in the area where no interference fringes are generated. The change in the luminance value due to the interference fringes for the i-th pixel is represented by Δx = | x i- <x> |.

そして、統計処理として、これらの値の単純和Σ(Δx)=Σ|x-<x>|を求める。この単純和を、光学部の垂直位置を走査しながら(z方向に移動させながら)計算を行い、単純和が所定の値以上の領域を含む範囲を、表面形状を測定する走査範囲として決定することができる。単純和を計算する際は、閾値を設けて、この閾値以下の輝度値の変化を示すものは単純和の計算に使用しないようにすることもできる。 Then, as statistical processing, the simple sum Σ (Δx i ) = Σ i | x i- <x> | of these values is obtained. This simple sum is calculated while scanning the vertical position of the optical unit (moving in the z direction), and the range including the region where the simple sum is equal to or more than a predetermined value is determined as the scanning range for measuring the surface shape. be able to. When calculating the simple sum, a threshold value may be set so that a value indicating a change in the luminance value below the threshold value is not used in the calculation of the simple sum.

図13は、基準画素および周辺画素の輝度値を用いて測定範囲を決定する例を示す図である。基準画素の輝度値の変化を、光学部2を垂直方向に走査しながら測定すると、例えば、図13の基準画素に示すような、輝度値の変化を示す。予備走査においては、サンプリング間隔が波長よりも広いため、干渉縞による明暗が生成している領域内においても、輝度値の変化Δxが小さい値を示す場合がある。 FIG. 13 is a diagram showing an example of determining a measurement range using the luminance values of the reference pixel and the peripheral pixels. When the change in the luminance value of the reference pixel is measured while scanning the optical unit 2 in the vertical direction, for example, the change in the luminance value as shown in the reference pixel in FIG. 13 is shown. In the preliminary scan, since the sampling interval is wider than the wavelength, the change Δxi of the luminance value may show a small value even in the region where the light and darkness due to the interference fringes is generated.

周辺画素1~3は、基準画素からの距離がランダムになるように選択した周辺画素の輝度値の変化(Δx)を示す。図13においては省略しているが、さらに、複数の周辺画素の輝度値の変化の単純和を示す。単純和を求め、グラフ化することで、基準画素およびその周辺画素での垂直方向(z軸方向)における輝度値の変化量を求めることができ、この範囲を含むように、表面測定の垂直方向の走査範囲を決定することができる。このように、基準画素で十分な輝度値の変化が確認できなくても、周辺画素の輝度値の変化を用いることで、表面形状の垂直方向の位置を推定することができ、走査範囲を決定することができる。 Peripheral pixels 1 to 3 indicate changes (Δx) in the luminance values of the peripheral pixels selected so that the distance from the reference pixel is random. Although omitted in FIG. 13, a simple sum of changes in the luminance values of the plurality of peripheral pixels is further shown. By obtaining the simple sum and graphing it, the amount of change in the luminance value in the vertical direction (z-axis direction) in the reference pixel and its peripheral pixels can be obtained, and the vertical direction of the surface measurement is included so as to include this range. Scanning range can be determined. In this way, even if a sufficient change in the luminance value cannot be confirmed in the reference pixel, the vertical position of the surface shape can be estimated by using the change in the luminance value of the peripheral pixels, and the scanning range is determined. can do.

統計処理として、単純和を用いる方法以外に、輝度値変化の出現頻度分布を作成し、出現頻度が特定の範囲に含まれる範囲を本測定の範囲として決定することができる、また、統計処理の方法としては、1種類に限定されず、複数種類を組み合わせて用いることもできる。 As statistical processing, in addition to the method using simple sum, it is possible to create an appearance frequency distribution of luminance value change and determine the range in which the appearance frequency is included in a specific range as the range of this measurement. The method is not limited to one type, and a plurality of types may be used in combination.

ここで、本発明とオートフォーカスとの違いについて説明する。一般的なオートフォーカスでは、測定対象物が焦点位置に近い場合に、測定対象物表面の模様によるコントラストが上昇することを用いて隣接ピクセル間の輝度値の差異を利用する。しかしながら、この手法は、サンプリング間隔を広げることは可能であるが、例えばオプティカルフラットのような平滑面に対しては、効果が無く、さらに、干渉縞の生成、消失の幅を検知することができないので、予備走査としては機能しない。確実に測定対象物の表面形状を取得するためには、干渉縞の生成、消失が生じる範囲において、表面形状を測定することが必要である。 Here, the difference between the present invention and autofocus will be described. In general autofocus, when the object to be measured is close to the focal position, the difference in luminance value between adjacent pixels is used by increasing the contrast due to the pattern on the surface of the object to be measured. However, although this method can widen the sampling interval, it has no effect on a smooth surface such as an optical flat, and further, it is not possible to detect the width of the generation and disappearance of interference fringes. Therefore, it does not function as a preliminary scan. In order to reliably obtain the surface shape of the object to be measured, it is necessary to measure the surface shape within the range where interference fringes are generated and disappear.

