JP7001537B2 - Distribution system voltage regulator Arrangement planning support equipment and methods - Google Patents

Distribution system voltage regulator Arrangement planning support equipment and methods Download PDF

Info

Publication number
JP7001537B2
JP7001537B2 JP2018089876A JP2018089876A JP7001537B2 JP 7001537 B2 JP7001537 B2 JP 7001537B2 JP 2018089876 A JP2018089876 A JP 2018089876A JP 2018089876 A JP2018089876 A JP 2018089876A JP 7001537 B2 JP7001537 B2 JP 7001537B2
Authority
JP
Japan
Prior art keywords
voltage
distribution system
mechanical mechanism
adjustment
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089876A
Other languages
Japanese (ja)
Other versions
JP2019198153A (en
Inventor
政紀 阿部
修 友部
健太 古川
希 坂井
昇 柴丸
哲也 齋藤
玄洋 三川
浩一 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2018089876A priority Critical patent/JP7001537B2/en
Publication of JP2019198153A publication Critical patent/JP2019198153A/en
Application granted granted Critical
Publication of JP7001537B2 publication Critical patent/JP7001537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、配電系統に接続された電圧調整装置の配置計画の支援装置および方法に関する。 The present invention relates to a support device and a method for arranging a voltage regulator connected to a distribution system.

配電系統では、需要家の電力使用量(負荷)の変動と、分散電源の発電電力の変動による線路電圧の変動を補償する装置として、電圧調整装置が使用されている。タップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもってタップ付変圧器のタップを調整する電圧調整装置である自動電圧調整器SVR(SVR:Step Voltage Regulator)や、無効電力を調整するキャパシタまたはリアクトルを備えた電圧調整装置が、複数配置されている。各電圧調整装置ではその検知する電圧を許容領域内にすべく、電圧調整装置の機械機構による調整量として、自動電圧調整器SVRではタップ付変圧器のタップ位置を調整し、また無効電力調整のためのキャパシタおよびリアクトルではこれらが並列に接続される数を調整している。 In the distribution system, a voltage regulator is used as a device for compensating for fluctuations in the power consumption (load) of consumers and fluctuations in line voltage due to fluctuations in the generated power of distributed power sources. The automatic voltage regulator SVR (SVR:), which is a voltage regulator that adjusts the tap of the tapped transformer when the integrated value of the voltage at which the secondary voltage of the tapped transformer deviates from the allowable range exceeds the operation set value. A plurality of voltage regulators equipped with a Step Voltage Regulator) and a capacitor or reactor for adjusting the reactive power are arranged. In order to keep the detected voltage within the allowable range in each voltage regulator, the tap position of the tapped transformer is adjusted in the automatic voltage regulator SVR as the adjustment amount by the mechanical mechanism of the voltage regulator, and the reactive power adjustment is performed. The capacitors and reactors for this are adjusting the number of these connected in parallel.

近年、太陽光発電逆潮流の増加で配電系統の電圧上昇が増大しており、電圧調整装置の配置による電圧逸脱の回避が必要になり、今後配置を計画する回数が増えていくと予想される。 In recent years, the voltage rise of the distribution system has been increasing due to the increase in the reverse power flow of photovoltaic power generation, and it is necessary to avoid the voltage deviation by arranging the voltage regulator, and it is expected that the number of times of planning the arrangement will increase in the future. ..

電圧調整装置の配置計画では、探索する配電系統における電圧調整装置の配置位置と想定するSVRタップ位置ならびに並列キャパシタおよび並列リアクトルの接続数である機械機構調整量の組合せについて、電圧計算を実施し、電圧を適正な範囲に収められるかを検証する。このため、組合せの探索を最適化手法で探査する手法が提案されており、例えば、特許文献1には、パーティクル・スウォーム・オプティマイゼーション(PSO)を使用して、最適な配置位置と機械機構調整量の組合せを探索して、潮流計算による電圧計算を用いて配置を求めることが記載されている。潮流計算とは、配電用変電所から配電線末端までの電圧分布を求める計算方法である。潮流計算は、配電用変電所の送り出し電圧、負荷、分散電源発電電力、電圧調整装置の設置位置と機械機構調整量を入力として、配電系統上の電圧を求める方法である。 In the arrangement plan of the voltage regulator, voltage calculation is performed for the combination of the position of the voltage regulator in the distribution system to be searched, the assumed SVR tap position, and the mechanical mechanism adjustment amount which is the number of connections of the parallel capacitor and the parallel reactor. Verify that the voltage is within the proper range. Therefore, a method of searching for a combination by an optimization method has been proposed. For example, in Patent Document 1, particle swarm optimization (PSO) is used to adjust the optimum placement position and mechanical mechanism. It is described that the combination of quantities is searched and the arrangement is obtained by using the voltage calculation by the power flow calculation. The power flow calculation is a calculation method for obtaining the voltage distribution from the distribution substation to the end of the distribution line. The power flow calculation is a method of obtaining the voltage on the distribution system by inputting the transmission voltage, the load, the distributed power generation power, the installation position of the voltage regulator and the adjustment amount of the mechanical mechanism of the distribution substation.

電圧調整装置の配置計画では、探索する配電系統における電圧調整装置の配置位置と想定する機械機構調整量の組合せの数が大きくなると、電圧計算に潮流計算を用いると計算時間が膨大になるおそれがある。例えば、配電系統運用者が、電圧調整装置の配置位置と機械機構調整量をより網羅的に探索したいという場合がある。 In the layout plan of the voltage regulator, if the number of combinations of the voltage regulator placement position and the assumed mechanical mechanism adjustment amount in the distribution system to be searched is large, the calculation time may become enormous if the power flow calculation is used for the voltage calculation. be. For example, the distribution system operator may want to search more comprehensively for the arrangement position of the voltage adjusting device and the adjustment amount of the mechanical mechanism.

特許第05056188号Patent No. 050561888

特許文献1では、電圧調整装置の配置を計画するが、電圧計算を潮流計算で計算する必要があるため、電圧計算の時間が掛かり、配置計画を高速に計算できないという課題がある。 In Patent Document 1, the arrangement of the voltage adjusting device is planned, but since the voltage calculation needs to be calculated by the power flow calculation, there is a problem that the voltage calculation takes time and the arrangement plan cannot be calculated at high speed.

他方、電圧計算の計算時間を削減する手法として、電圧調整装置の機械機構調整量に対する配電系統上の電圧変動量の推定値である電圧感度を参照して電圧を近似計算する方法があるが、電圧計算に電圧近似計算を使用すると、電圧調整装置の機械機構調整量が大きい組合せにおいて、誤差が大きくなるおそれがある。 On the other hand, as a method of reducing the calculation time of the voltage calculation, there is a method of approximating the voltage by referring to the voltage sensitivity which is an estimated value of the voltage fluctuation amount on the distribution system with respect to the mechanical mechanism adjustment amount of the voltage regulator. When the voltage approximation calculation is used for the voltage calculation, the error may become large in the combination in which the mechanical mechanism adjustment amount of the voltage regulator is large.

そこで本発明では、電圧計算において、電圧計算精度の劣化を最小限に抑えつつ、計算を高速化することができる配電系統の電圧調整装置配置計画の支援装置および方法を提供することを目的する。 Therefore, it is an object of the present invention to provide a support device and a method for arranging a voltage adjusting device for a distribution system, which can speed up the calculation while minimizing the deterioration of the voltage calculation accuracy in the voltage calculation.

上記課題を解決するために、本発明は、「電圧調整用の機械機構を有する電圧調整装置と自然変動電源とを備える配電系統の電圧調整装置配置計画の支援装置において、電圧調整装置を配置する配電系統上の位置を選択する配置位置選択部と、配置した一つ以上の電圧調整装置について電圧調整装置の機械機構調整量の組合せを生成する組合せ生成部と、電圧調整装置の配置位置と機械機構調整量の組合せに対する電圧計算において、配置位置が同一の電圧調整装置の機械機構調整量の組合せについて、はじめに予め保持する基準の機械機構調整量の組合せにおいて潮流計算を実施し、基準の機械機構調整量と異なる機械機構調整量の組合せについて、基準の機械機構調整量からの機械機構調整量変化量が閾値以上となる場合には機械機構調整量の組合せを新たな基準の機械機構調整量として保持して潮流計算を実施し、基準の機械機構調整量からの機械機構調整量変化量が閾値より小さい場合には電圧感度を用いる電圧近似計算を実施することによって配電系統上の電圧を求める電圧計算部と、前記電圧計算部で求めた配電系統上の電圧について、配電系統に許容される上下限電圧と電圧計算結果の間の差分の最小値である電圧余裕および電圧調整装置の台数に基づいて電圧調整装置を配置する位置を決定する適正配置決定部とを備えることを特徴とする配電系統の電圧調整装置配置計画の支援装置」としたものである。 In order to solve the above problems, the present invention arranges a voltage adjustment device in a support device for a voltage adjustment device arrangement plan of a distribution system including a voltage adjustment device having a mechanical mechanism for voltage adjustment and a naturally fluctuating power supply. An arrangement position selection unit that selects a position on the distribution system, a combination generation unit that generates a combination of mechanical mechanism adjustment amounts of the voltage adjustment device for one or more arranged voltage adjustment devices, and an arrangement position and machine of the voltage adjustment device. In the voltage calculation for the combination of the mechanism adjustment amounts, for the combination of the mechanical mechanism adjustment amounts of the voltage regulators having the same arrangement position, the power flow calculation is performed for the combination of the reference mechanical mechanism adjustment amounts held in advance, and the reference mechanical mechanism is performed. Regarding the combination of the mechanical mechanism adjustment amount different from the adjustment amount, if the change amount of the mechanical mechanism adjustment amount from the standard mechanical mechanism adjustment amount is equal to or more than the threshold value, the combination of the mechanical mechanism adjustment amount is used as the new standard mechanical mechanism adjustment amount. The voltage to obtain the voltage on the distribution system by holding and performing the power flow calculation, and performing the voltage approximation calculation using the voltage sensitivity when the amount of change in the mechanical mechanism adjustment amount from the standard mechanical mechanism adjustment amount is smaller than the threshold value. Based on the voltage margin and the number of voltage regulators, which are the minimum values of the difference between the upper and lower limit voltages allowed for the distribution system and the voltage calculation results for the voltage on the distribution system obtained by the calculation unit and the voltage calculation unit. It is a support device for the voltage adjustment device arrangement plan of the distribution system, which is characterized by having an appropriate arrangement determination unit for determining the position where the voltage adjustment device is arranged.

