JP6957976B2 - Vehicle power generation control device - Google Patents

Vehicle power generation control device Download PDF

Info

Publication number
JP6957976B2
JP6957976B2 JP2017103611A JP2017103611A JP6957976B2 JP 6957976 B2 JP6957976 B2 JP 6957976B2 JP 2017103611 A JP2017103611 A JP 2017103611A JP 2017103611 A JP2017103611 A JP 2017103611A JP 6957976 B2 JP6957976 B2 JP 6957976B2
Authority
JP
Japan
Prior art keywords
power
power generation
battery
fuel cell
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103611A
Other languages
Japanese (ja)
Other versions
JP2018201271A (en
Inventor
敏之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2017103611A priority Critical patent/JP6957976B2/en
Publication of JP2018201271A publication Critical patent/JP2018201271A/en
Application granted granted Critical
Publication of JP6957976B2 publication Critical patent/JP6957976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Description

本発明は、車両の発電制御装置に関する。 The present invention relates to a vehicle power generation control device.

二次電池に充電された電力を動力に用いる車両において、燃料電池(FCU:Fuel Cell Unit)等の発電機を充電用電源または動力用電源として搭載する車両がある。 Among vehicles that use the electric power charged in the secondary battery as power, there are vehicles equipped with a generator such as a fuel cell (FCU) as a power source for charging or a power source for power.

特許文献1には、車両の走行条件に応じて燃料電池の発電開始時期を決めるしきい値を変えることが開示されている。 Patent Document 1 discloses that the threshold value for determining the power generation start timing of the fuel cell is changed according to the traveling condition of the vehicle.

特開2012−253948号公報Japanese Unexamined Patent Publication No. 2012-253948

しかしながら、特許文献1に記載のものでは、燃料電池が発電を開始した後、二次電池の電力消費と燃料電池の燃料消費のバランスが悪く、二次電池の電力と燃料電池の燃料のどちらか一方が早期に無くなり、車両の出力性能を維持することができない。 However, in the case described in Patent Document 1, after the fuel cell starts to generate power, the balance between the power consumption of the secondary battery and the fuel consumption of the fuel cell is poor, and either the power of the secondary battery or the fuel of the fuel cell is used. One of them disappears early, and the output performance of the vehicle cannot be maintained.

そこで、本発明は、二次電池の電力と発電機の燃料のどちらか一方が早期に無くなることを防ぎ、車両の出力性能を維持した状態を継続させることができる車両の発電制御装置を提供することを目的としている。 Therefore, the present invention provides a vehicle power generation control device capable of preventing one of the power of the secondary battery and the fuel of the generator from being exhausted at an early stage and maintaining the state of maintaining the output performance of the vehicle. The purpose is.

上記課題を解決するため本発明は、車両の走行に必要な駆動力を発生する電動機と、外部電源から充電可能であり、前記電動機に電力を供給するバッテリと、前記バッテリを充電する電力あるいは前記電動機に供給する電力を発電する発電機と、を備える車両の発電制御装置であって、発電継続可能時間算出部と発電電力算出部とを備える制御部を備え、前記発電継続可能時間算出部は、前記発電機の燃料残量と、所定の発電基準電力とに基づいて、前記発電基準電力を発電するように前記発電機に発電を続けさせた場合に前記発電機の燃料が無くなるまでの時間である発電継続可能時間を算出し、前記発電電力算出部は、前記発電機の発電が開始されるときに、前記バッテリの残容量を前記発電継続可能時間で除算した値に前記発電基準電力を加算して、前記バッテリの残容量と前記発電機の燃料残量が同時に無くなるような前記バッテリと前記発電機とを合わせた出力電力である総出力電力を算出し、前記制御部は、前記発電機の発電が開始された後、前記総出力電力に対する前記車両の現在の平均消費電力の割合に、前記発電基準電力を乗算した電力値に等しくなるように前記発電機の発電電力を制御するものである。 In order to solve the above problems, the present invention presents a motor that generates a driving force required for traveling of a vehicle, a battery that can be charged from an external power source and supplies power to the motor, and power for charging the battery or the above. It is a power generation control device of a vehicle including a generator for generating power to be supplied to an electric motor, and includes a control unit including a power generation continuation time calculation unit and a power generation power calculation unit. , Time until the generator runs out of fuel when the generator continues to generate power so as to generate the power generation reference power based on the remaining amount of fuel of the generator and a predetermined power generation reference power. When the generator starts to generate power, the generated power calculation unit calculates the power generation reference power by dividing the remaining capacity of the battery by the power generation continuous time. In addition , the total output power, which is the combined output power of the battery and the generator so that the remaining capacity of the battery and the remaining fuel amount of the generator disappear at the same time, is calculated, and the control unit generates the power generation. after generation of the machine is started, the ratio of the current average power consumption of the vehicle relative to the total output power, that controls the generated power of the generator to be equal to the power value obtained by multiplying the generator reference power It is also of the.

このように、本発明によれば、バッテリの電力と発電機の燃料のどちらか一方が早期に無くなることを防ぎ、車両の出力性能を維持した状態を継続させることができる。 As described above, according to the present invention, it is possible to prevent one of the electric power of the battery and the fuel of the generator from being exhausted at an early stage, and to maintain the output performance of the vehicle.

図1は、本発明の一実施例に係る車両の発電制御装置のブロック図である。FIG. 1 is a block diagram of a vehicle power generation control device according to an embodiment of the present invention. 図2は、本発明の一実施例に係る車両の発電制御装置のバッテリの出力可能電力量と燃料電池の発電可能電力量と燃料電池の起動タイミングの関係を示す図である。FIG. 2 is a diagram showing the relationship between the amount of power that can be output from the battery of the vehicle power generation control device according to the embodiment of the present invention, the amount of power that can be generated by the fuel cell, and the start timing of the fuel cell. 図3は、本発明の一実施例に係る車両の発電制御装置の総出力電力と平均消費電力と発電基準電力と燃料電池の発電電力との関係を示す図である。FIG. 3 is a diagram showing the relationship between the total output power of the vehicle power generation control device according to the embodiment of the present invention, the average power consumption, the power generation reference power, and the power generation of the fuel cell. 図4は、本発明の一実施例に係る車両の発電制御装置の制御系のブロック図である。FIG. 4 is a block diagram of a control system of a vehicle power generation control device according to an embodiment of the present invention. 図5は、本発明の一実施例に係る車両の発電制御装置の発電制御処理の手順を示すフローチャートである。FIG. 5 is a flowchart showing a procedure of power generation control processing of the power generation control device of the vehicle according to the embodiment of the present invention. 図6は、本発明の一実施例の第1の他の態様に係る車両の発電制御装置のバッテリの出力可能電力量と燃料電池の発電可能電力量と燃料電池の起動タイミングの関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of power that can be output from the battery of the power generation control device of the vehicle, the amount of power that can be generated by the fuel cell, and the start timing of the fuel cell according to the first other aspect of the first embodiment of the present invention. Is. 図7は、本発明の一実施例の第2の他の態様に係る車両の発電制御装置のバッテリの出力可能電力量と燃料電池の発電可能電力量と燃料電池の起動タイミングの関係を示す図である。FIG. 7 is a diagram showing the relationship between the amount of power that can be output from the battery of the power generation control device of the vehicle, the amount of power that can be generated by the fuel cell, and the start timing of the fuel cell according to the second other aspect of the second embodiment of the present invention. Is.