図7に戻り、予備走査(ステップS14)により、測定走査範囲を決定した後、処理部18は、測定対象物Pの表面形状の測定を行う表面形状測定工程を行う(ステップS16)。表面形状の測定方法としては、測定対象物Pの被測定面Sの各点に照射される測定光の光路長を変化させながら撮影部16により取得される干渉縞に基づいて被測定面Sの各点のz軸方向の干渉縞位置を検出することで測定対象物Pの表面形状を測定する方法であれば、どのような方法でもよい。 Returning to FIG. 7, after the measurement scanning range is determined by the preliminary scanning (step S14), the processing unit 18 performs a surface shape measuring step of measuring the surface shape of the measurement object P (step S16). As a method for measuring the surface shape, the measured surface S is measured based on the interference fringes acquired by the photographing unit 16 while changing the optical path length of the measured light applied to each point of the measured surface S of the measurement object P. Any method may be used as long as it is a method of measuring the surface shape of the object P to be measured by detecting the position of the interference fringes in the z-axis direction of each point.

本実施形態によれば、サンプリング間隔を狭くすることで時間のかかる表面形状測定において、予備走査により走査範囲を決定しているので、測定時間を短縮することができる。 According to the present embodiment, in the surface shape measurement that takes time by narrowing the sampling interval, the scanning range is determined by the preliminary scanning, so that the measurement time can be shortened.

次に、ステップS18で、測定対象物全領域の表面形状データを取得していない場合はステップS14に戻り、ステージ10を移動させ(移動工程)、予備走査(ステップS14)および、表面形状の測定(ステップS16)を行い、測定対象物全領域の表面形状データを取得する(繰り返し工程)。 Next, in step S18, if the surface shape data of the entire area of the object to be measured has not been acquired, the process returns to step S14, the stage 10 is moved (movement step), preliminary scanning (step S14), and surface shape measurement. (Step S16) is performed to acquire surface shape data of the entire region of the object to be measured (repeated step).

測定対象物全領域の表面形状データを取得した後、ステップS20の工程として、表面形状データを接続することで、広範囲表面形状データを作成し(接続工程)、最後に、処理部18は、表面形状の測定結果を表示部20などに出力する。または、1つの撮像面で測定対象物の表面形状を測定できる場合は、接続工程を行うことなく、表面形状の測定結果を表示部20などに出力する。 After acquiring the surface shape data of the entire area of the object to be measured, a wide range of surface shape data is created by connecting the surface shape data as the step of step S20 (connection step), and finally, the processing unit 18 is the surface. The shape measurement result is output to the display unit 20 or the like. Alternatively, if the surface shape of the object to be measured can be measured with one imaging surface, the measurement result of the surface shape is output to the display unit 20 or the like without performing the connection step.

1…表面形状測定装置、2…光学部、10…ステージ、10S…ステージ面、12…光源部、14…干渉部、16…撮影部、18…処理部、18A…測定準備制御部、20…表示部、22…入力部、30…x回転軸、32…y回転軸、34…xアクチュエータ、36…yアクチュエータ、40…光源、42…コレクタレンズ、44、54…ビームスプリッタ、50…対物レンズ、52…参照ミラー、56…干渉部アクチュエータ、60…撮像素子、60S…撮像面、62…結像レンズ、70…zアクチュエータ、100…基準画素、102…周辺画素、L1、L2…光路長、P…測定対象物、Q…干渉縞曲線、S…被測定面、Z-0、Z-1…光軸 1 ... Surface shape measuring device, 2 ... Optical unit, 10 ... Stage, 10S ... Stage surface, 12 ... Light source unit, 14 ... Interference unit, 16 ... Imaging unit, 18 ... Processing unit, 18A ... Measurement preparation control unit, 20 ... Display unit, 22 ... Input unit, 30 ... x rotation axis, 32 ... y rotation axis, 34 ... x actuator, 36 ... y actuator, 40 ... light source, 42 ... collector lens, 44, 54 ... beam splitter, 50 ... objective lens , 52 ... Reference mirror, 56 ... Interference part actuator, 60 ... Imaging element, 60S ... Imaging surface, 62 ... Imaging lens, 70 ... z actuator, 100 ... Reference pixel, 102 ... Peripheral pixel, L1, L2 ... Optical path length, P ... Object to be measured, Q ... Interference fringe curve, S ... Surface to be measured, Z-0, Z-1 ... Optical axis

Claims (4)