また本発明は、「電圧調整用の機械機構を有する電圧調整装置と自然変動電源とを備える配電系統の電圧調整装置配置計画の支援方法において、電圧調整装置を配置する配電系統上の位置を選択し、配置した一つ以上の電圧調整装置について電圧調整装置の機械機構調整量の組合せを生成し、電圧調整装置の配置位置と機械機構調整量の組合せに対する電圧計算において、配置位置が同一の電圧調整装置の機械機構調整量の組合せについて、はじめに予め保持する基準の機械機構調整量の組合せにおいて潮流計算を実施し、基準の機械機構調整量と異なる機械機構調整量の組合わせについて,基準の機械機構調整量からの機械機構調整量変化量が閾値以上となる場合には機械機構調整量の組合せを新たに基準の機械機構調整量として保持して潮流計算を実施し、基準の機械機構調整量からの機械機構調整量変化量が閾値より小さい場合には電圧感度を用いる電圧近似計算を実施することによって配電系統上の電圧を求め、前記電圧計算で求めた配電系統上の電圧について、配電系統に許容される上下限電圧と電圧計算結果の間の差分の最小値である電圧余裕および電圧調整装置の台数に基づいて電圧調整装置を配置する位置を決定することを特徴とする配電系統の電圧調整装置配置計画の支援方法」としたものである。 Further, the present invention selects a position on the distribution system in which the voltage adjustment device is arranged in the support method of the voltage adjustment device arrangement plan of the distribution system including the voltage adjustment device having a mechanical mechanism for voltage adjustment and the naturally fluctuating power supply. Then, for one or more placed voltage regulators, a combination of mechanical mechanism adjustment amounts of the voltage regulators is generated, and in the voltage calculation for the combination of the placement positions of the voltage regulators and the mechanical mechanism adjustment amounts, the voltage with the same placement position is the same. Regarding the combination of the mechanical mechanism adjustment amount of the adjusting device, the power flow calculation is performed for the combination of the standard mechanical mechanism adjustment amount held in advance, and the standard machine for the combination of the mechanical mechanism adjustment amount different from the standard mechanical mechanism adjustment amount. When the amount of change in the amount of mechanical mechanism adjustment from the amount of mechanical adjustment exceeds the threshold value, the combination of the mechanical mechanism adjustment amount is newly held as the standard mechanical mechanism adjustment amount and the power flow calculation is performed, and the standard mechanical mechanism adjustment amount is performed. When the amount of change in the amount of adjustment of the mechanical mechanism from is smaller than the threshold value, the voltage on the distribution system is obtained by performing a voltage approximation calculation using the voltage sensitivity, and the voltage on the distribution system obtained by the voltage calculation is the distribution system. The voltage of the distribution system, characterized in that the position where the voltage regulator is placed is determined based on the voltage margin, which is the minimum value of the difference between the upper and lower limit voltages allowed in the voltage and the number of voltage regulators, and the number of voltage regulators. It is a support method for the adjustment device layout plan. "

本発明によれば、潮流計算と電圧感度を用いる電圧近似計算を組み合わせて電圧計算することによって、電圧調整装置の配置計画において電圧計算の精度の劣化を最小限にしつつ電圧計算を高速化し、計算時間を短縮することができる。 According to the present invention, the voltage calculation is performed by combining the power flow calculation and the voltage approximation calculation using the voltage sensitivity, so that the voltage calculation can be speeded up and calculated while minimizing the deterioration of the accuracy of the voltage calculation in the arrangement plan of the voltage regulator. You can save time.

配電系統の電圧調整装置配置計画の支援装置の機能構成例を示す図。The figure which shows the functional composition example of the support device of the voltage adjustment device arrangement plan of a distribution system. 配電系統の電圧調整装置配置計画の支援装置を計算機で構成するときのハード構成例と、配電系統の全体構成例を示す図。The figure which shows the hardware configuration example when the support device of the voltage adjustment device arrangement plan of a distribution system is configured by a computer, and the whole configuration example of a distribution system. 支援装置における処理例の全体を示すフローチャート。The flowchart which shows the whole processing example in the support device. 潮流計算と電圧感度を用いる電圧近似計算のいずれか一方により配電系統上の電圧を求める方法を示すフローチャート。A flowchart showing a method of obtaining a voltage on a distribution system by either a power flow calculation or a voltage approximation calculation using voltage sensitivity. 図4における処理の具体的な概念を示す図。The figure which shows the concrete concept of the process in FIG. 図4における処理の具体的な概念を示す図。The figure which shows the concrete concept of the process in FIG. 電圧調整装置の適正配置位置の算出の流れを説明する図。The figure explaining the flow of calculation of the proper arrangement position of a voltage regulator. 配電線の位置p2について求めた電圧Vp2の、負荷による変動を示した図。The figure which showed the fluctuation by the load of the voltage Vp2 obtained about the position p2 of a distribution line.

以下、図面に基づいて、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下においては、まず図1を用いて配電系統の電圧調整装置配置計画の支援装置の機能構成を説明する。次に、図2を用いて本発明に係る配電系統の電圧調整装置配置計画の支援装置と、配電系統2との全体構成について説明する。次に、図3を用いて配電系統の電圧調整装置配置計画の支援装置の処理を説明する。 In the following, first, the functional configuration of the support device of the voltage adjustment device arrangement plan of the distribution system will be described with reference to FIG. Next, the overall configuration of the support device for the voltage adjustment device arrangement plan of the distribution system according to the present invention and the distribution system 2 will be described with reference to FIG. Next, the processing of the support device of the voltage adjustment device arrangement plan of the distribution system will be described with reference to FIG.

図1は、配電系統の電圧調整装置配置計画の支援装置の機能構成例を示した図である。図1において、計算機で構成された支援装置1は、表示部12、入力部13、記憶部17、演算部(CPU)15、通信部14により構成されている。支援装置1は、その入力部13から入力データとして、系統構成データD1と、機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、電圧上下限データD4を入力として得、これらを適宜記憶部17に格納する。 FIG. 1 is a diagram showing a functional configuration example of a support device for a voltage regulator arrangement plan for a distribution system. In FIG. 1, the support device 1 composed of a computer is composed of a display unit 12, an input unit 13, a storage unit 17, a calculation unit (CPU) 15, and a communication unit 14. The support device 1 obtains system configuration data D1, mechanical mechanism adjustment amount change amount threshold data D2, natural power output fluctuation amount data D3, and voltage upper / lower limit data D4 as input data from the input unit 13. , These are appropriately stored in the storage unit 17.

図1の記憶部17には上記入力データなどを含む各種のデータやプログラムが格納されているが、図1では電圧感度データD7を記憶することを例示している。 Various data and programs including the input data and the like are stored in the storage unit 17 of FIG. 1, but FIG. 1 illustrates that the voltage sensitivity data D7 is stored.

図1の演算部15は、配置位置選択部101と組合せ生成部102と電圧計算部103と適正配置決定部104の機能を備えており、適正配置決定部104の処理により適正配置位置データD9を生成する。生成された情報(適正配置位置データD9)は適宜通信部14を介して表示部12に与えられる。 The calculation unit 15 of FIG. 1 has the functions of the arrangement position selection unit 101, the combination generation unit 102, the voltage calculation unit 103, and the appropriate arrangement determination unit 104, and the appropriate arrangement position data D9 is obtained by the processing of the appropriate arrangement determination unit 104. Generate. The generated information (appropriate arrangement position data D9) is appropriately given to the display unit 12 via the communication unit 14.

演算部15内の各機能における処理をより具体的に述べると、配置位置選択部101では、系統構成データD1を用いて、配置位置データD5を出力する。組合せ生成部102では、配置位置データD5を用いて、配置位置および機械機構調整量組合せデータD6を出力する。電圧計算部103では、系統構成データD1と、機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、配置位置データD5と、配置位置および機械機構調整量組合せデータD6と、電圧感度データD7とを用いて、電圧計算結果データD8を出力する。適正配置決定部104では、電圧上下限データD4と、電圧計算結果データD8を用いて、適正配置位置データD9を出力する。通信部14では、適正配置位置データD9を表示部12に表示する。 More specifically, the processing in each function in the calculation unit 15 will be described. The arrangement position selection unit 101 outputs the arrangement position data D5 using the system configuration data D1. The combination generation unit 102 outputs the arrangement position and the mechanical mechanism adjustment amount combination data D6 by using the arrangement position data D5. In the voltage calculation unit 103, the system configuration data D1, the threshold data D2 of the mechanical mechanism adjustment amount change amount, the natural power supply output fluctuation amount data D3, the arrangement position data D5, and the arrangement position and the mechanical mechanism adjustment amount combination data D6 , The voltage calculation result data D8 is output using the voltage sensitivity data D7. The proper placement determination unit 104 outputs the proper placement position data D9 using the voltage upper / lower limit data D4 and the voltage calculation result data D8. The communication unit 14 displays the appropriate placement position data D9 on the display unit 12.

図2は、配電系統の電圧調整装置配置計画の支援装置1を計算機で構成するときのハード構成例と配電系統の全体構成例を示す図である。以下では、配電系統を先に説明し、その後に支援装置1のハード構成例を説明する。 FIG. 2 is a diagram showing a hardware configuration example and an overall configuration example of the distribution system when the support device 1 of the voltage adjustment device arrangement plan of the distribution system is configured by a computer. Hereinafter, the distribution system will be described first, and then a hardware configuration example of the support device 1 will be described.