本発明の一実施の形態に係る車両の発電制御装置は、車両の走行に必要な駆動力を発生する電動機と、外部電源から充電可能であり、電動機に電力を供給するバッテリと、バッテリを充電する電力あるいは電動機に供給する電力を発電する発電機と、を備える車両の発電制御装置であって、発電機の発電が開始されるときに、バッテリの残容量と、発電機の燃料残量と、発電機が発電するときの発電電力である発電基準電力とに基づいて、バッテリの残容量と発電機の燃料残量が同時に無くなるようなバッテリと発電機とを合わせた出力電力である総出力電力を算出し、発電機の発電が開始された後、発電基準電力と車両の現在の平均消費電力と総出力電力とに基づいて発電機の発電電力を制御する制御部を備えるよう構成されている。 The vehicle power generation control device according to an embodiment of the present invention has an electric motor that generates a driving force required for traveling of the vehicle, a battery that can be charged from an external power source, and a battery that supplies power to the electric power generator, and charges the battery. It is a power generation control device of a vehicle equipped with a generator for generating electric power or electric power to be supplied to an electric motor, and when the generator starts to generate electricity, the remaining capacity of the battery and the remaining fuel amount of the generator are used. Based on the power generation reference power that is the power generated when the generator generates power, the total output that is the combined output power of the battery and the generator so that the remaining capacity of the battery and the remaining fuel amount of the generator disappear at the same time. It is configured to include a control unit that calculates the power and controls the generator's power generation based on the power generation reference power, the current average power consumption of the vehicle and the total output power after the generator's power generation is started. There is.

これにより、バッテリの電力と発電機の燃料のどちらか一方が早期に無くなることを防ぎ、車両の出力性能を維持した状態を継続させることができる。 As a result, it is possible to prevent one of the electric power of the battery and the fuel of the generator from being exhausted at an early stage, and it is possible to continue the state in which the output performance of the vehicle is maintained.

以下、図面を参照して、本発明の実施例に係る車両の発電制御装置について詳細に説明する。 Hereinafter, the vehicle power generation control device according to the embodiment of the present invention will be described in detail with reference to the drawings.

図1において、本発明の一実施例に係る発電制御装置を搭載した車両1は、電動機2と、バッテリ3と、発電機としての燃料電池4と、DC(direct current)DCコンバータ5と、水素タンク6と、制御部7と、を含んで構成される。 In FIG. 1, a vehicle 1 equipped with a power generation control device according to an embodiment of the present invention includes an electric motor 2, a battery 3, a fuel cell 4 as a generator, a direct current DC converter 5, and hydrogen. It includes a tank 6 and a control unit 7.

電動機2は、例えば、複数の永久磁石が埋め込まれたロータと、ステータコイルが巻きつけられたステータと、を備えた同期型モータで構成される。電動機2は、ステータコイルに三相交流電力が印加されることでステータに回転磁界が形成され、この回転磁界によりロータが回転して動力を生成する。電動機2の生成する動力は、不図示のトランスミッションにより変速され不図示の駆動輪に伝達され車両1を走行させる。また、電動機2は、車両1の減速時に、駆動輪側から電動機2側に動力が伝達されると、発電機として機能して回生電力を発生する。 The electric motor 2 includes, for example, a synchronous motor including a rotor in which a plurality of permanent magnets are embedded and a stator in which a stator coil is wound. In the electric motor 2, a rotating magnetic field is formed in the stator by applying three-phase AC power to the stator coil, and the rotor rotates by the rotating magnetic field to generate power. The power generated by the electric motor 2 is changed by a transmission (not shown) and transmitted to drive wheels (not shown) to drive the vehicle 1. Further, when the electric power 2 is transmitted from the drive wheel side to the electric motor 2 side at the time of deceleration of the vehicle 1, the electric motor 2 functions as a generator and generates regenerative electric power.

バッテリ3は、例えば、ニッケル蓄電池やリチウム蓄電池等からなり、複数のセルを直列に接続して構成されている。バッテリ3は、電動機2に電力を供給する。バッテリ3は、車両1の外部の電源、例えば、家庭用電源から充電可能になっている。バッテリ3には、バッテリ状態センサ31が設けられている。バッテリ状態センサ31は、バッテリ3の充放電電流、電圧及びバッテリ温度を検出する。バッテリ状態センサ31は、制御部7に接続されている。制御部7は、バッテリ状態センサ31の出力によりバッテリ3の充電状態を検知できるようになっている。 The battery 3 is composed of, for example, a nickel storage battery, a lithium storage battery, or the like, and is configured by connecting a plurality of cells in series. The battery 3 supplies electric power to the motor 2. The battery 3 can be charged from an external power source of the vehicle 1, for example, a household power source. The battery 3 is provided with a battery status sensor 31. The battery status sensor 31 detects the charge / discharge current, voltage, and battery temperature of the battery 3. The battery status sensor 31 is connected to the control unit 7. The control unit 7 can detect the charge state of the battery 3 by the output of the battery status sensor 31.

燃料電池4は、水素ガスなどの燃料ガスと酸素を有する酸化剤ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギーを直接取り出すものである。燃料電池4には、燃料電池4の発電電圧値や発電電流値などを検出する動作点測定部41が設けられている。 In the fuel cell 4, a fuel gas such as hydrogen gas and an oxidant gas having oxygen are electrochemically reacted via an electrolyte, and electric energy is directly extracted from the electrodes provided on both sides of the electrolyte. The fuel cell 4 is provided with an operating point measuring unit 41 that detects the power generation voltage value, the power generation current value, and the like of the fuel cell 4.

DCDCコンバータ5は、燃料電池4の発電した電力を電動機2に適合するように変換するものである。 The DCDC converter 5 converts the electric power generated by the fuel cell 4 so as to be compatible with the motor 2.

水素タンク6は、燃料電池4の燃料ガスである水素ガスを高圧の状態に圧縮して貯蔵するものである。水素タンク6には、水素タンク6の水素ガスの残量を検出する燃料残量センサ61が設けられている。燃料残量センサ61は、制御部7に接続されている。制御部7は、燃料残量センサ61の出力により水素ガスの残量を検知できるようになっている。 The hydrogen tank 6 compresses hydrogen gas, which is the fuel gas of the fuel cell 4, into a high-pressure state and stores it. The hydrogen tank 6 is provided with a fuel remaining amount sensor 61 that detects the remaining amount of hydrogen gas in the hydrogen tank 6. The fuel level sensor 61 is connected to the control unit 7. The control unit 7 can detect the remaining amount of hydrogen gas by the output of the fuel remaining amount sensor 61.

