JP6958661B2 - Three-dimensional modeling equipment - Google Patents

Three-dimensional modeling equipment Download PDF

Info

Publication number
JP6958661B2
JP6958661B2 JP2020074818A JP2020074818A JP6958661B2 JP 6958661 B2 JP6958661 B2 JP 6958661B2 JP 2020074818 A JP2020074818 A JP 2020074818A JP 2020074818 A JP2020074818 A JP 2020074818A JP 6958661 B2 JP6958661 B2 JP 6958661B2
Authority
JP
Japan
Prior art keywords
powder
modeling
tank
supply
supply tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020074818A
Other languages
Japanese (ja)
Other versions
JP2020108975A (en
Inventor
青蔵 佐倉
佐藤 慎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020020388A external-priority patent/JP6699811B2/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2020074818A priority Critical patent/JP6958661B2/en
Publication of JP2020108975A publication Critical patent/JP2020108975A/en
Application granted granted Critical
Publication of JP6958661B2 publication Critical patent/JP6958661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は立体造形装置に関する。 The present invention relates to a three-dimensional modeling apparatus.

立体造形物(三次元造形物)を造形する立体造形装置(三次元造形装置)として、例えば積層造形法で造形するものが知られている。これは、例えば、造形ステージに平坦化された金属又は非金属の粉体を層状に形成し、層状の粉体(これを「粉体層」という。)に対して粉体を結合させる造形液を吐出して、粉体が結合された層状造形物(これを「造形層」といい。)を形成する。そして、この造形層上に粉体層に形成し、再度、造形層を形成する動作を繰り返して、造形層を積層することで立体造形物を造形する。 As a three-dimensional modeling device (three-dimensional modeling device) for modeling a three-dimensional modeled object (three-dimensional modeled object), for example, a device that models by a laminated modeling method is known. This is, for example, a modeling liquid in which flattened metal or non-metal powder is formed in layers on a modeling stage, and the powder is bonded to the layered powder (this is referred to as a "powder layer"). Is discharged to form a layered shaped object (this is referred to as a "modeling layer") to which powders are bonded. Then, the powder layer is formed on the modeling layer, and the operation of forming the modeling layer is repeated again, and the modeling layer is laminated to form a three-dimensional model.

従来、造形層を挟んで2つの供給槽を配置し、一方の供給槽から造形槽に粉体を供給するときの余剰な粉体を他方の供給槽に回収して収容するものが知られている(特許文献1)。 Conventionally, it has been known that two supply tanks are arranged with a modeling layer sandwiched between them, and excess powder when powder is supplied from one supply tank to the modeling tank is collected and stored in the other supply tank. (Patent Document 1).

特開2007−307742号公報JP-A-2007-307742

しかしながら、供給槽内に収容された余剰な粉体はかさ密度が低いなど、当初供給した粉体に比べて品質が低下するため、そのまま造形に使用すると、造形物の品質が低下するという課題がある。 However, the excess powder contained in the supply tank has a low bulk density, and the quality is lower than that of the initially supplied powder. Therefore, if it is used as it is for modeling, there is a problem that the quality of the modeled product deteriorates. be.

本発明は上記の課題に鑑みてなされたものであり、造形物の品質低下を抑制しつつ、粉体の使用効率を向上することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the efficiency of powder use while suppressing deterioration of the quality of the modeled product.

上記の課題を解決するため、本発明の請求項1に係る立体造形装置は、
粉体を層状にした粉体層が形成され、前記粉体層の前記粉体が所要形状に結合された層状造形物が造形される造形槽と、
前記粉体を収容する供給槽と、
前記供給槽及び前記造形槽の上方を往復移動可能に配置され、前記粉体を移送し、前記造形槽に供給された前記粉体を平坦化して前記粉体層を形成する平坦化手段と、
前記造形槽の前記粉体の表面形状を検知する手段と、
前記粉体層の形成を制御する手段と、を備え、
前記平坦化手段は、
往路移動によって前記粉体を前記供給槽から前記造形槽に移送し、
復路移動において、前記造形槽の上方を通過するときには回転し、前記造形槽の上方を通過したときに回転を停止し、
前記制御する手段は、前記検知する手段の検知結果から次回の平坦化を行うときの条件を変更する制御をする
構成とした。
In order to solve the above problems, the three-dimensional modeling apparatus according to claim 1 of the present invention is
A modeling tank in which a powder layer in which powder is layered is formed, and a layered model in which the powder in the powder layer is bonded to a required shape is formed.
A supply tank that houses the powder and
A flattening means that is arranged so as to be reciprocally movable above the supply tank and the modeling tank, transfers the powder, and flattens the powder supplied to the modeling tank to form the powder layer.
A means for detecting the surface shape of the powder in the modeling tank, and
A means for controlling the formation of the powder layer is provided.
The flattening means
The powder is transferred from the supply tank to the modeling tank by the outward movement, and the powder is transferred from the supply tank to the modeling tank.
In the return route movement, the rotation is rotated when passing above the modeling tank, and the rotation is stopped when passing above the modeling tank .
The controlling means is configured to control changing the conditions for the next flattening based on the detection result of the detecting means.

本発明によれば、造形物の品質低下を抑制しつつ、粉体の使用効率を向上することができる。 According to the present invention, it is possible to improve the efficiency of powder use while suppressing the deterioration of the quality of the modeled object.

本発明の第1実施形態に係る立体造形装置の一例の概略平面説明図である。It is a schematic plane explanatory view of an example of the three-dimensional modeling apparatus which concerns on 1st Embodiment of this invention. 同じく概略側面説明図である。Similarly, it is a schematic side explanatory view. 同じく造形部の断面説明図である。Similarly, it is a cross-sectional explanatory view of the modeling part. 同じく具体的構成の要部斜視説明図である。Similarly, it is a perspective explanatory view of a main part of a specific configuration. 同立体造形装置の制御部の概要の説明に供するブロック図である。It is a block diagram which provides the outline | description of the control part of the three-dimensional modeling apparatus. 本発明の第1実施形態における制御部による粉体層の形成動作の制御の説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the control of the formation operation of the powder layer by the control part in 1st Embodiment of this invention. 本発明の第2実施形態における制御部による粉体層の形成動作の制御の説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the control of the formation operation of the powder layer by the control part in the 2nd Embodiment of this invention. 本発明の第3実施形態の説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the 3rd Embodiment of this invention. 同実施形態における制御部による粉体層の形成動作の制御の説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the control of the formation operation of the powder layer by the control part in the same embodiment. 本発明の第4実施形態の説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the 4th Embodiment of this invention. 同実施形態における制御部による造形制御の説明に供するフロー図である。It is a flow figure which provides the explanation of the modeling control by the control part in the same embodiment. 同じく粉体層の形成状態の説明に供する説明図である。Similarly, it is explanatory drawing which provides the explanation of the formation state of the powder layer. 本発明の第5実施形態に係る立体造形装置の概略平面説明図である。It is a schematic plan explanatory view of the three-dimensional modeling apparatus which concerns on 5th Embodiment of this invention. 同じく概略側面説明図である。Similarly, it is a schematic side explanatory view. 同じく造形部の断面説明図である。Similarly, it is a cross-sectional explanatory view of the modeling part. 本第5実施形態における供給槽内の攪拌手段の説明に供する粉体槽部分の側面説明図である。It is a side explanatory view of the powder tank part which provides the explanation of the stirring means in the supply tank in this 5th Embodiment. 同じく平面説明図である。It is also a plan explanatory view. 同装置における制御部の概要の説明に供するブロック説明図である。It is a block explanatory drawing which provides the outline | description of the control part in this apparatus. 同実施形態における制御部による粉体層の形成動作の制御の説明に供するフロー図である。It is a flow figure which provides the explanation of the control of the formation operation of the powder layer by the control part in the same embodiment. 同じく説明図である。It is also an explanatory diagram. 本発明の第6実施形態における粉体槽の模式的側面説明図である。It is a schematic side explanatory drawing of the powder tank in 6th Embodiment of this invention. 同じく平面説明図である。It is also a plan explanatory view. 同実施形態の作用説明に供する要部側面説明図である。It is a side surface explanatory view of the main part provided with the operation explanation of the same embodiment. 本発明の第7実施形態における粉体槽の模式的側面説明図である。It is a schematic side explanatory drawing of the powder tank in 7th Embodiment of this invention. 同じく平面説明図である。It is also a plan explanatory view. 同本実施形態の作用説明に供する要部側面説明図である。It is a side surface explanatory view of the main part provided with the operation explanation of this embodiment. 供給側の供給槽と回収側の供給槽の入れ替えの説明に供する模式的説明図である。It is a schematic explanatory drawing provided for the explanation of the exchange of the supply tank of a supply side and the supply tank of a collection side.

以下、本発明の実施の形態について添付図面を参照して説明する。本発明の第1実施形態に係る立体造形装置の一例の概要について図1ないし図4を参照して説明する。図1は同立体造形装置の概略平面説明図、図2は同じく概略側面説明図、図3は同じく造形部の断面説明図である。なお、図3は造形時の状態で示している。また、図4は同じく具体的構成の要部斜視説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. An outline of an example of the three-dimensional modeling apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a schematic plan explanatory view of the three-dimensional modeling apparatus, FIG. 2 is a schematic side surface explanatory view, and FIG. 3 is a cross-sectional explanatory view of the modeling portion. Note that FIG. 3 shows the state at the time of modeling. Further, FIG. 4 is a perspective explanatory view of a main part having the same specific configuration.

この立体造形装置は、粉体造形装置(粉末造形装置ともいう。)であり、粉体(粉末)が結合された層状造形物である造形層30が形成される造形部1と、造形部1の層状に敷き詰められた粉体層31に対して造形液10を吐出して立体造形物を造形する造形ユニット5とを備えている。 This three-dimensional modeling device is a powder modeling device (also referred to as a powder modeling device), and is a modeling unit 1 in which a modeling layer 30 which is a layered model in which powders (powder) are bonded is formed, and a modeling unit 1. It is provided with a modeling unit 5 for forming a three-dimensional model by discharging the modeling liquid 10 onto the powder layer 31 spread in layers.

造形部1は、粉体槽11と、平坦化手段(リコータ)である回転体としての平坦化ローラ12などを備えている。なお、平坦化手段は、回転体に代えて、例えば板状部材(ブレード)とすることもできる。 The modeling unit 1 includes a powder tank 11, a flattening roller 12 as a rotating body as a flattening means (recoater), and the like. The flattening means may be, for example, a plate-shaped member (blade) instead of the rotating body.

粉体槽11は、造形槽22に供給する粉体20を保持する供給槽21と、造形層30が積層されて立体造形物が造形される造形槽22とを有している。 The powder tank 11 has a supply tank 21 that holds the powder 20 to be supplied to the modeling tank 22, and a modeling tank 22 in which the modeling layers 30 are laminated to form a three-dimensional model.

