JP6921889B2 - Biological information measuring device - Google Patents

Biological information measuring device Download PDF

Info

Publication number
JP6921889B2
JP6921889B2 JP2019067079A JP2019067079A JP6921889B2 JP 6921889 B2 JP6921889 B2 JP 6921889B2 JP 2019067079 A JP2019067079 A JP 2019067079A JP 2019067079 A JP2019067079 A JP 2019067079A JP 6921889 B2 JP6921889 B2 JP 6921889B2
Authority
JP
Japan
Prior art keywords
peak
priority
priority direction
heartbeat interval
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019067079A
Other languages
Japanese (ja)
Other versions
JP2020162917A (en
Inventor
晴也 上村
晴也 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION TOOL Co
Original Assignee
UNION TOOL Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION TOOL Co filed Critical UNION TOOL Co
Priority to JP2019067079A priority Critical patent/JP6921889B2/en
Publication of JP2020162917A publication Critical patent/JP2020162917A/en
Application granted granted Critical
Publication of JP6921889B2 publication Critical patent/JP6921889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、生体情報測定装置に関するものである。 The present invention relates to a biological information measuring device.

近年、身に着けることができるウェアラブル電子機器の利用が増えている。電子機器を身に着けることで継続して生体情報を測定できるため、継続した心拍間隔の測定が手軽にできる環境が整いつつある。 In recent years, the use of wearable electronic devices that can be worn has increased. Since it is possible to continuously measure biological information by wearing an electronic device, an environment is being created in which continuous measurement of heartbeat intervals can be easily performed.

このようなウェアラブル電子機器を利用して継続的に測定した心拍間隔を、うつ検出や眠気検出等に利用しようとする心拍間隔の応用研究も近年活発に行われている。このような応用研究の例としては、例えば特許文献1〜3に開示されるものがある。 In recent years, applied research on heartbeat intervals, in which heartbeat intervals continuously measured using such wearable electronic devices are used for depression detection, drowsiness detection, and the like, has been actively conducted. Examples of such applied research include those disclosed in Patent Documents 1 to 3.

これらの心拍間隔の応用研究では、連続する心拍間隔の差、LF(パワースペクトルの低周波成分、交感神経が活性化したときに現れる)、HF(パワースペクトルの高周波成分、副交感神経が活性化したときに現れる)等を算出して使用するため、心拍間隔に数十msの誤差があると誤判断の原因となる。 In these applied studies of heart rate intervals, the difference between continuous heart rate intervals, LF (low frequency component of the power spectrum, which appears when the sympathetic nerve is activated), and HF (high frequency component of the power spectrum, parasympathetic nerve are activated). Since it is used by calculating (occasionally appearing), etc., if there is an error of several tens of ms in the heartbeat interval, it may cause a misjudgment.

従って、心拍間隔の誤差は可能な限り小さくする必要がある。 Therefore, the error of the heartbeat interval needs to be as small as possible.

特開2018−33795号公報Japanese Unexamined Patent Publication No. 2018-33795 特開2014−168541号公報Japanese Unexamined Patent Publication No. 2014-168541 特開2016−150102号公報Japanese Unexamined Patent Publication No. 2016-150102

本発明は、上述のような現状に鑑みなされたもので、可及的に誤差の小さい心拍間隔を測定可能な実用的な生体情報測定装置を提供するものである。 The present invention has been made in view of the above-mentioned current situation, and provides a practical biometric information measuring device capable of measuring a heartbeat interval with as little error as possible.

添付図面を参照して本発明の要旨を説明する。
QRS波を含むアナログ心電図信号をデジタル化してデジタル心電図信号を作成する信号処理手段1と、前記デジタル心電図信号から心拍間隔を測定する心拍間隔測定手段3とを有する生体の心拍間隔を測定可能な生体情報測定装置であって、
前記心拍間隔測定手段3は、一拍分の前記QRS波内の一のピークを基準ピークに設定し、前記各一拍分のQRS波の前記基準ピーク同士の間隔から心拍間隔を測定すると共に、前記各基準ピークが上方向に突出するか下方向に突出するかを示す突出方向情報を夫々取得するように構成され、
過去の一若しくは複数の前記突出方向情報をもとに、前記QRS波内で上方向若しくは下方向どちらに突出するピークを優先的に前記基準ピークに設定するかを決定する優先方向決定手段4を有し、この優先方向決定手段4は、所定数の過去の前記突出方向情報中で出現数が多い方向を優先方向として決定するものであり、
前記心拍間隔測定手段3は、前記優先方向決定手段4により決定された優先方向のピークを優先して前記各QRS波内の前記基準ピークに設定するように構成されていることを特徴とする生体情報測定装置に係るものである。
The gist of the present invention will be described with reference to the accompanying drawings.
A living body capable of measuring the heartbeat interval of a living body having a signal processing means 1 for digitizing an analog electrocardiogram signal including a QRS wave to create a digital electrocardiogram signal and a heartbeat interval measuring means 3 for measuring the heartbeat interval from the digital electrocardiogram signal. It is an information measuring device
The heartbeat interval measuring means 3 sets one peak in the QRS complex for one beat as a reference peak, measures the heartbeat interval from the interval between the reference peaks of the QRS complex for each beat, and measures the heartbeat interval. It is configured to acquire the protrusion direction information indicating whether each of the reference peaks protrudes upward or downward.
A priority direction determining means 4 for determining whether to preferentially set a peak projecting upward or downward in the QRS complex as the reference peak based on the past one or a plurality of the projecting direction information. The priority direction determining means 4 determines a direction having a large number of appearances in a predetermined number of past protruding direction information as a priority direction.
The living body is characterized in that the heart rate interval measuring means 3 is configured to give priority to a peak in the priority direction determined by the priority direction determining means 4 and set it as the reference peak in each QRS complex. It relates to an information measuring device.