まず配電系統2は、配電用変電所22、母線26、配電線23(23a、23b、23c)、負荷25、自然変動電源を含む分散電源24、電圧調整装置21(21a、21b、21c)などで構成されている。配電用変電所22に接続された配電線23には、電圧調整装置21(21a、21b、21c)が複数台直並列に設置されている。また配電系統の電圧調整装置配置計画の支援装置1は、通信ネットワーク3を介して、電圧調整装置21(21a、21b、21c)や配電系統上のセンサ(図示せず)からデータを取得してもよい。負荷25としては、複数の代表ケースを抽出して設定する。例えば、最小値および最大値を代表ケースとして用いることができる。各負荷の最大値および最小値は、配電線単位で推定した年間の総負荷データから最小値および最大値を抽出し、それらの総負荷を各負荷の契約容量の比で配分することで算出できる。 First, the distribution system 2 includes a distribution substation 22, a bus 26, a distribution line 23 (23a, 23b, 23c), a load 25, a distributed power source 24 including a naturally fluctuating power source, a voltage adjusting device 21 (21a, 21b, 21c), and the like. It is composed of. A plurality of voltage adjusting devices 21 (21a, 21b, 21c) are installed in series and parallel on the distribution line 23 connected to the distribution substation 22. Further, the support device 1 of the voltage adjustment device arrangement plan of the distribution system acquires data from the voltage adjustment device 21 (21a, 21b, 21c) and the sensor (not shown) on the distribution system via the communication network 3. May be good. As the load 25, a plurality of representative cases are extracted and set. For example, the minimum value and the maximum value can be used as representative cases. The maximum and minimum values of each load can be calculated by extracting the minimum and maximum values from the annual total load data estimated for each distribution line and allocating those total loads by the ratio of the contracted capacity of each load. ..

ここで配電系統の電圧調整装置配置計画の支援装置とは、配電系統2上に設置された電圧調整装置21(21a、21b、21c)などの設備の適正な配置を算出する装置であり、さらに具体的には配電系統上の電圧調整装置21(21a、21b、21c)の配置を提示するために、電圧調整装置の配置を表示装置12のディスプレイ画面などに表示する。なお、整定パラメータの設定および整定パラメータの再算出などを配電系統運用者に委ねてもよい。この場合における整定パラメータの設定は、配電系統運用者が各電圧調整装置21(21a、21b、21c)の設置地点に移動して手動で設定してもよいし、通信ネットワーク3を通じて遠隔で設定してもよい。 Here, the support device for the voltage adjustment device arrangement plan of the distribution system is a device that calculates the proper arrangement of equipment such as the voltage adjustment devices 21 (21a, 21b, 21c) installed on the distribution system 2. Specifically, in order to present the arrangement of the voltage adjusting devices 21 (21a, 21b, 21c) on the distribution system, the arrangement of the voltage adjusting devices is displayed on the display screen of the display device 12. The distribution system operator may be entrusted with the setting of the settling parameters and the recalculation of the settling parameters. In this case, the distribution system operator may move to the installation point of each voltage regulator 21 (21a, 21b, 21c) and set it manually, or set it remotely through the communication network 3. You may.

電圧調整装置21について、図2では自動電圧調整器SVR(SVR:Step Voltage Regulator)21a、21c、および複数の並列コンデンサの接続数をタップ切換え器で調整するタップ切換並列コンデンサ21bを採用した例を示している。これらは負荷時タップ切換変圧器LRT(LRT:Load Ratio Control Transformer)としてもよい。また、複数の並列リアクトルの接続数をタップ切換え器で調整するタップ切換分路リアクトルとしてもよい。本発明では、これらを総称して電圧調整装置21としている。以下の説明では、配電系統電源側の電圧調整装置21が自動電圧調整器SVR21a、21cであり、配電系統の負荷側の電圧調整装置21がタップ切換並列コンデンサ21bである場合を例として説明する。 Regarding the voltage regulator 21, in FIG. 2, an example in which an automatic voltage regulator SVR (SVR: Step Voltage Regulator) 21a, 21c, and a tap switching parallel capacitor 21b for adjusting the number of connections of a plurality of parallel capacitors with a tap switcher is adopted. Shows. These may be a load tap changer transformer LRT (LRT: Road Radio Control Transformer). Further, it may be a tap changer shunt reactor that adjusts the number of connections of a plurality of parallel reactors with a tap changer. In the present invention, these are collectively referred to as a voltage regulator 21. In the following description, the case where the voltage regulator 21 on the power supply side of the distribution system is the automatic voltage regulators SVR 21a and 21c and the voltage regulator 21 on the load side of the distribution system is the tap switching parallel capacitor 21b will be described as an example.

図2の自動電圧調整器SVR21a、21cは、単巻変圧器とタップチェンジャで構成される変圧器と、変圧器のタップを制御する制御部と、センサと、配電系統の電圧調整装置配置計画の支援装置1から通信ネットワーク3を介して制御部の整定パラメータを送受信する通信部で構成されている。なお、通信部を有しない自動電圧調整器SVRでは、配電系統運用者が制御部の整定パラメータを直接入力するための入力装置で構成される。 The automatic voltage regulators SVR21a and 21c of FIG. 2 are a transformer composed of an autotransformer and a tap changer, a control unit for controlling the tap of the transformer, a sensor, and a voltage regulator arrangement plan for the distribution system. It is composed of a communication unit that transmits and receives setting parameters of the control unit from the support device 1 via the communication network 3. The automatic voltage regulator SVR, which does not have a communication unit, is composed of an input device for the distribution system operator to directly input the setting parameters of the control unit.

自動電圧調整器SVR21a、21cは電圧制御方法として、変圧器二次側のセンサで計測した電流および電圧の計測値を用いて、線路電圧降下補償回路(LDC)により配電線23の所定位置における電圧降下を推定し、推定した電圧が設定した基準電圧の不感帯領域から逸脱した動作時間、および逸脱電圧量などに応じて、変圧器のタップ位置の変更を指令する。自動電圧調整器SVR21a、21c内の制御部は、線路電圧降下補償回路における仮想の配電線インピーダンスの値、動作時間、不感帯、基準電圧などの整定パラメータを予め適切な値に設定されており、これらの整定パラメータに従い、配電系統2の電圧を適正範囲内に収める。 As a voltage control method, the automatic voltage regulators SVR21a and 21c use the measured values of the current and voltage measured by the sensor on the secondary side of the transformer, and the voltage at the predetermined position of the distribution line 23 by the line voltage drop compensation circuit (LDC). Estimates the drop, and commands the change of the tap position of the transformer according to the operating time deviating from the dead zone region of the set reference voltage and the amount of deviating voltage. The control unit in the automatic voltage regulators SVR21a and 21c has the settling parameters such as the virtual distribution line impedance value, operating time, dead zone, and reference voltage in the line voltage drop compensation circuit set to appropriate values in advance. The voltage of the distribution system 2 is kept within an appropriate range according to the setting parameter of.

図2のタップ切替並列コンデンサ21bは、接続数が変更できる複数の並列コンデンサと、電圧センサと、制御部で構成されており、動作時間、不感帯、基準電圧などの整定パラメータに従って配電系統の電圧を制御する。電圧センサによって計測した配電系統への接続点の電圧が設定した基準電圧からの不感帯領域を逸脱した時間が、所定の動作時間を超過した場合に、接続する並列コンデンサの数を増減する。 The tap changer parallel capacitor 21b in FIG. 2 is composed of a plurality of parallel capacitors whose number of connections can be changed, a voltage sensor, and a control unit, and determines the voltage of the distribution system according to setting parameters such as operating time, dead zone, and reference voltage. Control. When the time when the voltage at the connection point to the distribution system measured by the voltage sensor deviates from the set reference voltage in the dead zone region exceeds a predetermined operating time, the number of parallel capacitors to be connected is increased or decreased.

図2の配電系統の電圧調整装置配置計画の支援装置1のハード構成について説明する。配電系統の電圧調整装置配置計画の支援装置1は、表示部12、キーボードやマウス等の入力部13、通信部14、コンピュータや計算機サーバ(CPU:Central Processing Unit)などの演算部15、演算過程のデータなどを一時記憶するRAMなどのメモリ16、記憶部17がバス11により接続されている。 The hardware configuration of the support device 1 of the voltage adjustment device arrangement plan of the distribution system of FIG. 2 will be described. The support device 1 for the voltage adjustment device arrangement plan of the distribution system includes a display unit 12, an input unit 13 such as a keyboard and a mouse, a communication unit 14, a calculation unit 15 such as a computer and a computer server (CPU: Central Processing Unit), and a calculation process. A memory 16 such as a RAM for temporarily storing data and the like, and a storage unit 17 are connected by a bus 11.

このうち入力部13は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置、視線移動と瞬きの検知による非接触型入力装置等の少なくともいずれか一つを備えて構成できる。 Of these, the input unit 13 can be configured to include at least one of, for example, a keyboard switch, a pointing device such as a mouse, a touch panel, a voice instruction device, and a non-contact input device by detecting line-of-sight movement and blinking.

通信部14は、通信ネットワーク3に接続するための回路および通信プロトコルを備える。演算部15は、記憶部17から所定のコンピュータプログラムデータD7を読み込んで実行する。演算部15は、一つまたは複数の半導体チップとして構成してもよいし、または、計算機サーバのようなコンピュータ装置として構成してもよい。メモリ16は、例えば、RAM(Random Access Memory)として構成され、記憶部17から読みだされたプログラムデータD7を記憶したり、各処理に必要な計算結果データを記憶したりする。 The communication unit 14 includes a circuit and a communication protocol for connecting to the communication network 3. The arithmetic unit 15 reads the predetermined computer program data D7 from the storage unit 17 and executes it. The arithmetic unit 15 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a computer server. The memory 16 is configured as, for example, a RAM (Random Access Memory), stores the program data D7 read from the storage unit 17, and stores the calculation result data required for each process.

また入力部13を介して配電系統から得るデータは、具体的には以下のようである。 The data obtained from the distribution system via the input unit 13 is specifically as follows.

系統構成データD1には、電圧調整装置21の情報(例えば、制御方式、タップの数、インピーダンス等)と、配電線23のネットワーク構成と、配電線23および変圧器のインピーダンス等が含まれる。 The system configuration data D1 includes information on the voltage regulator 21 (for example, control method, number of taps, impedance, etc.), a network configuration of the distribution line 23, impedances of the distribution line 23 and the transformer, and the like.

機械機構調整量変化量の閾値データD2は、電圧計算における組合せについて、近似計算を継続するか、潮流計算を実施するか切り替える閾値である。 The threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism is a threshold for switching whether to continue the approximate calculation or to perform the power flow calculation for the combination in the voltage calculation.