供給槽21の底部は供給ステージ23として鉛直方向(高さ方向)に昇降自在となっている。同様に、造形槽22の底部は造形ステージ24として鉛直方向(高さ方向)に昇降自在となっている。造形ステージ24上に造形層30が積層された立体造形物が造形される。 The bottom of the supply tank 21 can be raised and lowered in the vertical direction (height direction) as the supply stage 23. Similarly, the bottom of the modeling tank 22 can be raised and lowered in the vertical direction (height direction) as the modeling stage 24. A three-dimensional model in which the modeling layer 30 is laminated on the modeling stage 24 is modeled.

供給ステージ23は、例えば図4に示すように、モータ27によって矢印Z方向(高さ方向)に昇降され、造形ステージ24は、同じく、モータ28によって矢印Z方向に昇降される。 As shown in FIG. 4, for example, the supply stage 23 is moved up and down in the arrow Z direction (height direction) by the motor 27, and the modeling stage 24 is also moved up and down in the arrow Z direction by the motor 28.

平坦化ローラ12は、供給槽21の供給ステージ23上に供給された粉体20を造形槽22に移送して供給する。平坦化手段である平坦化ローラ12によって造形槽22に供給した粉体20の表面を均して平坦化して、粉体層31を形成する。 The flattening roller 12 transfers and supplies the powder 20 supplied on the supply stage 23 of the supply tank 21 to the modeling tank 22. The surface of the powder 20 supplied to the modeling tank 22 is leveled and flattened by the flattening roller 12, which is a flattening means, to form the powder layer 31.

この平坦化ローラ12は、造形ステージ24のステージ面(粉体20が積載される面)に沿って矢印Y方向に、ステージ面に対して相対的に往復移動可能に配置され、往復移動機構25によって移動される。また、平坦化ローラ12は、モータ26によって回転駆動される。 The flattening roller 12 is arranged so as to be reciprocally movable relative to the stage surface in the direction of arrow Y along the stage surface (the surface on which the powder 20 is loaded) of the modeling stage 24, and the reciprocating moving mechanism 25. Moved by. Further, the flattening roller 12 is rotationally driven by the motor 26.

一方、造形ユニット5は、造形ステージ24上の粉体層31に粉体20を結合させる造形液10を吐出して(与えて)、粉体20が結合された層状造形物としての造形層30を形成する液体吐出ユニット50を備えている。 On the other hand, the modeling unit 5 discharges (gives) the modeling liquid 10 that binds the powder 20 to the powder layer 31 on the modeling stage 24, and the modeling layer 30 as a layered model to which the powder 20 is bonded is discharged (given). The liquid discharge unit 50 for forming the above is provided.

液体吐出ユニット50は、キャリッジ51と、キャリッジ51に搭載された2つ(1又は3つ以上でもよい。)の液体吐出ヘッド(以下、単に「ヘッド」という。)52a、52bを備えている。 The liquid discharge unit 50 includes a carriage 51 and two (one or three or more) liquid discharge heads (hereinafter, simply referred to as “heads”) 52a and 52b mounted on the carriage 51.

キャリッジ51は、ガイド部材54及び55に移動可能に保持されている。ガイド部材54及び55は、両側の側板70、70に昇降可能に保持されている。 The carriage 51 is movably held by the guide members 54 and 55. The guide members 54 and 55 are held on the side plates 70 and 70 on both sides so as to be able to move up and down.

このキャリッジ51は、後述するX方向走査機構550を構成するX方向走査モータによってプーリ及びベルトを介して主走査方向である矢印X方向(以下、単に「X方向」という。他のY、Zについても同様とする。)に往復移動される。 The carriage 51 is referred to in the arrow X direction (hereinafter, simply referred to as “X direction”) which is the main scanning direction via the pulley and the belt by the X direction scanning motor constituting the X direction scanning mechanism 550 described later. The same applies to).

2つのヘッド52a、52b(以下、区別しないときは「ヘッド52」という。)は、造形液を吐出する複数のノズルを配列したノズル列がそれぞれ2列配置されている。一方のヘッド52aの2つのノズル列は、シアン造形液及びマゼンタ造形液を吐出する。他方のヘッド52bの2つのノズル列は、イエロー造形液及びブラック造形液をそれぞれ吐出する。なお、ヘッド構成はこれに限るものではない。 The two heads 52a and 52b (hereinafter, referred to as "head 52" when not distinguished) are provided with two rows of nozzles in which a plurality of nozzles for discharging a molding liquid are arranged. The two nozzle rows of one head 52a discharge the cyan molding liquid and the magenta molding liquid. The two nozzle rows of the other head 52b discharge the yellow molding liquid and the black molding liquid, respectively. The head configuration is not limited to this.

これらのシアン造形液、マゼンタ造形液、イエロー造形液、ブラック造形液の各々を収容した複数のタンク60がタンク装着部56に装着され、供給チューブなどを介してヘッド52a、52bに供給される。 A plurality of tanks 60 containing each of these cyan modeling liquid, magenta modeling liquid, yellow modeling liquid, and black modeling liquid are mounted on the tank mounting portion 56 and supplied to the heads 52a and 52b via a supply tube and the like.

また、X方向の一方側には、液体吐出ユニット50のヘッド52の維持回復を行うメンテナンス機構61が配置されている。 Further, on one side in the X direction, a maintenance mechanism 61 for maintaining and recovering the head 52 of the liquid discharge unit 50 is arranged.

メンテナンス機構61は、主にキャップ62とワイパ63で構成される。キャップ62をヘッド52のノズル面(ノズルが形成された面)に密着させ、ノズルから造形液を吸引する。ノズルに詰まった粉体の排出や高粘度化した造形液を排出するためである。その後、ノズルのメニスカス形成(ノズル内は負圧状態である)のため、ノズル面をワイパ63でワイピング(払拭)する。また、メンテナンス機構61は、造形液の吐出が行われない場合に、ヘッドのノズル面をキャップ62で覆い、粉体20がノズルに混入することや造形液10が乾燥することを防止する。 The maintenance mechanism 61 is mainly composed of a cap 62 and a wiper 63. The cap 62 is brought into close contact with the nozzle surface (the surface on which the nozzle is formed) of the head 52, and the modeling liquid is sucked from the nozzle. This is to discharge the powder clogged in the nozzle and the highly viscous molding liquid. After that, in order to form the meniscus of the nozzle (the inside of the nozzle is in a negative pressure state), the nozzle surface is wiped (wiped) with the wiper 63. Further, the maintenance mechanism 61 covers the nozzle surface of the head with the cap 62 when the molding liquid is not discharged, and prevents the powder 20 from being mixed into the nozzle and the molding liquid 10 from drying.

造形ユニット5は、ベース部材7上に配置されたガイド部材71に移動可能に保持されたスライダ部72を有し、造形ユニット5全体がX方向と直交するY方向(副走査方向)に往復移動可能である。この造形ユニット5は、後述するY方向走査機構552によって全体がY方向に往復移動される。 The modeling unit 5 has a slider portion 72 movably held by a guide member 71 arranged on the base member 7, and the entire modeling unit 5 reciprocates in the Y direction (sub-scanning direction) orthogonal to the X direction. It is possible. The entire modeling unit 5 is reciprocated in the Y direction by the Y-direction scanning mechanism 552 described later.

液体吐出ユニット50は、ガイド部材54、55とともに矢印Z方向に昇降可能に配置され、後述するZ方向昇降機構551によってZ方向に昇降される。 The liquid discharge unit 50 is arranged so as to be able to move up and down in the Z direction of the arrow together with the guide members 54 and 55, and is moved up and down in the Z direction by the Z direction raising and lowering mechanism 551 described later.

ここで、造形部1の詳細について説明する。 Here, the details of the modeling unit 1 will be described.

粉体槽11は、箱型形状をなし、供給槽21と造形槽22と、余剰粉体受け槽29の3つの上面が開放された槽とを備えている。供給槽21内部には供給ステージ23が、造形槽22内部には造形ステージ24がそれぞれ昇降可能に配置される。 The powder tank 11 has a box shape, and includes a supply tank 21, a modeling tank 22, and a tank in which the upper surfaces of the surplus powder receiving tank 29 are open. A supply stage 23 is arranged inside the supply tank 21 and a modeling stage 24 is arranged inside the modeling tank 22 so as to be able to move up and down.

供給ステージ23の側面は供給槽21の内側面に接するように配置されている。造形ステージ24の側面は造形槽22の内側面に接するように配置されている。これらの供給ステージ23及び造形ステージ24の上面は水平に保たれている。 The side surface of the supply stage 23 is arranged so as to be in contact with the inner side surface of the supply tank 21. The side surface of the modeling stage 24 is arranged so as to be in contact with the inner surface surface of the modeling tank 22. The upper surfaces of the supply stage 23 and the modeling stage 24 are kept horizontal.

供給槽21上には後述する粉体供給装置554が配置される。造形の初期動作時や供給槽21の粉体量が減少した場合に、粉体供給装置554を構成するタンク内の粉体を供給槽21に供給する。粉体供給のための粉体搬送方法としては、スクリューを利用したスクリューコンベア方式や、エアーを利用した空気輸送方式などが挙げられる。 A powder supply device 554, which will be described later, is arranged on the supply tank 21. During the initial operation of modeling or when the amount of powder in the supply tank 21 decreases, the powder in the tank constituting the powder supply device 554 is supplied to the supply tank 21. Examples of the powder transport method for powder supply include a screw conveyor method using a screw and an air transport method using air.

平坦化ローラ12は、供給槽21から粉体20を造形槽22へと移送供給して、表面を均すことで平坦化して所定の厚みの層状の粉体である粉体層31を形成する。 The flattening roller 12 transfers and supplies the powder 20 from the supply tank 21 to the modeling tank 22 and flattens the surface by leveling to form a powder layer 31 which is a layered powder having a predetermined thickness. ..

この平坦化ローラ12は、造形槽22及び供給槽21の内寸(即ち、粉体が供される部分又は仕込まれている部分の幅)よりも長い棒状部材であり、往復移動機構25によってステージ面に沿って、供給槽21及び造形槽22上をY方向(副走査方向)に往復移動される。 The flattening roller 12 is a rod-shaped member longer than the inner dimensions of the modeling tank 22 and the supply tank 21 (that is, the width of the portion where the powder is provided or the portion where the powder is charged), and is staged by the reciprocating moving mechanism 25. It is reciprocated in the Y direction (sub-scanning direction) on the supply tank 21 and the modeling tank 22 along the surface.

この平坦化ローラ12は、モータ26によって回転されながら、供給槽21及び造形槽22の上方を通過するようにして水平方向に往復移動する。これにより、粉体20が造形槽22上へと移送供給され、また、平坦化ローラ12が造形槽22上を通過しながら粉体20を平坦化することで粉体層31が形成される。 The flattening roller 12 reciprocates in the horizontal direction so as to pass above the supply tank 21 and the modeling tank 22 while being rotated by the motor 26. As a result, the powder 20 is transferred and supplied onto the modeling tank 22, and the powder layer 31 is formed by flattening the powder 20 while the flattening roller 12 passes over the modeling tank 22.

次に、上記立体造形装置の制御部の概要について図5を参照して説明する。図5は同制御部のブロック図である。 Next, the outline of the control unit of the three-dimensional modeling apparatus will be described with reference to FIG. FIG. 5 is a block diagram of the control unit.