測定対象物を支持する支持部と、
白色光を出射する光源部と、前記光源部からの白色光を測定光と参照光とに分割して前記測定光を前記測定対象物の被測定面に照射するとともに、前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部と、前記被測定面の各点に対応する複数の画素を有し、前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度情報から干渉縞を取得し前記測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える形状測定装置を用いた表面形状測定方法であって、
前記被測定面の各点に照射される前記測定光の光路長を変化させながら、前記干渉縞を取得する干渉縞取得工程と、
前記干渉縞取得工程で測定された前記被測定面の各点に対応する前記表面形状取得部の複数の画素から選択された基準画素と、前記基準画素の周辺画素の少なくとも1つの画素と、の輝度情報から、干渉縞の生成する範囲を推定し、前記測定光の軸方向の走査範囲を決定する走査範囲決定工程と、
前記被測定面の各点に照射される前記測定光の光路長を前記走査範囲決定工程で決定した走査範囲内で変化させながら、前記干渉縞取得工程より短い画像取得間隔で干渉縞を取得し、前記干渉縞に基づいて前記被測定面の各点の前記測定光の光軸方向の干渉縞位置を検出することで前記測定対象物の表面形状を測定する表面形状測定工程と、を有する表面形状測定方法。
A support part that supports the object to be measured and
The light source unit that emits white light and the white light from the light source unit are divided into measurement light and reference light, and the measurement light is applied to the measured surface of the measurement object, and the reference light is used as the reference surface. It has an interference part that generates interference light that interferes with the measurement light returning from the measured surface and the reference light returning from the reference surface, and a plurality of pixels corresponding to each point of the measured surface. Then, a surface shape acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point of the measurement surface and acquires the surface shape data of the measurement object. It is a surface shape measuring method using a shape measuring device including an optical unit having a light beam.
An interference fringe acquisition step of acquiring the interference fringes while changing the optical path length of the measurement light applied to each point of the measurement surface.
A reference pixel selected from a plurality of pixels of the surface shape acquisition unit corresponding to each point of the measured surface measured in the interference fringe acquisition step, and at least one pixel of peripheral pixels of the reference pixel. A scanning range determination step of estimating the range in which interference fringes are generated from the brightness information and determining the scanning range in the axial direction of the measurement light, and
While changing the optical path length of the measurement light applied to each point of the measured surface within the scanning range determined in the scanning range determination step, interference fringes are acquired at an image acquisition interval shorter than that in the interference fringe acquisition step. A surface having a surface shape measuring step of measuring the surface shape of the object to be measured by detecting the position of the interference fringes in the optical axis direction of the measurement light at each point of the surface to be measured based on the interference fringes. Shape measurement method.
前記周辺画素は、前記基準画素からの距離が異なる画素をランダムに選択する請求項1に記載の表面形状測定方法。 The surface shape measuring method according to claim 1, wherein the peripheral pixels randomly select pixels having a different distance from the reference pixel. 前記干渉縞取得工程、前記走査範囲決定工程、および、前記表面形状測定工程を行った後、前記支持部と前記光学部との位置を相対的に移動させる移動工程と、
前記移動工程後の前記被測定面に対して、前記干渉縞取得工程、前記走査範囲決定工程、および、前記表面形状測定工程を行うことで、複数の表面形状データを取得する繰り返し工程と、
前記複数の表面形状データを接続し、前記測定対象物の広範囲表面形状データを取得する接続工程と、を有する請求項1又は2に記載の表面形状測定方法。
A moving step of relatively moving the positions of the support portion and the optical portion after performing the interference fringe acquisition step, the scanning range determination step, and the surface shape measurement step.
A repeating step of acquiring a plurality of surface shape data by performing the interference fringe acquisition step, the scanning range determination step, and the surface shape measurement step on the surface to be measured after the movement step.
The surface shape measuring method according to claim 1 or 2, further comprising a connection step of connecting the plurality of surface shape data and acquiring a wide range of surface shape data of the object to be measured.
前記走査範囲決定工程は、前記基準画素および前記周辺画素の輝度値の変化の絶対値の和が、所定の値以上の領域を含む範囲を前記走査範囲として決定する請求項1から3のいずれか1項に記載の表面形状測定方法。 The scanning range determination step is any one of claims 1 to 3 in which a range including a region in which the sum of the absolute values of changes in the luminance values of the reference pixel and the peripheral pixels includes a region of a predetermined value or more is determined as the scanning range. The surface shape measuring method according to item 1.
JP2020215112A 2020-12-24 2020-12-24 Surface shape measurement method Active JP7001947B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020215112A JP7001947B2 (en) 2020-12-24 2020-12-24 Surface shape measurement method
JP2021205187A JP2022031956A (en) 2020-12-24 2021-12-17 Method for determining scan range
JP2023178110A JP2023176026A (en) 2020-12-24 2023-10-16 Method for determining scan range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020215112A JP7001947B2 (en) 2020-12-24 2020-12-24 Surface shape measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017044137A Division JP6820516B2 (en) 2017-03-08 2017-03-08 Surface shape measurement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021205187A Division JP2022031956A (en) 2020-12-24 2021-12-17 Method for determining scan range