自然電源出力変動量データD3には、推定される分散電源24の出力変動量等が含まれる。自然電源出力変動量データD3は、分散電源24の発電設備の定格容量と、分散電源24が直流電源である場合は配電系統への連系用インバータの皮相電力容量および種類(電圧上昇時の抑制方法等、電圧上昇時に自律的抑制を始める電圧の閾値)と、抑制に関する契約(抑制日数上限、抑制の優先順位等)等から推定してもよい。 The natural power source output fluctuation amount data D3 includes an estimated output fluctuation amount of the distributed power source 24 and the like. The natural power output fluctuation amount data D3 shows the rated capacity of the power generation equipment of the distributed power supply 24, and the apparent power capacity and type (suppression when the voltage rises) of the inverter for interconnection to the distribution system when the distributed power supply 24 is a DC power supply. It may be estimated from the method, etc., the voltage threshold at which autonomous suppression is started when the voltage rises, and the contract regarding suppression (upper limit of suppression days, priority of suppression, etc.).

電圧上下限データD4は、需要家に適正電圧で電力を供給するため、配電系統において満たす必要のある電圧の上限値と下限値である。 The voltage upper / lower limit data D4 is an upper limit value and a lower limit value of the voltage that must be satisfied in the distribution system in order to supply electric power to the consumer at an appropriate voltage.

電圧感度データD4は、予め定められて、記憶部17に格納されている。 The voltage sensitivity data D4 is predetermined and stored in the storage unit 17.

次に、配電系統の電圧調整装置配置計画の支援装置1の計算処理内容について図3を用いて説明する。図3は、配電系統の電圧調整装置配置計画の支援装置1の処理の全体を示すフローチャートの例である。 Next, the calculation processing contents of the support device 1 of the voltage adjustment device arrangement plan of the distribution system will be described with reference to FIG. FIG. 3 is an example of a flowchart showing the entire process of the support device 1 of the voltage regulator arrangement plan of the distribution system.

図3についてまず、簡単に流れを説明する。図3の支援装置1の最初の処理ステップS1では、入力部13を介して、系統構成データD1と機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、電圧上下限データD4を入力する。処理ステップS2は、図1の配置位置選択部101に対応しており、ここでは、系統構成データD1を用いて、電圧調整装置21の配置位置データD5を算出する。処理ステップS3は、図1の組合せ生成部102に対応しており、ここでは、配置位置データD5を用いて、配置位置および機械機構調整量組合せデータD6を算出する。処理ステップS4は、図1の電圧計算部103に対応しており、ここでは、系統構成データD1と、機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、配置位置データD5と、配置位置および機械機構調整量組合せデータD6と、電圧感度データD7とを用いて、電圧計算結果データD8を算出する。処理ステップS5は、図1の適正配置決定部104に対応しており、ここでは、電圧上下限データD4と、電圧計算結果データD8を用いて、適正配置位置データD9を算出する。最後に、処理ステップS5において算出した適正配置位置データD9を用いて、配電系統における電圧調整装置の適正配置を通信部14で表示部12に表示する。 First, the flow of FIG. 3 will be briefly described. In the first processing step S1 of the support device 1 of FIG. 3, the system configuration data D1, the threshold data D2 of the mechanical mechanism adjustment amount change amount, the natural power supply output fluctuation amount data D3, and the upper and lower voltage limits are passed through the input unit 13. Enter the data D4. The processing step S2 corresponds to the arrangement position selection unit 101 of FIG. 1, and here, the arrangement position data D5 of the voltage adjusting device 21 is calculated using the system configuration data D1. The processing step S3 corresponds to the combination generation unit 102 of FIG. 1, and here, the arrangement position and the mechanical mechanism adjustment amount combination data D6 are calculated using the arrangement position data D5. The processing step S4 corresponds to the voltage calculation unit 103 of FIG. 1, and here, the system configuration data D1, the threshold data D2 of the mechanical mechanism adjustment amount change amount, the natural power supply output fluctuation amount data D3, and the arrangement position. The voltage calculation result data D8 is calculated using the data D5, the arrangement position and mechanical mechanism adjustment amount combination data D6, and the voltage sensitivity data D7. The processing step S5 corresponds to the proper placement determination unit 104 in FIG. 1, and here, the proper placement position data D9 is calculated using the voltage upper / lower limit data D4 and the voltage calculation result data D8. Finally, using the proper placement position data D9 calculated in the processing step S5, the communication unit 14 displays the proper placement of the voltage adjusting device in the distribution system on the display unit 12.

以上の概略処理の流れを処理ステップごとにさらに詳細に説明する。 The flow of the above schematic processing will be described in more detail for each processing step.

処理ステップS1では、系統構成データD1と機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、電圧上下限データD4を入力部13および表示部12を用いて入力する。このとき通信ネットワーク3および通信部14を通してデータを入力してもよい。 In the processing step S1, the system configuration data D1, the threshold data D2 of the mechanical mechanism adjustment amount change amount, the natural power supply output fluctuation amount data D3, and the voltage upper / lower limit data D4 are input by using the input unit 13 and the display unit 12. At this time, data may be input through the communication network 3 and the communication unit 14.

処理ステップS2は、系統構成データD1を用いて、電圧調整装置21の配置位置データD5を算出する。電圧調整装置21の配置位置は、対象となる配置候補位置の組合せを選択する。配置位置は、配電系統運用者が予め範囲を指定したものから決定してもよいし、既設系統に対する追設、移設、撤去を1台ずつ検討してもよい。なお、以下の説明においては、図2に示した配電系統2において、自動電圧調整器SVRとして21aと、タップ切替並列コンデンサ21bを、図示の位置に新設配置することを想定して説明を行う。 In the processing step S2, the arrangement position data D5 of the voltage adjusting device 21 is calculated using the system configuration data D1. For the placement position of the voltage adjusting device 21, a combination of target placement candidate positions is selected. The placement position may be determined from the one whose range is specified in advance by the distribution system operator, or additional, relocation, or removal to the existing system may be considered one by one. In the following description, it is assumed that the automatic voltage regulator SVR 21a and the tap changer parallel capacitor 21b are newly installed at the positions shown in the figure 2 in the distribution system 2 shown in FIG.

処理ステップS3は、電圧調整装置21の配置位置データD5を用いて、配置位置および機械機構調整量組合せデータD6を算出する。本処理では、配電系統に配置する電圧調整装置の機械機構調整量の組合せを生成する。機械機構調整量の組合せは、取りうる組合せを網羅的に生成してもよいし、ある電圧調整装置の機械機構調整量を固定してもよい。ここで機械機構調整量の組合せとは、例えば自動電圧調整器SVR21aが9段階のタップ位置に調整可能である時には、9通りの組み合わせが想定でき、またタップ切替並列コンデンサ21bが容量の異なる3個のコンデンサを備えているとしたときには投入容量で考えると投入しない場合を含めて7通りの組み合わせが想定できる。さらに自動電圧調整器SVR21aとタップ切替並列コンデンサ21bの双方を新設配置することを想定した場合には、両者で63通りの組み合わせが想定できることになる。 In the processing step S3, the arrangement position and the mechanical mechanism adjustment amount combination data D6 are calculated by using the arrangement position data D5 of the voltage adjusting device 21. In this process, a combination of mechanical mechanism adjustment amounts of the voltage regulators arranged in the distribution system is generated. As the combination of the mechanical mechanism adjustment amount, the possible combinations may be comprehensively generated, or the mechanical mechanism adjustment amount of a certain voltage regulator may be fixed. Here, the combination of the mechanical mechanism adjustment amount is, for example, when the automatic voltage regulator SVR21a can be adjusted to 9 stages of tap positions, 9 combinations can be assumed, and 3 tap switching parallel capacitors 21b having different capacities. Considering the input capacity, 7 combinations can be assumed including the case where the capacitor is not input. Further, when it is assumed that both the automatic voltage regulator SVR 21a and the tap changer parallel capacitor 21b are newly installed, 63 combinations can be assumed for both.

処理ステップS4は、系統構成データD1と、機械機構調整量変化量の閾値データD2と、自然電源出力変動量データD3と、配置位置データD5と、配置位置および機械機構調整量組合せデータD6と、電圧感度データD7とを用いて、電圧計算結果データD8を算出する。 In the processing step S4, the system configuration data D1, the threshold data D2 of the mechanical mechanism adjustment amount change amount, the natural power supply output fluctuation amount data D3, the arrangement position data D5, the arrangement position and the mechanical mechanism adjustment amount combination data D6, and so on. The voltage calculation result data D8 is calculated using the voltage sensitivity data D7.

ここで、図4を用いて、電圧計算部103における電圧計算の流れを説明する。図4は、処理ステップS41~S47を通して、潮流計算と電圧感度を用いる電圧近似計算のいずれかにより配電系統上の電圧を求める方法を示している。 Here, the flow of voltage calculation in the voltage calculation unit 103 will be described with reference to FIG. FIG. 4 shows a method of obtaining a voltage on a distribution system by either a power flow calculation or a voltage approximation calculation using voltage sensitivity through processing steps S41 to S47.