制御部500は、この立体造形装置全体の制御を司るCPU501と、CPU501に本発明に係わる制御を含む立体造形動作の制御を実行させるためのプログラムを含むプログラム、その他の固定データを格納するROM502と、造形データ等を一時格納するRAM503とを含む主制御部500Aを備えている。 The control unit 500 includes a CPU 501 that controls the entire three-dimensional modeling device, a program that includes a program for causing the CPU 501 to control a three-dimensional modeling operation including the control according to the present invention, and a ROM 502 that stores other fixed data. A main control unit 500A including a RAM 503 for temporarily storing modeling data and the like is provided.

制御部500は、装置の電源が遮断されている間もデータを保持するための不揮発性メモリ(NVRAM)504を備えている。また、制御部500は、画像データに対する各種信号処理等を行う画像処理やその他装置全体を制御するための入出力信号を処理するASIC505を備えている。 The control unit 500 includes a non-volatile memory (NVRAM) 504 for holding data even while the power of the device is cut off. Further, the control unit 500 includes an ASIC 505 that processes an image process that performs various signal processes on the image data and other input / output signals for controlling the entire device.

制御部500は、外部の造形データ作成装置600から造形データを受信するときに使用するデータ及び信号の送受を行うためのI/F506を備えている。なお、造形データ作成装置600は、最終形態の造形物を各造形層にスライスした造形データを作成する装置であり、パーソナルコンピュータ等の情報処理装置で構成されている。 The control unit 500 includes an I / F 506 for transmitting and receiving data and signals used when receiving modeling data from an external modeling data creating device 600. The modeling data creation device 600 is an device that creates modeling data by slicing a modeled object in the final form into each modeling layer, and is composed of an information processing device such as a personal computer.

制御部500は、各種センサの検知信号を取り込むためのI/O507を備えている。 The control unit 500 includes an I / O 507 for capturing detection signals of various sensors.

制御部500は、液体吐出ユニット50のヘッド52を駆動制御するヘッド駆動制御部508を備えている。 The control unit 500 includes a head drive control unit 508 that drives and controls the head 52 of the liquid discharge unit 50.

制御部500は、液体吐出ユニット50のキャリッジ51をX方向(主走査方向)に移動させるX方向走査機構550を構成するモータを駆動するモータ駆動部510と、造形ユニット5をY方向(副走査方向)に移動させるY方向走査機構552を構成するモータを駆動するモータ駆動部512を備えている。 The control unit 500 drives the motor drive unit 510 that drives the motor constituting the X-direction scanning mechanism 550 that moves the carriage 51 of the liquid discharge unit 50 in the X direction (main scanning direction), and the modeling unit 5 in the Y direction (sub-scanning). It includes a motor drive unit 512 that drives a motor that constitutes a Y-direction scanning mechanism 552 that moves in the direction (direction).

制御部500は、液体吐出ユニット50のキャリッジ51をZ方向に移動(昇降)させるZ方向昇降機構551を構成するモータを駆動するモータ駆動部511を備えている。なお、矢印Z方向への昇降は造形ユニット5全体を昇降させる構成とすることもできる。 The control unit 500 includes a motor drive unit 511 that drives a motor that constitutes a Z-direction elevating mechanism 551 that moves (elevates) the carriage 51 of the liquid discharge unit 50 in the Z direction. It should be noted that the elevating and lowering in the direction of the arrow Z may be configured to elevate and lower the entire modeling unit 5.

制御部500は、供給ステージ23を昇降させるモータ27を駆動するモータ駆動部513と、造形ステージ24を昇降させるモータ28を駆動するモータ駆動部514を備えている。 The control unit 500 includes a motor drive unit 513 that drives the motor 27 that raises and lowers the supply stage 23, and a motor drive unit 514 that drives the motor 28 that raises and lowers the modeling stage 24.

制御部500は、平坦化ローラ12を移動させる往復移動機構25のモータ553を駆動するモータ駆動部515と、平坦化ローラ12を回転駆動するモータ26を駆動する516を備えている。 The control unit 500 includes a motor drive unit 515 that drives the motor 553 of the reciprocating movement mechanism 25 that moves the flattening roller 12, and a 516 that drives the motor 26 that rotationally drives the flattening roller 12.

制御部500は、供給槽21に粉体20を供給する粉体供給装置554を駆動する供給系駆動部517と、液体吐出ユニット50のメンテナンス機構61を駆動するメンテナンス駆動部518を備えている。 The control unit 500 includes a supply system drive unit 517 that drives the powder supply device 554 that supplies the powder 20 to the supply tank 21, and a maintenance drive unit 518 that drives the maintenance mechanism 61 of the liquid discharge unit 50.

制御部500は、粉体後供給部80から粉体20の供給を行わせる後供給駆動部519を備えている。 The control unit 500 includes a post-supply drive unit 519 that supplies the powder 20 from the powder post-supply unit 80.

制御部500のI/O507には、装置の環境条件としての温度及び湿度を検出する温湿度センサ560などの検知信号やその他のセンサ類の検知信号が入力される。 A detection signal such as a temperature / humidity sensor 560 that detects temperature and humidity as an environmental condition of the device and a detection signal of other sensors are input to the I / O 507 of the control unit 500.

制御部500には、この装置に必要な情報の入力及び表示を行うための操作パネル522が接続されている。 An operation panel 522 for inputting and displaying information necessary for this device is connected to the control unit 500.

なお、造形データ作成装置600と立体造形装置(粉体積層造形装置)601によって造形装置が構成される。 The modeling device is configured by the modeling data creation device 600 and the three-dimensional modeling device (powder lamination modeling device) 601.

次に、本発明の第1実施形態における制御部による粉体層の形成動作の制御について図6を参照して説明する。図6は同説明に供する模式的説明図である。 Next, the control of the powder layer forming operation by the control unit according to the first embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic explanatory view for the same explanation.

図6(a)に示すように、造形槽22の造形ステージ24上に、1又は複数層の造形層30が形成されているものとする。 As shown in FIG. 6A, it is assumed that one or a plurality of modeling layers 30 are formed on the modeling stage 24 of the modeling tank 22.

そこで、最上層の造形層30上に次の粉体層31を形成するときには、図6(b)に示すように、供給槽21の供給ステージ23をZ1方向に移動量z1分上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分下降させる。 Therefore, when the next powder layer 31 is formed on the uppermost modeling layer 30, as shown in FIG. 6B, the supply stage 23 of the supply tank 21 is raised in the Z1 direction by the amount of movement z1 for modeling. The modeling stage 24 of the tank 22 is lowered in the Z2 direction by the amount of movement z2.

このとき、移動量z1、z2は粉体層31の厚みΔtよりも大きな値であり、移動量z2≧z1としている。これにより、供給槽21から粉体20を造形槽22に供給するとき供給される粉体20をすべて造形槽22内に収容することができる。 At this time, the movement amounts z1 and z2 are values larger than the thickness Δt of the powder layer 31, and the movement amounts z2 ≧ z1. As a result, all the powder 20 supplied when the powder 20 is supplied from the supply tank 21 to the modeling tank 22 can be accommodated in the modeling tank 22.

そこで、図6(c)に示すように、平坦化ローラ12を、供給槽21側から一方の方向であるY2方向(往路方向とする。)に移動させて、粉体20を造形槽22へと移送供給する(粉体供給)。 Therefore, as shown in FIG. 6C, the flattening roller 12 is moved from the supply tank 21 side to the Y2 direction (outward direction), which is one direction, to move the powder 20 to the modeling tank 22. And transfer supply (powder supply).

次いで、図6(d)に示すように、供給槽21の供給ステージ23をZ2方向に移動量z3分下降させ、造形槽22の造形ステージ24をZ1方向に移動量z4分上昇させる。これにより、造形槽22の造形ステージ24上の粉体20が造形槽22の開口部から上方に盛り上がった状態になる。 Next, as shown in FIG. 6D, the supply stage 23 of the supply tank 21 is lowered in the Z2 direction by a movement amount z3 minutes, and the modeling stage 24 of the modeling tank 22 is raised in the Z1 direction by a movement amount z4 minutes. As a result, the powder 20 on the modeling stage 24 of the modeling tank 22 rises upward from the opening of the modeling tank 22.

このときの造形ステージ24の移動量z4は、造形槽22の前回の粉体層31の表面(粉体面)の表面と平坦化ローラ12の下部(下方接線部)との間隔が粉体層31の厚みΔt1となるように設定する。粉体層31の厚みΔt1(積層ピッチ)は、数十〜100μm程度であることが好ましい。 The movement amount z4 of the modeling stage 24 at this time is such that the distance between the surface (powder surface) of the previous powder layer 31 of the modeling tank 22 and the lower portion (lower tangential portion) of the flattening roller 12 is the powder layer. It is set so that the thickness of 31 is Δt1. The thickness Δt1 (lamination pitch) of the powder layer 31 is preferably about several tens to 100 μm.

そこで、図6(e)に示すように、平坦化ローラ12をY1方向(復路方向とする。)に移動させることで、造形ステージ24の造形層30上で所定の厚さΔt1になる粉体層31が形成される。このとき、粉体層31の形成に使用されなかった未使用の粉体20は供給槽21に戻される。 Therefore, as shown in FIG. 6E, by moving the flattening roller 12 in the Y1 direction (the return direction), the powder has a predetermined thickness Δt1 on the modeling layer 30 of the modeling stage 24. Layer 31 is formed. At this time, the unused powder 20 that was not used for forming the powder layer 31 is returned to the supply tank 21.

粉体層31を形成後、平坦化ローラ12は、図6(f)に示すように、更にY1方向に移動されて初期位置(原点位置)に戻される(復帰される)。その後、ヘッド52から造形液10の液滴を吐出して、次の粉体層31に所要形状の造形層30を積層形成する(造形)動作に移行する。 After forming the powder layer 31, the flattening roller 12 is further moved in the Y1 direction and returned (returned) to the initial position (origin position) as shown in FIG. 6 (f). After that, the droplets of the modeling liquid 10 are ejected from the head 52, and the process proceeds to the operation of laminating and forming the modeling layer 30 having the required shape on the next powder layer 31 (modeling).

なお、造形層30は、例えば、ヘッド52から吐出された造形液10が粉体20と混合されることで、粉体20に含まれる接着剤が溶解し、溶解した接着剤同士が結合して粉体20が結合されることで形成される。 In the modeling layer 30, for example, when the modeling liquid 10 discharged from the head 52 is mixed with the powder 20, the adhesive contained in the powder 20 is dissolved, and the dissolved adhesives are bonded to each other. It is formed by combining the powder 20.

次いで、上述した一方向に平坦化ローラ12を移動して造形槽22に粉体を移送供給し、他方向に平坦化ローラ12を移動して粉体の平坦化による粉体層31の形成を行い、ヘッド52による造形液の吐出して造形層30を形成する。このとき、新たな造形層30とその下層の造形層30とは一体化して三次元形状造形物の一部を構成する。 Next, the flattening roller 12 is moved in one direction to transfer and supply the powder to the modeling tank 22, and the flattening roller 12 is moved in the other direction to form the powder layer 31 by flattening the powder. Then, the modeling liquid is discharged by the head 52 to form the modeling layer 30. At this time, the new modeling layer 30 and the underlying modeling layer 30 are integrated to form a part of the three-dimensional shaped model.