Publications (2)

Publication Number Publication Date
JP2021051090A JP2021051090A (en) 2021-04-01
JP7001947B2 true JP7001947B2 (en) 2022-01-20

Family

ID=75157690

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020215112A Active JP7001947B2 (en) 2020-12-24 2020-12-24 Surface shape measurement method
JP2021205187A Pending JP2022031956A (en) 2020-12-24 2021-12-17 Method for determining scan range
JP2023178110A Pending JP2023176026A (en) 2020-12-24 2023-10-16 Method for determining scan range

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021205187A Pending JP2022031956A (en) 2020-12-24 2021-12-17 Method for determining scan range
JP2023178110A Pending JP2023176026A (en) 2020-12-24 2023-10-16 Method for determining scan range

Country Status (1)

Country Link
JP (3) JP7001947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149470A1 (en) * 2022-02-07 2023-08-10 株式会社東京精密 Surface shape measurement device, and surface shape measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208974A (en) 2000-01-24 2001-08-03 Nikon Corp Confocal type microscope and collective illumination type microscope
US20060018514A1 (en) 2002-11-27 2006-01-26 Bankhead Andrew D Surface profiling apparatus
JP2006184844A (en) 2004-12-03 2006-07-13 Tochigi Nikon Corp Image forming optical system and imaging apparatus using the same
JP2008145465A (en) 2006-12-06 2008-06-26 Sigma Corp Method of adjusting depth of field and user interface for photographing apparatus
JP2010112865A (en) 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method
JP2016507752A (en) 2013-02-12 2016-03-10 ザイゴ コーポレーションZygo Corporation Surface topography interferometer with surface color

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318729A (en) * 1997-05-21 1998-12-04 Tokyo Seimitsu Co Ltd Method and apparatus for noncontact measurement of surface shape
JP2000329531A (en) * 1999-03-17 2000-11-30 Minolta Co Ltd Apparatus and method for measurement of three- dimensional shape
JP2006329751A (en) * 2005-05-25 2006-12-07 Sony Corp Surface shape measuring method and surface shape measuring instrument
US8004688B2 (en) * 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry
JP5663428B2 (en) * 2011-07-26 2015-02-04 株式会社キーエンス Microscope system, object observation method, and object observation program
JP6188384B2 (en) * 2013-04-08 2017-08-30 株式会社ミツトヨ Shape measuring device
JP6095486B2 (en) * 2013-05-27 2017-03-15 株式会社ミツトヨ Image measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208974A (en) 2000-01-24 2001-08-03 Nikon Corp Confocal type microscope and collective illumination type microscope
US20060018514A1 (en) 2002-11-27 2006-01-26 Bankhead Andrew D Surface profiling apparatus
JP2006184844A (en) 2004-12-03 2006-07-13 Tochigi Nikon Corp Image forming optical system and imaging apparatus using the same
JP2008145465A (en) 2006-12-06 2008-06-26 Sigma Corp Method of adjusting depth of field and user interface for photographing apparatus
JP2010112865A (en) 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method
JP2016507752A (en) 2013-02-12 2016-03-10 ザイゴ コーポレーションZygo Corporation Surface topography interferometer with surface color

Also Published As

Publication number Publication date
JP2023176026A (en) 2023-12-12
JP2021051090A (en) 2021-04-01
JP2022031956A (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP7093915B2 (en) Surface shape measurement method
JP5943547B2 (en) Apparatus and method for non-contact measurement
JP2009145774A (en) Laser scanning microscope apparatus, and surface shape measuring method thereof
JP2006514739A5 (en)
JP2011526375A (en) Optical inspection probe
JP6417645B2 (en) Alignment method for surface profile measuring device
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
CN107121084B (en) Measurement method measurement program
JP6037254B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2023176026A (en) Method for determining scan range
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP7085725B2 (en) Surface shape measuring device and surface shape measuring method
JP6392044B2 (en) Position measuring device
JP6820516B2 (en) Surface shape measurement method
JP6882651B2 (en) Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device
JP6880396B2 (en) Shape measuring device and shape measuring method
JP6820515B2 (en) Surface shape measuring device and surface shape measuring method
JP2021124429A (en) Scanning measurement method and scanning measurement device
JP6047764B2 (en) White interferometer, image processing method, and image processing program
JP7304513B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
JP4788968B2 (en) Focal plane tilt type confocal surface shape measuring device
JP2017151062A (en) Surface shape measurement device and surface shape measurement method
JP2008191036A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2024007646A (en) Three-dimensional measurement device using multi-view line sensing method
JP2023136296A (en) Surface shape measurement device and surface shape measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7001947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150