JP6986773B1 - Optical device inspection machine - Google Patents

Optical device inspection machine Download PDF

Info

Publication number
JP6986773B1
JP6986773B1 JP2020101559A JP2020101559A JP6986773B1 JP 6986773 B1 JP6986773 B1 JP 6986773B1 JP 2020101559 A JP2020101559 A JP 2020101559A JP 2020101559 A JP2020101559 A JP 2020101559A JP 6986773 B1 JP6986773 B1 JP 6986773B1
Authority
JP
Japan
Prior art keywords
light
optical
measurement
reflected
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020101559A
Other languages
Japanese (ja)
Other versions
JP2021196215A (en
Inventor
雅之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT GATE CO., LTD.
Original Assignee
OPT GATE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT GATE CO., LTD. filed Critical OPT GATE CO., LTD.
Priority to JP2020101559A priority Critical patent/JP6986773B1/en
Application granted granted Critical
Publication of JP6986773B1 publication Critical patent/JP6986773B1/en
Publication of JP2021196215A publication Critical patent/JP2021196215A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】光デバイスの挿入損失測定、反射減衰量測定、断線や亀裂等の検査を、一括して実施可能な光デバイス検査機を提供する。【解決手段】光デバイス検査機1は、筐体2内に、広帯域で低コヒーレンスな光Lを出射する光源3と、この光Lを測定光L1と参照光L2に分岐するビームスプリッタ4と、参照光L2の光路長を調整する参照ミラー5と、光デバイスCで反射した測定光L1’及び参照ミラー5で反射した参照光L2’を受光する第1の光測定器6とを備える。更に筐体2の外側に接続される接続部7と、この接続部7に離間して設けた透過光入力部8と、透過光入力部8から筐体2内に入射する測定光L1を受光する第2の光測定器9とを備える。光デバイスCを接続部7に接続し、第1及び第2の光測定器6,9の受光量等を制御部10で演算し、挿入損失、反射減衰量、不良個所の位置とその程度を測定する。【選択図】図1PROBLEM TO BE SOLVED: To provide an optical device inspection machine capable of collectively performing insertion loss measurement of an optical device, reflection attenuation measurement, and inspection of disconnection and cracks. SOLUTION: An optical device inspection machine 1 has a light source 3 that emits a wide band and low coherence light L in a housing 2, a beam splitter 4 that branches the light L into a measurement light L1 and a reference light L2. It includes a reference mirror 5 for adjusting the optical path length of the reference light L2, and a first optical measuring instrument 6 for receiving the measurement light L1'reflected by the optical device C and the reference light L2'reflected by the reference mirror 5. Further, the connection portion 7 connected to the outside of the housing 2, the transmitted light input unit 8 provided apart from the connection portion 7, and the measurement light L1 incident on the housing 2 from the transmitted light input unit 8 are received. A second optical measuring instrument 9 is provided. The optical device C is connected to the connection unit 7, the light receiving amount of the first and second optical measuring instruments 6 and 9 is calculated by the control unit 10, and the insertion loss, the reflection attenuation amount, the position of the defective part and its degree are calculated. Measure. [Selection diagram] Fig. 1

Description

本発明は、光デバイスの挿入損失及び反射減衰量を測定すると共に、光デバイスの亀裂、断線等の検査を行う光デバイス検査機に関するものである。 The present invention relates to an optical device inspection machine that measures insertion loss and reflection attenuation of an optical device and inspects cracks, disconnections, etc. of the optical device.

従来から光ファイバや光コネクタ等の光デバイスでは、基本的な特性として挿入損失及び反射減衰量が測定され、それらの製品カタログに基本仕様として記載されている。また、光デバイスは出荷時や定期点検等の際に、断線や亀裂等による不良の有無が検査され、それらの品質保証や故障診断に活用されている。 Conventionally, in optical devices such as optical fibers and optical connectors, insertion loss and reflection attenuation have been measured as basic characteristics, and they are described as basic specifications in their product catalogs. In addition, optical devices are inspected for defects due to disconnection, cracks, etc. at the time of shipment or at the time of periodic inspections, and are used for quality assurance and failure diagnosis.

通常では広く知られているように、挿入損失測定、反射減衰量測定、断線や亀裂等の不良検査には、それぞれ個別の装置が使用される。挿入損失の測定では、測定対象の光デバイスに応じたレーザー光等の光源と光パワーメータ等の受光装置が使用される。反射減衰量の測定では、測定対象の光デバイスに応じたレーザー光等の光源、光カプラ、光パワーメータ等の受光装置が使用される。光デバイスの断線や亀裂等による不良検査には、例えば光パルス試験器(OTDR:Optical Time Domain Reflectometer)が用いられ、反射光の発生する位置と強度を測定し、そこから不良の発生位置とその程度が見積もられる。 As is generally widely known, individual devices are used for insertion loss measurement, reflection attenuation measurement, and defect inspection such as disconnection and cracking. In the measurement of insertion loss, a light source such as a laser beam corresponding to the optical device to be measured and a light receiving device such as an optical power meter are used. In the measurement of the reflection attenuation amount, a light source such as a laser beam, an optical coupler, and a light receiving device such as an optical power meter according to the optical device to be measured are used. For example, an optical time domain reflectometer (OTDR) is used to inspect defects due to disconnection or cracks in optical devices, measure the position and intensity of reflected light, and then determine the location and location of the defect. The degree is estimated.

このように測定項目毎に部材や装置を用意するのは煩雑であるため、それらの装置を兼用して測定を行う提案もなされている。例えば、光パルス試験器に光路長を稼ぐダミーファイバを接続して、光デバイスと光パルス試験器との接続点が、光パルス試験器から見て近端反射となるのを防止し、光デバイスの反射減衰量を測定できるようにする。更に、光パルス試験器の光源を挿入損失測定用の光源として兼用する提案もある。この挿入損失測定方法では、まず光パルス試験器の光出力に測定用光コードを介して光パワーメータを接続し、光パルス試験器の光源の光出力を、光パワーメータで測定して基準値とする。次に、測定用光コードと光パワーメータの間に測定対象の光デバイスを接続して、同様に光パルス試験器の光出力を光パワーメータで測定し測定値とする。上述の基準値から測定値を減算することによって、光デバイスの挿入損失値を得る。 Since it is complicated to prepare members and devices for each measurement item in this way, it has been proposed to use these devices for measurement. For example, a dummy fiber that increases the optical path length is connected to the optical pulse tester to prevent the connection point between the optical device and the optical pulse tester from becoming near-end reflection when viewed from the optical pulse tester, and the optical device. To be able to measure the amount of reflection attenuation of. Further, there is also a proposal to use the light source of the optical pulse tester as a light source for measuring the insertion loss. In this insertion loss measurement method, first, an optical power meter is connected to the optical output of the optical pulse tester via a measurement optical cord, and the optical output of the light source of the optical pulse tester is measured with the optical power meter to be a reference value. And. Next, an optical device to be measured is connected between the optical cord for measurement and the optical power meter, and the optical output of the optical pulse tester is similarly measured by the optical power meter and used as a measured value. By subtracting the measured value from the above reference value, the insertion loss value of the optical device is obtained.

特許文献1には上述のような挿入損失の測定方法を基本として、更に光ファイバの検査を対象にして改良された光ファイバ検査装置および方法が提案されている。この光ファイバ検査装置および方法によれば、光源装置より光ファイバを介して届いた測定光の光パワーを測定し、その光パワーに基づいて前記光ファイバの光損失量を算出する光ファイバ検査装置と、この光ファイバ検査装置で算出された光損失量に基づいて、被検査光ファイバの導通確認や破断箇所を探索することができ、作業環境や個人差に左右されずに光損失を定量的に検査可能であることが開示されている。 Patent Document 1 proposes an improved optical fiber inspection apparatus and method for inspection of optical fibers based on the above-mentioned method for measuring insertion loss. According to this optical fiber inspection device and method, an optical fiber inspection device that measures the optical power of the measured light that arrives from the light source device via the optical fiber and calculates the amount of optical loss of the optical fiber based on the optical power. Based on the amount of optical loss calculated by this optical fiber inspection device, it is possible to confirm the continuity of the optical fiber to be inspected and search for breakage points, and quantitatively determine the optical loss regardless of the work environment or individual differences. It is disclosed that it can be inspected.

このような光損失を利用する光ファイバ検査装置では、検査対象の光ファイバケーブルを、光コネクタ等の光デバイスを介して結合した際に、光デバイスと光ファイバの光軸同士が軸ずれすることによって発生する光損失を測定し、軸ずれ不良を有する光デバイスを検出することも行われている。 In an optical fiber inspection device that utilizes such optical loss, when the optical fiber cable to be inspected is connected via an optical device such as an optical connector, the optical axis of the optical device and the optical fiber are displaced from each other. It is also performed to measure the optical loss generated by the optical device and detect an optical device having an axis misalignment defect.

特開2008−116789号公報Japanese Unexamined Patent Publication No. 2008-116789

このように光デバイスの挿入損失測定、反射減衰量測定、断線や亀裂等に起因する不良の検査は、光デバイスに対応する適切な光源装置、光カプラ、光パワーメータ、光パルス試験器等を適宜に組み合わせて実施されているか、もしくはそれぞれに専用の装置が使用されている。従って、測定項目が変更される毎に、組み合わせて使用する光学機器や光学部材を変更し、測定対象となる光デバイスとの接続方法も変更するか、専用の装置に対象の光デバイスを接続し直して、測定や検査を行わなければならない。光デバイスと光学機器、光学部材、測定装置との接続/取り外しの回数増加は、測定作業を煩雑で多大な時間を要するものにするという問題がある。 In this way, for measurement of insertion loss of optical devices, measurement of reflection attenuation, inspection of defects caused by disconnection, cracks, etc., appropriate light source devices, optical couplers, optical power meters, optical pulse testers, etc. corresponding to the optical devices are used. It is carried out in combination as appropriate, or a dedicated device is used for each. Therefore, each time the measurement item is changed, the optical equipment and optical members used in combination are changed, the connection method with the optical device to be measured is also changed, or the target optical device is connected to a dedicated device. It must be fixed and measured and inspected. Increasing the number of connections / disconnections between an optical device and an optical device, an optical member, and a measuring device causes a problem that the measurement work becomes complicated and takes a lot of time.

また、光パルス試験器によって光デバイスの反射減衰量と、断線や亀裂等の不良を同時に測定しようとしても、両点からの反射を明確に区別して測定することが困難な場合がある。例えば、光パルス試験器から見て光デバイスと光パルス試験器との接続点が近端反射となる場合には、上述のように通常はダミーファイバによって光路長を稼ぎ、光パルス試験器内の反射点に対して光デバイスと光パルス試験器との接続点が区別できる状態にして、反射減衰量の測定を行う。この時に光デバイスと光パルス試験器の接続点が、光デバイスの断線や亀裂等の検査を行いたい部分と、光路長的に極めて近接していると、両点からの反射を区別するために、光パルス試験器内の光源から極めて短い光パルスを出力させなければならない。 Further, even if an optical pulse tester is used to simultaneously measure the amount of reflection attenuation of an optical device and defects such as disconnection and cracks, it may be difficult to clearly distinguish the reflections from both points. For example, when the connection point between the optical device and the optical pulse tester is near-end reflection when viewed from the optical pulse tester, the optical path length is usually increased by a dummy fiber as described above, and the optical pulse tester is inside the optical pulse tester. The reflection attenuation amount is measured so that the connection point between the optical device and the optical pulse tester can be distinguished from the reflection point. At this time, if the connection point between the optical device and the optical pulse tester is extremely close to the part where the optical device is to be inspected for disconnection or cracks in terms of optical path length, in order to distinguish the reflection from both points. , An extremely short optical pulse must be output from the light source in the optical pulse tester.

ところが、極めて短い光パルスは、伝送距離に対して減衰が激しいので、ダミーファイバの長い光路を通過すると減衰が大きく、たとえ光デバイスと光パルス試験器の接続点からの微弱な反射光を、光デバイスの断線や亀裂等の検査を行いたい部分からの反射光と区別できたとしても、反射位置を測定できるのみで、その微弱な反射光量、即ち反射減衰量を定量的に高精度で測定することは、極めて困難であるという問題がある。 However, since extremely short optical pulses are severely attenuated with respect to the transmission distance, the attenuation is large when passing through the long optical path of the dummy fiber, and even the weak reflected light from the connection point between the optical device and the optical pulse tester is emitted as light. Even if it can be distinguished from the reflected light from the part where the device is to be inspected for disconnection or cracks, it can only measure the reflected position, and the weak reflected light amount, that is, the reflected attenuation amount, is quantitatively measured with high accuracy. The problem is that it is extremely difficult.

更に、同時に測定しようとしている光デバイスの断線や亀裂等の検査を行いたい部分からの反射光量も、同様に微弱となるため、反射位置が測定できるのみで、反射光量を定量的に測定することは困難であるという問題もある。特に、光デバイス内で断線や亀裂が発生した直後の状態では、断線又は亀裂の個所同士が密着していることが多く、反射光量は更に微弱となるので、反射位置の検出と反射光量の測定が共に困難となることもある。 Furthermore, the amount of reflected light from the part of the optical device to be inspected for disconnection or cracks that is being measured at the same time is also weak, so the reflected light amount should be measured quantitatively only by measuring the reflected position. There is also the problem that it is difficult. In particular, in the state immediately after a disconnection or crack occurs in the optical device, the locations of the disconnection or crack are often in close contact with each other, and the reflected light amount becomes even weaker. Therefore, the reflected position is detected and the reflected light amount is measured. Can be difficult together.