以後、粉体の供給・平坦化よる粉体層31を形成する工程、ヘッド52による造形液吐出工程を必要な回数繰り返すことによって、三次元形状造形物(立体造形物)を完成させる。 After that, the three-dimensional shaped object (three-dimensional shaped object) is completed by repeating the step of forming the powder layer 31 by supplying and flattening the powder and the step of discharging the modeling liquid by the head 52 as many times as necessary.

このように、平坦化手段の往路移動(一方向への移動)で供給槽から造形槽に粉体を供給し、続いて、平坦化手段の復路移動(他方向への移動)で粉体層の形成と未使用粉体の供給槽への回収を行う。 In this way, the powder is supplied from the supply tank to the modeling tank by the outward movement of the flattening means (movement in one direction), and then the powder layer is transferred by the return movement (movement in the other direction) of the flattening means. And the unused powder is collected in the supply tank.

これにより、粉体層の形成に使用されなった未使用粉体はそのまま造形槽に戻されるので、品質の低下が抑制される。 As a result, the unused powder used for forming the powder layer is returned to the molding tank as it is, so that deterioration of quality is suppressed.

また、供給槽及び造形槽外に未使用の粉体を排出することがないので、余剰な粉体を収容する余剰粉体受け手段、余剰粉体受け手段から粉体を回収して再度供給槽に戻すための回収機構を設ける必要がなく、装置の大型化を抑制できる。 In addition, since unused powder is not discharged to the outside of the supply tank and the modeling tank, the powder is recovered from the surplus powder receiving means for accommodating the surplus powder and the surplus powder receiving means and re-supplied. It is not necessary to provide a recovery mechanism for returning to, and it is possible to suppress the increase in size of the device.

次に、本発明の第2実施形態について図7を参照して説明する。図7は同実施形態における制御部による粉体層の形成動作の制御の説明に供する模式的説明図である。 Next, the second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic explanatory view for explaining the control of the powder layer forming operation by the control unit in the same embodiment.

まず、図7(a)に示すように、供給槽21の供給ステージ23をZ1方向に移動量z1分上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分下降させた後、平坦化ローラ12のY2方向への移動を開始する。 First, as shown in FIG. 7A, the supply stage 23 of the supply tank 21 is raised by the movement amount z1 in the Z1 direction, and the modeling stage 24 of the modeling tank 22 is lowered by the movement amount z2 in the Z2 direction. The flattening roller 12 starts moving in the Y2 direction.

そして、図7(b)に示すように、平坦化ローラ12のY2方向への移動によって供給槽21側から造形槽22側に粉体20を移送供給する(粉体供給)。 Then, as shown in FIG. 7B, the powder 20 is transferred and supplied from the supply tank 21 side to the modeling tank 22 side by moving the flattening roller 12 in the Y2 direction (powder supply).

次いで、図7(c)に示すように、供給槽21の供給ステージ23をZ2方向に移動量z3分下降させ、造形槽22の造形ステージ24をZ1方向に移動量z4分上昇させる。 Next, as shown in FIG. 7C, the supply stage 23 of the supply tank 21 is lowered in the Z2 direction by a movement amount z3 minutes, and the modeling stage 24 of the modeling tank 22 is raised in the Z1 direction by a movement amount z4 minutes.

そして、平坦化ローラ12の矢印方向への回転駆動を開始し、平坦化ローラ12のY1方向への移動を開始する。 Then, the rotary drive of the flattening roller 12 in the arrow direction is started, and the flattening roller 12 is started to move in the Y1 direction.

これにより、図7(d)に示すように、平坦化ローラ12は矢印方向に回転しながらY1方向に移動して、造形ステージ24の造形層30上で所定の厚さΔt1になる粉体層31が形成される。このとき、粉体層31の形成に使用されなかった未使用の粉体20は供給槽21に戻される。 As a result, as shown in FIG. 7D, the flattening roller 12 moves in the Y1 direction while rotating in the arrow direction, and becomes a powder layer having a predetermined thickness Δt1 on the modeling layer 30 of the modeling stage 24. 31 is formed. At this time, the unused powder 20 that was not used for forming the powder layer 31 is returned to the supply tank 21.

そして、図7(e)に示すように、厚さΔtの粉体層31を形成後、平坦化ローラ12が造形槽22を通過したとき、平坦化ローラ12の回転駆動を停止する。その後、更に平坦化ローラ12をY1方向に移動させて、図7(f)に示すように平坦化ローラ12を初期位置(原点位置)まで戻す。 Then, as shown in FIG. 7E, after forming the powder layer 31 having a thickness of Δt, when the flattening roller 12 passes through the modeling tank 22, the rotational drive of the flattening roller 12 is stopped. After that, the flattening roller 12 is further moved in the Y1 direction, and the flattening roller 12 is returned to the initial position (origin position) as shown in FIG. 7 (f).

その後、ヘッド52から造形液10を吐出して、次の粉体層31に所要形状の造形層30を積層形成する(造形)動作に移行すること、粉体層31の形成と造形層30の造形を繰り返して立体造形物を形成することは、前記第1実施形態と同様である。 After that, the modeling liquid 10 is discharged from the head 52 to shift to the operation of laminating and forming the modeling layer 30 having the required shape on the next powder layer 31, (modeling), forming the powder layer 31 and forming the modeling layer 30. Repeating the modeling to form a three-dimensional model is the same as in the first embodiment.

本実施形態では、平坦化ローラ12を復路移動させて平坦化による粉体層31の形成を行うとき、造形槽22上を通過するときには平坦化ローラ12を矢印方向に回転させ、造形槽22を通過したときには平坦化ローラ12の回転駆動を停止している。 In the present embodiment, when the flattening roller 12 is moved in the return path to form the powder layer 31 by flattening, the flattening roller 12 is rotated in the direction of the arrow when passing over the modeling tank 22, and the modeling tank 22 is formed. When it passes, the rotary drive of the flattening roller 12 is stopped.

このように、平坦化ローラ12を回転させながら移動することで、高平面度な粉体層31を形成できる。そして、粉体層31を形成しているとき以外(造形テーブル24上を通過しているとき以外)は、平坦化ローラ12の回転駆動を停止することで、騒音の発生を少なくし、省電力を図れる。 By moving the flattening roller 12 while rotating it in this way, the powder layer 31 having a high flatness can be formed. Then, except when the powder layer 31 is formed (except when passing over the modeling table 24), the rotation drive of the flattening roller 12 is stopped to reduce the generation of noise and save power. Can be planned.

また、供給槽21から造形槽22に対して1層分の粉体層31を形成するために必要な量に対して多量の粉体20を移送供給している。これにより、平坦化ローラ12のY2方向への移動、Y2方向への移動後の供給槽21及び造形槽22の平面度、平坦化ローラ12のY1方向への移動後の供給槽21の平面度が、粉体層31の平面度に及ぼす影響は小さく、造形物品質には影響がない。 Further, a large amount of powder 20 is transferred and supplied from the supply tank 21 to the modeling tank 22 in an amount required to form one powder layer 31. As a result, the flatness of the flattening roller 12 in the Y2 direction, the flatness of the supply tank 21 and the modeling tank 22 after the movement in the Y2 direction, and the flatness of the supply tank 21 after the flattening roller 12 moves in the Y1 direction. However, the effect on the flatness of the powder layer 31 is small, and there is no effect on the quality of the modeled object.

次に、本発明の第3実施形態について図8を参照して説明する。図8は同実施形態の説明に供する模式的説明図である。 Next, the third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic explanatory view for explaining the embodiment.

本実施形態では、平坦化ローラ12がY2方向に移動するとき、つまり、供給槽21から造形槽22に粉体20を移送供給するときに、平坦化ローラ12の移動方向前方側に、平坦化ローラ12にとともに移動するブレード110を配置している。ブレード31には振動発生手段としての振動子111を備えている。 In the present embodiment, when the flattening roller 12 moves in the Y2 direction, that is, when the powder 20 is transferred and supplied from the supply tank 21 to the modeling tank 22, the flattening roller 12 is flattened to the front side in the moving direction. A blade 110 that moves with the roller 12 is arranged. The blade 31 is provided with a vibrator 111 as a vibration generating means.

振動子111は、前記実施形態で説明した制御部500に備えた振動駆動部530を介して主制御部500Aで駆動制御される。なお、制御部500のその他の構成は前記第1実施形態で説明した同様である。 The vibrator 111 is driven and controlled by the main control unit 500A via the vibration drive unit 530 provided in the control unit 500 described in the above embodiment. The other configurations of the control unit 500 are the same as those described in the first embodiment.

次に、本実施形態における制御部による粉体層の形成動作の制御の説明について図9を参照して説明する。図9は同説明に供する模式的説明図である。 Next, a description of control of the powder layer forming operation by the control unit in the present embodiment will be described with reference to FIG. FIG. 9 is a schematic explanatory view for the same explanation.

まず、図9(a)に示すように、供給槽21の供給ステージ23をZ1方向に移動量z1分上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分下降させる。その後、振動子111を駆動してブレード110を振動させた状態で、ブレード111とともに平坦化ローラ12のY2方向への移動を開始する。 First, as shown in FIG. 9A, the supply stage 23 of the supply tank 21 is raised by the movement amount z1 in the Z1 direction, and the modeling stage 24 of the modeling tank 22 is lowered by the movement amount z2 in the Z2 direction. After that, in a state where the vibrator 111 is driven to vibrate the blade 110, the flattening roller 12 starts moving in the Y2 direction together with the blade 111.

そして、図9(b)に示すように、ブレード110及び平坦化ローラ12のY2方向への移動によって供給槽21側から造形槽22側に粉体20を移送供給する(粉体供給)。このとき、ブレッド110によって粉体20がタッピングされる。ブレード110は、造形槽22を通過したときに振動が停止される。 Then, as shown in FIG. 9B, the powder 20 is transferred and supplied from the supply tank 21 side to the modeling tank 22 side by moving the blade 110 and the flattening roller 12 in the Y2 direction (powder supply). At this time, the powder 20 is tapped by the bread 110. The vibration of the blade 110 is stopped when it passes through the modeling tank 22.

次いで、図9(c)に示すように、供給槽21の供給ステージ23をZ2方向に移動量z3分下降させ、造形槽22の造形ステージ24をZ1方向に移動量z4分上昇させる。 Next, as shown in FIG. 9C, the supply stage 23 of the supply tank 21 is lowered in the Z2 direction by a movement amount z3 minutes, and the modeling stage 24 of the modeling tank 22 is raised in the Z1 direction by a movement amount z4 minutes.

そして、平坦化ローラ12の矢印方向への回転駆動を開始し、平坦化ローラ12のY1方向への移動を開始する。 Then, the rotary drive of the flattening roller 12 in the arrow direction is started, and the flattening roller 12 is started to move in the Y1 direction.