制御部7は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートと、ネットワークモジュールとを備えたコンピュータユニットによって構成されている。 The control unit 7 is composed of a computer unit including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input port, an output port, and a network module. It is configured.

制御部7のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットを制御部7として機能させるためのプログラムが記憶されている。すなわち、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、制御部7として機能する。 The ROM of the control unit 7 stores various control constants, various maps, and the like, as well as a program for causing the computer unit to function as the control unit 7. That is, when the CPU executes the program stored in the ROM, the computer unit functions as the control unit 7.

制御部7の入力ポートには、前述のバッテリ状態センサ31と、動作点測定部41と、燃料残量センサ61とを含む各種センサ類が接続されている。一方、制御部7の出力ポートには、前述の燃料電池4を含む各種制御対象類が接続されている。 Various sensors including the battery status sensor 31, the operating point measuring unit 41, and the fuel level sensor 61 are connected to the input port of the control unit 7. On the other hand, various control objects including the above-mentioned fuel cell 4 are connected to the output port of the control unit 7.

制御部7は、バッテリ3の残容量と、燃料電池4の燃料残量と、燃料電池4の発電電力と、車両1を走行させるのに必要な電力である走行必要電力とに基づいて、燃料電池4の発電開始を判定する。 The control unit 7 fuels the fuel based on the remaining capacity of the battery 3, the remaining amount of fuel in the fuel cell 4, the generated power of the fuel cell 4, and the required running power, which is the power required to run the vehicle 1. Determine the start of power generation of the battery 4.

制御部7は、図2に示すように、バッテリ3の残容量からバッテリ3が出力可能な電力量である出力可能電力量Ebat[kWh]を算出する。制御部7は、燃料電池4の燃料残量から燃料電池4で発電可能な電力量である発電可能電力量Efcu[kWh]を算出する。 As shown in FIG. 2, the control unit 7 calculates the outputable electric energy Ebat [kWh], which is the amount of electric power that the battery 3 can output from the remaining capacity of the battery 3. The control unit 7 calculates the amount of power that can be generated Efcu [kWh], which is the amount of power that can be generated by the fuel cell 4, from the remaining amount of fuel in the fuel cell 4.

制御部7は、発電可能電力量Efcu[kWh]を所定の発電基準電力Pfcu[kW]、例えば、燃料電池4の最も出力効率の良い電力で除算し、燃料電池4を動作させたときの水素ガス切れまでの時間である発電継続可能時間Tfcu[h]を算出する。 The control unit 7 divides the amount of power that can be generated Efcu [kWh] by the predetermined power generation reference power Pfcu [kW], for example, the power with the highest output efficiency of the fuel cell 4, and hydrogen when the fuel cell 4 is operated. Calculate the power generation continuation time Tfcu [h], which is the time until the gas runs out.

制御部7は、出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]を加算した値が、車両1を走行させるのに必要な電力である走行必要電力と発電継続可能時間Tfcu[h]を乗算した値より小さくなったとき、燃料電池4の発電を開始させる。走行必要電力は、例えば、車両に必要な最大電力Pmaxveh[kW]である。 In the control unit 7, the value obtained by adding the outputable electric energy Ebat [kWh] and the power generationable electric energy Efcu [kWh] is the electric energy required to drive the vehicle 1, the required electric energy for traveling and the continuous power generation time Tfcu [ When it becomes smaller than the value multiplied by h], the power generation of the fuel cell 4 is started. The required electric power for traveling is, for example, the maximum electric power Pmaxveh [kW] required for the vehicle.

このように、バッテリ3の電力量だけで走行できる条件では燃料電池4を動作させないことにより、高価な水素の消費を抑えることができる。また、燃料電池4の燃料補給の頻度が減り、そのための時間と費用を軽減させることができる。 As described above, by not operating the fuel cell 4 under the condition that the battery 3 can run only by the electric power amount, it is possible to suppress the consumption of expensive hydrogen. In addition, the frequency of refueling the fuel cell 4 can be reduced, and the time and cost for that purpose can be reduced.

また、バッテリ3の残容量が減少したときに、バッテリ3の残容量が減少する以前の車両状態を維持したまま現状のバッテリ3の残容量と燃料電池4の燃料残量で走行距離を最大限に伸ばすことができる。 Further, when the remaining capacity of the battery 3 decreases, the mileage is maximized by the current remaining capacity of the battery 3 and the remaining fuel amount of the fuel cell 4 while maintaining the vehicle state before the remaining capacity of the battery 3 decreases. Can be stretched to.

また、バッテリ3の残容量が減少した時に、効率よく燃料電池4を使って発電することができる。 Further, when the remaining capacity of the battery 3 is reduced, the fuel cell 4 can be efficiently used to generate electricity.

また、燃料電池4の起動回数を減らすことができ、燃料電池4の劣化を抑えることができる。 In addition, the number of times the fuel cell 4 is started can be reduced, and deterioration of the fuel cell 4 can be suppressed.

なお、発電基準電力Pfcu[kW]は、燃料電池4の環境変化による発電効率の変化により更新されるようにしてもよい。制御部7は、燃料電池4の環境温度などにより発電基準電力Pfcu[kW]を更新してもよい。 The power generation reference power Pfcu [kW] may be updated due to a change in power generation efficiency due to a change in the environment of the fuel cell 4. The control unit 7 may update the power generation reference power Pfcu [kW] depending on the environmental temperature of the fuel cell 4 or the like.

また、発電基準電力Pfcu[kW]は、燃料電池4の環境温度などから決まるマップにより求めてもよい。また、これまでの履歴を含む燃料電池4の運用中のデータから求めるようにしてもよい。また、燃料電池4の効率もマップや燃料電池4の運用中のデータから求めるようにしてもよい。 Further, the power generation reference power Pfcu [kW] may be obtained from a map determined by the environmental temperature of the fuel cell 4 or the like. Further, it may be obtained from the operating data of the fuel cell 4 including the history so far. Further, the efficiency of the fuel cell 4 may also be obtained from a map or data during operation of the fuel cell 4.

また、ユーザに「走行後に残したい燃料残量(%)」を指定させ、その分は残るように発電可能電力量Efcu[kWh]や発電継続可能時間Tfcu[h]を算出するようにしてもよい。 Also, even if the user is asked to specify the "remaining amount of fuel (%) that he / she wants to keep after driving" and the amount of power that can be generated Efcu [kWh] and the continuous power generation time Tfcu [h] are calculated so that the amount remains. good.