本発明の目的は、上述の課題を解消し、光デバイスを一度取り付けてしまえば、取り外しや再取り付けを行うことなく、挿入損失測定、反射減衰量測定、断線や亀裂等の検査を、一括して実施することができる光デバイス検査機を提供することにある。 An object of the present invention is to solve the above-mentioned problems, and once the optical device is attached, the insertion loss measurement, the reflection attenuation measurement, and the inspection of disconnection and cracks are collectively performed without removing or reattaching the optical device. The purpose is to provide an optical device inspection machine that can be carried out.

上記目的を達成するための本発明に係る光デバイス検査機は、SLDから成る光源と、該光源からの光を、透過する測定光及び反射する参照光に分岐するビームスプリッタと、前記参照光の光路長を調整可能な光路長可変機構を有する参照ミラーと、前記ビームスプリッタで反射した前記測定光、及び前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光を受光する第1の光測定器と、前記ビームスプリッタを透過した前記測定光を受光する第2の光測定器と、前記光源、前記参照ミラー、前記第1の光測定器、及び第2の光測定器に接続した制御部とを筐体内に備え、更に、前記筐体の外側に接続され、前記ビームスプリッタを透過した前記測定光の光路先に配置した接続部と、該接続部の同一光軸上に離間して設けられた透過光入力部とを備え、前記第2の光測定器は、前記透過光入力部から前記筐体内に入射した前記測定光を受光し、前記接続部と前記透過光入力部との間に、測定対象物である光デバイスを配置し、前記制御部は、前記接続部と前記測定対象物との接続点により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記第1の光測定器で受光することによって、前記測定対象物の反射減衰量を測定し、前記測定対象物の不良個所により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記第1の光測定器で受光することによって前記不良個所を検出し、前記測定対象物を前記不良個所により反射せずに透過して前記第2の光測定器で受光された光量と、前記光源から出射された光の光量とから、前記測定対象物の挿入損失を測定する光デバイス検査機であって、前記測定対象物は、光コネクタ、各種光学フィルタ、ビームスプリッタ、光カプラ、光スイッチ、光サーキュレータの何れかの光デバイスであり、前記測定対象物の挿入損失値は、前記測定対象物を透過して前記第2の光測定器で受光された光量と、前記光源から出射された光の光量と、前記測定対象物自体の挿入損失と本検査機自体の損失及び機差の影響を含む挿入損失の測定値との関係を表す校正線と、に基づいて算出されることを特徴とする。
本発明に係る光デバイス検査機は、SLDから成る光源と、該光源からの光を、透過する測定光及び反射する参照光に分岐するビームスプリッタと、前記参照光の光路長を調整可能な光路長可変機構を有する参照ミラーと、前記ビームスプリッタで反射した前記測定光、及び前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光を受光する光測定器と、参照光前記ビームスプリッタで反射した前記測定光とによる干渉光の閉鎖、開放を行うシャッターと、前記光源、前記参照ミラー、前記光測定器、及びシャッターに接続した制御部とを筐体内に備え、前記ビームスプリッタと前記光測定器の間には、前記ビームスプリッタ側から前記シャッター及びハーフミラーを順次に配置し、更に、前記筐体の外側に接続され、前記ビームスプリッタを透過した前記測定光の光路先に配置した接続部と、該接続部の同一光軸上に離間して設けられた透過光入力部とを備え、前記光測定器は、前記透過光入力部から前記筐体内に入射した前記測定光を、前記ハーフミラーを介して受光し、前記接続部と前記透過光入力部との間に、測定対象物である光デバイスを配置し、前記制御部は、前記シャッターを開放状態にして、前記接続部と前記測定対象物との接続点により反射され、前記ビームスプリッタで反射された前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記光測定器で受光することによって、前記測定対象物の反射減衰量を測定し、前記シャッターを開放状態にして、前記測定対象物の不良個所により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記光測定器で受光することによって前記不良個所を検出し、前記シャッターを閉鎖状態にして、前記測定対象物を前記不良個所により反射せずに透過して前記光測定器で受光された光量と、前記光源から出射された光の光量とから、前記測定対象物の挿入損失を測定することを特徴とする。
The optical device inspection machine according to the present invention for achieving the above object is a light source composed of an SLD, a beam splitter that branches light from the light source into transmitted measurement light and reflected reference light, and the reference light. A reference mirror having an optical path length variable mechanism capable of adjusting the optical path length, the measurement light reflected by the beam splitter, and a first light that receives the reference light reflected by the reference mirror and transmitted through the beam splitter. Control connected to the measuring instrument, the second optical measuring instrument that receives the measurement light transmitted through the beam splitter, the light source, the reference mirror, the first optical measuring instrument, and the second optical measuring instrument. A connection portion is provided inside the housing, and is further separated from a connection portion which is connected to the outside of the housing and is arranged at the optical path destination of the measurement light transmitted through the beam splitter on the same optical axis of the connection portion. The second optical measuring device is provided with a transmitted light input unit, and receives the measurement light incident on the housing from the transmitted light input unit, and the connection unit and the transmitted light input unit are connected to each other. An optical device, which is an object to be measured, is arranged between them, and the control unit uses the measurement light reflected by the connection point between the connection unit and the object to be measured and reflected by the beam splitter, and the reference mirror. By receiving the interference light from the reference light that has been reflected and passed through the beam splitter with the first optical measuring device, the amount of reflection attenuation of the measurement object is measured, and the defective portion of the measurement object is measured. By receiving the interference light of the measurement light reflected by the beam splitter and the reference light reflected by the reference mirror and transmitted through the beam splitter by the first optical measuring instrument. The measurement is performed from the amount of light received by the second optical measuring instrument and the amount of light emitted from the light source after detecting the defective portion and transmitting the object to be measured without being reflected by the defective portion. An optical device inspection machine that measures the insertion loss of an object, wherein the measurement object is an optical device of any one of an optical connector, various optical filters, a beam splitter, an optical coupler, an optical switch, and an optical circulator. The insertion loss value of the measurement object is the amount of light transmitted through the measurement object and received by the second optical measuring device, the amount of light emitted from the light source, and the insertion loss of the measurement object itself. It is characterized in that it is calculated based on a calibration line showing the relationship between the light and the measured value of the insertion loss including the loss of the inspection machine itself and the influence of the machine difference.
The optical device inspection machine according to the present invention has a light source made of SLD, a beam splitter that branches light from the light source into transmitted measurement light and reflected reference light, and an optical path whose optical path length of the reference light can be adjusted. a reference mirror having a length variable mechanism, wherein the measuring light reflected by the beam splitter, and reflected by the reference mirror, and a light measuring device for receiving the reference light transmitted through the beam splitter, said with the reference light beam A shutter for closing and opening the interference light due to the measurement light reflected by the splitter, the light source, the reference mirror, the optical measuring instrument, and a control unit connected to the shutter are provided in the housing, and the beam splitter and the beam splitter are provided. The shutter and the half mirror are sequentially arranged between the optical measuring instruments from the beam splitter side, and further arranged at the optical path destination of the measured light that is connected to the outside of the housing and has passed through the beam splitter. The optical measuring device includes the connected portion and the transmitted light input portion provided apart from each other on the same optical axis of the connecting portion, and the optical measuring instrument receives the measured light incident on the housing from the transmitted light input portion. The light is received through the half mirror, an optical device to be measured is arranged between the connection unit and the transmitted light input unit, and the control unit opens the shutter and connects the light device. The light is the interference light of the measurement light reflected by the connection point between the unit and the measurement object and reflected by the beam splitter and the reference light reflected by the reference mirror and transmitted through the beam splitter. By receiving light with the measuring instrument, the amount of reflection attenuation of the object to be measured is measured, the shutter is opened, the measured light reflected by the defective portion of the object to be measured, and the measured light reflected by the beam splitter. The defective portion is detected by receiving the interference light from the reference light reflected by the reference mirror and transmitted through the beam splitter by the optical measuring device, the shutter is closed, and the measurement object is measured. from the quantity of light received by the optical measuring device passes through without being reflected by the defective portion, the amount of light emitted from the light source, and measuring the insertion loss of the measurement object ..

本発明に係る光デバイス検査機によれば、光デバイスを一旦接続部に取り付ければ、取り外しや再取り付けを行うことなく、光デバイスの挿入損失及び反射減衰量の測定と、光デバイスの亀裂、断線等の検査とを、互いの測定又は検査結果に影響を与えずに一括して行うことができ、測定や検査にかかる手間と時間を大幅に削減することが可能である。 According to the optical device inspection machine according to the present invention, once the optical device is attached to the connection portion, the insertion loss and the reflection attenuation of the optical device can be measured without disconnection or reattachment, and the optical device can be cracked or disconnected. It is possible to carry out such inspections collectively without affecting each other's measurements or inspection results, and it is possible to significantly reduce the labor and time required for measurements and inspections.

また、挿入損失及び反射減衰量の測定と、亀裂、断線等の検査とに使用される光学部材の一部を共用し、特に使用する光源を1つに統一することによって、省スペース化を図り、安価に製造することが可能である。 In addition, space can be saved by sharing a part of the optical members used for measuring insertion loss and reflection attenuation and inspecting cracks, disconnections, etc., and by unifying the light source to be used in particular. , Can be manufactured at low cost.

実施例1の光デバイス検査機の構成図である。It is a block diagram of the optical device inspection machine of Example 1. FIG. 光源のスペクトル分布のグラフ図である。It is a graph of the spectral distribution of a light source. 光デバイスの接続状態の説明図である。It is explanatory drawing of the connection state of an optical device. 光路長差と干渉光の強度との関係のグラフ図である。It is a graph of the relationship between the optical path length difference and the intensity of the interference light. 光デバイスの接続点及び不良個所の距離とビート信号の強度との関係のグラフ図である。It is a graph of the relationship between the distance of the connection point and the defective part of an optical device, and the strength of a beat signal. 挿入損失の校正線を得るための構成図である。It is a block diagram for obtaining the calibration line of the insertion loss. 挿入損失の測定で使用する校正線のグラフ図である。It is a graph of the calibration line used in the measurement of the insertion loss. 反射減衰量、断線検査の校正線を得るための構成図である。It is a block diagram for obtaining the calibration line of the reflection attenuation amount and the disconnection inspection. 反射減衰量、断線検査の測定で使用する校正線のグラフ図である。It is a graph of the calibration line used for the measurement of the reflection attenuation amount and the disconnection inspection. 実施例2の光デバイス検査機の構成図である。It is a block diagram of the optical device inspection machine of Example 2.

本発明を図示の実施例に基づいて詳細に説明する。 The present invention will be described in detail with reference to the illustrated examples.

図1は実施例1の光デバイス検査機1のブロック構成図であり、この光デバイス検査機1には測定対象物である光デバイスCが接続されている。この光デバイスCとしては多種多様なものが適用可能で、例えば、内部に光路を有する単体の被測定コネクタ、この被測定コネクタ及びこの被測定コネクタに接続した光ファイバケーブル、1対の被測定コネクタ及びこれらの1対の被測定コネクタ間を連結する光ファイバ、TFF(Thin Film Filter)モジュール等の各種光学フィルタ、ビームスプリッタ、光カプラ、光スイッチ、光サーキュレータ等を適用することができるが、特にこれらに限定されるものではない。 FIG. 1 is a block configuration diagram of the optical device inspection machine 1 of the first embodiment, and the optical device C, which is an object to be measured, is connected to the optical device inspection machine 1. A wide variety of optical devices C can be applied. For example, a single measured connector having an optical path inside, this measured connector, an optical fiber cable connected to this measured connector, and a pair of measured connectors. In particular, optical fibers connecting these pairs of connectors under test, various optical filters such as TFF (Thin Film Filter) modules, beam splitters, optical couplers, optical switches, optical circulators, etc. can be applied. It is not limited to these.

光デバイス検査機1は、筐体2内に、広帯域かつ低コヒーレンスな光Lを出射する、例えばSLD(Superluminescent Diode)から成る光源3と、この光Lを透過する測定光L1及び反射する参照光L2に光量を等分に分岐するビームスプリッタ4と、参照光L2の光路長を調整可能な光路長可変機構を有する参照ミラー5と、光デバイスCとの接続点や光デバイスCの断線や亀裂等の不良個所において反射した測定光L1’及び参照ミラー5で反射した参照光L2’を、ビームスプリッタ4を介して受光する第1の光測定器6とを備えている。 The optical device inspection machine 1 emits a wide band and low coherence light L in the housing 2, a light source 3 composed of, for example, an SLD (Superhaving Diode), a measurement light L1 transmitted through the light L, and a reflected reference light. A beam splitter 4 that divides the amount of light into L2 evenly, a reference mirror 5 having an optical path length variable mechanism that can adjust the optical path length of the reference light L2, a connection point between the optical device C, and a disconnection or crack in the optical device C. It is provided with a first optical measuring instrument 6 that receives the measurement light L1'reflected at a defective portion such as the above and the reference light L2'reflected by the reference mirror 5 via the beam splitter 4.