処理ステップS41では、電圧計算未実施の配置位置・機械機構調整量の組合せを選択する。また、基準の機械機構調整量を保持していない場合には、基準の機械機構調整量を選択して保持する。例えば、はじめは素通しタップと呼称される電圧調整をしないタップ位置を基準の機械機構調整量として選択すればよい。処理ステップS42では、配置位置に対して、電圧感度を参照済みでない場合には、処理ステップS43に進む。処理ステップS43では、系統構成データD1と、自然電源出力変動量データD3と、配置位置データD5と、配置位置および機械機構調整量組合せデータD6を用いて、潮流計算で電圧計算し、潮流計算を実施した機械機構調整量組合せを新たな基準の機械機構調整量として保持し、処理ステップS44に進む。処理ステップS44では、潮流計算によって得られた電圧計算結果および電圧調整装置の配置位置と機械機構調整量の組合せに基づいて、対応する電圧感度データD7を参照し、処理ステップS47に進む。なお、電圧感度データD7は、必要な分のデータを適宜データベースから参照してもよいし、計算高速化のために、使用が想定される分のデータをはじめにすべてメモリ16にデータを読み込み、必要な分のデータを適宜メモリ16から参照してもよい。 In the processing step S41, a combination of the arrangement position and the mechanical mechanism adjustment amount for which the voltage calculation has not been performed is selected. If the reference mechanical mechanism adjustment amount is not held, the reference mechanical mechanism adjustment amount is selected and held. For example, at first, a tap position called a through tap, which does not adjust the voltage, may be selected as the reference mechanical mechanism adjustment amount. In the processing step S42, if the voltage sensitivity has not been referenced with respect to the arrangement position, the process proceeds to the processing step S43. In the processing step S43, the voltage is calculated by the power flow calculation using the system configuration data D1, the natural power output fluctuation amount data D3, the arrangement position data D5, and the arrangement position and the mechanical mechanism adjustment amount combination data D6, and the power flow calculation is performed. The implemented mechanical mechanism adjustment amount combination is held as a new standard mechanical mechanism adjustment amount, and the process proceeds to process step S44. In the processing step S44, the process proceeds to the processing step S47 with reference to the corresponding voltage sensitivity data D7 based on the voltage calculation result obtained by the power flow calculation and the combination of the arrangement position of the voltage adjusting device and the mechanical mechanism adjustment amount. The voltage sensitivity data D7 may refer to the required amount of data from the database as appropriate, and in order to speed up the calculation, it is necessary to read all the data for the amount expected to be used into the memory 16 first. You may refer to a certain amount of data from the memory 16 as appropriate.

処理ステップS42に戻り、電圧感度を参照済みの場合には、処理ステップS45に進む。処理ステップS45では、選択した機械機構調整量と基準の機械機構調整量の差の絶対値である機械機構調整量変化の大きさが機械機構調整量変化量の閾値データD2以上となる場合には、ステップS43に進む。処理ステップS45において、機械機構調整量変化の大きさが機械機構調整量変化量の閾値データD2より小さい場合には、処理ステップS46に進む。 The process returns to the process step S42, and if the voltage sensitivity has already been referred to, the process proceeds to the process step S45. In the processing step S45, when the magnitude of the change in the mechanical mechanism adjustment amount, which is the absolute value of the difference between the selected mechanical mechanism adjustment amount and the reference mechanical mechanism adjustment amount, is equal to or greater than the threshold data D2 of the mechanical mechanism adjustment amount change amount. , Step S43. If the magnitude of the change in the mechanical mechanism adjustment amount is smaller than the threshold data D2 of the mechanical mechanism adjustment amount change in the processing step S45, the process proceeds to the processing step S46.

処理ステップS46では、系統構成データD1と、自然電源出力変動量データD3と、配置位置データD5と、配置位置および機械機構調整量組合せデータD6と、電圧感度データD7を用いて、電圧近似計算で電圧計算する。電圧近似計算は、潮流計算で求めた電圧に、電圧感度と電圧調整装置の機械機構調整量変化量の積で求めた電圧変動量を加えることで電圧を算出する。例えば、配電系統のノード#iにおける電圧Viについて電圧計算する場合に、配電系統上に配置したある電圧調整装置#jの機械機構調整量njと、電圧感度ΔVi/Δnjと潮流計算で算出したノード#iの電圧Vbiと、潮流計算を実施した機械機構調整量nbjと電圧計算する機械機構調整量njの間では、(1)式が成立するように定められる。
[数1]
Vi=Vbi+ΣΔVi/Δnj・(nj-nbj) (1)
電圧近似計算が終了したら、処理ステップS47に進む。
In the processing step S46, the system configuration data D1, the natural power output fluctuation amount data D3, the arrangement position data D5, the arrangement position and the mechanical mechanism adjustment amount combination data D6, and the voltage sensitivity data D7 are used for voltage approximation calculation. Calculate the voltage. In the voltage approximation calculation, the voltage is calculated by adding the voltage fluctuation amount obtained by the product of the voltage sensitivity and the mechanical mechanism adjustment amount change amount of the voltage regulator to the voltage obtained by the power flow calculation. For example, when the voltage is calculated for the voltage Vi in the node # i of the distribution system, the mechanical mechanism adjustment amount nj of a certain voltage regulator #j arranged on the distribution system, the voltage sensitivity ΔVi / Δnj, and the node calculated by the power flow calculation. It is determined that the equation (1) holds between the voltage Vbi of #i, the mechanical mechanism adjustment amount nbj for which the power flow calculation is performed, and the mechanical mechanism adjustment amount nj for which the voltage is calculated.
[Number 1]
Vi = Vbi + ΣΔVi / Δnj ・ (nj-nbj) (1)
When the voltage approximation calculation is completed, the process proceeds to process step S47.

処理ステップS47では、すべての配置位置・機械機構調整量の組合せについて電圧計算を実施していない場合には、処理ステップS41に戻る。処理ステップS47において、すべての配置位置・機械機構調整量の組合せについて電圧計算を実施した場合には、処理フローを終了する。 In the processing step S47, if the voltage calculation is not performed for all the combinations of the arrangement position and the mechanical mechanism adjustment amount, the process returns to the processing step S41. When the voltage calculation is performed for all the combinations of the arrangement position and the mechanical mechanism adjustment amount in the processing step S47, the processing flow is terminated.

ここで図4における処理の具体的な概念を、図5a、図5bを用いて説明する。まず図5aは、横軸に新たに追加設置する予定の自動電圧調整器SVR21aの負荷側各位置p(p1、p2、p3など)を示し、縦軸側に機械機構調整量の組合せ(タップ位置tp1、p2、tp3)ごとの電圧を示している。自動電圧調整器SVR21aのタップ位置により、電圧は平行移動のように変化する関係にある。 Here, a specific concept of the processing in FIG. 4 will be described with reference to FIGS. 5a and 5b. First, FIG. 5a shows each position p (p1, p2, p3, etc.) on the load side of the automatic voltage regulator SVR21a to be newly installed on the horizontal axis, and the combination of mechanical mechanism adjustment amounts (tap position) on the vertical axis side. The voltage for each tp1, p2, tp3) is shown. Depending on the tap position of the automatic voltage regulator SVR21a, the voltage changes like translation.

図4の処理では、タップ位置tpと負荷側各位置pと電圧の大きさの関係を求めようとしており、このときに潮流計算部で電圧計算することは高精度である半面時間を要することから、代表的な条件の事例では潮流計算部で電圧計算を行い、代表的な条件の事例に類似する条件あるいは近似の条件のケースでは、負荷側位置pでの電圧感度を用いて電圧近似計算部による電圧計算を行うとしたものである。さらにこの場合に、類似あるいは近似の条件の範囲を適宜評価し、潮流計算による電圧計算と電圧感度による電圧計算を適宜切り替え使用したものである。この時の切り替えを、機械機構調整量変化量の閾値データD2を基準として行っている。 In the process of FIG. 4, the relationship between the tap position tp, each position p on the load side, and the magnitude of the voltage is to be obtained. At this time, the voltage calculation by the power flow calculation unit requires high-precision half-side time. , In the case of typical conditions, the voltage is calculated by the power flow calculation unit, and in the case of conditions similar to or similar to the case of typical conditions, the voltage approximation calculation unit uses the voltage sensitivity at the load side position p. It is supposed that the voltage is calculated by. Further, in this case, the range of similar or approximate conditions is appropriately evaluated, and the voltage calculation by the power flow calculation and the voltage calculation by the voltage sensitivity are appropriately switched and used. The switching at this time is performed with reference to the threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism.

図5bも同様趣旨のものであるが、自動電圧調整器SVR21aの他に、タップ切替並列コンデンサ21bの影響も併せて考慮したものであり、前記例では合計63種類の組み合わせを想定している。タップ切替並列コンデンサ21bの投入により、タップ切替並列コンデンサ21bから配電用変電所側の電圧の低下または上昇の程度が変化する関係にあるので、双方の影響を合わせて負荷側各位置pの電圧を推定する必要がある。 Although FIG. 5b has the same purpose, the influence of the tap switching parallel capacitor 21b is also taken into consideration in addition to the automatic voltage regulator SVR21a, and a total of 63 types of combinations are assumed in the above example. Since the degree of voltage drop or rise on the distribution substation side changes from the tap changer parallel capacitor 21b by turning on the tap changer parallel capacitor 21b, the voltage at each position p on the load side is adjusted by combining the effects of both. Need to estimate.

図3に戻り、処理ステップS5は、図1の適正配置決定部104に対応しており、ここでは、電圧上下限データD4と、電圧計算結果データD8を用いて、適正配置位置データD9を算出する。 Returning to FIG. 3, the processing step S5 corresponds to the proper placement determination unit 104 of FIG. 1, and here, the proper placement position data D9 is calculated using the voltage upper / lower limit data D4 and the voltage calculation result data D8. do.

ここで、図6を用いて、電圧調整装置の適正配置位置の算出の流れを説明する。図6は、処理ステップS51~S54通して、電圧計算結果を用いて電圧調整装置の配置する方法を示している。 Here, the flow of calculation of the proper arrangement position of the voltage regulator will be described with reference to FIG. FIG. 6 shows a method of arranging the voltage adjusting device using the voltage calculation result through the processing steps S51 to S54.

処理ステップS51では、すべての配置位置と機械機構調整量の組合せについて電圧余裕算出を終了していない場合には、ステップS52に進む。ステップS52では、電圧余裕未計算の配置位置と機械機構調整量の組合せにおける電圧余裕を算出し、ステップS51に戻る。ステップS51において、配置位置と機械機構調整量の組合せすべてについて電圧余裕算出を終了した場合には、ステップS53に進む。ステップS53では、電圧余裕が正となりうる配置のうち電圧調整装置の台数が最小の配置を抽出し、ステップS54に進む。ステップS54では、ステップS53で抽出した配置のうち電圧余裕が最大となる適正配置位置データD9を出力する。 In the processing step S51, if the voltage margin calculation has not been completed for all the combinations of the arrangement positions and the mechanical mechanism adjustment amounts, the process proceeds to step S52. In step S52, the voltage margin in the combination of the arrangement position for which the voltage margin has not been calculated and the mechanical mechanism adjustment amount is calculated, and the process returns to step S51. When the voltage margin calculation is completed for all the combinations of the arrangement position and the mechanical mechanism adjustment amount in step S51, the process proceeds to step S53. In step S53, the arrangement in which the number of voltage adjusting devices is the smallest among the arrangements in which the voltage margin can be positive is extracted, and the process proceeds to step S54. In step S54, the appropriate arrangement position data D9 having the maximum voltage margin among the arrangements extracted in step S53 is output.