また、請求項1記載の生体情報測定装置において、前記心拍間隔測定手段3は、一拍分の前記QRS波内の各ピークの高低差を比較して最も高低差が大きいピークを基準ピークに設定するように構成されていることを特徴とする生体情報測定装置に係るものである。 Further, in the biological information measuring device according to claim 1, the heartbeat interval measuring means 3 compares the height difference of each peak in the QRS complex for one beat and sets the peak having the largest height difference as a reference peak. The present invention relates to a biological information measuring device characterized in that it is configured to perform the above.

また、請求項2記載の生体情報測定装置において、前記QRS波内の各ピークの高低差を比較する際、前記優先方向決定手段4により決定された優先方向のピークが前記基準ピークに設定され易くなるように、前記ピークの高低差を補正して比較する高低差補正手段を備えたことを特徴とする生体情報測定装置に係るものである。 Further, in the biometric information measuring device according to claim 2, when comparing the height difference of each peak in the QRS complex, the peak in the priority direction determined by the priority direction determining means 4 is likely to be set as the reference peak. The present invention relates to a biological information measuring device, which is provided with a height difference correction means for correcting and comparing the height difference of the peaks.

また、請求項1〜3いずれか1項に記載の生体情報測定装置において、前記信号処理手段1はフィルタリング処理を行うフィルタ手段を有することを特徴とする生体情報測定装置に係るものである。 Further, in the biometric information measuring apparatus according to any one of claims 1 to 3, the signal processing means 1 relates to a biometric information measuring apparatus having a filter means for performing filtering processing.

また、請求項1〜4いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段4は、非測定時は優先方向を決定しない中立状態であることを特徴とする生体情報測定装置に係るものである。 Further, in the biometric information measuring device according to any one of claims 1 to 4, the priority direction determining means 4 is in a neutral state in which the priority direction is not determined at the time of non-measurement. It is related to.

また、請求項1〜5いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段4は、所定数の過去の前記突出方向情報中で出現数が同数の場合、上方向を優先方向として決定することを特徴とする生体情報測定装置に係るものである。 Further, in the biometric information measuring device according to any one of claims 1 to 5, the priority direction determining means 4 gives priority to the upward direction when the number of appearances is the same in a predetermined number of past protrusion direction information. It relates to a biological information measuring device characterized in that it is determined as a direction.

また、請求項1〜いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段4で決定された優先方向ではないピークが所定回数連続して前記基準ピークに設定された場合、前記優先方向決定手段4が優先方向を決定しない中立状態となるように構成されていることを特徴とする生体情報測定装置に係るものである。 Further, in the biometric information measuring device according to any one of claims 1 to 6 , when a peak in a non-priority direction determined by the priority direction determining means 4 is continuously set to the reference peak a predetermined number of times, The present invention relates to a biological information measuring device, which is configured such that the priority direction determining means 4 is in a neutral state in which a priority direction is not determined.

本発明は上述のように構成したから、可及的に誤差の小さい心拍間隔を測定可能な実用的な生体情報測定装置となる。 Since the present invention is configured as described above, it is a practical biological information measuring device capable of measuring a heartbeat interval with as little error as possible.