また、光デバイス検査機1は、更に筐体2の外側に接続される接続部7と、この接続部7の同一光軸上に離間して設けられた光デバイスCの他端と接する透過光入力部8と、透過光入力部8から筐体2内に入射した測定光L1を受光する第2の光測定器9とを備えている。 Further, the optical device inspection machine 1 is further in contact with the connection portion 7 connected to the outside of the housing 2 and the other end of the optical device C provided separately on the same optical axis of the connection portion 7. It includes an input unit 8 and a second optical measuring device 9 that receives the measurement light L1 incident on the housing 2 from the transmitted light input unit 8.

ビームスプリッタ4を透過した測定光L1の筐体2外の光路先に配置した接続部7は、測定対象物とされる光デバイスCの一端に光軸を合わせて接続されることになる。なお、光デバイス検査機1を構成する各部材は、必ずしも筐体2の内部及び外面に設けることに限定されず、例えば筐体2の代わりに光学定盤のような基台上に設けてもよい。 The connection portion 7 arranged at the optical path outside the housing 2 of the measurement light L1 transmitted through the beam splitter 4 is connected with the optical axis aligned with one end of the optical device C as the measurement target. It should be noted that each member constituting the optical device inspection machine 1 is not necessarily limited to being provided on the inner and outer surfaces of the housing 2, and may be provided on a base such as an optical surface plate instead of the housing 2, for example. good.

また、光源3、参照ミラー5、第1の光測定器6、第2の光測定器9には、制御部10が接続されており、この制御部10はこれら部材の動作等を制御している。また、制御部10は第1の光測定器6及び第2の光測定器9の測定値等を演算し、挿入損失、反射減衰量、不良個所の位置とその程度を数値化して、図示しない表示手段、記憶手段に出力する。これらの表示手段、記憶手段は、筐体2内に配置した組込み型のPCであってもよく、また外部に接続したノートPC等であってもよい。 Further, a control unit 10 is connected to the light source 3, the reference mirror 5, the first optical measuring instrument 6, and the second optical measuring instrument 9, and the control unit 10 controls the operation and the like of these members. There is. Further, the control unit 10 calculates the measured values of the first optical measuring instrument 6 and the second optical measuring instrument 9, quantifies the insertion loss, the reflection attenuation amount, the position and the degree of the defective portion, and is not shown. Output to display means and storage means. These display means and storage means may be a built-in type PC arranged in the housing 2, or may be a notebook PC or the like connected to the outside.

制御部10は、後述する複数の校正線を記憶し、第1の光測定器6及び第2の光測定器9による測定値からこの校正線を基に挿入損失、反射減衰量、反射光量を算出する機能を有している。 The control unit 10 stores a plurality of calibration lines to be described later, and calculates the insertion loss, the reflection attenuation amount, and the reflected light amount from the measured values by the first optical measuring instrument 6 and the second optical measuring instrument 9 based on the calibration lines. It has a function to calculate.

図2は光源3が有するスペクトル分布のグラフ図である。LD(Laser Diode)が数nm、典型的には±5nmのスペクトル分布しか持たないのに対して、例えばSLDから成る光源3は数10nm、好ましくは±40nmのスペクトル分布を有する広帯域なものである。光源3はLDに比べてコヒーレント長が短い低コヒーレンスな性質を有する上に、LDのように高輝度で位相の揃った光を出射することができ、光干渉を利用した測定に使用することが可能である。 FIG. 2 is a graph of the spectral distribution of the light source 3. While the LD (Laser Diode) has a spectral distribution of only a few nm, typically ± 5 nm, the light source 3 consisting of, for example, an SLD is a broadband one having a spectral distribution of several tens of nm, preferably ± 40 nm. .. The light source 3 has a low coherence property in which the coherent length is shorter than that of the LD, and can emit high-intensity and phase-aligned light like the LD, and can be used for measurement using optical interference. It is possible.

また、光源3には光Lの温度に対する出力安定性を維持するために、ペルチェ素子等による温度制御手段が取り付けられている。同様に第2の光測定器9にも受光特性を安定させるためにペルチェ素子等による温度制御手段が取り付けられている。 Further, in order to maintain the output stability of the light L with respect to the temperature, the light source 3 is equipped with a temperature control means using a Pelche element or the like. Similarly, the second optical measuring instrument 9 is also equipped with a temperature control means using a Pelche element or the like in order to stabilize the light receiving characteristics.

参照ミラー5は参照光L2の参照光路に沿って任意の位置に移動可能な光路長可変機構を備えている。例えば、この参照光路の光路長可変機構には、回転リフレクタを用いることもできる。この回転リフレクタの光路長可変範囲は、光デバイスCの断線や亀裂を検査する範囲の光路長以上を確保されており、例えば光デバイスの光路長が20mmであれば、可変範囲20mmを確保するために、半径20mm、回転速度を1.1回転/秒程度の機構が採用される。 The reference mirror 5 includes an optical path length variable mechanism that can move to an arbitrary position along the reference optical path of the reference light L2. For example, a rotary reflector can be used for the optical path length variable mechanism of this reference optical path. The optical path length variable range of this rotary reflector is secured to be equal to or longer than the optical path length within the range for inspecting the disconnection or crack of the optical device C. For example, if the optical path length of the optical device is 20 mm, the variable range of 20 mm is secured. In addition, a mechanism with a radius of 20 mm and a rotation speed of about 1.1 rotations / second is adopted.

接続部7は、測定光L1を光デバイスCに光軸を合わせて送光できればよいので、光デバイスCの形態に応じて多種多様な構造を採用することが可能である。例えば、図1に示すように光デバイスCが光コネクタ等のような光路長の短いものであれば、接続部7は光デバイスC近傍まで測定光L1を送光する光ファイバ7aの先端に、光デバイスCの一端に光軸を合わせて接続可能な接続端子7bを取り付けた構成とするのが適している。光デバイスCが、両端に光コネクタの取り付けられた光ファイバのように光路長が長いものであれば、接続部7は接続端子7bのみで構成することもできる。 Since the connection portion 7 only needs to be able to transmit the measurement light L1 with the optical axis aligned with the optical device C, it is possible to adopt a wide variety of structures depending on the form of the optical device C. For example, if the optical device C has a short optical path length such as an optical connector as shown in FIG. 1, the connection portion 7 is attached to the tip of the optical fiber 7a that transmits the measurement light L1 to the vicinity of the optical device C. It is suitable to have a connection terminal 7b attached to one end of the optical device C so that the optical axis can be aligned and connected. If the optical device C has a long optical path length such as an optical fiber having optical connectors attached to both ends, the connection portion 7 may be composed of only the connection terminal 7b.

透過光入力部8は、光デバイスCの他端から所定の開口角で広がりながら出射する測定光L1のビーム径よりも十分に大きい開口であり、特に厳密に光デバイスCの光軸に合わせることなく、光デバイスCの他端に接していればよい。なお、透過光入力部8と光デバイスの接続方法として、例えば透過光入力部8に固定孔を設け、光デバイスの他端を固定孔に挿入することで固定して接続する方法もある。 The transmitted light input unit 8 has an aperture sufficiently larger than the beam diameter of the measurement light L1 emitted from the other end of the optical device C while spreading at a predetermined aperture angle, and is particularly strictly aligned with the optical axis of the optical device C. It suffices if it is in contact with the other end of the optical device C. As a method of connecting the transmitted light input unit 8 and the optical device, for example, there is also a method of providing a fixed hole in the transmitted light input unit 8 and inserting the other end of the optical device into the fixed hole to fix and connect the device.

同様に第2の光測定器9の受光面は、光デバイスCの他端から所定の開口角で広がりながら出射する測定光L1のビーム径よりも十分に大きいので、光デバイスCと第2の光測定器9の光軸を厳密に合わせて配置する必要はなく、また透過光入力部8から多少離間していても支障はない。 Similarly, since the light receiving surface of the second optical measuring instrument 9 is sufficiently larger than the beam diameter of the measurement light L1 emitted from the other end of the optical device C while spreading at a predetermined aperture angle, the optical device C and the second optical device C have a second light receiving surface. It is not necessary to arrange the optical axes of the optical measuring instrument 9 so as to be exactly aligned with each other, and there is no problem even if the optical measuring instrument 9 is slightly separated from the transmitted light input unit 8.

なお、光源3から出射された光Lの各光路には光ファイバを用いることもでき、ビームスプリッタ4の代りにファイバカプラを用いて光Lを直進・分岐させることもできる。また、実際の光デバイス検査機1の光路中には、更にレンズ光学系、偏光ビームスプリッタ、1/4波長板等が使用されることもあるが、これらは公知の光学的な手段であるので、その説明を省略する。 An optical fiber can be used for each optical path of the light L emitted from the light source 3, and a fiber coupler can be used instead of the beam splitter 4 to straighten and branch the light L. Further, a lens optical system, a polarization beam splitter, a 1/4 wave plate, etc. may be further used in the optical path of the actual optical device inspection machine 1, but these are known optical means. , The explanation is omitted.

光源3から出射された光Lは、ビームスプリッタ4において分岐され、ビームスプリッタ4を透過して直進した測定光L1は、接続部7を通って光デバイスCに送光される。一方、ビームスプリッタ4で反射された光Lは参照光L2となり、参照ミラー5に送光される。 The light L emitted from the light source 3 is branched at the beam splitter 4, and the measurement light L1 traveling straight through the beam splitter 4 is transmitted to the optical device C through the connection portion 7. On the other hand, the light L reflected by the beam splitter 4 becomes the reference light L2 and is transmitted to the reference mirror 5.

測定光L1が光デバイスCに送光されると、光デバイスCが良品であれば、大部分は光デバイスCを透過して、透過測定光LT1となり第2の光測定器9に受光される。測定光L1の一部は接続部7と光デバイスCの接続点で反射されて反射測定光LR1となり、接続部7を戻ってビームスプリッタ4で反射され第1の光測定器6に受光される。 When the measurement light L1 is transmitted to the optical device C, if the optical device C is a good product, most of the light passes through the optical device C to become the transmitted measurement light LT1 and is received by the second optical measuring instrument 9. .. A part of the measurement light L1 is reflected at the connection point between the connection portion 7 and the optical device C to become the reflection measurement light LR1, returns from the connection portion 7, is reflected by the beam splitter 4, and is received by the first optical measuring instrument 6. ..

また、光デバイスC内に断線や亀裂等の不良個所C1があれば、測定光L1は不良個所C1においても一部を反射されて不良反射測定光LF1となり、ビームスプリッタ4で反射され第1の光測定器6に受光される。一方、参照光L2は参照ミラー5で反射されて参照光L2’となり、ビームスプリッタ4を透過して第1の光測定器6に受光される。 Further, if there is a defective portion C1 such as a disconnection or a crack in the optical device C, the measurement light L1 is partially reflected even at the defective portion C1 to become the defective reflection measurement light LF1, which is reflected by the beam splitter 4 and is the first. The light is received by the optical measuring instrument 6. On the other hand, the reference light L2 is reflected by the reference mirror 5 to become the reference light L2', which passes through the beam splitter 4 and is received by the first optical measuring instrument 6.

例えばSLDから成る光源3からは、波長1310±40nmの低コヒーレントで位相が揃った光Lが出射され、接続部7と光デバイスの接続点から光デバイスC内の不良点までを含む反射光の測定範囲は例えば0〜20mmであり、反射位置の測定分解長は例えば1.25μmとされている。これに対応して、参照光L2の光路長を調節する参照ミラー5の光路長可変機構の可変範囲も、例えば20mm相当とされている。 For example, from the light source 3 made of SLD, low coherent and phase-aligned light L having a wavelength of 1310 ± 40 nm is emitted, and the reflected light including from the connection point between the connection portion 7 and the optical device to the defective point in the optical device C is emitted. The measurement range is, for example, 0 to 20 mm, and the measured decomposition length of the reflection position is, for example, 1.25 μm. Correspondingly, the variable range of the optical path length variable mechanism of the reference mirror 5 for adjusting the optical path length of the reference light L2 is also set to be equivalent to, for example, 20 mm.

光デバイスCの挿入損失測定、反射減衰量測定、断線や亀裂等の不良個所の検査に際しては、先ず光デバイス検査機1の接続部7に測定対象物となる光デバイスCの一端を接続し、他端を透過光入力部8に接するように配置する。そして、光源3から挿入損失測定に適した所定光量の光Lを出射させると、光Lはビームスプリッタ4によって光デバイスCへの測定光L1と、参照ミラー5への参照光L2とに分岐する。 When measuring the insertion loss of the optical device C, measuring the amount of reflection attenuation, and inspecting defective parts such as disconnections and cracks, first, one end of the optical device C to be measured is connected to the connection portion 7 of the optical device inspection machine 1. The other end is arranged so as to be in contact with the transmitted light input unit 8. Then, when a predetermined amount of light L suitable for the insertion loss measurement is emitted from the light source 3, the light L is branched into the measurement light L1 to the optical device C and the reference light L2 to the reference mirror 5 by the beam splitter 4. ..

まず、測定光L1は、接続部7を通って光デバイスCに達する。測定光L1の大部分は光デバイスCを透過して、光デバイスCの挿入損失分だけ減衰して、透過光入力部8から筐体2内に入り、第2の光測定器9に受光される。第2の光測定器9の受光量は制御部10に入力され、制御部10は所定光量から受光量を減算して、挿入損失の測定値を算出する。 First, the measurement light L1 reaches the optical device C through the connection portion 7. Most of the measurement light L1 passes through the optical device C, is attenuated by the insertion loss of the optical device C, enters the housing 2 from the transmitted light input unit 8, and is received by the second optical measuring instrument 9. Ru. The light receiving amount of the second optical measuring device 9 is input to the control unit 10, and the control unit 10 subtracts the light receiving amount from the predetermined light amount to calculate the measured value of the insertion loss.