図2に示すように、バッテリ3の出力可能電力量Ebat[kWh]は、車両1が走行している間、図中矢印で示すように減っていく。バッテリ3の出力可能電力量Ebat[kWh]が網掛けの部分より小さくなったとき、出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]を加算した値が最大電力Pmaxveh[kW]と発電継続可能時間Tfcu[h]を乗算した値より小さくなり、燃料電池4の発電が開始される。その後、バッテリ3は、最大電力Pmaxveh[kW]から発電基準電力Pfcu[kW]を減算した電力を出力する。燃料電池4は、発電基準電力Pfcu[kW]を発電すると、バッテリ3と燃料電池4で最大電力Pmaxveh[kW]を満たして、発電継続可能時間Tfcu[h]経過後に同時に残容量と燃料残量が零になる。 As shown in FIG. 2, the outputable electric energy Ebat [kWh] of the battery 3 decreases as shown by the arrows in the figure while the vehicle 1 is traveling. When the outputable electric energy Ebat [kWh] of the battery 3 becomes smaller than the shaded part, the value obtained by adding the output possible electric energy Ebat [kWh] and the power generationable electric energy Efcu [kWh] is the maximum power Pmaxveh [kWh]. It becomes smaller than the value obtained by multiplying the power generation continuous time Tfcu [h] and the power generation continuation time Tfcu [h], and the power generation of the fuel cell 4 is started. After that, the battery 3 outputs the power obtained by subtracting the power generation reference power Pfcu [kW] from the maximum power Pmaxveh [kW]. When the fuel cell 4 generates the power generation reference power Pfcu [kW], the battery 3 and the fuel cell 4 satisfy the maximum power Pmaxveh [kW], and the remaining capacity and the remaining fuel amount are simultaneously obtained after the power generation continuation time Tfcu [h] elapses. Becomes zero.

制御部7は、燃料電池4の発電を開始するとき、バッテリ3の出力可能電力量Ebat[kWh]を発電継続可能時間Tfcu[h]で除算した電力値と発電基準電力Pfcu[kW]を加算した電力を総出力電力Pveh[kW]として算出する。この総出力電力Pveh[kW]は、燃料電池4に発電基準電力Pfcu[kW]を発電するように発電させたとき、バッテリ3の残容量と燃料電池4の燃料残量が同時に無くなるようなバッテリ3と燃料電池4を合わせた出力電力である。 When the control unit 7 starts power generation of the fuel cell 4, the control unit 7 adds the power value obtained by dividing the outputable power amount Ebat [kWh] of the battery 3 by the power generation continuation time Tfcu [h] and the power generation reference power Pfcu [kW]. The generated power is calculated as the total output power Pveh [kW]. This total output power Pveh [kW] is a battery in which the remaining capacity of the battery 3 and the remaining fuel amount of the fuel cell 4 are exhausted at the same time when the fuel cell 4 is made to generate the power generation reference power Pfcu [kW]. This is the combined output power of 3 and the fuel cell 4.

制御部7は、燃料電池4の発電を開始した後、燃料電池4起動後の車両1の平均消費電力Paveveh[kW]を算出し、総出力電力Pveh[kW]と平均消費電力Paveveh[kW]との比が、発電基準電力Pfcu[kW]と燃料電池4の出力との比と等しくなるように燃料電池4の出力である発電電力Pconfcu[kW]を算出し、発電電力Pconfcu[kW]で発電するように燃料電池4を制御する。 After starting the power generation of the fuel cell 4, the control unit 7 calculates the average power consumption Paveveh [kW] of the vehicle 1 after the fuel cell 4 is started, and calculates the total output power Pveh [kW] and the average power consumption Paveveh [kW]. The generated power Pconfcu [kW], which is the output of the fuel cell 4, is calculated so that the ratio with and is equal to the ratio of the power generation reference power Pfcu [kW] to the output of the fuel cell 4, and the generated power Pconfcu [kW] is used. The fuel cell 4 is controlled so as to generate electricity.

図3に示すように、燃料電池4の起動時に想定した最大電力Pmaxveh[kW]と、実際の車両1の出力の平均である平均消費電力Paveveh[kW]とが異なる場合、燃料電池4の起動時に想定した発電基準電力Pfcu[kW]で発電したのでは、燃料電池4の発電電力とバッテリ3の出力電力のバランスが崩れ、バッテリ3の電力と燃料電池4の燃料のどちらか一方が早期に無くなってしまう。 As shown in FIG. 3, when the maximum power Pmaxveh [kW] assumed at the time of starting the fuel cell 4 and the average power consumption Paveveh [kW] which is the average output of the actual vehicle 1 are different, the fuel battery 4 is started. If the power is generated with the power generation standard power Pfcu [kW] assumed at that time, the balance between the power generated by the fuel cell 4 and the output power of the battery 3 is lost, and either the power of the battery 3 or the fuel of the fuel cell 4 is used at an early stage. It will disappear.

このため、本実施例では、燃料電池4の発電開始時に総出力電力Pveh[kW]を算出し、この総出力電力Pveh[kW]と平均消費電力Paveveh[kW]との比に合わせ、燃料電池4の発電電力Pconfcu[kW]を求め、この発電電力Pconfcu[kW]で発電するように燃料電池4を制御する。このようにすることで、バッテリ3の出力電力と燃料電池4の発電電力を同じ比で変えることができ、バッテリ3の出力電力と燃料電池4の発電電力のバランスを保ちながら車両1の出力性能を維持した状態を継続させることができる。 Therefore, in this embodiment, the total output power Pveh [kW] is calculated at the start of power generation of the fuel cell 4, and the fuel cell is adjusted to the ratio of the total output power Pveh [kW] and the average power consumption Pveveh [kW]. The generated power Pconfcu [kW] of 4 is obtained, and the fuel cell 4 is controlled so as to generate power with this generated power Pconfcu [kW]. By doing so, the output power of the battery 3 and the generated power of the fuel cell 4 can be changed by the same ratio, and the output performance of the vehicle 1 can be maintained while maintaining the balance between the output power of the battery 3 and the generated power of the fuel cell 4. It is possible to continue the state of maintaining.

また、燃料電池4の発電開始時に総出力電力Pveh[kW]を算出しているので、精度良く燃料電池4の発電制御を行なうことができ、バッテリ3の容量と燃料電池4の燃料をバランス良く消費することができる。 Further, since the total output power Pveh [kW] is calculated at the start of power generation of the fuel cell 4, the power generation control of the fuel cell 4 can be performed accurately, and the capacity of the battery 3 and the fuel of the fuel cell 4 are well-balanced. Can be consumed.

また、車両1の起動時に燃料電池4を起動する条件となっても、起動時のデータを元に総出力電力Pveh[kW]を算出し、燃料電池4の発電制御を行なうことで、バッテリ3の容量と燃料電池4の燃料をバランス良く消費することができる。 Further, even if the condition for starting the fuel battery 4 when the vehicle 1 is started is obtained, the total output power Pveh [kW] is calculated based on the data at the time of starting, and the power generation control of the fuel battery 4 is performed to control the power generation of the fuel battery 4. The capacity of the fuel cell 4 and the fuel of the fuel cell 4 can be consumed in a well-balanced manner.