これにより、図9(d)に示すように、平坦化ローラ12は矢印方向に回転しながらY1方向に移動して、造形ステージ24の造形層30上で所定の厚さΔt1になる粉体層31が形成される。このとき、粉体層31の形成に使用されなかった未使用の粉体20は供給槽21に戻される。 As a result, as shown in FIG. 9D, the flattening roller 12 moves in the Y1 direction while rotating in the arrow direction, and becomes a powder layer having a predetermined thickness Δt1 on the modeling layer 30 of the modeling stage 24. 31 is formed. At this time, the unused powder 20 that was not used for forming the powder layer 31 is returned to the supply tank 21.

そして、図9(e)に示すように、厚さΔtの粉体層31を形成後、平坦化ローラ12が造形槽22を通過したとき、平坦化ローラ12の回転駆動を停止する。その後、更に平坦化ローラ12をY1方向に移動させて、図9(f)に示すように平坦化ローラ12を初期位置(原点位置)まで戻す。 Then, as shown in FIG. 9E, after forming the powder layer 31 having a thickness of Δt, when the flattening roller 12 passes through the modeling tank 22, the rotational drive of the flattening roller 12 is stopped. After that, the flattening roller 12 is further moved in the Y1 direction, and the flattening roller 12 is returned to the initial position (origin position) as shown in FIG. 9 (f).

その後、ヘッド52から造形液10を吐出して、次の粉体層31に所要形状の造形層30を積層形成する(造形)動作に移行すること、粉体層31の形成と造形層30の造形を繰り返して立体造形物を形成することは、前記第1実施形態と同様である。 After that, the modeling liquid 10 is discharged from the head 52 to shift to the operation of laminating and forming the modeling layer 30 having the required shape on the next powder layer 31, (modeling), forming the powder layer 31 and forming the modeling layer 30. Repeating the modeling to form a three-dimensional model is the same as in the first embodiment.

このように、振動するブレード110(振動付与手段)で粉体20をタッピングしながら移送供給することで、高密度な状態で造形槽22内に粉体が供給される。これにより、高密度、高平面度な粉体層31を形成することができる。 In this way, by transferring and supplying the powder 20 while tapping it with the vibrating blade 110 (vibration applying means), the powder is supplied into the modeling tank 22 in a high-density state. As a result, the powder layer 31 having high density and high flatness can be formed.

また、供給槽21から造形槽22に対して1層分の粉体層31を形成するために必要な量に対して多量の粉体20を移送供給しているので、ブレード110と前層の造形層30とが粉体層31の積層ピッチより大きく離間した状態となる。 Further, since a large amount of powder 20 is transferred and supplied from the supply tank 21 to the modeling tank 22 in an amount required to form the powder layer 31 for one layer, the blade 110 and the front layer The molding layer 30 and the molding layer 30 are separated from each other by a larger distance than the stacking pitch of the powder layer 31.

これにより、ブレード110の振動により粉体20をタッピングしながら造形槽22に供給するとき、振動のエネルギーを大きくしても、既存の造形層30に対する悪影響(ズレや破損)を生じることなく、高密度な粉体層31を形成することができる。 As a result, when the powder 20 is tapped by the vibration of the blade 110 and supplied to the modeling tank 22, even if the energy of the vibration is increased, the existing modeling layer 30 is not adversely affected (shifted or damaged) and is high. A dense powder layer 31 can be formed.

次に、本発明の第4実施形態について図10を参照して説明する。図10は同実施形態の説明に供する模式的説明図である。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a schematic explanatory view for explaining the embodiment.

本実施形態では、平坦化ローラ12の移動方向において、造形槽22と反対側の供給槽21の端部における粉体20の表面のZ方向位置を検知する第1変位検知手段41を備えている。同様に、平坦化ローラ12の移動方向において、供給槽21と反対側の造形槽供22の端部における粉体20の表面のZ方向位置を検知する第2変位検知手段42を備えている。 In the present embodiment, the first displacement detecting means 41 for detecting the Z-direction position of the surface of the powder 20 at the end of the supply tank 21 on the opposite side of the modeling tank 22 in the moving direction of the flattening roller 12 is provided. .. Similarly, a second displacement detecting means 42 for detecting the Z-direction position of the surface of the powder 20 at the end of the modeling tank supply 22 on the opposite side of the supply tank 21 in the moving direction of the flattening roller 12 is provided.

第1変位検知手段41、第2変位検知手段42の各検知信号は、制御部500のI/O507に入力される。制御部500は、第1変位検知手段41で検知した粉体20の表面のZ方向位置は不揮発性メモリ505などに格納保持される。 Each detection signal of the first displacement detecting means 41 and the second displacement detecting means 42 is input to the I / O 507 of the control unit 500. The control unit 500 stores and holds the Z-direction position of the surface of the powder 20 detected by the first displacement detecting means 41 in the non-volatile memory 505 or the like.

次に、本実施形態における制御部による造形制御について図11及び図12を参照して説明する。図11は同制御の説明に供するフロー図、図12は図10のC部に相当する粉体層の形成状態の説明に供する説明図である。 Next, the modeling control by the control unit in the present embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is a flow chart for explaining the control, and FIG. 12 is an explanatory diagram for explaining the formation state of the powder layer corresponding to the portion C in FIG.

まず、図11を参照して、前記第3実施形態と同様にして、粉体層31の形成(リコート)を行う。 First, with reference to FIG. 11, the powder layer 31 is formed (recoated) in the same manner as in the third embodiment.

そして、第1変位検知手段41で供給槽22の粉体層形成後の粉体表面のZ方向位置を検知し、格納保持された前回の粉体供給時の粉体表面のZ方向位置と比較し、前回からの変化量(差)が予め設定した閾値を越えているか否かを判別する。 Then, the first displacement detecting means 41 detects the Z-direction position of the powder surface of the supply tank 22 after the powder layer is formed, and compares it with the Z-direction position of the powder surface stored and held at the time of the previous powder supply. Then, it is determined whether or not the amount of change (difference) from the previous time exceeds a preset threshold value.

ここで、前回からの変化量(差)が閾値を越えているときには、次回リコート時の供給ステージ23と造形ステージ24の移動量z1、z2を変更し、格納保持しているZ方向位置と検知したZ方向位置の差がなくなるように補正する。 Here, when the amount of change (difference) from the previous time exceeds the threshold value, the movement amounts z1 and z2 of the supply stage 23 and the modeling stage 24 at the time of the next recoating are changed, and the Z-direction position and the storage / holding position are detected. Correct so that there is no difference in the Z-direction position.

その後、また、前回からの変化量(差)が閾値を越えていないときはそのまま、第2変位検知手段42によって粉体層31の端部を検知して、粉体層31の形成不良が発生していないか否かを判別する。 After that, when the amount of change (difference) from the previous time does not exceed the threshold value, the end portion of the powder layer 31 is detected by the second displacement detecting means 42 as it is, and a poor formation of the powder layer 31 occurs. Determine if not.

すなわち、第2変位検知手段42によって粉体層31の端部を検知した結果、例えば図12(a)に示す状態であるときは正常とし、図12(b)に示すようにだれているときには不良とする。 That is, as a result of detecting the end portion of the powder layer 31 by the second displacement detecting means 42, for example, when it is in the state shown in FIG. 12 (a), it is normal, and when it is drooping as shown in FIG. 12 (b), it is normal. It is considered defective.

ここで、粉体層31の形成不良が発生しているときには、再度粉体層31の形成を行う。 Here, when the powder layer 31 is poorly formed, the powder layer 31 is formed again.

そして、正常な粉体層31が形成されたときに、液体を吐出して造形層30を形成する。 Then, when the normal powder layer 31 is formed, the liquid is discharged to form the modeling layer 30.

これにより、造形動作を繰返し、粉体層形成(リコート)、液体吐出を実施しても確実に薄層形成不良を防止することができる。したがって、造形物形状や雰囲気環境に起因して生じる液体吐出後の造形層30の収縮量変化や、粉体20のかさ密度変化が生じても、継続して安定的に粉体層の形成と造形層の造形を繰り返すことができる。 As a result, even if the molding operation is repeated to form the powder layer (recoat) and discharge the liquid, it is possible to reliably prevent the thin layer formation defect. Therefore, even if the shrinkage amount of the modeling layer 30 after the liquid is discharged or the bulk density of the powder 20 changes due to the shape of the modeled object or the atmospheric environment, the powder layer is continuously and stably formed. The modeling of the modeling layer can be repeated.

次に、本発明の第5実施形態に係る立体造形装置の一例の概要について図13ないし図15を参照して説明する。図13は同立体造形装置の概略平面説明図、図14は同じく概略側面説明図、図15は同じく造形部の断面説明図である。 Next, an outline of an example of the three-dimensional modeling apparatus according to the fifth embodiment of the present invention will be described with reference to FIGS. 13 to 15. FIG. 13 is a schematic plan explanatory view of the three-dimensional modeling apparatus, FIG. 14 is a schematic side surface explanatory view, and FIG. 15 is a cross-sectional explanatory view of the modeling portion.

この装置では、粉体槽11として、造形槽22と、平坦化ローラ12の移動方向において造形槽22の両側に配置され、粉体20を収容する2つの供給槽21A、21B(以下、区別しないときは「供給槽21」という。他の部材も同様)を備えている。 In this device, as the powder tank 11, two supply tanks 21A and 21B (hereinafter, not distinguished) are arranged on both sides of the molding tank 22 and the molding tank 22 in the moving direction of the flattening roller 12 and house the powder 20. Sometimes, it is referred to as "supply tank 21". The same applies to other members).

そして、平坦化ローラ12は、供給槽21A、造形層22及び供給槽21B上を往復移動可能に配置されている。平坦化ローラ12は、供給槽21A又は21Bから造形槽22に粉体20を移送し、造形槽22に供給された粉体20を平坦化して粉体層31を形成する平坦化手段である。 The flattening roller 12 is arranged so as to be reciprocally movable on the supply tank 21A, the modeling layer 22, and the supply tank 21B. The flattening roller 12 is a flattening means for transferring the powder 20 from the supply tank 21A or 21B to the modeling tank 22 and flattening the powder 20 supplied to the modeling tank 22 to form the powder layer 31.

次に、本実施形態における供給槽内の攪拌手段について図16及び図17を参照して説明する。図16は同実施形態における粉体槽部分の側面説明図、図17は同じく平面説明図である。 Next, the stirring means in the supply tank in the present embodiment will be described with reference to FIGS. 16 and 17. FIG. 16 is a side explanatory view of the powder tank portion in the same embodiment, and FIG. 17 is a plan explanatory view.

本実施形態では、供給槽21Aの供給ステージ23上には、攪拌手段401Aとしての回転盤411が回転可能に配置されている。同様に、供給槽21Bの供給ステージ23上には、攪拌手段401Bとしての回転盤411が回転可能に配置されている。 In the present embodiment, the rotary disk 411 as the stirring means 401A is rotatably arranged on the supply stage 23 of the supply tank 21A. Similarly, a rotary disk 411 as the stirring means 401B is rotatably arranged on the supply stage 23 of the supply tank 21B.