この挿入損失の測定値には、光デバイスC自体の挿入損失に加えて、ビームスプリッタ4や接続部7等の光デバイス検査機1自体の損失も含まれている。更にそれら光デバイス検査機1自体の損失や第2の光測定器9の受光特性には、個々の光デバイス検査機1自体の機差があり、その影響も挿入損失の測定値には含まれている。制御部10は光デバイスC自体の挿入損失ILと、この光デバイス検査機1自体の損失や機差の影響を含む挿入損失の測定値との関係を表す校正曲線を記憶しているので、この校正曲線に従って、挿入損失の測定値から光デバイスCの挿入損失ILを算出する。制御部10に記憶されている光デバイスC自体の挿入損失ILと挿入損失の測定値との関係を表す校正曲線を取得する方法については後述する。 In addition to the insertion loss of the optical device C itself, the measured value of the insertion loss includes the loss of the optical device inspection machine 1 itself such as the beam splitter 4 and the connection portion 7. Further, there are differences in the loss of the optical device inspection machine 1 itself and the light receiving characteristics of the second optical measuring instrument 9, and the influence thereof is also included in the measured value of the insertion loss. ing. Since the control unit 10 stores the calibration curve showing the relationship between the insertion loss IL of the optical device C itself and the measured value of the insertion loss including the loss of the optical device inspection machine 1 itself and the influence of the machine difference, this is stored. According to the calibration curve, the insertion loss IL of the optical device C is calculated from the measured value of the insertion loss. A method for acquiring a calibration curve representing the relationship between the insertion loss IL of the optical device C itself stored in the control unit 10 and the measured value of the insertion loss will be described later.

次に、光源3から反射減衰量測定及び断線や亀裂等の不良個所の検査に適した所定光量に変更して光Lを出射させる。同様にして光Lはビームスプリッタ4によって測定光L1と参照光L2に分岐し、測定光L1は接続部7を通って、光デバイスCに到達する。 Next, the light L is emitted from the light source 3 by changing the amount of light to a predetermined amount suitable for measuring the amount of reflection attenuation and inspecting defective parts such as disconnection and cracks. Similarly, the light L is split into the measurement light L1 and the reference light L2 by the beam splitter 4, and the measurement light L1 reaches the optical device C through the connection portion 7.

図3は接続部7と光デバイスCの接続状態を模式的に示した説明図である。例えば、接続部7の接続端子7bと光デバイスCの接続点には軸ずれが存在し、この接続点から光デバイスC内に5mm入った部分に亀裂の不良個所C1が存在する場合を示している。これ以降の反射減衰量及び断線や亀裂等の不良個所の検査に関する動作は、光デバイスCが図3に示した状態であることを前提として説明する。 FIG. 3 is an explanatory diagram schematically showing the connection state between the connection unit 7 and the optical device C. For example, the case where there is an axial deviation at the connection point between the connection terminal 7b of the connection portion 7 and the optical device C, and the defective portion C1 of the crack exists in the portion 5 mm inside the optical device C from this connection point is shown. There is. Subsequent operations related to the amount of reflection attenuation and the inspection of defective parts such as disconnection and cracks will be described on the premise that the optical device C is in the state shown in FIG.

測定光L1の一部は、接続部7と光デバイスCの接続点で、わずかな軸ずれに起因して通常よりも強く反射されて、反射測定光LR1となって接続部7を戻り、ビームスプリッタ4で反射されて第1の光測定器6によって受光される。このときに、参照光L2は参照ミラー5で反射されて参照光L2’となり、ビームスプリッタ4を透過して第1の光測定器6によって反射測定光LR1と同時に受光される。従って、第1の光測定器6は、反射測定光LR1と参照光L2’の干渉光である反射干渉光LIRを受光することになる。 A part of the measurement light L1 is reflected more strongly than usual at the connection point between the connection portion 7 and the optical device C due to a slight misalignment, becomes the reflection measurement light LR1 and returns to the connection portion 7, and is a beam. It is reflected by the splitter 4 and received by the first optical measuring instrument 6. At this time, the reference light L2 is reflected by the reference mirror 5 to become the reference light L2', passes through the beam splitter 4, and is received by the first optical measuring instrument 6 at the same time as the reflection measurement light LR1. Therefore, the first optical measuring instrument 6 receives the reflected interference light LIR, which is the interference light between the reflection measurement light LR1 and the reference light L2'.

図4は第1の光測定器6で受光される反射干渉光LIRの強度と、反射測定光LR1と参照光L2‘の光路長差との関係を表したグラフ図である。反射測定光LR1と参照光L2’の光路長を一致させると、反射干渉光LIRの強度が最大となる。そこで、この特性を利用して、制御部10によって参照ミラー5を光路に沿って移動させて参照光L2‘の光路長を変化させ、反射干渉光LIRの強度が最大となるように調整し、反射測定光LR1の光路長と一致させる。このときに制御部10で参照ミラー5の移動距離を把握しておけば、反射測定光LR1の光路長に相当する接続部7と光デバイスCの接続点の位置を検出できる。更に、このとき反射干渉光LIRの強度を最大とすることができるので、第1の光測定器6には極めて強いピーク状のビート信号が受光される。 FIG. 4 is a graph showing the relationship between the intensity of the reflected interference light LIR received by the first optical measuring device 6 and the optical path length difference between the reflected measurement light LR1 and the reference light L2'. When the optical path lengths of the reflection measurement light LR1 and the reference light L2'are matched, the intensity of the reflected interference light LIR is maximized. Therefore, using this characteristic, the control unit 10 moves the reference mirror 5 along the optical path to change the optical path length of the reference light L2', and adjusts the intensity of the reflected interference light LIR to the maximum. It matches the optical path length of the reflection measurement light LR1. At this time, if the control unit 10 grasps the moving distance of the reference mirror 5, the position of the connection point between the connection unit 7 and the optical device C corresponding to the optical path length of the reflection measurement light LR1 can be detected. Further, at this time, since the intensity of the reflected interference light LIR can be maximized, an extremely strong peak-shaped beat signal is received by the first optical measuring instrument 6.

図5は第1の光測定器6で受光されるピーク状のビート信号を示しており、横軸は接続部7と光デバイスCの接続点をゼロ点としてビート信号の発生する距離(位置)を表し、縦軸はビート信号の強度を表している。接続部7と光デバイスCの接続点からの反射測定光LR1に起因するビート信号er1は、接続部に接合面があるだけでなく、わずかな軸ずれも存在するため、図5に示すように距離0のところに極めて高い強度のビート状で現れる。 FIG. 5 shows a peak-shaped beat signal received by the first optical measuring instrument 6, and the horizontal axis is the distance (position) where the beat signal is generated with the connection point between the connection portion 7 and the optical device C as a zero point. The vertical axis represents the strength of the beat signal. As shown in FIG. 5, the beat signal er1 caused by the reflection measurement light LR1 from the connection point between the connection portion 7 and the optical device C not only has a joint surface at the connection portion but also has a slight axial deviation. It appears as a beat with extremely high intensity at a distance of 0.

一方、接続部7と光デバイスCの接続点を透過した測定光L1は、光デバイスC内に到達し、光デバイスC内に断線や亀裂等の不良個所があれば、そこで反射されて不良反射測定光LF1となって接続部7を戻り、ビームスプリッタ4で反射されて第1の光測定器6によって受光される。現在接続されている光デバイスCには接続部7と光デバイスCの接続点から5mm入った部分に、図3に示すように亀裂の不良個所C1があるので、そこで反射されて不良反射測定光LF1が発生する。 On the other hand, the measurement light L1 that has passed through the connection point between the connection portion 7 and the optical device C reaches the inside of the optical device C, and if there is a defective part such as a disconnection or a crack in the optical device C, it is reflected there and defectively reflected. It becomes the measurement light LF1 and returns to the connection portion 7, is reflected by the beam splitter 4, and is received by the first optical measuring device 6. As shown in FIG. 3, the currently connected optical device C has a crack defective portion C1 at a portion 5 mm from the connection point between the connecting portion 7 and the optical device C, so that the defective reflection measurement light is reflected there. LF1 is generated.

このときに参照光L2’は上述のように第1の光測定器6によって不良反射測定光LF1と同時に受光される。従って、第1の光測定器6は、不良反射測定光LF1と参照光L2’の干渉光である不良反射干渉光LIFを受光することになる。 At this time, the reference light L2'is received by the first optical measuring instrument 6 at the same time as the defective reflection measurement light LF1 as described above. Therefore, the first optical measuring instrument 6 receives the defective reflection interference light LIF, which is the interference light between the defective reflection measurement light LF1 and the reference light L2'.

不良反射干渉光LIFの強度も同様にして不良反射測定光LF1と参照光L2‘の光路長差に対して、図4に示すような関係を有する。そこで、制御部10によって参照ミラー5を光路に沿って移動させて参照光L2’の光路長を変化させ、不良反射干渉光LIFの強度が最大となるように調整し、不良反射測定光LF1の光路長と一致させる。このときに制御部10で参照ミラー5の移動距離を把握しておけば、不良反射測定光LF1の光路長に相当する光デバイスCの不良個所C1の位置を検出できる。更に、このとき不良反射干渉光LIFの強度を最大とすることができるので、接続部7と光デバイスCの接続点から光デバイスC内に5mm入ったところにある不良個所C1に起因するビート信号ef1は、図5に示すように距離5mmのところに高い強度のビート状で現れる。 Similarly, the intensity of the poor reflection interference light LIF has a relationship as shown in FIG. 4 with respect to the optical path length difference between the bad reflection measurement light LF1 and the reference light L2'. Therefore, the control unit 10 moves the reference mirror 5 along the optical path to change the optical path length of the reference light L2', adjusts the intensity of the defective reflection interference light LIF to the maximum, and adjusts the intensity of the defective reflection interference light LF1 to the maximum. Match with the optical path length. At this time, if the control unit 10 grasps the moving distance of the reference mirror 5, the position of the defective portion C1 of the optical device C corresponding to the optical path length of the defective reflection measurement light LF1 can be detected. Further, at this time, since the intensity of the defective reflection interference light LIF can be maximized, the beat signal caused by the defective portion C1 located 5 mm inside the optical device C from the connection point between the connection portion 7 and the optical device C. As shown in FIG. 5, ef1 appears as a high-intensity beat at a distance of 5 mm.

なお、接続部7と光デバイスCの接続点には図3に示すように明らかな軸ずれがあるため、接続部7と光デバイスCの接続点によるビート信号er1は、図5に示すように不良個所C1によるビート信号ef1よりも、大きなピーク値を有している。但し、一般的には接続部7と光デバイスCの接続点からの反射測定光LR1と、光デバイスCの断線や亀裂に起因する不良反射測定光LF1との大小関係は、軸ずれや断線・亀裂等の度合に応じて適宜に変化するものであり、図5に示したビート信号er1、ef1は一例に過ぎない。 Since the connection point between the connection unit 7 and the optical device C has a clear axis deviation as shown in FIG. 3, the beat signal er1 by the connection point between the connection unit 7 and the optical device C is as shown in FIG. It has a larger peak value than the beat signal ef1 due to the defective portion C1. However, in general, the magnitude relationship between the reflection measurement light LR1 from the connection point between the connection portion 7 and the optical device C and the defective reflection measurement light LF1 due to the disconnection or crack of the optical device C is the axis deviation or disconnection. It changes appropriately depending on the degree of cracks and the like, and the beat signals er1 and ef1 shown in FIG. 5 are only examples.

このように、参照ミラー5を移動させることによって、参照光L2’の光路長が、接続部7と光デバイスCの接続点、又は光デバイスC内の不良個所C1からの反射測定光LR1又はLF1の光路長に一致したときには、図5に示すように第1の光測定器6で干渉によるピーク状のビート信号er1、ef1を受光することができる。このピーク状のビート信号の強度は、光学部材同士の接続や断線又は亀裂等のない位置からの反射光よりも際立って大きいために、ビート信号が得られたときには、光学部材同士の接続点があることや光デバイスC内に断線や亀裂等の不良が生じていることを容易に検出し、その位置を特定することが可能である。 By moving the reference mirror 5 in this way, the optical path length of the reference light L2'is changed to the reflection measurement light LR1 or LF1 from the connection point between the connection portion 7 and the optical device C or the defective portion C1 in the optical device C. When the optical path lengths of the above are matched, as shown in FIG. 5, the first optical measuring instrument 6 can receive the peak-shaped beat signals er1 and ef1 due to interference. Since the intensity of this peak-shaped beat signal is significantly higher than that of the reflected light from a position where there is no connection between optical members, disconnection, cracks, etc., when a beat signal is obtained, the connection points between the optical members are set. It is possible to easily detect that there is a defect such as a disconnection or a crack in the optical device C and specify the position thereof.