このような処理を行なうため、制御部7は、図4に示すように、バッテリ残量検出部71と、燃料残量検出部72と、出力可能電力量算出部73と、発電可能電力量算出部74と、発電継続可能時間算出部75と、発電開始判定部76と、平均消費電力算出部77と、発電電力算出部78とを備えている。 In order to perform such processing, as shown in FIG. 4, the control unit 7 includes a battery remaining amount detecting unit 71, a fuel remaining amount detecting unit 72, an outputable electric energy calculation unit 73, and a power generation possible electric energy calculation. A unit 74, a power generation continuous time calculation unit 75, a power generation start determination unit 76, an average power consumption calculation unit 77, and a power generation power calculation unit 78 are provided.

バッテリ残量検出部71は、バッテリ状態センサ31の出力によりバッテリ3の残容量を検出する。燃料残量検出部72は、燃料残量センサ61の出力により水素ガスの残量を検出する。 The battery remaining amount detection unit 71 detects the remaining capacity of the battery 3 by the output of the battery status sensor 31. The fuel remaining amount detection unit 72 detects the remaining amount of hydrogen gas by the output of the fuel remaining amount sensor 61.

出力可能電力量算出部73は、バッテリ残量検出部71が検出したバッテリ3の残容量から、バッテリ3の出力可能電力量Ebat[kWh]を算出する。 The outputable electric energy calculation unit 73 calculates the outputable electric energy Ebat [kWh] of the battery 3 from the remaining capacity of the battery 3 detected by the battery remaining amount detection unit 71.

発電可能電力量算出部74は、燃料残量検出部72が検出した水素ガスの残容量から、燃料電池4の発電可能電力量Efcu[kWh]を算出する。 The power generation capacity calculation unit 74 calculates the power generation capacity Efcu [kWh] of the fuel cell 4 from the remaining capacity of the hydrogen gas detected by the fuel remaining amount detection unit 72.

発電継続可能時間算出部75は、発電可能電力量算出部74が算出した発電可能電力量Efcu[kWh]を発電基準電力Pfcu[kW]で除算して、発電継続可能時間Tfcu[h]を算出する。 The power generation continuation time calculation unit 75 calculates the power generation continuation time Tfcu [h] by dividing the power generation capacity Efcu [kWh] calculated by the power generation capacity calculation unit 74 by the power generation reference power Pfcu [kW]. do.

発電開始判定部76は、出力可能電力量算出部73が算出した出力可能電力量Ebat[kWh]と、発電可能電力量算出部74が算出した発電可能電力量Efcu[kWh]とを加算した値が、発電継続可能時間算出部75が算出した発電継続可能時間Tfcu[h]と、最大電力Pmaxveh[kW]とを乗算した値より小さくなったときに燃料電池4の発電を開始させる。 The power generation start determination unit 76 is a value obtained by adding the outputable electric energy Ebat [kWh] calculated by the outputable electric energy calculation unit 73 and the power generationable electric energy Efcu [kWh] calculated by the power generation possible power calculation unit 74. However, when the value becomes smaller than the value obtained by multiplying the power generation continuation time Tfcu [h] calculated by the power generation continuation time calculation unit 75 and the maximum power Pmaxveh [kW], the power generation of the fuel cell 4 is started.

平均消費電力算出部77は、所定期間の車両1の消費電力の平均値を算出する。平均消費電力算出部77は、燃料電池4が発電を開始した場合、燃料電池4の発電開始からの車両1の消費電力の平均値Paveveh[kW]を算出する。 The average power consumption calculation unit 77 calculates the average value of the power consumption of the vehicle 1 in a predetermined period. When the fuel cell 4 starts power generation, the average power consumption calculation unit 77 calculates the average value Paveveh [kW] of the power consumption of the vehicle 1 from the start of power generation of the fuel cell 4.

発電電力算出部78は、燃料電池4の発電を開始するときに総出力電力Pveh[kW]を算出し、総出力電力Pveh[kW]と平均消費電力算出部77が算出した燃料電池4の発電開始からの車両1の消費電力の平均値Paveveh[kW]との比が、発電基準電力Pfcu[kW]と燃料電池4の発電電力との比と等しくなるように、燃料電池4の発電電力Pconfcu[kW]を算出する。 The generated power calculation unit 78 calculates the total output power Pveh [kW] when starting the power generation of the fuel cell 4, and the total output power Pveh [kW] and the power generation of the fuel cell 4 calculated by the average power consumption calculation unit 77. The power generated by the fuel cell 4 Pconfcu so that the ratio to the average power consumption of the vehicle 1 from the start, Paveveh [kW], is equal to the ratio of the power generation reference power Pfcu [kW] to the power generated by the fuel cell 4. Calculate [kW].

なお、発電電力Pconfcu[kW]は、正確な割合計算で求める必要はなく、概略の割合で算出してもよい。 The generated power Pconfcu [kW] does not need to be calculated by an accurate ratio calculation, and may be calculated by an approximate ratio.

また、燃料電池4の起動後は、車両1の駆動力に寄与度の小さい燃料電池4をバッテリ3より少し早く燃料残量がゼロになるようにしてもよい。 Further, after the fuel cell 4 is started, the fuel cell 4 having a small contribution to the driving force of the vehicle 1 may be set to zero fuel a little earlier than the battery 3.

以上のように構成された本実施例に係る車両の発電制御装置による発電制御処理について、図5を参照して説明する。なお、以下に説明する発電制御処理は、制御部7が動作を開始すると開始される。 The power generation control process by the vehicle power generation control device according to the present embodiment configured as described above will be described with reference to FIG. The power generation control process described below is started when the control unit 7 starts operation.

ステップS1において、制御部7は、燃料残量センサ61の情報を取得し、上述の発電可能電力量Efcu[kWh]と発電継続可能時間Tfcu[h]を計算する。 In step S1, the control unit 7 acquires the information of the fuel remaining amount sensor 61 and calculates the above-mentioned power generation amount Efcu [kWh] and power generation continuation time Tfcu [h].

ステップS2において、制御部7は、バッテリ状態センサ31の情報を取得し、上述の出力可能電力量Ebat[kWh]を計算する。 In step S2, the control unit 7 acquires the information of the battery status sensor 31 and calculates the above-mentioned outputable electric energy Ebat [kWh].