回転盤411は、正逆両方向に回転可能であり、回転速度も変更可能である。 The turntable 411 can rotate in both forward and reverse directions, and the rotation speed can also be changed.

なお、その他の構成は、前記第1実施形態で説明した装置と同様である。 The other configurations are the same as those described in the first embodiment.

次に、この装置における制御部の概要について図18を参照して説明する。図18は同制御部のブロック説明図である。 Next, an outline of the control unit in this device will be described with reference to FIG. FIG. 18 is a block explanatory view of the control unit.

制御部500は、供給槽21A、21Bの各造形ステージ23を昇降させるモータ27A、27Bを個別に駆動するモータ駆動部513と、攪拌手段401A、401Bの回転盤411を回転させるモータ542A、542Bを個別に駆動するモータ駆動部541とを備えている。 The control unit 500 individually drives the motors 27A and 27B for raising and lowering the modeling stages 23 of the supply tanks 21A and 21B, and the motor drive units 513 and the motors 542A and 542B for rotating the rotating discs 411 of the stirring means 401A and 401B. It is provided with a motor drive unit 541 that is individually driven.

なお、その他の構成は、前記第1実施形態で制御部と同様である。 The other configurations are the same as those of the control unit in the first embodiment.

次に、本実施形態における制御部による粉体層の形成動作の制御について図19及び図20を参照して説明する。図19は同制御の説明に供するフロー図、図20は同じく説明図である。 Next, the control of the powder layer forming operation by the control unit in the present embodiment will be described with reference to FIGS. 19 and 20. FIG. 19 is a flow diagram for explaining the control, and FIG. 20 is an explanatory diagram.

ここでは、供給槽21A、21Bのいずれか一方から造形槽22に粉体20を供給するとき、他方は未使用の粉体20を受けて収容する回収槽として機能させる。そこで、供給側と回収側を区別するときには、平坦化ローラ12で造形槽22に粉体20を供給する側を「供給側の供給槽21」と称し、未使用の粉体20を回収している側を「回収側の供給槽21」と称する。 Here, when the powder 20 is supplied to the modeling tank 22 from either the supply tanks 21A or 21B, the other is made to function as a recovery tank that receives and stores the unused powder 20. Therefore, when distinguishing between the supply side and the recovery side, the side that supplies the powder 20 to the modeling tank 22 by the flattening roller 12 is referred to as the “supply side supply tank 21”, and the unused powder 20 is recovered. This side is referred to as "collection side supply tank 21".

図19を参照して、供給槽21Aの供給ステージ23と供給槽21Bの供給ステージ23の高さを、供給側の供給槽21に合わせる。 With reference to FIG. 19, the heights of the supply stage 23 of the supply tank 21A and the supply stage 23 of the supply tank 21B are adjusted to match the supply tank 21 on the supply side.

すなわち、供給側の供給槽21から供給される粉体20の供給量と回収側の供給槽21に収容される粉体20の回収量は、粉体層31を1層形成するための粉体量分少なくなる。 That is, the supply amount of the powder 20 supplied from the supply tank 21 on the supply side and the recovery amount of the powder 20 contained in the supply tank 21 on the recovery side are the powders for forming one powder layer 31. It will be reduced by the amount.

そこで、供給槽21Aの供給ステージ23と供給槽21Bの供給ステージ23の高さを、供給側の供給槽21に合わせておくことで、回収側の供給槽21の容積が当該粉体層31を形成するときに生じる未使用の粉体20で満たされることはない。これにより、回収側の供給槽21の上部をヘッド52が通過するときにノズル面が粉体20と接触して吐出不良を生じるおそれがなくなる。 Therefore, by adjusting the heights of the supply stage 23 of the supply tank 21A and the supply stage 23 of the supply tank 21B to the supply tank 21 on the supply side, the volume of the supply tank 21 on the recovery side can be adjusted to the powder layer 31. It is not filled with the unused powder 20 that is produced during formation. As a result, when the head 52 passes through the upper part of the supply tank 21 on the collection side, there is no possibility that the nozzle surface comes into contact with the powder 20 and a discharge failure occurs.

その後、造形槽22の造形ステージ24を上昇させないで、供給側の供給槽21から1層分以上の粉体20を回収側の供給槽21に移送する(これを「捨てリコート」という。)。これは、詳細は後述するが、供給側と回収側を入れ替えるときに、次の供給側の供給槽21から供給される粉体20の量を一定に保つために行っている。 After that, the powder 20 for one layer or more is transferred from the supply tank 21 on the supply side to the supply tank 21 on the recovery side without raising the modeling stage 24 of the modeling tank 22 (this is referred to as “discard recoating”). Although the details will be described later, this is done in order to keep the amount of powder 20 supplied from the supply tank 21 on the next supply side constant when the supply side and the recovery side are exchanged.

そして、所定厚みの粉体層31を形成する。 Then, the powder layer 31 having a predetermined thickness is formed.

ここでは、供給側の供給槽21の供給ステージ23を所要量上昇させ、造形槽22の造形ステージ24を所定量(粉体層31の厚みΔt相当分)下降させる。そして、平坦化ローラ12をY方向に移動して、供給側の供給槽21から造形槽22に粉体20を供給し、所定厚みΔtの粉体層31を形成する。このとき、平坦化ローラ12は回収側の供給槽21の上方まで移動して、未使用の粉体20は回収側の供給槽21に収容されて回収される。 Here, the supply stage 23 of the supply tank 21 on the supply side is increased by a required amount, and the modeling stage 24 of the modeling tank 22 is lowered by a predetermined amount (corresponding to the thickness Δt of the powder layer 31). Then, the flattening roller 12 is moved in the Y direction to supply the powder 20 from the supply tank 21 on the supply side to the modeling tank 22 to form the powder layer 31 having a predetermined thickness Δt. At this time, the flattening roller 12 moves to the upper part of the supply tank 21 on the recovery side, and the unused powder 20 is housed in the supply tank 21 on the recovery side and recovered.

その後、回収側の供給槽21の攪拌手段401としての回転盤411を正逆両方向に往復回転させて収容された粉体20を攪拌して均す。 After that, the rotating disk 411 as the stirring means 401 of the supply tank 21 on the collection side is reciprocally rotated in both forward and reverse directions to stir and level the contained powder 20.

そして、供給側の供給槽21の供給ステージ23が所定の高さまで到達した(上昇した)か否かを判別する。 Then, it is determined whether or not the supply stage 23 of the supply tank 21 on the supply side has reached (raised) to a predetermined height.

ここで、供給側の供給槽21の供給ステージ23が所定の高さまで到達していないときには、供給側の供給槽21の粉体20を使用して粉体層31の形成を行い、回収側の供給槽21に収容した粉体20を攪拌して均す動作を繰り返す。 Here, when the supply stage 23 of the supply tank 21 on the supply side has not reached a predetermined height, the powder 20 of the supply tank 21 on the supply side is used to form the powder layer 31, and the powder layer 31 is formed on the recovery side. The operation of stirring and leveling the powder 20 contained in the supply tank 21 is repeated.

これに対し、供給側の供給槽21の供給ステージ23が所定の高さまで到達したときには、現在の回収側の供給槽21が供給槽21Bであるか否かを判別する。 On the other hand, when the supply stage 23 of the supply tank 21 on the supply side reaches a predetermined height, it is determined whether or not the current supply tank 21 on the collection side is the supply tank 21B.

ここで、現在の回収側の供給槽21が供給槽21Bであるときには、平坦化ローラ12を供給槽21Bの初期位置に移動する。 Here, when the current supply tank 21 on the collection side is the supply tank 21B, the flattening roller 12 is moved to the initial position of the supply tank 21B.

そして、供給槽21Bから粉体20がはみ出るまで供給ステージ23Bを上昇させる。 Then, the supply stage 23B is raised until the powder 20 protrudes from the supply tank 21B.

その後、供給槽21Bを供給側の供給槽21とし、供給槽21Aを回収側の供給槽21とする入れ替え設定を行う。 After that, the supply tank 21B is set as the supply tank 21 on the supply side, and the supply tank 21A is set as the supply tank 21 on the collection side.

これに対し、現在の回収側の供給槽21が供給槽21Bでないときには、すなわち、回収側の供給槽21が供給槽21Aであるときには、平坦化ローラ12を供給槽21Aの初期位置に移動する。 On the other hand, when the current supply tank 21 on the collection side is not the supply tank 21B, that is, when the supply tank 21 on the collection side is the supply tank 21A, the flattening roller 12 is moved to the initial position of the supply tank 21A.

そして、供給槽21Aから粉体20がはみ出るまで供給ステージ23Bを上昇させる。 Then, the supply stage 23B is raised until the powder 20 protrudes from the supply tank 21A.

その後、供給槽21Aを供給側の供給槽21とし、供給槽21Bを回収側の供給槽21とする入れ替え設定を行う。 After that, the supply tank 21A is set as the supply tank 21 on the supply side, and the supply tank 21B is set as the supply tank 21 on the collection side.

このように、攪拌手段を有する2つの供給槽を備えて、粉体層に形成に使用されなかった未使用の粉体を収容して攪拌することで、収容した粉体の均しを行っている。 In this way, by providing two supply tanks having agitating means, accommodating unused powder not used for formation in the powder layer and stirring the powder, the contained powder is leveled. There is.

例えば、図20(a)に示すように、平坦化ローラ12で粉体層31を形成するときに粉体層31の形成に使用されなかった未使用の粉体20は、例えば回収側の供給槽21が供給槽21Bであるとき、供給槽21Bに収容される。 For example, as shown in FIG. 20A, when the powder layer 31 is formed by the flattening roller 12, the unused powder 20 that is not used for forming the powder layer 31 is supplied, for example, on the recovery side. When the tank 21 is the supply tank 21B, it is housed in the supply tank 21B.

そこで、攪拌手段401Bとしての回転盤411を回転して、図20(b)に示すように、供給槽21Bに収容された粉体20を均している。 Therefore, the rotating disk 411 as the stirring means 401B is rotated to level the powder 20 contained in the supply tank 21B as shown in FIG. 20B.

すなわち、供給側の供給槽21から供給された粉体20のうちの粉体層31の形成に使用されなかった粉体20は回収側の供給槽21まで移送される。このとき、造形槽22を通過した未使用の粉体20は、回収側の供給槽21の造形槽22側の壁面を伝って落下することになる。 That is, the powder 20 not used for forming the powder layer 31 of the powder 20 supplied from the supply tank 21 on the supply side is transferred to the supply tank 21 on the recovery side. At this time, the unused powder 20 that has passed through the modeling tank 22 falls along the wall surface of the supply tank 21 on the collection side on the modeling tank 22 side.

そのため、回収側の供給槽21の造形槽22側の壁面に偏って堆積する。堆積された粉体20は、粉体材料由来の安息角を超えない限り崩れ落ちないため、そのままでは粉体20の偏った領域での堆積が進行することになる。その結果、供給槽21に収容余力があるにもかかわらず、供給槽21の開口から上部に部分的にはみ出してしまう。 Therefore, it is unevenly deposited on the wall surface of the supply tank 21 on the collection side on the modeling tank 22 side. Since the deposited powder 20 does not collapse unless it exceeds the angle of repose derived from the powder material, the deposited powder 20 will proceed to be deposited in an unbalanced region as it is. As a result, even though the supply tank 21 has a storage capacity, it partially protrudes upward from the opening of the supply tank 21.