また、光学部材同士の接続点や光デバイスC内の不良点が複数個存在し、それらが極めて距離的に近接していても、光干渉を利用しているので、それら各点からの反射光を区別して検出することが可能である。反射点の位置を検出するだけであれば、光Lの波長と同オーダー、例えば1.0μmの分解能で検出可能であり、反射光の強度まで測定する場合には、光Lの波長の10〜20倍、例えば20μmの分解能で測定可能である。更に、この測定は高感度な光干渉によるため、光デバイスC内の微弱な反射光しか得られない隠れ断線であっても、ビート信号の光強度は際立って大きくなるので、隠れ断線の位置を検出することもできる。 Further, even if there are a plurality of connection points between optical members and defective points in the optical device C and they are extremely close to each other in a distance, optical interference is used, so that the reflected light from each point is used. Can be detected separately. If only the position of the reflection point is detected, it can be detected with the same order as the wavelength of the light L, for example, with a resolution of 1.0 μm, and if the intensity of the reflected light is measured, 10 to 10 of the wavelength of the light L. It can be measured with a resolution of 20 times, for example, 20 μm. Furthermore, since this measurement is based on highly sensitive optical interference, the light intensity of the beat signal is remarkably high even if the hidden wire is only weakly reflected light in the optical device C, so the position of the hidden wire is determined. It can also be detected.

この光干渉を利用した反射光の検出によって、光デバイスC内の不良個所が発見されない場合には、光デバイスC内には不良がないと判断できるが、不良個所が検出された場合には、更にその不良の程度を検査する必要がある。第1の光測定器6で得られた光デバイスCの不良個所からの不良反射測定光LF1に起因する不良反射干渉光LIFの強度を測定することにより、光デバイスC内の断線や亀裂等の不良の状態を或る程度は推測することができる。 If no defective part in the optical device C is found by detecting the reflected light using this optical interference, it can be determined that there is no defect in the optical device C, but if a defective part is detected, it can be determined. Furthermore, it is necessary to inspect the degree of the defect. By measuring the intensity of the defective reflection interference light LIF caused by the defective reflection measurement light LF1 from the defective portion of the optical device C obtained by the first optical measuring instrument 6, the disconnection, cracks, etc. in the optical device C can be measured. The state of failure can be inferred to some extent.

また、同様にこの光干渉を利用した反射光の検出によって、接続部7と光デバイスCの接続点の位置が特定できれば、接続部7と光デバイスCの接続点からの反射測定光LR1に起因する反射干渉光LIRの強度を測定することにより、光デバイスCの反射減衰量を数値化することができる。 Similarly, if the position of the connection point between the connection unit 7 and the optical device C can be specified by detecting the reflected light using this optical interference, it is caused by the reflection measurement light LR1 from the connection point between the connection unit 7 and the optical device C. By measuring the intensity of the reflected interference light LIR, the amount of reflection attenuation of the optical device C can be quantified.

しかし、これらの干渉光LIR、LIFを単に第1の光測定器6によって受光し、直ちにその光強度を数値化するだけでは、光デバイスCの反射減衰量や内部で発生している断線・亀裂等の不良の程度を定量化することはできない。なぜならば、第1の光測定器6で受光された光量から単に得られたビート信号の強度は、たとえ第1の光測定器6に入射する干渉光の光強度が一定であっても、第1の光測定器6自体やそれに接続されている図示しない増幅回路等の個々の特性に大きく影響されて、個々の光デバイス検査機1毎に異なる数値となるからである。更に、第1の光測定器6で単に得られたビート信号の強度には、ビームスプリッタ4、参照ミラー5、接続部7等の光学部材の特性が、個々の光デバイス検査機1によって異なること、つまり機差の影響も含まれていることは言うまでもない。 However, if these interference lights LIR and LIF are simply received by the first optical measuring instrument 6 and the light intensity is immediately quantified, the amount of reflection attenuation of the optical device C and the disconnection / cracking that occurs inside are generated. It is not possible to quantify the degree of defects such as. This is because the intensity of the beat signal simply obtained from the amount of light received by the first optical measuring instrument 6 is the first, even if the optical intensity of the interference light incident on the first optical measuring instrument 6 is constant. This is because the values are greatly affected by the individual characteristics of the optical measuring instrument 6 itself and the amplification circuit (not shown) connected to the optical measuring instrument 6 itself, and the numerical values differ for each optical device inspection machine 1. Further, the strength of the beat signal simply obtained by the first optical measuring instrument 6 is such that the characteristics of the optical members such as the beam splitter 4, the reference mirror 5, and the connection portion 7 differ depending on the individual optical device inspection machine 1. In other words, it goes without saying that the influence of the machine error is also included.

そこで、接続部7と光デバイスCの接続点や内部の断線・亀裂等の不良によって発生する反射光に起因する干渉光LIR、LIFの強度を、個々の光デバイス検査機1の機差なく普遍的に数値化するために、各光学部材や増幅回路等も含めて第1の光測定器6の受光特性を、基準となる光学機器や光学系を用いて校正する。そして、第1の光測定器6によって受光された干渉光の測定値と、それらから第1の光測定器6の受光特性等の光デバイス検査機1の機差を取り除いた干渉光の強度との関係を表す校正線を取得して、個々の光デバイス検査機1毎に制御部10に記憶させておく。 Therefore, the intensities of the interference light LIR and LIF caused by the reflected light generated by the connection point between the connection portion 7 and the optical device C and the internal disconnection / crack, etc. are universal without any difference between the individual optical device inspection machines 1. In order to quantify the light, the light receiving characteristics of the first optical measuring instrument 6, including each optical member and the amplification circuit, are calibrated using a reference optical device or optical system. Then, the measured values of the interference light received by the first optical measuring instrument 6 and the intensity of the interference light obtained by removing the machine difference of the optical device inspection machine 1 such as the light receiving characteristics of the first optical measuring instrument 6 from them. A calibration line representing the relationship between the above is acquired and stored in the control unit 10 for each optical device inspection machine 1.

実際に個々の光デバイス検査機1によって、光デバイスCの反射減衰量測定や断線・亀裂等の不良の検出を行う場合には、第1の光測定器6で受光された干渉光LIR、LIFの強度の測定値を、この校正線によって校正して、光デバイスCの反射減衰量や断線・亀裂等の不良による反射光量を算出する。 When the individual optical device inspection machine 1 actually measures the reflection attenuation of the optical device C and detects defects such as disconnection and cracks, the interference light LIR and LIF received by the first optical measuring device 6 The measured value of the intensity of the above is calibrated by this calibration line, and the amount of reflected light reflected by the optical device C and the amount of reflected light due to defects such as disconnection and cracks are calculated.

上述したように光デバイス検査機1による挿入損失、反射減衰量、断線・亀裂等の不良による反射光量を高精度に測定するには、各光学部材も含めた第1の光測定器6及び第2の光測定器9の受光特性のばらつきによって、個々の光デバイス検査機1毎の機差が発生しないように校正を行う。 As described above, in order to measure the amount of reflected light due to defects such as insertion loss, reflection attenuation, disconnection / crack, etc. by the optical device inspection machine 1 with high accuracy, the first optical measuring instrument 6 including each optical member and the first optical measuring instrument 6 and the first Calibrate so that there is no difference between the individual optical device inspection machines 1 due to the variation in the light receiving characteristics of the optical measuring device 9 of 2.

図6は第2の光測定器9で受光した光デバイスCの挿入損失の測定値ILMCから、光デバイスCの挿入損失値ILCを算出する時に使用する校正線を得るために、個々の光デバイス検査機1毎に校正作業を行う場合の構成図である。校正対象である光デバイス検査機1の接続部7に、測定対象物である光デバイスCに代えて、校正用基準対象物である校正用基準光デバイスC0、校正用光減衰器Gを順次に接続する。 FIG. 6 shows individual optical devices in order to obtain a calibration line used when calculating the insertion loss value ILC of the optical device C from the measured value ILMC of the insertion loss of the optical device C received by the second optical measuring instrument 9. It is a block diagram in the case of performing the calibration work for each inspection machine 1. In place of the optical device C which is the measurement target, the calibration reference optical device C0 and the calibration optical attenuator G which are the calibration reference objects are sequentially connected to the connection portion 7 of the optical device inspection machine 1 which is the calibration target. Connecting.

校正用基準光デバイスC0には、光源3と同一特性の光源によって、予め挿入損失値IL0が測定されているものを用いる。校正用基準光デバイスC0の挿入損失値IL0は、測定対象の光デバイスCの挿入損失値ILCとおよそ同等であればよいが、好ましくは若干小さい値の方が、校正精度を高めるのに適している。また、校正用光減衰器Gは、光源3と同一特性の光源によって、予め減衰量の設定値が実際の光減衰量と一致するように校正されており、減衰量の設定値に対する実際の光減衰量の直線性が保証されているものを用いる。つまり、光源3から出射する光が透過した場合の損失量(減衰量)が既知の校正用基準光デバイスC0及び校正用光減衰器Gを用いる。 As the calibration reference optical device C0, a light source having the same characteristics as the light source 3 whose insertion loss value IL0 has been measured in advance is used. The insertion loss value IL0 of the calibration reference optical device C0 may be approximately the same as the insertion loss value ILC of the optical device C to be measured, but preferably a slightly smaller value is suitable for improving the calibration accuracy. There is. Further, the calibration optical attenuator G is calibrated in advance by a light source having the same characteristics as the light source 3 so that the set value of the attenuation amount matches the actual light attenuation amount, and the actual light with respect to the set value of the attenuation amount. Use one that guarantees the linearity of the attenuation. That is, a calibration reference optical device C0 and a calibration optical attenuator G whose loss amount (attenuation amount) when the light emitted from the light source 3 is transmitted are known are used.

校正を行う際には、光源3から挿入損失測定時と同様に所定光量の光Lを出射させる。光Lはビームスプリッタ4によって測定光L1と参照光L2に分岐するが、校正には測定光L1のみを使用する。測定光L1は接続部7、校正用基準光デバイスC0、校正用光減衰器Gを順次に通って透過測定光LT1となり、透過光入力部8から筐体2内に入り、第2の光測定器9に受光される。 At the time of calibration, a predetermined amount of light L is emitted from the light source 3 as in the case of measuring the insertion loss. The light L is split into the measurement light L1 and the reference light L2 by the beam splitter 4, but only the measurement light L1 is used for calibration. The measurement light L1 passes through the connection unit 7, the calibration reference light device C0, and the calibration light attenuator G in order to become the transmission measurement light LT1, enters the housing 2 from the transmission light input unit 8, and performs the second light measurement. Light is received by the vessel 9.

このときに校正用光減衰器Gの光減衰量をゼロに設定し、透過測定光LT1が校正用基準光デバイスC0の挿入損失値IL0の分だけ損失を受けて、第2の光測定器9に受光されるようにする。制御部10はこのときの第2の光測定器9の受光量を、光源3の所定光量から減算して、挿入損失の測定値ILM0を算出する。引き続いて、校正用光減衰器Gの光減衰量を所定値、例えば数dBに設定して、透過測定光LT1が(挿入損失値IL0+校正用光減衰器Gの減衰量数dB)=IL1の分だけ損失を受けて、第2の光測定器9に受光されるようにする。制御部10はこのときの第2の光測定器9の受光量を、光源3の所定光量から減算して挿入損失の測定値ILM1を算出する。 At this time, the amount of optical attenuation of the calibration optical attenuator G is set to zero, and the transmission measurement light LT1 receives a loss by the amount of the insertion loss value IL0 of the calibration reference optical device C0, and the second optical measuring instrument 9 To receive light. The control unit 10 subtracts the light receiving amount of the second light measuring device 9 at this time from the predetermined light amount of the light source 3 to calculate the measured value ILM0 of the insertion loss. Subsequently, the light attenuation of the calibration optical attenuator G is set to a predetermined value, for example, several dB, and the transmission measurement light LT1 is (insertion loss value IL0 + attenuation number dB of the calibration light attenuator G) = IL1. It receives a loss by the amount and receives light from the second optical measuring instrument 9. The control unit 10 subtracts the light receiving amount of the second light measuring device 9 at this time from the predetermined light amount of the light source 3 to calculate the measured value ILM1 of the insertion loss.

図7は挿入損失を算出するための校正線であり、上述した第2の光測定器9による挿入損失の測定値ILMを、校正用基準光デバイスC0及び校正用光減衰器Gによって設定した挿入損失ILに対してプロットし、プロットを近似する校正線を引いたものである。挿入損失の測定値ILM0は挿入損失値IL0の点にプロットされ、ILM1は挿入損失値(IL0+数dB)=IL1の点にプロットされ、2点を通る校正線が引かれている。この校正線は個々の光デバイス検査機1の光学部材や第2の光測定器9の特性ばらつきによる機差を含んだ挿入損失の測定値と、実際に接続部7に取り付けられた測定対象物の挿入損失値との関係を表すものである。 FIG. 7 is a calibration line for calculating the insertion loss, and the insertion loss measured by the second optical measuring instrument 9 described above is set by the calibration reference optical device C0 and the calibration optical attenuator G. It is plotted against the loss IL and a calibration line is drawn to approximate the plot. The measured value of insertion loss ILM0 is plotted at the point of insertion loss value IL0, ILM1 is plotted at the point of insertion loss value (IL0 + number dB) = IL1, and a calibration line passing through the two points is drawn. This calibration line is the measured value of the insertion loss including the machine difference due to the optical member of each optical device inspection machine 1 and the characteristic variation of the second optical measuring device 9, and the measurement object actually attached to the connection portion 7. It shows the relationship with the insertion loss value of.