ステップS3において、制御部7は、出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]との加算値が、最大電力Pmaxveh[kW]と発電継続可能時間Tfcu[h]との乗算値よりも小さいか否かを判定する。出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]との加算値が、最大電力Pmaxveh[kW]と発電継続可能時間Tfcu[h]との乗算値よりも小さくないと判定した場合、制御部7は、ステップS2に戻って処理を繰り返す。 In step S3, the control unit 7 multiplies the maximum power Pmaxveh [kW] and the power generation continuation time Tfcu [h] by the sum of the output possible power amount Ebat [kWh] and the power generation possible power amount Efcu [kWh]. Determine if it is less than the value. When it is determined that the sum of the outputable electric energy Ebat [kWh] and the power generationable electric energy Efcu [kWh] is not smaller than the product of the maximum power Pmaxveh [kW] and the power generation continuation time Tfcu [h]. , The control unit 7 returns to step S2 and repeats the process.

ステップS3において、出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]との加算値が、最大電力Pmaxveh[kW]と発電継続可能時間Tfcu[h]との乗算値よりも小さいと判定した場合、ステップS4において、制御部7は、発電基準電力Pfcu[kW]を発電するように燃料電池4を起動する。また、上述の総出力電力Pveh[kW]を算出する。 In step S3, when the sum of the outputable electric energy Ebat [kWh] and the power generationable electric energy Efcu [kWh] is smaller than the product of the maximum power Pmaxveh [kW] and the power generation continuous time Tfcu [h]. If determined, in step S4, the control unit 7 starts the fuel cell 4 so as to generate the power generation reference power Pfcu [kW]. In addition, the above-mentioned total output power Pveh [kW] is calculated.

ステップS5において、制御部7は、燃料電池4の発電開始からの車両1の消費電力の平均値Paveveh[kW]を計算する。 In step S5, the control unit 7 calculates the average value Paveveh [kW] of the power consumption of the vehicle 1 from the start of power generation of the fuel cell 4.

ステップS6において、制御部7は、総出力電力Pveh[kW]と車両1の消費電力の平均値Paveveh[kW]との比が、発電基準電力Pfcu[kW]と燃料電池4の発電電力との比と等しくなるように以下の式1により燃料電池4の発電電力Pconfcu[kW]を計算する。
Pconfcu = (Paveveh×Pfcu)/Pveh ...(式1)
In step S6, the control unit 7 determines that the ratio of the total output power Pveh [kW] to the average value Paveveh [kW] of the power consumption of the vehicle 1 is the power generation reference power Pfcu [kW] and the power generated by the fuel cell 4. The generated power Pconfcu [kW] of the fuel cell 4 is calculated by the following equation 1 so as to be equal to the ratio.
Pconfcu = (Paveveh × Pfcu) / Pveh ... (Equation 1)

ステップS7において、制御部7は、燃料電池4の出力を発電電力Pconfcu[kW]になるように制御する。 In step S7, the control unit 7 controls the output of the fuel cell 4 so as to be the generated power Pconfcu [kW].

なお、ステップS3において、出力可能電力量Ebat[kWh]と発電可能電力量Efcu[kWh]との加算値が、最大電力Pmaxveh[kW]と発電継続可能時間Tfcu[h]との乗算値よりも小さくないと判定した場合、ステップS2に戻って処理を繰り返したが、ステップS1に戻るようにしてもよい。このようにすることで、バッテリ3の残容量と燃料電池4の燃料残量を、環境温度やセンサ誤差などに影響を受けず、正確に把握することとができる。また、毎回ステップS1に戻るのではなく、間欠的に戻るようにしてもよい。また、燃料電池4の燃料残量は、検出した値の平均値を用いるようにしてもよい。 In step S3, the sum of the outputable electric energy Ebat [kWh] and the power generationable electric energy Efcu [kWh] is larger than the product of the maximum power Pmaxveh [kW] and the power generation continuous time Tfcu [h]. If it is determined that the value is not small, the process returns to step S2 and the process is repeated, but the process may return to step S1. By doing so, the remaining capacity of the battery 3 and the remaining fuel amount of the fuel cell 4 can be accurately grasped without being affected by the ambient temperature, the sensor error, or the like. Further, instead of returning to step S1 every time, it may be possible to return intermittently. Further, as the fuel remaining amount of the fuel cell 4, the average value of the detected values may be used.

このように、上述の実施例では、燃料電池4の発電が開始されるときに、バッテリ3の残容量と、燃料電池4の燃料残量と、燃料電池4の発電基準電力Pfcu[kW]と、バッテリ3の残容量と燃料電池4の燃料残量が同時に無くなるようなバッテリ3と燃料電池4とを合わせた出力電力である総出力電力Pveh[kW]を算出し、燃料電池4の発電が開始された後、発電基準電力Pfcu[kW]と車両1の現在の平均消費電力Paveveh[kW]と総出力電力Pveh[kW]とに基づいて燃料電池4の発電電力を制御する。 As described above, in the above-described embodiment, when the power generation of the fuel cell 4 is started, the remaining capacity of the battery 3, the remaining fuel amount of the fuel cell 4, and the power generation reference power Pfcu [kW] of the fuel cell 4 are obtained. , The total output power Pveh [kW], which is the combined output power of the battery 3 and the fuel cell 4 so that the remaining capacity of the battery 3 and the remaining fuel amount of the fuel cell 4 disappear at the same time, is calculated, and the power generation of the fuel cell 4 is generated. After the start, the generated power of the fuel cell 4 is controlled based on the power generation reference power Pfcu [kW], the current average power consumption Paveveh [kW] of the vehicle 1, and the total output power Pveh [kW].

これにより、燃料電池4の発電開始後に、車両1の平均消費電力Paveveh[kW]に応じて燃料電池4の発電電力Pconfcu[kW]が制御され、バッテリ3の出力電力と燃料電池4の発電電力のバランスが取られ、バッテリ3の電力と燃料電池4の燃料のどちらか一方が早期に無くなることを防ぐことができる。このため、車両の出力性能を維持した状態を継続させることができる。 As a result, after the start of power generation of the fuel cell 4, the generated power Pconfcu [kW] of the fuel cell 4 is controlled according to the average power consumption Paveveh [kW] of the vehicle 1, and the output power of the battery 3 and the generated power of the fuel cell 4 are controlled. Is balanced, and it is possible to prevent one of the electric power of the battery 3 and the fuel of the fuel cell 4 from being exhausted at an early stage. Therefore, it is possible to continue the state in which the output performance of the vehicle is maintained.

また、燃料電池4の燃料残量と、発電基準電力Pfcu[kW]とに基づいて、発電基準電力Pfcu[kW]を発電するように燃料電池4に発電を続けさせた場合に燃料電池4の燃料が無くなるまでの時間である発電継続可能時間Tfcu[h]を算出する発電継続可能時間算出部75を備え、燃料電池4の発電が開始されるときに、バッテリ3の残容量を発電継続可能時間Tfcu[h]で除算した値に発電基準電力Pfcu[kW]を加算して総出力電力Pveh[kW]を算出する。 Further, when the fuel cell 4 is made to continue power generation so as to generate the power generation reference power Pfcu [kW] based on the remaining fuel amount of the fuel cell 4 and the power generation reference power Pfcu [kW], the fuel cell 4 It is equipped with a power generation continuation time calculation unit 75 that calculates the power generation continuation time Tfcu [h], which is the time until the fuel runs out, and can continue power generation of the remaining capacity of the battery 3 when the power generation of the fuel battery 4 is started. The total output power Pveh [kW] is calculated by adding the power generation reference power Pfcu [kW] to the value divided by the time Tfcu [h].