図3に戻り、処理ステップS6では、適正配置位置データD9を通信部14で表示部12に表示する。 Returning to FIG. 3, in the processing step S6, the proper placement position data D9 is displayed on the display unit 12 by the communication unit 14.

ここで、適正閾値推定部を備えて、適正閾値データを算出し、算出した適正閾値データを表示部に提示してもよい。 Here, an appropriate threshold value estimation unit may be provided to calculate appropriate threshold value data, and the calculated appropriate threshold value data may be presented to the display unit.

ここで図6における処理の具体的な概念を、図7を用いて説明する。図7は例えば配置位置と機械機構調整量の組合せの違いによる変動を示した図であり、例えば配電線に許容される上下限電圧(例えば100V系統では101±6ボルト)に対して、Vp2a、Vp2b、Vp2cのような傾向を示すとした場合には、上下限電圧に対する余裕度が高い、言い換えると中心電圧に近い電圧のVp2bを示すものを選択するのがよいことになる。この場合に、例えば、すべての配電系統のノードにおいて電圧計算結果と上下限電圧の差分を算出し、それらの差分のうちの最小値を電圧余裕として用いることができる。 Here, the specific concept of the process in FIG. 6 will be described with reference to FIG. 7. FIG. 7 is a diagram showing fluctuations due to, for example, a difference in the combination of the arrangement position and the adjustment amount of the mechanical mechanism. When a tendency such as Vp2b and Vp2c is shown, it is better to select one showing Vp2b having a high margin with respect to the upper and lower limit voltages, in other words, a voltage close to the center voltage. In this case, for example, the difference between the voltage calculation result and the upper and lower limit voltages can be calculated at the nodes of all distribution systems, and the minimum value of the difference can be used as the voltage margin.

以上述べたように、本発明においては、一つ以上の配置位置と機械機構調整量の組合せについて潮流計算で電圧計算し、潮流計算した組合せを基準として、機械機構調整量変化の大きさが閾値より小さい組合せでは、潮流計算で求めた電圧に、参照した電圧感度と機械機構調整量変化の大きさを用いて計算した電圧変動量を加えることで電圧近似計算を実施する。また、機械機構調整量変化量が閾値以上の組合せでは、潮流計算を用いて電圧計算することにより高精度と高速化の双方を解決したものである。 As described above, in the present invention, the voltage is calculated by the power flow calculation for the combination of one or more arrangement positions and the mechanical mechanism adjustment amount, and the magnitude of the mechanical mechanism adjustment amount change is the threshold value based on the combination calculated by the power flow. For smaller combinations, the voltage approximation calculation is performed by adding the voltage fluctuation amount calculated using the referenced voltage sensitivity and the magnitude of the mechanical mechanism adjustment amount change to the voltage obtained by the power flow calculation. Further, in the combination in which the change amount of the mechanical mechanism adjustment amount is equal to or more than the threshold value, both high accuracy and high speed are solved by calculating the voltage using the power flow calculation.

本発明によれば、潮流計算と電圧近似計算を機械機構調整量変化量の閾値に基づいて選択して電圧計算することで、近似誤差を最小限に抑えつつ電圧計算を高速化し、配置計画を高速化できる。 According to the present invention, the power flow calculation and the voltage approximation calculation are selected based on the threshold value of the amount of change in the adjustment amount of the mechanical mechanism to calculate the voltage, thereby speeding up the voltage calculation while minimizing the approximation error and performing the arrangement plan. It can be speeded up.

実施例1では、機械機構調整量変化量の閾値データD2が、入力部13から入力データとして与えられていることを前提としている。実施例2では、機械機構調整量変化量の閾値データD2を具体的に設定するための手法について説明する。機械機構調整量変化量の閾値データD2は、配電系統の電圧調整装置配置計画の支援装置に適用する場合に、電力会社の配電系統運用者が使用しやすいように、電圧精度目標を元に事前に取り決めて提示され、または自動で入力される。実施例2において、機械機構調整量変化量の閾値データD2は、具体的には以下のようにして定められる。 In the first embodiment, it is premised that the threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism is given as input data from the input unit 13. In the second embodiment, a method for specifically setting the threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism will be described. When the threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism is applied to the support device of the voltage adjustment device arrangement plan of the distribution system, it is in advance based on the voltage accuracy target so that it can be easily used by the distribution system operator of the electric power company. It is agreed to be presented or automatically entered. In the second embodiment, the threshold data D2 of the amount of change in the amount of adjustment of the mechanical mechanism is specifically determined as follows.

まず閾値推定部を備える。閾値推定部は、図1の演算部(CPU)15内の機能として備えることができ、或は支援装置1とは別個に設置された装置で計算した結果を入力部13から取り込む形式のものであってもよい。 First, a threshold value estimation unit is provided. The threshold value estimation unit can be provided as a function in the calculation unit (CPU) 15 of FIG. 1, or is in a format in which the result calculated by a device installed separately from the support device 1 is taken in from the input unit 13. There may be.

閾値推定部では、配電系統の電圧調整装置配置計画の支援装置に適用する前に、代表ケースにおける系統解析によって求めた誤差と、運用上基準となる電圧精度目標を用いて閾値データD2を算出する。 The threshold value estimation unit calculates the threshold value data D2 using the error obtained by the system analysis in the representative case and the voltage accuracy target as an operational reference before applying it to the support device of the voltage adjustment device arrangement plan of the distribution system. ..

例えば、誤差が最大と推定される配電系統のノードを複数抽出し、閾値を設定する自動電圧調整器の機械機構調整量を変化させたときに、その点について潮流計算と感度計算の誤差が、電圧精度目標以上となる機械機構調整量変化の大きさを閾値として提示する。 For example, when multiple nodes of the distribution system where the error is estimated to be the maximum are extracted and the mechanical mechanism adjustment amount of the automatic voltage regulator that sets the threshold value is changed, the error between the power flow calculation and the sensitivity calculation is found at that point. The magnitude of the change in the amount of adjustment of the mechanical mechanism that exceeds the voltage accuracy target is presented as a threshold.

より詳細には、例えば、閾値を設定する自動電圧調整器において、近似誤差が最大となりうる配電系統のノードを抽出する。そのノードにおいて、近似誤差が変圧器1タップ分の電圧幅などから導いた電圧精度目標ε以上となる範囲における機械機構調整量変化量Δnの最小値を閾値Δnthとして用いる。 More specifically, for example, in an automatic voltage regulator that sets a threshold value, the node of the distribution system that can maximize the approximation error is extracted. At that node, the minimum value of the mechanical mechanism adjustment amount change amount Δn in the range where the approximation error is equal to or more than the voltage accuracy target ε derived from the voltage width of one tap of the transformer is used as the threshold value Δnth.

ここで、閾値を設定する当該の自動電圧調整器について、機械機構調整量変化がΔnのときに、高圧配電系統における自動電圧調整器の電圧管理範囲から選択したノード#iにおいて、潮流計算によって計算した電圧と電圧感度を用いて計算した電圧の差分を取って算出した誤差のデータをΔVer_i(Δn)とする。閾値Δnthは、誤差のデータΔVer_i(Δn)と、閾値を決める電圧精度目標値εの間で(2)式が成立する機械機構調整量変化量Δnのうち、最小値の値として定められる。
[数2]
|ΔVer_i(Δn)|/ε≧1 (2)
なお、閾値を決める電圧精度目標εとしては、例えば下記のような値を用いるのがよい。例えば、配電系統の柱上変圧器1タップ分の電圧幅公称値Vnom(150Vなど)の半値を用いることができる。この場合に、1タップ分が150Vの場合は、電圧精度目標値εは、ε=Vnom/2=75(V)として定めることができる。
Here, the automatic voltage regulator for which the threshold is set is calculated by power flow calculation at the node #i selected from the voltage control range of the automatic voltage regulator in the high-voltage distribution system when the change in the adjustment amount of the mechanical mechanism is Δn. Let ΔVer_i (Δn) be the error data calculated by taking the difference between the voltage and the voltage calculated using the voltage sensitivity. The threshold value Δnth is determined as the minimum value of the mechanical mechanism adjustment amount change amount Δn for which the equation (2) holds between the error data ΔVer_i (Δn) and the voltage accuracy target value ε that determines the threshold value.
[Number 2]
| ΔVer_i (Δn) | / ε ≧ 1 (2)
As the voltage accuracy target ε that determines the threshold value, for example, the following values may be used. For example, a half value of the voltage width nominal value Vnom (150V or the like) for one tap of the pole transformer of the distribution system can be used. In this case, when one tap is 150 V, the voltage accuracy target value ε can be set as ε = Vnom / 2 = 75 (V).

また例えば、自動電圧調整器のタップの1タップ分の電圧公称値Vsvrnom(100Vや150Vなど)半値を用いることができる。この場合に、1タップ分が100Vの場合は、電圧精度目標値εは、ε=Vsvrnom/2=50(V)として定めることができる。 Further, for example, a half value of the voltage nominal value Vsvrnom (100V, 150V, etc.) for one tap of the automatic voltage regulator can be used. In this case, when one tap is 100V, the voltage accuracy target value ε can be set as ε = Vsvrnom / 2 = 50 (V).

また例えば、自動電圧調整器が自動で電圧調整する際の制御パラメータの1つである電圧目標値Vrefに対する不感帯幅(高圧配電系統における電圧換算値)を用いることができる。目標電圧6600Vに対して、1.5%の不感帯を取っている場合には、電圧精度目標値εはε=6600V*0.015=99Vとして定めることができる。 Further, for example, a dead band width (voltage conversion value in a high voltage distribution system) with respect to a voltage target value Vref, which is one of the control parameters when the automatic voltage regulator automatically adjusts the voltage, can be used. When a dead zone of 1.5% is taken with respect to the target voltage of 6600V, the voltage accuracy target value ε can be set as ε = 6600V * 0.015 = 99V.