制御部10にこの校正線のデータを記憶させておけば、上述した手順で光デバイスCの挿入損失を測定した際には、この校正線を使用して、第2の光測定器9によって測定された挿入損失の測定値ILMCから、光デバイスCの挿入損失値ILCを求めることができる。求めた光デバイスCの挿入損失値ILCは、個々の光デバイス検査機1の光学部材や第2の光測定器9の特性ばらつきによる機差を排除した光デバイスC自体の挿入損失であり、挿入損失の測定を高精度に行うことが可能となる。 If the data of this calibration line is stored in the control unit 10, when the insertion loss of the optical device C is measured by the above procedure, the calibration line is used and measured by the second optical measuring instrument 9. The insertion loss value ILC of the optical device C can be obtained from the measured value ILMC of the insertion loss. The obtained insertion loss value ILC of the optical device C is the insertion loss of the optical device C itself, which eliminates the machine difference due to the variation in the characteristics of the optical member of the individual optical device inspection machine 1 and the second optical measuring instrument 9. It is possible to measure the loss with high accuracy.

なお、校正線の精度を高めるために、校正用光減衰器Gの光減衰量の設定を更に変更して校正を行い、このときの挿入損失の測定値を、設定した挿入損失に対してプロットし、プロット数を増加させてから、多くのプロットを近似する校正線を引くことも可能である。 In order to improve the accuracy of the calibration line, the setting of the optical attenuation of the calibration optical attenuator G is further changed to perform calibration, and the measured value of the insertion loss at this time is plotted against the set insertion loss. It is also possible to increase the number of plots and then draw a calibration line that approximates many plots.

図8は第1の光測定器6で受光した反射干渉光LIR又は不良反射干渉光LIFの測定値から、光デバイスCの反射減衰量又は不良個所による反射光量を算出する時に使用する校正線を得るために、個々の光デバイス検査機1毎に校正作業を行う場合の構成図である。校正対象である光デバイス検査機1の接続部7に、測定対象物である光デバイスCに代えて、校正用の光学系として校正用基準対象物である校正用基準光デバイスC0、校正用光減衰器G、反射ミラーMを順次に接続する。 FIG. 8 shows a calibration line used when calculating the reflected attenuation amount of the optical device C or the reflected light amount due to the defective portion from the measured values of the reflected interference light LIR or the defective reflected interference light LIF received by the first optical measuring device 6. It is a block diagram in the case of performing the calibration work for each optical device inspection machine 1 in order to obtain. In the connection portion 7 of the optical device inspection machine 1 to be calibrated, instead of the optical device C which is the measurement object, the calibration reference optical device C0 which is the calibration reference object as the optical system for calibration and the calibration light The attenuator G and the reflection mirror M are connected in sequence.

校正用基準光デバイスC0には、光源3と同一特性の光源によって、予め挿入損失値IL0、反射減衰量RL0が測定されているものを用いる。校正用光減衰器Gは、光源3と同一特性の光源によって予め減衰量の設定値が実際の光減衰量と一致するように校正され、減衰量の設定値に対する実際の光減衰量の直線性が保証されているものを用いる。つまり、光源3と同一特性の光源から出射した光が、順次に校正用基準光デバイスC0、校正用光減衰器G、反射ミラーMを往復し戻った場合における反射光量が既知であり、校正用光減衰器Gの光減衰量の設定値を変更することによって、この反射光量の強度を任意に設定できるように、校正用基準光デバイスC0、校正用光減衰器G、反射ミラーMは、予め校正されているものとする。 As the calibration reference optical device C0, a light source having the same characteristics as the light source 3 whose insertion loss value IL0 and reflection attenuation RL0 have been measured in advance is used. The calibration light attenuator G is calibrated in advance by a light source having the same characteristics as the light source 3 so that the set value of the attenuation amount matches the actual light attenuation amount, and the linearity of the actual light attenuation amount with respect to the set value of the attenuation amount. Use the one that is guaranteed. That is, the amount of reflected light when the light emitted from the light source having the same characteristics as the light source 3 reciprocates back and forth between the calibration reference light device C0, the calibration optical attenuator G, and the reflection mirror M is known, and is used for calibration. The calibration reference optical device C0, the calibration light attenuator G, and the reflection mirror M are set in advance so that the intensity of the reflected light amount can be arbitrarily set by changing the setting value of the light attenuation amount of the light attenuator G. It shall be calibrated.

校正を行う際には、光源3から反射減衰量測定及び断線や亀裂等の不良個所の検査に適した所定光量に変更して光Lを出射させる。光Lはビームスプリッタ4によって測定光L1と参照光L2に分岐し、測定光L1は順次に接続部7、校正用基準光デバイスC0、校正用光減衰器Gを通って反射ミラーMに到達する。測定光L1は反射ミラーMで反射されて反射測定光LR1となり、再び校正用光減衰器G、校正用基準光デバイスC0、接続部7を通って戻り、ビームスプリッタ4で反射されて第1の光測定器6に受光される。 When calibrating, the light source 3 is changed to a predetermined amount of light suitable for measuring the amount of reflection attenuation and inspecting defective parts such as disconnections and cracks, and emits light L. The light L is branched into the measurement light L1 and the reference light L2 by the beam splitter 4, and the measurement light L1 sequentially reaches the reflection mirror M through the connection portion 7, the calibration reference light device C0, and the calibration light attenuator G. .. The measurement light L1 is reflected by the reflection mirror M to become the reflection measurement light LR1, returns through the calibration optical attenuator G, the calibration reference light device C0, and the connection portion 7, and is reflected by the beam splitter 4 to be the first. The light is received by the optical measuring instrument 6.

一方、参照光L2は参照ミラー5で反射されて参照光L2’となり、ビームスプリッタ4を透過して、反射測定光LR1と同時に第1の光測定器6によって受光される。従って、第1の光測定器6は、反射測定光LR1と参照光L2’の干渉光である反射干渉光LIRを受光することになる。 On the other hand, the reference light L2 is reflected by the reference mirror 5 to become the reference light L2', passes through the beam splitter 4, and is received by the first optical measuring instrument 6 at the same time as the reflection measurement light LR1. Therefore, the first optical measuring instrument 6 receives the reflected interference light LIR, which is the interference light between the reflection measurement light LR1 and the reference light L2'.

このときに光源3と同一特性の光が、校正用基準光デバイスC0、校正用光減衰器Gを通り反射ミラーMで反射されて、再び校正用光減衰器G、校正用基準光デバイスC0を通って戻った場合の反射光が、例えば−14.7dB等の所定強度となるように、校正用光減衰器Gの光減衰量を設定しておく。この反射光の強度−14.7dBの設定は、典型的な光ファイバの切断面と空気との境界面によって発生する反射光の強度に相当し、反射減衰量や不良点からの反射光量の校正に通常は適しているが、これに限定されることなく光デバイスCの反射減衰量等を基準に任意に設定することができる。 At this time, light having the same characteristics as the light source 3 passes through the calibration reference light device C0 and the calibration light attenuator G and is reflected by the reflection mirror M, and the calibration light attenuator G and the calibration reference light device C0 are used again. The amount of light attenuation of the calibration light attenuator G is set so that the reflected light that has passed through and returned has a predetermined intensity such as -14.7 dB. This setting of the reflected light intensity of -14.7 dB corresponds to the intensity of the reflected light generated by the interface between the cut surface and the air of a typical optical fiber, and calibrates the reflected attenuation amount and the reflected light amount from the defective point. However, the present invention is not limited to this, and can be arbitrarily set based on the amount of reflection attenuation of the optical device C and the like.

このように校正用光減衰器Gの光減衰量を設定しておけば、測定光L1は校正用基準光デバイスC0、校正用光減衰器G、反射ミラーMを往復することによって、例えば―14.7dBのような設定通りに減衰した反射測定光LR1となる。 If the light attenuation amount of the calibration optical attenuator G is set in this way, the measurement light L1 reciprocates between the calibration reference optical device C0, the calibration optical attenuator G, and the reflection mirror M, for example, -14. The reflection measurement light LR1 is attenuated according to the setting such as 0.7 dB.

図4に示す光強度と光路長差の関係を利用して、反射測定光LR1と参照光L2’による反射干渉光LIRの強度が最大となるように、参照ミラー5を光軸に沿って移動させて、参照光L2による参照ミラー5までの参照光路長を、測定光L1による反射ミラーMまでの測定光路長と一致させる。 Using the relationship between the light intensity and the optical path length difference shown in FIG. 4, the reference mirror 5 is moved along the optical axis so that the intensity of the reflected interference light LIR by the reflection measurement light LR1 and the reference light L2'is maximized. Then, the reference optical path length up to the reference mirror 5 by the reference light L2 is made to match the measured optical path length up to the reflection mirror M by the measurement light L1.

この状態で反射干渉光LIRを第1の光測定器6で受光した際の光量の測定値を用いて、校正線Pを作成する。図9は横軸が上述のようにして設定された反射光量の強度を表し、縦軸は第1の光測定器6で受光した反射干渉光LIRの測定値の強度を表している。 In this state, the calibration line P is created by using the measured value of the amount of light when the reflected interference light LIR is received by the first optical measuring instrument 6. In FIG. 9, the horizontal axis represents the intensity of the reflected light amount set as described above, and the vertical axis represents the intensity of the measured value of the reflected interference light LIR received by the first optical measuring instrument 6.

図8の構成において、校正用基準光デバイスC0から校正用光減衰器Gを経て反射ミラーMで往復する光路の光減衰率、つまり反射光量の強度を−14.7dBに設定した場合に、反射干渉光LIRを第1の光測定器6で受光した光量の測定値の強度RM1を、基準点β1として図9に示すグラフ上にプロットする。更に、反射光量の強度を例えば−10dBに設定した場合についても、同様に第1の光測定器6による光量の測定値の強度RM2を、基準点β2として図9に示すグラフ上にプロットする。基準点β1及びβ2を通過するように校正線Pを引いて、この校正線のデータを制御部10に記憶しておく。この校正線Pは個々の光デバイス検査機1の光学部材や第1の光測定器6の特性ばらつきによる機差を含んだ反射光量の測定値の強度と、実際に接続部7に取り付けられた測定対象物による反射光量の強度との関係を表すものである。 In the configuration of FIG. 8, when the light attenuation rate of the optical path reciprocating from the calibration reference optical device C0 through the calibration optical attenuator G and the reflection mirror M, that is, the intensity of the reflected light amount is set to -14.7 dB, reflection is performed. The intensity RM1 of the measured value of the amount of light received by the first optical measuring device 6 for the interference light LIR is plotted on the graph shown in FIG. 9 as the reference point β1. Further, even when the intensity of the reflected light amount is set to, for example, -10 dB, the intensity RM2 of the value measured by the first optical measuring instrument 6 is similarly plotted on the graph shown in FIG. 9 as the reference point β2. A calibration line P is drawn so as to pass through the reference points β1 and β2, and the data of this calibration line is stored in the control unit 10. This calibration line P is actually attached to the connection portion 7 and the intensity of the measured value of the reflected light amount including the machine difference due to the optical member of each optical device inspection machine 1 and the characteristic variation of the first optical measuring device 6. It shows the relationship with the intensity of the amount of reflected light by the object to be measured.

光デバイスCの反射減衰量を測定する際には、図9に示すように第1の光測定器6で受光された反射干渉光LIRの測定値の強度RLMCから、校正線Pを利用して光デバイスCの反射減衰量RLCを求めることができる。同様にして、光デバイスCの断線や亀裂等の不良による反射光量を測定する際にも、第1の光測定器6で受光された不良反射干渉光LIFの測定値の強度RFMCから、校正線Pを利用して光デバイスCの不良に起因する反射光量の強度RFCを求めることができる。求めた光デバイスCの反射減衰量RLC、不良に起因する反射光量の強度RFCは、個々の光デバイス検査機1の光学部材や第1の光測定器6の特性ばらつきによる機差を排除した光デバイスC自体の反射減衰量、反射光量の強度であり、反射減衰量を高精度に測定できると共に、反射光量の強度を数値化することによって、不良の程度を定量的に把握可能となる。 When measuring the amount of reflection attenuation of the optical device C, as shown in FIG. 9, the calibration line P is used from the intensity RLMC of the measured value of the reflected interference light LIR received by the first optical measuring instrument 6. The reflection attenuation amount RLC of the optical device C can be obtained. Similarly, when measuring the amount of reflected light due to defects such as disconnection and cracks in the optical device C, the calibration line is obtained from the intensity RFMC of the measured value of the defective reflected interference light LIF received by the first optical measuring instrument 6. P can be used to determine the intensity RFC of the amount of reflected light due to the defect of the optical device C. The obtained reflection attenuation amount RLC of the optical device C and the intensity RFC of the reflected light amount due to the defect are the light excluding the machine difference due to the variation in the characteristics of the optical member of each optical device inspection machine 1 and the first optical measuring device 6. It is the reflected attenuation amount and the intensity of the reflected light amount of the device C itself, and the reflected attenuation amount can be measured with high accuracy, and by quantifying the intensity of the reflected light amount, the degree of defect can be quantitatively grasped.

なお、校正線Pの精度を高めるために、校正用光減衰器Gの光減衰量の設定を変更することによって、校正用基準光デバイスC0から校正用光減衰器Gを経て反射ミラーMで往復する光路の光減衰量、つまり反射光量の強度をより小さい値に設定し、更なる校正データ取得のために同様な測定を行ってもよい。このときに第1の光測定器6で受光した反射干渉光の測定値の強度を、より小さい値に設定した反射光量の強度に対してプロットし、プロット数を増加させてから、多くのプロットを近似する校正線Pを引いて、校正精度を高めることも可能である。 By changing the setting of the light attenuation amount of the calibration optical attenuator G in order to improve the accuracy of the calibration line P, the light attenuation device C0 for calibration is reciprocated by the reflection mirror M via the optical attenuator G for calibration. The amount of light attenuation of the optical path, that is, the intensity of the reflected light amount may be set to a smaller value, and similar measurements may be performed for further calibration data acquisition. At this time, the intensity of the measured value of the reflected interference light received by the first optical measuring device 6 is plotted against the intensity of the reflected light amount set to a smaller value, the number of plots is increased, and then many plots are made. It is also possible to improve the calibration accuracy by drawing a calibration line P that approximates.