また、供給槽21で粉体20の堆積に偏りが生じることで、回収側の供給槽21と供給側の供給槽21とを交代させたときに、交代直後の供給量を一定にするのが難しくなる。 Further, when the supply tank 21 on the recovery side and the supply tank 21 on the supply side are replaced due to the uneven deposition of the powder 20 in the supply tank 21, the supply amount immediately after the replacement is kept constant. It gets harder.

そこで、供給槽21の供給ステージ23に撹拌手段401を設けて、粉体20を回収している間に回収側の供給槽21内を撹拌することで、回収された粉体20が回収側の供給槽21の開口からはみ出てしまうことを防止する。また、回収側の供給槽21内の粉体20を撹拌することで、収容された粉体の密度むらを低減して再供給することになる粉体の品質低下を低減することができる。 Therefore, by providing a stirring means 401 in the supply stage 23 of the supply tank 21 and stirring the inside of the supply tank 21 on the recovery side while the powder 20 is being recovered, the recovered powder 20 is on the recovery side. It prevents the supply tank 21 from protruding from the opening. Further, by stirring the powder 20 in the supply tank 21 on the recovery side, it is possible to reduce the density unevenness of the contained powder and reduce the deterioration of the quality of the powder to be re-supplied.

ここで、攪拌手段401としての回転盤411は、少なくとも粉体層31を1層積層する間回転させる。 Here, the rotating disk 411 as the stirring means 401 is rotated while at least one powder layer 31 is laminated.

これにより、堆積された粉体20が崩され、ある程度平らに均される。毎回同じ機構で供給ステージ23の回転盤411が回転されるため、回収側となる供給槽21が入れ替わっても、粉体の撹拌度合いは一定である。したがって、供給される粉体20の状態(量、密度)も一定にすることができ、造形物の品質を一定に保つことができる。 As a result, the deposited powder 20 is broken down and leveled to some extent. Since the turntable 411 of the supply stage 23 is rotated by the same mechanism each time, the degree of stirring of the powder is constant even if the supply tank 21 on the collection side is replaced. Therefore, the state (amount, density) of the supplied powder 20 can be made constant, and the quality of the modeled object can be kept constant.

また、供給側の供給槽21と回収側の供給槽21を入れ替えるとき、上述したように、造形槽22の造形ステージ24を上昇させないで、入れ替え後に供給側となる供給槽21から1層分以上の粉体20を入れ替え後に回収側となる供給槽21に移送する捨てリコートを行う。 Further, when the supply tank 21 on the supply side and the supply tank 21 on the collection side are replaced, as described above, the modeling stage 24 of the modeling tank 22 is not raised, and one layer or more from the supply tank 21 on the supply side after the replacement. After replacing the powder 20 of the above, the powder 20 is transferred to the supply tank 21 on the collection side for disposal recoating.

つまり、撹拌手段によって撹拌しても回収側の供給槽21に収容された粉体20の表面の平坦性は十分でない。一方、粉体20の供給量を一定にするためには、供給槽21の上部で粉体20が擦り切り状態になっていることが好ましい。 That is, even if the powder is stirred by the stirring means, the flatness of the surface of the powder 20 contained in the supply tank 21 on the recovery side is not sufficient. On the other hand, in order to keep the supply amount of the powder 20 constant, it is preferable that the powder 20 is in a frayed state at the upper part of the supply tank 21.

そこで、造形ステージ24の高さを変えずに、次に供給側となる供給槽21の供給ステージ23を上昇させ、平坦化ローラ12で擦り切るように捨てリコートを行う。これにより、造形再開時に粉体20の供給量が変化することはなく、常に一定量の供給量を搬送することができる。 Therefore, without changing the height of the modeling stage 24, the supply stage 23 of the supply tank 21 on the supply side is raised next, and the flattening roller 12 is used to scrape and recoat. As a result, the supply amount of the powder 20 does not change when the molding is restarted, and a constant amount of supply amount can always be conveyed.

そして、捨てリコート中、又は、捨てリコート終了後に、次に回収側となる供給槽21の供給ステージ23の高さを次に供給側となる供給槽21の供給ステージ23の高さに合わせ、その後、粉体層31の形成、造形層10の造形を再開する。 Then, during the discard recoating or after the completion of the discard recoating, the height of the supply stage 23 of the supply tank 21 which is the next collection side is adjusted to the height of the supply stage 23 of the supply tank 21 which is the next supply side, and then , The formation of the powder layer 31 and the modeling of the modeling layer 10 are restarted.

これを造形終了まで繰り返すことによって、常に一定の供給量を確保しつつ、使用した粉体を再利用することができる。 By repeating this until the end of modeling, the used powder can be reused while always ensuring a constant supply amount.

次に、本発明の第6実施形態について図21及び図22を参照して説明する。図21は同実施形態における粉体槽の模式的側面説明図、図22は同じく平面説明図である。 Next, the sixth embodiment of the present invention will be described with reference to FIGS. 21 and 22. FIG. 21 is a schematic side view of the powder tank according to the same embodiment, and FIG. 22 is a plan explanatory view of the powder tank.

攪拌手段401として、供給ステージ23に対して垂直方向に立つ複数本の円柱状部材413を備えている。円柱状部材413の周面はスクリュー形状に形成され、円柱状部材413を回転させることで、供給ステージ23の上昇、下降動作も同時に行うことができる。 As the stirring means 401, a plurality of columnar members 413 standing perpendicular to the supply stage 23 are provided. The peripheral surface of the columnar member 413 is formed in a screw shape, and by rotating the columnar member 413, the supply stage 23 can be raised and lowered at the same time.

次に、本実施形態の作用について図23も参照して説明する。図23は同作用説明に供する要部側面説明図である。 Next, the operation of this embodiment will be described with reference to FIG. 23. FIG. 23 is an explanatory side view of a main part provided for explaining the same operation.

図23(a)に示すように、粉体層31の形成に使用されなかった未使用の粉体20は、回収側の供給槽21(ここでは、供給槽21Bとする。)に排出されて収容される。そこで、攪拌手段401としての円柱状部材413が少なくとも積層回数1回以上の間隔で正逆方向に回転される。 As shown in FIG. 23A, the unused powder 20 that was not used for forming the powder layer 31 is discharged to the supply tank 21 on the recovery side (here, the supply tank 21B). Be housed. Therefore, the columnar member 413 as the stirring means 401 is rotated in the forward and reverse directions at intervals of at least one lamination.

これにより、供給ステージ23が上下に動作する(昇降する)とともに、円柱状部材413の側面に位置する粉体20が回転によって動くことで、円柱状部材413の近傍にある堆積された粉体20が崩され、図23(b)に示すように、粉体20はある程度平らに均される。 As a result, the supply stage 23 moves up and down (up and down), and the powder 20 located on the side surface of the columnar member 413 moves by rotation, so that the deposited powder 20 in the vicinity of the columnar member 413 moves. Is broken down and the powder 20 is leveled to some extent as shown in FIG. 23 (b).

このとき、毎回同じ攪拌手段401で動作するため、回収側の供給槽21が入れ替わっても粉体20の撹拌度合いは一定である。 At this time, since the same stirring means 401 is used each time, the degree of stirring of the powder 20 is constant even if the supply tank 21 on the recovery side is replaced.

したがって、供給される粉体20の状態(量、密度)も一定にすることができ、造形品質を一定に保つことができる。 Therefore, the state (amount, density) of the supplied powder 20 can be made constant, and the molding quality can be kept constant.

次に、本発明の第7実施形態について図24及び図25を参照して説明する。図24は同実施形態における粉体槽の模式的側面説明図、図25は同じく平面説明図である。 Next, a seventh embodiment of the present invention will be described with reference to FIGS. 24 and 25. FIG. 24 is a schematic side view of the powder tank according to the same embodiment, and FIG. 25 is a plan explanatory view of the powder tank.

攪拌手段401として、供給ステージ23の内部に配置された振動機構部414を備えている。振動機構部414による振動方向は、供給ステージ23の面内方向及び面直方向のいずれでもよい。 As the stirring means 401, a vibration mechanism unit 414 arranged inside the supply stage 23 is provided. The vibration direction by the vibration mechanism unit 414 may be either the in-plane direction or the in-plane direction of the supply stage 23.

次に、本実施形態の作用について図26も参照して説明する。図26は同作用説明に供する要部側面説明図である。 Next, the operation of this embodiment will be described with reference to FIG. FIG. 26 is an explanatory side view of a main part used for explaining the same operation.

図26(a)に示すように、粉体層31の形成に使用されなかった未使用の粉体20は、回収側の供給槽21(ここでは、供給槽21Bとする。)に排出されて収容される。そこで、攪拌手段401としての振動機構部414によって振動を与える。 As shown in FIG. 26A, the unused powder 20 that was not used for forming the powder layer 31 is discharged to the supply tank 21 on the recovery side (here, the supply tank 21B). Be housed. Therefore, vibration is applied by the vibration mechanism unit 414 as the stirring means 401.

これにより、供給ステージ23上に堆積された粉体20が崩され、ある程度平らに均される。 As a result, the powder 20 deposited on the supply stage 23 is broken down and leveled to some extent.

このとき、毎回同じ攪拌手段401で動作するため、回収側の供給槽21が入れ替わっても粉体20の撹拌度合いは一定である。 At this time, since the same stirring means 401 is used each time, the degree of stirring of the powder 20 is constant even if the supply tank 21 on the recovery side is replaced.

したがって、供給される粉体20の状態(量、密度)も一定にすることができ、造形品質を一定に保つことができる。 Therefore, the state (amount, density) of the supplied powder 20 can be made constant, and the molding quality can be kept constant.

次に、供給側の供給槽と回収側の供給槽の入れ替えについて図27を参照して説明する。図27は同説明に供する模式的説明図である。 Next, the replacement of the supply tank on the supply side and the supply tank on the collection side will be described with reference to FIG. 27. FIG. 27 is a schematic explanatory view for the same explanation.

図27(a)に示すように、供給側の供給槽21(ここでは、供給槽21Aとする。)の供給ステージ23が所定の高さまで到達すると、平坦化ローラ12は、Y2方向に、回収側の供給槽21(ここでは、供給槽21Bとする。)から供給するときの初期位置に移動する。 As shown in FIG. 27A, when the supply stage 23 of the supply tank 21 on the supply side (here, the supply tank 21A) reaches a predetermined height, the flattening roller 12 collects in the Y2 direction. It moves to the initial position when supplying from the side supply tank 21 (here, the supply tank 21B).

この場合、供給槽21Aから造形槽22への粉体供給が終了した段階で、そのまま平坦化ローラ12は供給槽21Bの初期位置まで移動する。 In this case, when the powder supply from the supply tank 21A to the modeling tank 22 is completed, the flattening roller 12 moves to the initial position of the supply tank 21B as it is.