なお、電圧精度目標εは、上記のVnomや自動電圧調整器のVsvrnomやVrefに対する不感帯幅などに基づく電圧精度目標のうちから複数の電圧精度目標を事前に設定しておき、閾値を決める際に、その中から適切な値を一つ自動的に選択してもよい。適切な値の選び方としては、例えば、事前に設定した電圧精度目標が複数ある場合に、対象とする配電系統の構成に適用可能な電圧精度目標の基準のうち、最小の値を選択することができる。 The voltage accuracy target ε is set when a plurality of voltage accuracy targets are set in advance from among the voltage accuracy targets based on the above-mentioned Vnom, Vsvrnom of the automatic voltage regulator, and the dead band width for Vref, and the threshold value is determined. , You may automatically select one appropriate value from them. As an appropriate value selection method, for example, when there are multiple preset voltage accuracy targets, the minimum value among the voltage accuracy target criteria applicable to the configuration of the target distribution system can be selected. can.

実施例2によれば、閾値を算出することにより、機械機構調整量変化量の閾値データD2の選択に要する時間が減り、より高速に計算できる。 According to the second embodiment, by calculating the threshold value, the time required for selecting the threshold value data D2 of the change amount of the mechanical mechanism adjustment amount is reduced, and the calculation can be performed at higher speed.

さらに、実施例を実行するに当たり、以下のことを考慮するのがよい。例えば自動電圧調整器の負荷側が複数に分岐されており、これらの分岐配電系統が自動電圧調整器の電圧管理範囲である場合に、一番電圧差が出る分岐配電系統上のポイントを事前に決めておき、その差をチェックすると計算量が低減できる。なお、系統構成により潮流計算と電圧近似計算の差分量は異なることを考慮するのがよい。 In addition, the following should be considered in carrying out the examples. For example, when the load side of the automatic voltage regulator is branched into multiple branches and these branched distribution systems are within the voltage management range of the automatic voltage regulator, the point on the branch distribution system where the largest voltage difference occurs is determined in advance. If you check the difference, you can reduce the amount of calculation. It should be taken into consideration that the difference between the power flow calculation and the voltage approximation calculation differs depending on the system configuration.

1:支援装置
2:配電系統
3:通信ネットワーク
11:バス
12:表示部
13:入力部
14:通信部
15:CPU
16:メモリ
17:記憶部
21:電圧調整装置
21a、21c:自動電圧調整器SVR
21b:タップ切替並列コンデンサ
22:配電用変電所
23:配電線
24:分散電源
25:負荷
26:母線
101:配置位置選択部
102:組合せ生成部
103:電圧計算部
104:適正配置決定部
1: Support device 2: Distribution system 3: Communication network 11: Bus 12: Display unit 13: Input unit 14: Communication unit 15: CPU
16: Memory 17: Storage unit 21: Voltage regulator 21a, 21c: Automatic voltage regulator SVR
21b: Tap changer parallel capacitor 22: Distribution substation 23: Distribution line 24: Distributed power source 25: Load 26: Bus 101: Arrangement position selection unit 102: Combination generation unit 103: Voltage calculation unit 104: Appropriate arrangement determination unit

Claims (13)

電圧調整用の機械機構を有する電圧調整装置と自然変動電源とを備える配電系統の電圧調整装置配置計画の支援装置において、
電圧調整装置を配置する配電系統上の位置を選択する配置位置選択部と、配置した一つ以上の電圧調整装置について電圧調整装置の機械機構調整量の組合せを生成する組合せ生成部と、電圧調整装置の配置位置と機械機構調整量の組合せに対する電圧計算において、配置位置が同一の電圧調整装置の機械機構調整量の組合せについて、はじめに予め保持する基準の機械機構調整量の組合せにおいて潮流計算を実施し、基準の機械機構調整量と異なる機械機構調整量の組合せについて、基準の機械機構調整量からの機械機構調整量変化量が閾値以上となる場合には機械機構調整量の組合せを新たな基準の機械機構調整量として保持して潮流計算を実施し、基準の機械機構調整量からの機械機構調整量変化量が閾値より小さい場合には電圧感度を用いる電圧近似計算を実施することによって配電系統上の電圧を求める電圧計算部と、前記電圧計算部で求めた配電系統上の電圧について、配電系統に許容される上下限電圧と電圧計算結果の間の差分の最小値である電圧余裕および電圧調整装置の台数に基づいて電圧調整装置を配置する位置を決定する適正配置決定部とを備えることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system equipped with the voltage adjustment device having a mechanical mechanism for voltage adjustment and the naturally fluctuating power supply.
An arrangement position selection unit that selects a position on the distribution system in which the voltage adjustment device is arranged, a combination generation unit that generates a combination of mechanical mechanism adjustment amounts of the voltage adjustment device for one or more arranged voltage adjustment devices, and a voltage adjustment unit. In the voltage calculation for the combination of the arrangement position of the device and the adjustment amount of the mechanical mechanism, for the combination of the adjustment amount of the mechanical mechanism of the voltage adjustment device having the same arrangement position, the tidal current calculation is performed with the combination of the adjustment amount of the reference mechanical mechanism held in advance. However, regarding the combination of the mechanical mechanism adjustment amount different from the standard mechanical mechanism adjustment amount, if the change amount of the mechanical mechanism adjustment amount from the standard mechanical mechanism adjustment amount is equal to or more than the threshold value, the combination of the mechanical mechanism adjustment amount is used as a new standard. If the amount of change in the amount of mechanical mechanism adjustment from the standard amount of mechanical mechanism adjustment is smaller than the threshold value, the power distribution system is calculated by performing voltage approximation calculation using voltage sensitivity. Voltage margin and voltage which are the minimum values of the difference between the upper and lower limit voltage allowed for the distribution system and the voltage calculation result for the voltage on the distribution system obtained by the voltage calculation unit and the voltage calculation unit for obtaining the above voltage. A support device for a voltage regulator placement plan of a distribution system, which comprises an appropriate placement determination unit that determines a position for arranging voltage regulators based on the number of regulators.
請求項1に記載の配電系統の電圧調整装置配置計画の支援装置において、
前記電圧近似計算では、電圧感度および機械機構調整量の変化量を用いて計算した電圧変動量を加えることで電圧を計算することを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 1.
The voltage approximation calculation is a support device for a voltage regulator arrangement plan of a distribution system, which is characterized in that a voltage is calculated by adding a voltage fluctuation amount calculated by using a change amount of a voltage sensitivity and a mechanical mechanism adjustment amount.
請求項1から請求項2のいずれか1項に記載の配電系統の電圧調整装置配置計画の支援装置において、
機械機構を有する電圧調整装置は、タップ付変圧器を含んでおり、電圧調整装置の機械機構調整量の組合せ数はタップ数であることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device for the voltage adjustment device arrangement plan of the distribution system according to any one of claims 1 to 2.
The voltage regulator having a mechanical mechanism includes a transformer with a tap, and the number of combinations of the mechanical mechanism adjustment amounts of the voltage regulator is the number of taps. ..
請求項1から請求項3のいずれか1項に記載の配電系統の電圧調整装置配置計画の支援装置において、
機械機構を有する電圧調整装置は、複数のコンデンサおよびリアクトルとスイッチを含んでおり、電圧調整装置の機械機構調整量の組合せ数は、コンデンサおよびリアクトルの組み合わせで定まる組み合わせ容量の数であることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device for the voltage adjustment device arrangement plan of the distribution system according to any one of claims 1 to 3.
A voltage regulator having a mechanical mechanism includes a plurality of capacitors, a reactor and a switch, and the number of combinations of the mechanical mechanism adjustment amount of the voltage regulator is the number of combined capacities determined by the combination of the capacitor and the reactor. A support device for the voltage adjustment device layout plan of the distribution system.
請求項1から請求項4のいずれか1項に記載の配電系統の電圧調整装置配置計画の支援装置において、
前記適正配置決定部は、前記電圧計算部で求めた配電系統上の電圧について、前記電圧余裕が正の値である配置のうち、電圧調整装置の台数が最小となる配置位置を選択することを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device for the voltage adjustment device arrangement plan of the distribution system according to any one of claims 1 to 4.
The appropriate arrangement determination unit selects an arrangement position in which the number of voltage adjusting devices is the smallest among the arrangements in which the voltage margin is a positive value for the voltage on the distribution system obtained by the voltage calculation unit. A support device for the voltage adjustment device layout plan of the distribution system, which is a feature.
請求項5に記載の配電系統の電圧調整装置配置計画の支援装置において、
前記適正配置決定部は、前記電圧調整装置の台数が最小であって、かつ前記電圧余裕が最大となる配置位置を選択することを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 5.
The appropriate arrangement determination unit is a support device for a voltage adjustment device arrangement plan of a distribution system, characterized in that the number of the voltage adjustment devices is the minimum and the arrangement position where the voltage margin is the maximum is selected.
請求項1に記載の配電系統の電圧調整装置配置計画の支援装置において、
前記電圧調整装置の機械機構調整量変化量についての閾値は、前記閾値を設定する自動電圧調整器の機械機構調整量を変化させたときに、その点について前記潮流計算と前記電圧近似計算の誤差が、電圧精度目標以上となる機械機構調整量変化量を閾値とすることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 1.
The threshold value for the change amount of the mechanical mechanism adjustment amount of the voltage regulator is an error between the power flow calculation and the voltage approximation calculation at that point when the mechanical mechanism adjustment amount of the automatic voltage regulator that sets the threshold value is changed. However, it is a support device for the voltage adjustment device arrangement plan of the distribution system, which is characterized in that the amount of change in the adjustment amount of the mechanical mechanism that exceeds the voltage accuracy target is used as a threshold.
請求項7に記載の配電系統の電圧調整装置配置計画の支援装置において、
機械機構を有する電圧調整装置は、タップ付変圧器を含んでおり、前記電圧精度目標を、タップ付変圧器1タップ分の電圧幅公称値の半値として定めることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 7.
The voltage regulator having a mechanical mechanism includes a transformer with a tap, and is characterized in that the voltage accuracy target is set as a half value of the voltage width nominal value for one tap of the transformer with a tap. Support device for device layout planning.
請求項7に記載の配電系統の電圧調整装置配置計画の支援装置において、
機械機構を有する電圧調整装置は自動電圧調整器であり、前記電圧精度目標を、前記自動電圧調整器が自動で電圧調整する際の制御パラメータの1つである電圧目標値に対する不感帯幅の値として定めることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 7.
The voltage regulator having a mechanical mechanism is an automatic voltage regulator, and the voltage accuracy target is set as the value of the dead band width with respect to the voltage target value which is one of the control parameters when the automatic voltage regulator automatically adjusts the voltage. A support device for the voltage regulator layout plan of the distribution system, which is characterized by being determined.
請求項7に記載の配電系統の電圧調整装置配置計画の支援装置において、
機械機構を有する電圧調整装置は自動電圧調整器であり、前記電圧精度目標を、前記自動電圧調整器の1タップ分の電圧幅公称値の半値として定めることを特徴とする配電系統の電圧調整装置配置計画の支援装置。
In the support device of the voltage adjustment device arrangement plan of the distribution system according to claim 7.
The voltage regulator having a mechanical mechanism is an automatic voltage regulator, and the voltage regulator of the distribution system is characterized in that the voltage accuracy target is set as a half value of the voltage width nominal value for one tap of the automatic voltage regulator. Deployment planning support device.
電圧調整用の機械機構を有する電圧調整装置と自然変動電源とを備える配電系統の電圧調整装置配置計画の支援方法において、
電圧調整装置を配置する配電系統上の位置を選択し、配置した一つ以上の電圧調整装置について電圧調整装置の機械機構調整量の組合せを生成し、電圧調整装置の配置位置と機械機構調整量の組合せに対する電圧計算において、配置位置が同一の電圧調整装置の機械機構調整量の組合せについて、はじめに予め保持する基準の機械機構調整量の組合せにおいて潮流計算を実施し、基準の機械機構調整量と異なる機械機構調整量の組合せについて、基準の機械機構調整量からの機械機構調整量変化量が閾値以上となる場合には機械機構調整量の組合せを新たな基準の機械機構調整量として保持して潮流計算を実施し、基準の機械機構調整量からの機械機構調整量変化量が閾値より小さい場合には電圧感度を用いる電圧近似計算を実施することによって配電系統上の電圧を求め、前記電圧計算で求めた配電系統上の電圧について、配電系統に許容される上下限電圧と電圧計算結果の間の差分の最小値である電圧余裕および電圧調整装置の台数に基づいて電圧調整装置を配置する位置を決定することを特徴とする配電系統の電圧調整装置配置計画の支援方法。
In the support method of the voltage adjustment device arrangement plan of the distribution system equipped with the voltage adjustment device having a mechanical mechanism for voltage adjustment and the naturally fluctuating power supply.
Select the position on the distribution system where the voltage regulator is placed, generate a combination of the mechanical mechanism adjustment amount of the voltage regulator for one or more placed voltage regulators, and place the voltage regulator and the mechanical mechanism adjustment amount. In the voltage calculation for the combination of, for the combination of the mechanical mechanism adjustment amount of the voltage regulator with the same arrangement position, the power flow calculation is performed with the combination of the standard mechanical mechanism adjustment amount held in advance, and the standard mechanical mechanism adjustment amount is used. For combinations of different mechanical mechanism adjustment amounts, if the change in mechanical mechanism adjustment amount from the standard mechanical mechanism adjustment amount is greater than or equal to the threshold value, the combination of mechanical mechanism adjustment amounts is retained as the new standard mechanical mechanism adjustment amount. When the power flow calculation is performed and the change amount of the mechanical mechanism adjustment amount from the reference mechanical mechanism adjustment amount is smaller than the threshold value, the voltage on the distribution system is obtained by performing the voltage approximation calculation using the voltage sensitivity, and the voltage calculation is performed. Regarding the voltage on the distribution system obtained in step 2, the position where the voltage adjustment device is placed based on the voltage margin, which is the minimum value of the difference between the upper and lower limit voltage allowed for the distribution system and the voltage calculation result, and the number of voltage adjustment devices. A method of supporting the arrangement plan of the voltage regulator of the distribution system, which is characterized by determining.
請求項11に記載の配電系統の電圧調整装置配置計画の支援方法において、
前記電圧計算方法で求めた配電系統上の電圧について、配電系統に許容される上下限電圧と電圧計算結果の間の差分の最小値である電圧余裕が正の値である配置のうち、電圧調整装置の台数が最小となる配置位置を選択することを特徴とする配電系統の電圧調整装置配置計画の支援方法。
In the support method of the voltage regulator arrangement plan of the distribution system according to claim 11.
Regarding the voltage on the distribution system obtained by the voltage calculation method, voltage adjustment is made out of the arrangement in which the voltage margin, which is the minimum value of the difference between the upper and lower limit voltages allowed for the distribution system and the voltage calculation result, is a positive value. A method of supporting a voltage regulator placement plan for a distribution system, which comprises selecting a placement position that minimizes the number of devices.
請求項12に記載の配電系統の電圧調整装置配置計画の支援方法において、
前記電圧調整装置の台数が最小であって、かつ前記電圧余裕が最大となる配置位置を選択することを特徴とする配電系統の電圧調整装置配置計画の支援方法。
In the support method of the voltage regulator arrangement plan of the distribution system according to claim 12.
A method for supporting a voltage adjusting device arrangement plan for a distribution system, which comprises selecting an arrangement position in which the number of the voltage adjusting devices is the minimum and the voltage margin is the maximum.
JP2018089876A 2018-05-08 2018-05-08 Distribution system voltage regulator Arrangement planning support equipment and methods Active JP7001537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089876A JP7001537B2 (en) 2018-05-08 2018-05-08 Distribution system voltage regulator Arrangement planning support equipment and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089876A JP7001537B2 (en) 2018-05-08 2018-05-08 Distribution system voltage regulator Arrangement planning support equipment and methods