実施例1の光デバイス検査機1は、光デバイスCの挿入損失を測定するために、図1に示すように第2の光測定器9を備えているが、第1の光測定器6を挿入損失の測定にも兼用し、第2の光測定器9を設けない構成も可能である。図10は実施例1の第1の光測定器6及び第2の光測定器9の構成に代えて、1個の光測定器6’のみの構成にした実施例2の光デバイス検査機1’の構成図である。 The optical device inspection machine 1 of the first embodiment includes a second optical measuring instrument 9 as shown in FIG. 1 for measuring the insertion loss of the optical device C, but the first optical measuring instrument 6 is used. It can also be used for measuring the insertion loss, and a configuration in which the second optical measuring instrument 9 is not provided is also possible. FIG. 10 shows the optical device inspection machine 1 of the second embodiment in which only one optical measuring instrument 6'is configured instead of the configuration of the first optical measuring instrument 6 and the second optical measuring instrument 9 of the first embodiment. It is a block diagram of'.

筐体2内のビームスプリッタ4と光測定器6’の間には、光軸に沿ってビームスプリッタ4側から順次にシャッター11、ハーフミラー12が配置されている。シャッター11は制御部10に接続されており、制御部10によって開閉動作を制御可能とされている。また、筐体2の外面にはハーフミラー12に対向して、透過測定光LT1を通すための円形状の開口を有する透過光入力部8が設けられている。ビームスプリッタ4を透過した測定光L1の光路先に配置した接続部7と透過光入力部8との間に、測定対象物である光デバイスCを配置する。 A shutter 11 and a half mirror 12 are sequentially arranged from the beam splitter 4 side along the optical axis between the beam splitter 4 and the optical measuring instrument 6'in the housing 2. The shutter 11 is connected to the control unit 10, and the opening / closing operation can be controlled by the control unit 10. Further, a transmitted light input unit 8 having a circular opening for passing the transmitted measurement light LT1 is provided on the outer surface of the housing 2 facing the half mirror 12. An optical device C, which is an object to be measured, is arranged between the connection unit 7 arranged at the optical path of the measurement light L1 transmitted through the beam splitter 4 and the transmitted light input unit 8.

ハーフミラー12はビームスプリッタ4側から入射する光を光測定器6’側に透過させ、透過光入力部8から入射する透過測定光LT1を光測定器6’側に反射させる。その他の部材の構成に関しては、実施例1と同様であるので、説明を省略する。 The half mirror 12 transmits the light incident from the beam splitter 4 side to the optical measuring instrument 6'side, and reflects the transmitted measurement light LT1 incident from the transmitted light input unit 8 to the optical measuring instrument 6'side. Since the configurations of the other members are the same as those in the first embodiment, the description thereof will be omitted.

光デバイスCの挿入損失を測定する際には、光源3から光Lを出射し、ビームスプリッタ4で測定光L1と参照光L2に分岐させるが、参照光L2’、測定光L1が反射された戻り光である測定光L1’は測定に不要であるので、制御部10はシャッター11を閉鎖状態とし、測定光L1’、参照光L2’がハーフミラー12に到達しないようにする。測定光L1は接続部7を通って光デバイスCに到達し、光デバイスCの挿入損失の分だけ減衰した透過測定光LT1となって、透過光入力部8から筐体2内に入り、ハーフミラー12で反射されて光測定器6’によって受光される。受光された光量の制御部10による演算処理は、上述した挿入損失測定における動作の説明と同様であるので、説明を省略する。 When measuring the insertion loss of the optical device C, the light L is emitted from the light source 3 and branched into the measurement light L1 and the reference light L2 by the beam splitter 4, but the reference light L2'and the measurement light L1 are reflected. Since the measurement light L1'which is the return light is unnecessary for the measurement, the control unit 10 closes the shutter 11 so that the measurement light L1'and the reference light L2' do not reach the half mirror 12. The measurement light L1 reaches the optical device C through the connection portion 7, becomes a transmission measurement light LT1 attenuated by the insertion loss of the optical device C, enters the housing 2 from the transmission light input unit 8, and is half. It is reflected by the mirror 12 and received by the optical measuring instrument 6'. Since the arithmetic processing by the control unit 10 for the amount of received light is the same as the description of the operation in the above-mentioned insertion loss measurement, the description thereof will be omitted.

光デバイスCの反射減衰量測定、断線や亀裂等の不良検査の際には、制御部10はシャッター11を開放状態とし、光デバイスCの他端は透過光入力部8の開口から外れた位置にしておく。このようにすることで、光デバイスC内を通過した測定光L1がハーフミラー12で反射して光測定器6’に受光されることはない。 When measuring the amount of reflection attenuation of the optical device C and inspecting for defects such as disconnection and cracks, the control unit 10 keeps the shutter 11 open, and the other end of the optical device C is located outside the opening of the transmitted light input unit 8. Leave it to. By doing so, the measurement light L1 that has passed through the optical device C is not reflected by the half mirror 12 and received by the light measuring device 6'.

ハーフミラー12は、ビームスプリッタ4を反射又は透過した反射測定光LR1、不良反射測定光LF1、参照光L2’を透過させるので、光測定器6’にはそれらの干渉光である反射干渉光LIR、不良反射干渉光LIFが受光される。受光された干渉光量の制御部10による演算処理は、上述した反射減衰量測定、断線や亀裂等の不良検査における動作と同様であるので、説明を省略する。 Since the half mirror 12 transmits the reflection measurement light LR1, the defective reflection measurement light LF1, and the reference light L2'reflected or transmitted through the beam splitter 4, the light measuring instrument 6'transmits the reflection interference light LIR which is the interference light thereof. , Bad reflection interference light LIF is received. Since the arithmetic processing by the control unit 10 for the amount of interference light received is the same as the operation in the above-mentioned reflection attenuation measurement and defect inspection such as disconnection and cracking, the description thereof will be omitted.

実施例2の光デバイス検査機1’は、1個の光測定器6’で構成されているので実施例1の光デバイス検査機1に比べて、更に小型化と低コスト化を図ることができる。 Since the optical device inspection machine 1'of the second embodiment is composed of one optical measuring instrument 6', it is possible to further reduce the size and cost as compared with the optical device inspection machine 1 of the first embodiment. can.

なお、参照光L2’、反射測定光LR1、不良反射測定光LF1をハーフミラー12に到達させない手段であるシャッター11に代えて、例えばビームスプリッタ4を光Lの光路から外す移動機構を採用してもよい。また、反射減衰量測定、断線や亀裂等の不良検査の際に、光デバイスCの他端を透過光入力部8の開口から外れた位置にするのではなく、透過光入力部8の開口を閉じる機構を設けるようにしてもよい。 In addition, instead of the shutter 11 which is a means for preventing the reference light L2', the reflection measurement light LR1 and the defective reflection measurement light LF1 from reaching the half mirror 12, for example, a moving mechanism for removing the beam splitter 4 from the optical path of the light L is adopted. It is also good. Further, when measuring the amount of reflection attenuation and inspecting defects such as disconnection and cracks, the other end of the optical device C is not positioned outside the opening of the transmitted light input unit 8, but the opening of the transmitted light input unit 8 is opened. A closing mechanism may be provided.

以上に述べたように、本実施例の光デバイス検査機1、1’によれば、一旦測定対象物である光デバイスCを接続部7に取り付けてしまえば、光デバイスCの取り外しや再接続をすることなく、挿入損失、反射減衰量、断線や亀裂等の不良検査を、一括して行うことができる。また、接続部7と光デバイスCの接続点と、断線や亀裂等の不良個所C1が極めて近接していても、それぞれの反射が発生する位置を正確に検出できる。更に、制御部10には光学部材や光測定器の特性ばらつきを、光量の測定値から排除する校正線が記憶されているので、この校正線を利用して、個々の光デバイス検査機1、1’毎に機差の発生しない高精度な測定を行うことができる。従って、隠れ断線のような微弱な反射光しか発生しない場合でも、不良に起因する反射光の強度を定量化して、その不良状態を的確に把握することが可能である。 As described above, according to the optical device inspection machines 1 and 1'of this embodiment, once the optical device C, which is the object to be measured, is attached to the connection portion 7, the optical device C is removed or reconnected. It is possible to collectively inspect defects such as insertion loss, reflection attenuation, disconnection and cracks without performing. Further, even if the connection point between the connection portion 7 and the optical device C and the defective portion C1 such as a disconnection or a crack are extremely close to each other, the position where each reflection occurs can be accurately detected. Further, since the control unit 10 stores a calibration line that excludes the variation in the characteristics of the optical member and the optical measuring instrument from the measured value of the amount of light, the calibration line is used to use the calibration line of each optical device inspection machine 1. It is possible to perform high-precision measurement without any machine error every 1'. Therefore, even when only weak reflected light such as a hidden disconnection is generated, it is possible to quantify the intensity of the reflected light caused by the defect and accurately grasp the defective state.

1、1’ 光デバイス検査機
2 筐体
3 光源
4 ビームスプリッタ
5 参照ミラー
6 第1の光測定器
6’ 光測定器
7 接続部
8 透過光入力部
9 第2の光測定器
10 制御部
11 シャッター
12 ハーフミラー
C 光デバイス
C0 校正用基準光デバイス
G 校正用光減衰器
M 反射ミラー
1, 1'Optical device inspection machine 2 Housing 3 Light source 4 Beam splitter 5 Reference mirror 6 First optical measuring instrument 6'Optical measuring instrument 7 Connection part 8 Transmitted light input unit 9 Second optical measuring instrument 10 Control unit 11 Shutter 12 Half Mirror C Optical Device C0 Calibration Reference Optical Device G Calibration Optical Attenuator M Reflection Mirror

Claims (6)