これにより、燃料電池4の発電開始時に、精度良く総出力電力Pveh[kW]を算出することができる。 As a result, the total output power Pveh [kW] can be calculated accurately at the start of power generation of the fuel cell 4.

また、総出力電力Pveh[kW]に対する平均消費電力Paveveh[kW]の割合に、発電基準電力Pfcu[kW]を乗算した電力値に等しくなるように燃料電池4の発電電力を制御する。 Further, the generated power of the fuel cell 4 is controlled so as to be equal to the power value obtained by multiplying the ratio of the average power consumption Paveveh [kW] to the total output power Pveh [kW] by the power generation reference power Pfcu [kW].

これにより、燃料電池4の発電開始後に、バッテリ3の残容量と燃料電池4の燃料残量とのバランスが良い発電電力を算出することができる。 As a result, after the start of power generation of the fuel cell 4, it is possible to calculate the generated power with a good balance between the remaining capacity of the battery 3 and the remaining fuel amount of the fuel cell 4.

本実施例の第1の他の態様としては、図6に示すように、燃料電池4の発電開始を判定する際、燃料電池4の発電基準電力として、燃料電池4の最も出力効率の良い電力ではなく、最も出力効率の良い電力よりも大きい電力Pfcu1[kW]を用いる。このようにすると、燃料電池4の燃料残量による発電可能電力量Efcu[kWh]は図2の場合と同一であるため、発電継続可能時間はTfcu[h]より短いTfcu1[h]となる。このため、燃料電池4の発電期間のバッテリ3の出力電力量が少なくなり、燃料電池4の発電開始を遅らせることができる。なお、燃料電池4発電開始後の発電電力Pconfcu[kW]の制御は、総出力電力Pveh[kW]と車両1の消費電力の平均値Paveveh[kW]との比が、発電基準電力としての電力Pfcu1[kW]と燃料電池4の発電電力との比と等しくなるように制御される。 As the first other aspect of the present embodiment, as shown in FIG. 6, when determining the start of power generation of the fuel cell 4, the power with the highest output efficiency of the fuel cell 4 is used as the power generation reference power of the fuel cell 4. Instead, use the power Pfcu1 [kW] that is larger than the power with the highest output efficiency. In this way, since the amount of power that can be generated by the remaining fuel of the fuel cell 4 Efcu [kWh] is the same as in the case of FIG. 2, the power generation continuation time is Tfcu1 [h], which is shorter than Tfcu [h]. Therefore, the amount of output power of the battery 3 during the power generation period of the fuel cell 4 is reduced, and the start of power generation of the fuel cell 4 can be delayed. In the control of the generated power Pconfcu [kW] after the start of power generation of the fuel cell 4, the ratio of the total output power Pveh [kW] to the average value of the power consumption of the vehicle 1 Paveveh [kW] is the power as the power generation reference power. It is controlled to be equal to the ratio of Pfcu1 [kW] to the generated power of the fuel cell 4.

また、燃料電池4の発電基準電力をユーザが選択できるようにしてもよい。この発電基準電力を電力Pfcu[kW]よりも高めに設定させることで、燃料電池4の発電開始を遅らせることができ、水素充填の頻度を減らせて、そのための時間と費用を軽減させることができる。 Further, the user may be able to select the power generation reference power of the fuel cell 4. By setting this power generation reference power higher than the power Pfcu [kW], it is possible to delay the start of power generation of the fuel cell 4, reduce the frequency of hydrogen filling, and reduce the time and cost for that purpose. ..

本実施例の第2の他の態様としては、図7に示すように、燃料電池4の発電開始を判定する際、車両に必要な最大電力Pmaxveh[kW]ではなく車両1の所定期間の平均消費電力Paveveh1[kW]を用いる。通常の走行では、車両1は最大電力Pmaxveh[kW]を消費することはなく、平均消費電力Paveveh1[kW]は最大電力Pmaxveh[kW]よりも小さくなる。このため、燃料電池4の発電期間のバッテリ3の出力電力量が少なくなり、燃料電池4の発電開始を遅らせることができる。なお、燃料電池4発電開始後の発電電力Pconfcu[kW]の制御は、総出力電力Pveh[kW]と車両1の消費電力の平均値Paveveh[kW]との比が、発電基準電力Pfcu[kW]と燃料電池4の発電電力との比と等しくなるように制御される。 As a second other aspect of the present embodiment, as shown in FIG. 7, when determining the start of power generation of the fuel cell 4, the average of the vehicle 1 for a predetermined period is not the maximum power Pmaxveh [kW] required for the vehicle. Power consumption Paveveh1 [kW] is used. In normal driving, the vehicle 1 does not consume the maximum power Pmaxveh [kW], and the average power consumption Paveveh1 [kW] is smaller than the maximum power Pmaxveh [kW]. Therefore, the amount of output power of the battery 3 during the power generation period of the fuel cell 4 is reduced, and the start of power generation of the fuel cell 4 can be delayed. In the control of the generated power Pconfcu [kW] after the start of power generation of the fuel cell 4, the ratio of the total output power Pveh [kW] to the average value of the power consumption of the vehicle 1 Paveveh [kW] is the power generation reference power Pfcu [kW]. ] Is controlled to be equal to the ratio of the power generated by the fuel cell 4.

なお、平均消費電力Paveveh1[kW]は最新の情報でなくてもよく、これまでの走行履歴に基づく値でもよい。 The average power consumption Paveveh1 [kW] does not have to be the latest information, and may be a value based on the running history so far.

本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。 Although the embodiments of the present invention have been disclosed, it is clear that some skilled in the art can make changes without departing from the scope of the present invention. All such modifications and equivalents are intended to be included in the following claims.