その後、図27(b)に示すように、供給槽21Bの供給ステージ23を供給槽21Bの開口から粉体20が完全にはみ出るまで供給ステージ23を上昇させ、供給槽21Aの供給ステージ23を供給槽21Bの供給ステージ23と同じ高さまで下降させる。 After that, as shown in FIG. 27B, the supply stage 23 of the supply tank 21B is raised until the powder 20 completely protrudes from the opening of the supply tank 21B, and the supply stage 23 of the supply tank 21A is supplied. It is lowered to the same height as the supply stage 23 of the tank 21B.

そして、平坦化ローラ12を、Y1方向に、供給槽21B側から供給槽21A側に移動させて、図27(c)に示すように、はみ出している粉体20を供給槽21Aに移送する。 Then, the flattening roller 12 is moved from the supply tank 21B side to the supply tank 21A side in the Y1 direction, and the protruding powder 20 is transferred to the supply tank 21A as shown in FIG. 27 (c).

すなわち、前述したように、回収側の供給槽21であった供給槽21Bに収容されている粉体20は、完全には均されていないため、粉体20を完全に均すために捨てリコートを一層分行っている。 That is, as described above, the powder 20 contained in the supply tank 21B, which was the supply tank 21 on the recovery side, is not completely leveled, and therefore is discarded and recoated in order to completely level the powder 20. Is done for one more.

このとき、平坦化ローラ12の移動速度は、粉体層31を形成するときの移動速度以下とすることが好ましい。つまり、造形槽22の最表面の粉体層31には造形層30が形成された状態にある。そこで、平坦化ローラ12の移動速度を、粉体層31を形成するときの移動速度以下とすることで、粉体20を移送するときに、造形層30の位置ずれが生じることを防止し、造形物の状態を維持する。 At this time, the moving speed of the flattening roller 12 is preferably equal to or lower than the moving speed when the powder layer 31 is formed. That is, the modeling layer 30 is formed on the outermost powder layer 31 of the modeling tank 22. Therefore, by setting the moving speed of the flattening roller 12 to be equal to or lower than the moving speed when forming the powder layer 31, it is possible to prevent the modeling layer 30 from being displaced when the powder 20 is transferred. Maintain the condition of the model.

上述した捨てリコートを行うことで、供給槽21B内の粉体20は完全に均されるため、その後の粉体層31の形成を行うときに供給される粉体量のばらつきを低減できる。 By performing the above-mentioned waste recoating, the powder 20 in the supply tank 21B is completely leveled, so that the variation in the amount of powder supplied when the powder layer 31 is formed thereafter can be reduced.

1 造形部
5 造形ユニット
10 造形液
12 平坦化ローラ(平坦化手段、回転体)
20 粉体
21、21A、21B 供給槽
22 造形槽
23 供給ステージ
24 造形ステージ
30 造形層(層状造形物)
31 粉体層(層状の粉体)
50 液体吐出ユニット
51 キャリッジ
52 液体吐出ヘッド(造形液用)
401 攪拌手段
1 Modeling part 5 Modeling unit 10 Modeling liquid 12 Flattening roller (flattening means, rotating body)
20 Powder 21, 21A, 21B Supply tank 22 Modeling tank 23 Supply stage 24 Modeling stage 30 Modeling layer (layered model)
31 Powder layer (layered powder)
50 Liquid discharge unit 51 Carriage 52 Liquid discharge head (for modeling liquid)
401 Stirring means

Claims (4)

粉体を層状にした粉体層が形成され、前記粉体層の前記粉体が所要形状に結合された層状造形物が造形される造形槽と、
前記粉体を収容する供給槽と、
前記供給槽及び前記造形槽の上方を往復移動可能に配置され、前記粉体を移送し、前記造形槽に供給された前記粉体を平坦化して前記粉体層を形成する平坦化手段と、
前記造形槽の前記粉体の表面形状を検知する手段と、
前記粉体層の形成を制御する手段と、を備え、
前記平坦化手段は、
往路移動によって前記粉体を前記供給槽から前記造形槽に移送し、
復路移動において、前記造形槽の上方を通過するときには回転し、前記造形槽の上方を通過したときに回転を停止し、
前記制御する手段は、前記検知する手段の検知結果から次回の平坦化を行うときの条件を変更する制御をする
ことを特徴とする立体造形装置。
A modeling tank in which a powder layer in which powder is layered is formed, and a layered model in which the powder in the powder layer is bonded to a required shape is formed.
A supply tank that houses the powder and
A flattening means that is arranged so as to be reciprocally movable above the supply tank and the modeling tank, transfers the powder, and flattens the powder supplied to the modeling tank to form the powder layer.
A means for detecting the surface shape of the powder in the modeling tank, and
A means for controlling the formation of the powder layer is provided.
The flattening means
The powder is transferred from the supply tank to the modeling tank by the outward movement, and the powder is transferred from the supply tank to the modeling tank.
In the return route movement, the rotation is rotated when passing above the modeling tank, and the rotation is stopped when passing above the modeling tank .
The controlling means is a three-dimensional modeling apparatus characterized in that it controls to change the conditions when the next flattening is performed from the detection result of the detecting means.
粉体を層状にした粉体層が形成され、前記粉体層の前記粉体が所要形状に結合された層状造形物が造形される造形槽と、
前記粉体を収容する供給槽と、
前記供給槽及び前記造形槽の上方を往復移動可能に配置され、前記粉体を移送し、前記造形槽に供給された前記粉体を平坦化して前記粉体層を形成する平坦化手段と、
前記造形槽の前記粉体の表面形状を検知する手段と、
前記粉体層の形成を制御する手段と、を備え、
前記平坦化手段は、前記粉体層を形成しているときには回転し、前記粉体層を形成しているとき以外は回転を停止し、
前記制御する手段は、前記検知する手段の検知結果から次回の平坦化を行うときの条件を変更する制御をする
ことを特徴とする立体造形装置。
A modeling tank in which a powder layer in which powder is layered is formed, and a layered model in which the powder in the powder layer is bonded to a required shape is formed.
A supply tank that houses the powder and
A flattening means that is arranged so as to be reciprocally movable above the supply tank and the modeling tank, transfers the powder, and flattens the powder supplied to the modeling tank to form the powder layer.
A means for detecting the surface shape of the powder in the modeling tank, and
A means for controlling the formation of the powder layer is provided.
The flattening means rotates when the powder layer is formed , and stops rotating except when the powder layer is formed.
The controlling means is a three-dimensional modeling apparatus characterized in that it controls to change the conditions when the next flattening is performed from the detection result of the detecting means.
前記造形槽は、造形テーブルを備え、
前記平坦化手段は、前記造形テーブル上を通過しているときには回転し、前記造形テーブル上を通過しているとき以外は回転を停止する
ことを特徴とする請求項1又は2に記載の立体造形装置。
The modeling tank is provided with a modeling table.
The three-dimensional modeling according to claim 1 or 2, wherein the flattening means rotates when passing over the modeling table and stops rotating except when passing over the modeling table. Device.
前記供給槽から前記造形槽に対して1層分の前記粉体層を形成するための粉体量よりも多い量の粉体を供給する
ことを特徴とする請求項1ないし3のいずれかに記載の立体造形装置。
The method according to any one of claims 1 to 3, wherein a larger amount of powder than the amount of powder for forming one layer of the powder layer is supplied from the supply tank to the modeling tank. The three-dimensional modeling device described.
JP2020074818A 2020-02-10 2020-04-20 Three-dimensional modeling equipment Active JP6958661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020074818A JP6958661B2 (en) 2020-02-10 2020-04-20 Three-dimensional modeling equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020020388A JP6699811B2 (en) 2020-02-10 2020-02-10 3D modeling device
JP2020074818A JP6958661B2 (en) 2020-02-10 2020-04-20 Three-dimensional modeling equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020020388A Division JP6699811B2 (en) 2020-02-10 2020-02-10 3D modeling device

Publications (2)

Publication Number Publication Date
JP2020108975A JP2020108975A (en) 2020-07-16
JP6958661B2 true JP6958661B2 (en) 2021-11-02

Family

ID=71569887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020074818A Active JP6958661B2 (en) 2020-02-10 2020-04-20 Three-dimensional modeling equipment

Country Status (1)

Country Link
JP (1) JP6958661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230003010A (en) 2020-06-24 2023-01-05 알프스 알파인 가부시키가이샤 changeover switch
JP2022185646A (en) 2021-06-03 2022-12-15 株式会社リコー Layer forming apparatus, layer forming method, and program
US20230156969A1 (en) 2021-11-15 2023-05-18 Tomoko Satoh Heat sink and method of manufacturing same, heat exchanger, and gyroid structure component and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856614B1 (en) * 2003-06-30 2006-08-11 Phenix Systems DEVICE FOR PRODUCING THIN LAYERS OF POWDER, PARTICULARLY AT HIGH TEMPERATURES, IN A PROCESS BASED ON THE ACTION OF A LASER ON THE MATERIAL
JP2015182304A (en) * 2014-03-24 2015-10-22 ブラザー工業株式会社 Solid molding device and drive control method thereof

Also Published As

Publication number Publication date
JP2020108975A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP2017087469A (en) Apparatus for three-dimensional fabrication
JP6958661B2 (en) Three-dimensional modeling equipment
JP6617515B2 (en) 3D modeling equipment
JP6565486B2 (en) 3D modeling apparatus, 3D modeling method, program
US20160368214A1 (en) Method and apparatus for fabricating three-dimensional object
JP6904035B2 (en) Equipment for modeling 3D objects, methods for modeling 3D objects, 3D objects
JP6743434B2 (en) Device, program, and method for forming three-dimensional object
JP6458543B2 (en) Modeling data creation device, program, modeling device
JP6862823B2 (en) Three-dimensional modeling device, three-dimensional modeling method
JP2018154882A (en) Three-dimensional molding apparatus
JP2013208878A (en) Three-dimensional shaping apparatus, and program for creating three-dimensional shaping data
JP6481383B2 (en) 3D modeling apparatus, 3D modeling production method, program
JP2018012282A (en) Three-dimensional molding device and three-dimensional molding method
JP2018154042A (en) Three-dimensional molding apparatus, method for manufacturing three-dimensional molded article and program
JP2017202620A (en) Three-dimensional molding device
JP6880492B2 (en) 3D modeling equipment, manufacturing methods and programs for 3D models
JP6699811B2 (en) 3D modeling device
JP6828267B2 (en) Equipment for modeling 3D objects, programs, methods for modeling 3D objects, methods for creating modeling data for 3D objects
JP6766381B2 (en) Equipment for modeling 3D objects, programs, methods for modeling 3D objects
EP4000770A1 (en) Method of manufacturing 3d modeled object
JP6872170B2 (en) 3D modeling equipment, 3D model manufacturing method and program
JP2018196966A (en) Three-dimensional molding device, molding program, and three-dimensional molding production method
JP6848205B2 (en) Equipment, programs, and methods for modeling 3D objects
JP7468078B2 (en) Molding apparatus and molding method
JP2018196968A (en) Three-dimensional molding device, three-dimensional molding production method, and molding program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151