SLDから成る光源と、該光源からの光を、透過する測定光及び反射する参照光に分岐するビームスプリッタと、前記参照光の光路長を調整可能な光路長可変機構を有する参照ミラーと、前記ビームスプリッタで反射した前記測定光、及び前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光を受光する第1の光測定器と、前記ビームスプリッタを透過した前記測定光を受光する第2の光測定器と、前記光源、前記参照ミラー、前記第1の光測定器、及び第2の光測定器に接続した制御部とを筐体内に備え、
更に、前記筐体の外側に接続され、前記ビームスプリッタを透過した前記測定光の光路先に配置した接続部と、該接続部の同一光軸上に離間して設けられた透過光入力部とを備え、
前記第2の光測定器は、前記透過光入力部から前記筐体内に入射した前記測定光を受光し、
前記接続部と前記透過光入力部との間に、測定対象物である光デバイスを配置し、
前記制御部は、前記接続部と前記測定対象物との接続点により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記第1の光測定器で受光することによって、前記測定対象物の反射減衰量を測定し、
前記測定対象物の不良個所により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記第1の光測定器で受光することによって前記不良個所を検出し、
前記測定対象物を前記不良個所により反射せずに透過して前記第2の光測定器で受光された光量と、前記光源から出射された光の光量とから、前記測定対象物の挿入損失を測定する光デバイス検査機であって、
前記測定対象物は、光コネクタ、各種光学フィルタ、ビームスプリッタ、光カプラ、光スイッチ、光サーキュレータの何れかの光デバイスであり、
前記測定対象物の挿入損失値は、前記測定対象物を透過して前記第2の光測定器で受光された光量と、前記光源から出射された光の光量と、前記測定対象物自体の挿入損失と本検査機自体の損失及び機差の影響を含む挿入損失の測定値との関係を表す校正線と、に基づいて算出されることを特徴とする光デバイス検査機。
A light source composed of an SLD, a beam splitter that branches light from the light source into transmitted measurement light and reflected reference light, a reference mirror having an optical path length variable mechanism capable of adjusting the optical path length of the reference light, and the above. A first optical measuring instrument that receives the measurement light reflected by the beam splitter and the reference light reflected by the reference mirror and transmitted through the beam splitter, and a first optical measuring device that receives the measurement light transmitted through the beam splitter. The housing is provided with the light measuring device (2), the light source, the reference mirror, the first light measuring device, and a control unit connected to the second light measuring device.
Further, a connection portion connected to the outside of the housing and arranged at the optical path destination of the measurement light transmitted through the beam splitter, and a transmitted light input portion provided apart on the same optical axis of the connection portion. Equipped with
The second optical measuring instrument receives the measured light incident on the housing from the transmitted light input unit, and receives the measured light.
An optical device, which is an object to be measured, is placed between the connection unit and the transmitted light input unit.
The control unit is based on the measurement light reflected by the connection point between the connection unit and the measurement object and reflected by the beam splitter, and the reference light reflected by the reference mirror and transmitted through the beam splitter. By receiving the interference light with the first optical measuring device, the amount of reflection attenuation of the object to be measured is measured.
The first light measurement is performed by measuring the interference light of the measurement light reflected by the defective portion of the measurement object and reflected by the beam splitter and the reference light reflected by the reference mirror and transmitted through the beam splitter. By receiving light with a device, the defective part is detected and
The insertion loss of the object to be measured is calculated from the amount of light received by the second optical measuring device after passing through the object to be measured without being reflected by the defective portion and the amount of light emitted from the light source. It is an optical device inspection machine that measures
The object to be measured is an optical device such as an optical connector, various optical filters, a beam splitter, an optical coupler, an optical switch, or an optical circulator.
The insertion loss value of the measurement object is the amount of light transmitted through the measurement object and received by the second optical measuring device, the amount of light emitted from the light source, and the insertion of the measurement object itself. An optical device inspection machine characterized in that it is calculated based on a calibration line showing the relationship between the loss and the measured value of the insertion loss including the loss of the inspection machine itself and the influence of the machine difference.
前記接続部に前記測定対象物に代えて、挿入損失値が既知の校正用基準対象物と、設定値に一致する光減衰量となるように校正された光減衰器とを順次に接続し、前記光減衰器の光減衰量を所定値に設定してから、前記測定光を前記校正用基準対象物、前記光減衰器に通して前記第2の光測定器で受光し、前記第2の光測定器の受光量から算出した挿入損失の測定値を、前記校正用基準対象物及び前記光減衰器によって設定した挿入損失値に対してプロットした前記校正線を前記制御部に記憶しておき、前記測定対象物を透過して前記第2の光測定器で受光された光量から挿入損失の測定値を算出した場合には、前記校正線に基づいて挿入損失の測定値から前記測定対象物の前記挿入損失値を算出することを特徴とする請求項1に記載の光デバイス検査機。 Instead of the measurement object, a calibration reference object having a known insertion loss value and an optical attenuator calibrated so that the optical attenuation amount matches the set value are sequentially connected to the connection portion. After setting the light attenuation amount of the light attenuator to a predetermined value, the measurement light is passed through the calibration reference object and the light attenuator and received by the second light measuring device, and the second light measuring device receives the measured light. The calibration line obtained by plotting the measurement value of the insertion loss calculated from the amount of light received by the optical measuring instrument with respect to the insertion loss value set by the calibration reference object and the optical attenuator is stored in the control unit. When the measurement value of the insertion loss is calculated from the amount of light transmitted through the measurement object and received by the second optical measuring instrument, the measurement object is measured from the measurement value of the insertion loss based on the calibration line. The optical device inspection machine according to claim 1, wherein the insertion loss value is calculated. 前記接続部に前記測定対象物に代えて、校正用基準対象物、光減衰器、反射ミラーを順次に接続し、前記光が前記校正用基準対象物、前記光減衰器、前記反射ミラーを往復し戻った反射光量が既知で、前記光減衰器の光減衰量の設定値を変更することによって、前記反射光量の強度を任意に設定可能に予め校正しておき、前記光減衰器の光減衰量の設定値を変更して反射光量を所定強度に設定してから、前記測定光を校正用基準対象物、光減衰器を通し反射ミラーで反射させて、再び校正用基準対象物、光減衰器を通して減衰させた反射測定光と、前記参照光との干渉光を前記第1の光測定器で受光した前記干渉光の測定値を、前記設定した反射光量の前記所定強度に対してプロットした校正線を前記制御部に記憶し、前記測定光と前記参照光とによる前記干渉光を前記第1の光測定器で受光することによって、前記測定対象物の反射減衰量を測定した場合には、又は前記測定対象物の前記不良個所を検出した場合には、前記校正線に基づいて前記干渉光の前記第1の光測定器による測定値に対応する反射光量の強度を、算出して数値化することを特徴とする請求項1に記載された光デバイス検査機。 A calibration reference object, a light attenuater, and a reflection mirror are sequentially connected to the connection portion in place of the measurement object, and the light reciprocates between the calibration reference object, the light attenuater, and the reflection mirror. The amount of reflected light that has returned is known, and the intensity of the reflected light amount can be arbitrarily set by changing the set value of the light attenuation amount of the light attenuator, and the light attenuation of the light attenuator is calibrated in advance. After changing the set value of the amount and setting the reflected light amount to a predetermined intensity, the measured light is reflected by the reflection mirror through the calibration reference object and the light attenuator, and the calibration reference object and the light attenuation again. The measured value of the interference light received by the first light measuring device of the reflection measurement light attenuated through the device and the interference light with the reference light is plotted against the predetermined intensity of the set reflected light amount. When the amount of reflection attenuation of the object to be measured is measured by storing the calibration line in the control unit and receiving the interference light of the measurement light and the reference light with the first optical measuring device. Or, when the defective portion of the measurement object is detected, the intensity of the reflected light amount corresponding to the measured value of the interference light by the first optical measuring device is calculated and numerically based on the calibration line. The optical device inspection machine according to claim 1, wherein the optical device is inspected. SLDから成る光源と、該光源からの光を、透過する測定光及び反射する参照光に分岐するビームスプリッタと、前記参照光の光路長を調整可能な光路長可変機構を有する参照ミラーと、前記ビームスプリッタで反射した前記測定光、及び前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光を受光する光測定器と、参照光前記ビームスプリッタで反射した前記測定光とによる干渉光の閉鎖、開放を行うシャッターと、前記光源、前記参照ミラー、前記光測定器、及びシャッターに接続した制御部とを筐体内に備え、
前記ビームスプリッタと前記光測定器の間には、前記ビームスプリッタ側から前記シャッター及びハーフミラーを順次に配置し、
更に、前記筐体の外側に接続され、前記ビームスプリッタを透過した前記測定光の光路先に配置した接続部と、該接続部の同一光軸上に離間して設けられた透過光入力部とを備え、
前記光測定器は、前記透過光入力部から前記筐体内に入射した前記測定光を、前記ハーフミラーを介して受光し、
前記接続部と前記透過光入力部との間に、測定対象物である光デバイスを配置し、
前記制御部は、前記シャッターを開放状態にして、前記接続部と前記測定対象物との接続点により反射され、前記ビームスプリッタで反射された前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記光測定器で受光することによって、前記測定対象物の反射減衰量を測定し、
前記シャッターを開放状態にして、前記測定対象物の不良個所により反射し、前記ビームスプリッタで反射した前記測定光と、前記参照ミラーで反射し、前記ビームスプリッタを透過した前記参照光とによる干渉光を、前記光測定器で受光することによって前記不良個所を検出し、
前記シャッターを閉鎖状態にして、前記測定対象物を前記不良個所により反射せずに透過して前記光測定器で受光された光量と、前記光源から出射された光の光量とから、前記測定対象物の挿入損失を測定することを特徴とする光デバイス検査機。
A light source composed of an SLD, a beam splitter that branches light from the light source into transmitted measurement light and reflected reference light, a reference mirror having an optical path length variable mechanism capable of adjusting the optical path length of the reference light, and the above. the measurement light reflected by the beam splitter, and reflected by the reference mirror, interference the a light measuring device for receiving the reference light transmitted through the beam splitter, by the measuring light reflected by the beam splitter with the reference beam A shutter for closing and opening light, the light source, the reference mirror, the optical measuring instrument, and a control unit connected to the shutter are provided in the housing.
The shutter and the half mirror are sequentially arranged from the beam splitter side between the beam splitter and the optical measuring instrument.
Further, a connection portion connected to the outside of the housing and arranged at the optical path destination of the measurement light transmitted through the beam splitter, and a transmitted light input portion provided apart on the same optical axis of the connection portion. Equipped with
The optical measuring instrument receives the measured light incident on the housing from the transmitted light input unit via the half mirror, and receives the measurement light.
An optical device, which is an object to be measured, is placed between the connection unit and the transmitted light input unit.
The control unit opens the shutter, reflects the measurement light reflected by the connection point between the connection unit and the measurement object, and reflects the measurement light reflected by the beam splitter, and reflects the beam by the reference mirror. By receiving the interference light from the reference light transmitted through the splitter with the optical measuring instrument, the amount of reflection attenuation of the object to be measured is measured.
Interference light by the measurement light reflected by the beam splitter and reflected by the beam splitter and the reference light reflected by the reference mirror and transmitted through the beam splitter with the shutter open. Is received by the optical measuring instrument to detect the defective portion.
With the shutter closed, the measurement target is transmitted from the defective portion without being reflected and received by the light measuring device, and the light amount of the light emitted from the light source is used as the measurement target. An optical device inspection machine characterized by measuring the insertion loss of an object.
前記測定対象物は、光コネクタ、各種光学フィルタ、ビームスプリッタ、光カプラ、光スイッチ、光サーキュレータの何れかの光デバイスであり、
前記測定対象物の挿入損失値は、前記測定対象物を透過して前記光測定器で受光された光量と、前記光源から出射された光の光量と、前記測定対象物自体の挿入損失と本検査機自体の損失及び機差の影響を含む挿入損失との測定値の関係を表す校正線と、に基づいて算出されることを特徴とする請求項4に記載された光デバイス検査機。
The object to be measured is an optical device such as an optical connector, various optical filters, a beam splitter, an optical coupler, an optical switch, or an optical circulator.
The insertion loss value of the measurement object is the amount of light transmitted through the measurement object and received by the optical measuring instrument, the amount of light emitted from the light source, and the insertion loss of the measurement object itself. The optical device inspection machine according to claim 4, wherein the optical device inspection machine is calculated based on a calibration line showing a relationship between a loss of the inspection machine itself and an insertion loss including the influence of a machine difference, and a calibration line.
前記測定対象物は、1つの被測定コネクタ、該被測定コネクタ及び該被測定コネクタに接続した光ファイバケーブル、又は1対の被測定コネクタ及び該1対の被測定コネクタ間を連結する光ファイバケーブルの何れかの光デバイスであることを特徴とする請求項1〜5の何れか1項に記載された光デバイス検査機。 The object to be measured is one connector to be measured, an optical fiber cable connected to the connector to be measured and the connector to be measured, or an optical fiber cable to connect a pair of connectors to be measured and the pair of connectors to be measured. The optical device inspection machine according to any one of claims 1 to 5, wherein the optical device is any one of the above.
JP2020101559A 2020-06-11 2020-06-11 Optical device inspection machine Active JP6986773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101559A JP6986773B1 (en) 2020-06-11 2020-06-11 Optical device inspection machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101559A JP6986773B1 (en) 2020-06-11 2020-06-11 Optical device inspection machine

Publications (2)

Publication Number Publication Date
JP6986773B1 true JP6986773B1 (en) 2021-12-22
JP2021196215A JP2021196215A (en) 2021-12-27

Family

ID=79193258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101559A Active JP6986773B1 (en) 2020-06-11 2020-06-11 Optical device inspection machine

Country Status (1)

Country Link
JP (1) JP6986773B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062308A (en) * 1996-08-20 1998-03-06 Furukawa Electric Co Ltd:The Method for measuring optical circuit part, and measuring device therefor
EP1305589A1 (en) * 2000-07-21 2003-05-02 Agilent Technologies, Inc. (a Delaware corporation) Reflectometric insertion loss measurements for optical components
JP3871887B2 (en) * 2001-02-13 2007-01-24 日本ペイント株式会社 Server apparatus, terminal apparatus, and paint and paint information providing method using communication terminal
JP5165641B2 (en) * 2009-06-05 2013-03-21 アンリツ株式会社 Optical component evaluation system
WO2011052279A1 (en) * 2009-10-28 2011-05-05 国立大学法人筑波大学 Phase change device having phase change recording film, and phase change switching method for phase change recording film
JP6380943B1 (en) * 2017-06-28 2018-08-29 株式会社オプトゲート Reflected light measuring device

Also Published As

Publication number Publication date
JP2021196215A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
KR102579618B1 (en) Interferometric alignment of optical multicore fibers to be connected
CN105784336B (en) A kind of transmission of optical fibre device and reflecting properties test device and method
US10578516B2 (en) Dual purpose optical test instrument
CN103900680B (en) A kind of device utilizing light source to suppress polarization crosstalk to measure noise and detection method
US5357333A (en) Apparatus for measuring the effective refractive index in optical fibers
KR20050084946A (en) Method of evaluating fiber pmd using polarization optical time domain recflectometry
CN112066887A (en) Optical fiber length measuring system and measuring method thereof
JP2000039378A (en) Optical loss measuring system, optical fiber coupler and method for measuring optical loss
US6862085B2 (en) Device for detecting transmission losses by means of measurements
JP6986773B1 (en) Optical device inspection machine
JP6380943B1 (en) Reflected light measuring device
CN109039442B (en) Calibrating device and calibrating method for optical return loss
JP2004505240A (en) Measurement of insertion loss by reflection measurement for optical components
US11742942B2 (en) Optical time domain reflectometer having corrected optical return loss measurement
EP3156780B1 (en) Test probes for smart inspection
CN111201427B (en) Reflected light measuring device
JP6439888B1 (en) Reflected light measuring device
SK500082010A3 (en) Method of control passable channel product, especially an aqueous core of the cylinder head and a device for implementing this method
US10969302B1 (en) Optical time-domain reflectometers and related methods
CN105954004B (en) A kind of back scattering random fit coherent noise tester
JP6447986B1 (en) Reflected light measuring device
CN114216883A (en) Method for measuring material transmittance by integrating sphere method and integrating sphere measuring device
JP2022122351A (en) Inner surface inspection/measurement device
CN116972756A (en) Device for dynamically monitoring dislocation of interference type optical fiber sensor in optical fiber fusion
KR20230053795A (en) Fiber optic sensor probe for diagnosis of transformer insuation oil aging