1 車両
2 電動機
3 バッテリ
4 燃料電池(発電機)
6 水素タンク
7 制御部
31 バッテリ状態センサ
61 燃料残量センサ
71 バッテリ残量検出部
72 燃料残量検出部
73 出力可能電力量算出部
74 発電可能電力量算出部
75 発電継続可能時間算出部
76 発電開始判定部
77 平均消費電力算出部
78 発電電力算出部
1 Vehicle 2 Motor 3 Battery 4 Fuel cell (generator)
6 Hydrogen tank 7 Control unit 31 Battery status sensor 61 Fuel remaining amount sensor 71 Battery remaining amount detection unit 72 Fuel remaining amount detection unit 73 Outputtable electric energy calculation unit 74 Power generation possible power amount calculation unit 75 Power generation continuation time calculation unit 76 Power generation Start judgment unit 77 Average power consumption calculation unit 78 Power generation power calculation unit

Claims (3)

車両の走行に必要な駆動力を発生する電動機と、
外部電源から充電可能であり、前記電動機に電力を供給するバッテリと、
前記バッテリを充電する電力あるいは前記電動機に供給する電力を発電する発電機と、を備える車両の発電制御装置であって、
発電継続可能時間算出部と発電電力算出部とを備える制御部を備え、
前記発電継続可能時間算出部は、前記発電機の燃料残量と、所定の発電基準電力とに基づいて、前記発電基準電力を発電するように前記発電機に発電を続けさせた場合に前記発電機の燃料が無くなるまでの時間である発電継続可能時間を算出し、
前記発電電力算出部は、前記発電機の発電が開始されるときに、前記バッテリの残容量を前記発電継続可能時間で除算した値に前記発電基準電力を加算して、前記バッテリの残容量と前記発電機の燃料残量が同時に無くなるような前記バッテリと前記発電機とを合わせた出力電力である総出力電力を算出し、
前記制御部は、前記発電機の発電が開始された後、前記総出力電力に対する前記車両の現在の平均消費電力の割合に、前記発電基準電力を乗算した電力値に等しくなるように前記発電機の発電電力を制御する車両の発電制御装置。
An electric motor that generates the driving force required to drive the vehicle,
A battery that can be charged from an external power source and supplies power to the motor,
A power generation control device for a vehicle including a generator for generating electric power for charging the battery or electric power to be supplied to the electric motor.
It is equipped with a control unit that includes a power generation continuation time calculation unit and a power generation power calculation unit.
The power generation continuous time calculation unit generates the power generation when the generator is made to continue power generation so as to generate the power generation reference power based on the remaining amount of fuel of the generator and a predetermined power generation reference power. Calculate the power generation continuation time, which is the time until the machine runs out of fuel,
When the generator starts to generate power , the generated power calculation unit adds the power generation reference power to the value obtained by dividing the remaining capacity of the battery by the power generation continuous time, and obtains the remaining capacity of the battery. The total output power, which is the combined output power of the battery and the generator so that the remaining fuel amount of the generator is exhausted at the same time, is calculated.
After the power generation of the generator is started , the control unit performs the generator so as to be equal to the power value obtained by multiplying the ratio of the current average power consumption of the vehicle to the total output power by the power generation reference power. power generation control apparatus for vehicles that controls the power generated.
前記制御部は、
前記バッテリの残容量から前記バッテリが出力可能な電力量である出力可能電力量を算出し、前記発電機の燃料残量から前記発電機で発電可能な電力量である発電可能電力量を算出し、
前記出力可能電力量と前記発電可能電力量を加算した値が、車両を走行させるのに必要な電力である走行必要電力と前記発電継続可能時間を乗算した値より小さくなったとき、前記発電機の発電を開始させる請求項1に記載の車両の発電制御装置。
The control unit
The amount of power that can be output, which is the amount of power that can be output by the battery, is calculated from the remaining capacity of the battery, and the amount of power that can be generated, which is the amount of power that can be generated by the generator, is calculated from the remaining amount of fuel in the generator. ,
When the value obtained by adding the amount of power that can be output and the amount of power that can be generated becomes smaller than the value obtained by multiplying the power required for traveling, which is the power required to drive the vehicle, and the continuous power generation time, the generator. The vehicle power generation control device according to claim 1, wherein the power generation of the vehicle is started.
前記発電機は、燃料電池である請求項1または請求項2に記載の車両の発電制御装置。 The vehicle power generation control device according to claim 1 or 2 , wherein the generator is a fuel cell.
JP2017103611A 2017-05-25 2017-05-25 Vehicle power generation control device Active JP6957976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103611A JP6957976B2 (en) 2017-05-25 2017-05-25 Vehicle power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103611A JP6957976B2 (en) 2017-05-25 2017-05-25 Vehicle power generation control device

Publications (2)

Publication Number Publication Date
JP2018201271A JP2018201271A (en) 2018-12-20
JP6957976B2 true JP6957976B2 (en) 2021-11-02

Family

ID=64668422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103611A Active JP6957976B2 (en) 2017-05-25 2017-05-25 Vehicle power generation control device

Country Status (1)

Country Link
JP (1) JP6957976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142533B (en) * 2021-11-30 2024-03-05 中船动力研究院有限公司 Energy scheduling method and device for offshore floating hydrogen plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460881B1 (en) * 2002-06-28 2004-12-09 현대자동차주식회사 System and method for controlling power conversion of fuel cell hybrid electric vehicle
JP5081068B2 (en) * 2008-06-06 2012-11-21 本田技研工業株式会社 Fuel cell system
JP5585538B2 (en) * 2011-06-03 2014-09-10 トヨタ自動車株式会社 Fuel cell system and fuel cell system control method
JP2013075615A (en) * 2011-09-30 2013-04-25 Equos Research Co Ltd Electric driving vehicle
KR101852888B1 (en) * 2013-03-26 2018-06-04 한화지상방산 주식회사 Method for operating hybrid power supply system
WO2016151695A1 (en) * 2015-03-20 2016-09-29 三菱自動車工業株式会社 Vehicle power control device

Also Published As

Publication number Publication date
JP2018201271A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP4967362B2 (en) Secondary battery remaining capacity estimation device
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
US11196103B2 (en) Secondary battery system and method for controlling secondary battery
JP2001275205A (en) Controller for combination system of secondary battery and generator
CN106663829B (en) Fuel cell system and control method for fuel cell system
JP6863258B2 (en) Stress estimation method for secondary battery system and active material of secondary battery
US20120326655A1 (en) Charging apparatus for electric storage device, vehicle equipped with the charging apparatus, and method of controlling the charging apparatus
CN101842927B (en) Fuel cell output control device
JP2009104825A (en) Output control device of fuel cell
WO2012086057A1 (en) Power supply system, vehicle mounted therewith, and method of controlling power storage apparatus
KR20120063313A (en) Battery management apparatus for electric automobile and method thereof
JP6957976B2 (en) Vehicle power generation control device
JP2004096835A (en) Controller for fuel cell vehicle
US11180051B2 (en) Display apparatus and vehicle including the same
JP2019050094A (en) Charge/discharge control device for secondary battery
JP6699533B2 (en) Battery system
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP2006340513A (en) Power generation controller of internal combustion engine
JP6624035B2 (en) Battery system
JP6658321B2 (en) Battery system
JP5659941B2 (en) Charge control device
JP2016014567A (en) Remaining battery capacity calculation system and remaining battery capacity calculation method
JP2018201272A (en) Power generation control device for vehicle
JP2019106794A (en) Secondary battery system
JP7172690B2 (en) BATTERY SYSTEM AND SECONDARY BATTERY SOC ESTIMATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6957976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151