Publications (2)

Publication Number Publication Date
JP2019198153A JP2019198153A (en) 2019-11-14
JP7001537B2 true JP7001537B2 (en) 2022-01-19

Family

ID=68538515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089876A Active JP7001537B2 (en) 2018-05-08 2018-05-08 Distribution system voltage regulator Arrangement planning support equipment and methods

Country Status (1)

Country Link
JP (1) JP7001537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021069684A (en) * 2019-10-31 2021-05-06 株式会社大都技研 Game machine
JP2022020186A (en) * 2020-07-20 2022-02-01 三菱重工エンジニアリング株式会社 Arrangement configuration design apparatus, arrangement configuration design method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102171A (en) 1998-09-22 2000-04-07 Fuji Electric Co Ltd Method and device for controlling power system voltage
JP2007189840A (en) 2006-01-13 2007-07-26 Toshiba Corp Power system stabilizing apparatus
JP2008312323A (en) 2007-06-13 2008-12-25 Kansai Electric Power Co Inc:The Optimum arrangement determination method for voltage regulator
JP2013255375A (en) 2012-06-08 2013-12-19 Hitachi Ltd Distribution grid voltage regulator, voltage regulation method, and power control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752071B2 (en) * 2016-07-19 2020-09-09 株式会社日立製作所 Distribution system system optimization calculation device and system optimization calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102171A (en) 1998-09-22 2000-04-07 Fuji Electric Co Ltd Method and device for controlling power system voltage
JP2007189840A (en) 2006-01-13 2007-07-26 Toshiba Corp Power system stabilizing apparatus
JP2008312323A (en) 2007-06-13 2008-12-25 Kansai Electric Power Co Inc:The Optimum arrangement determination method for voltage regulator
JP2013255375A (en) 2012-06-08 2013-12-19 Hitachi Ltd Distribution grid voltage regulator, voltage regulation method, and power control system

Also Published As

Publication number Publication date
JP2019198153A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US10581245B2 (en) Voltage/reactive power operation assisting device and assisting method, and voltage/reactive power operation monitoring control device and monitoring control method
JP6244255B2 (en) Voltage stability monitoring apparatus and method
US20190148977A1 (en) Voltage and reactive power monitoring/control device and method
JP6191229B2 (en) Tap plan value calculation method, tap command value determination method, control target value calculation method, tap plan value calculation device, tap command value determination device, and tap plan value calculation program
JP2009065788A (en) Optimal voltage controller for distribution system
Degefa et al. Optimal voltage control strategies for day-ahead active distribution network operation
US20130024032A1 (en) Apparatus for decentralized coordinated volt/var control (cvvc)
JP7001537B2 (en) Distribution system voltage regulator Arrangement planning support equipment and methods
JP5049600B2 (en) Power distribution system control system
Raveendra et al. RFLSA control scheme for power quality disturbances mitigation in DSTATCOM with n-level inverter connected power systems
Mahdavi et al. Coordinated voltage regulator control in systems with high-level penetration of distributed energy resources
JP6105664B2 (en) Calculation method of settling value of line voltage drop compensator
JP5457949B2 (en) Reactive power compensator with power flow calculation function, and system and method thereof
JP6752071B2 (en) Distribution system system optimization calculation device and system optimization calculation method
JP2019041457A (en) Power system load frequency control device and method
JP7198050B2 (en) SETTING VALUE CANDIDATE CALCULATION DEVICE, VOLTAGE REGULATION DEVICE, VOLTAGE REGULATION SYSTEM, VOLTAGE REGULATION METHOD, AND DISTRIBUTION FACILITY DESIGN SUPPORT SYSTEM
JP6075348B2 (en) Voltage regulator
KR101997439B1 (en) Method for predicting voltage based on part measurement for controlling voltage and reactive power, program for the same
JP2015015780A (en) Voltage control method of power distribution system
Liu et al. An event-trigger two-stage architecture for voltage control in distribution systems
JP6967440B2 (en) Voltage control device, voltage control method, voltage control program and evaluation device
Ibrahim et al. EPRI-VCA: Optimal Reactive Power Dispatch Tool
JP7160747B2 (en) GENERATOR CONTROL STATE DETERMINATION DEVICE AND METHOD
KR102552773B1 (en) Distribution system voltage stabilization system and method
JP7269971B2 (en) SETTING VALUE CALCULATION APPARATUS AND METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150