本実施例の概略説明図である。It is the schematic explanatory drawing of this Example. 心拍波形の種類を説明する説明図である。It is explanatory drawing explaining the kind of a heartbeat waveform. 基準ピークの上下方向の違いによる誤差を説明する説明図である。It is explanatory drawing explaining the error by the difference in the vertical direction of a reference peak. 心拍間隔の誤差を説明する説明図である。It is explanatory drawing explaining the error of a heartbeat interval. 一方向にのみピークが存在する心電図波形の例を示す説明図である。It is explanatory drawing which shows the example of the electrocardiogram waveform which has a peak only in one direction. 従来例(a)と本実施例(b)との違いを示す説明図である。It is explanatory drawing which shows the difference between the prior art example (a) and this Example (b). 従来例(a)と本実施例(b)との違いを示す説明図である。It is explanatory drawing which shows the difference between the prior art example (a) and this Example (b). 別例1を示す概略説明図である。It is the schematic explanatory drawing which shows the alternative example 1. FIG. 別例2を示す概略説明図である。It is the schematic explanatory drawing which shows the alternative example 2.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 Embodiments of the present invention which are considered to be suitable will be briefly described by showing the operation of the present invention based on the drawings.

デジタル心電図信号の一拍分の一のQRS波の基準ピーク(R波、S波若しくはQ波の頂点)と隣り合う他のQRS波の基準ピーク(R波、S波若しくはQ波の頂点)との間隔から心拍間隔を測定する。 With the reference peak of the QRS complex (R wave, S wave or Q wave peak) of one beat of the digital electrocardiogram signal and the reference peak of other QRS waves (R wave, S wave or Q wave peak) adjacent to it. The heartbeat interval is measured from the interval of.

この際、心拍間隔測定手段3は心拍間隔を測定すると共に、各基準ピークの突出方向情報も取得する。 At this time, the heartbeat interval measuring means 3 measures the heartbeat interval and also acquires the protruding direction information of each reference peak.

この突出方向情報をもとに優先方向決定手段4で優先方向が決定され、心拍間隔測定手段3は、優先方向が決定されている場合にはこの優先方向のピーク(例えば上方向が優先方向の場合にはR波)を優先して前記基準ピークを設定する。 The priority direction is determined by the priority direction determining means 4 based on the protruding direction information, and when the priority direction is determined, the heart rate interval measuring means 3 has a peak in this priority direction (for example, the upward direction is the priority direction). In the case of the case, the R wave) is prioritized and the reference peak is set.

Q波、R波及びS波は、心臓の状態や個人差等により夫々の波の振幅及び幅が変化する(図2参照)。また、同一人物が継続して心電図信号を測定しているときにも図3に図示したようにピークの相対的な高さが変化する場合がある。 The amplitude and width of each of the Q wave, R wave, and S wave changes depending on the state of the heart, individual differences, and the like (see FIG. 2). Further, even when the same person continuously measures the electrocardiogram signal, the relative height of the peak may change as shown in FIG.

例えば、多数の図3(a)のような心拍波形に図3(b)のような波形が混ざった場合、ピークの高さ(振幅)を基準として基準ピークを設定すると図3(a)では上方向のピークα、図3(b)では下方向のピークα’を基準ピークとすることになるが、上方向のピークを連続的に基準ピークとして測定する場合に比べ誤差が生じ、心拍間隔にも誤差が生じる。 For example, when a large number of heartbeat waveforms as shown in FIG. 3 (a) are mixed with waveforms as shown in FIG. 3 (b), if a reference peak is set with reference to the peak height (amplitude), FIG. 3 (a) shows. The upward peak α and the downward peak α'in FIG. 3B are used as the reference peaks, but an error occurs compared to the case where the upward peaks are continuously measured as the reference peaks, and the heartbeat interval Also causes an error.

具体的には、図4に図示したように、上方向のピークαを基準ピークとした直後に、下方向のピークα’を基準ピークとして心拍間隔を測定した場合(T1,T2)、上方向のピークαを連続で基準ピークに設定した場合と比べ(TC1,TC2)、基準ピークの位置(基準位置)に誤差(ERR)が生じ、心拍間隔にも誤差が生じることになる。 Specifically, as shown in FIG. 4, when the heartbeat interval is measured with the downward peak α'as the reference peak immediately after the upward peak α is used as the reference peak (T1, T2), the upward direction Compared with the case where the peak α of is continuously set as the reference peak (TC1, TC2), an error (ERR) occurs in the position (reference position) of the reference peak, and an error also occurs in the heartbeat interval.

ここで、正しい心拍間隔であるTC1とTC2はTC1=TC2とし、誤差を含む心拍間隔をT1,T2とし、基準ピークの位置(基準位置)の誤差をERRとすると、次のようになる。
T1=TC1+ERR
T2=TC2−ERR
Here, assuming that TC1 and TC2, which are the correct heartbeat intervals, are TC1 = TC2, the heartbeat intervals including the error are T1 and T2, and the error of the reference peak position (reference position) is ERR, the result is as follows.
T1 = TC1 + ERR
T2 = TC2-ERR

ここで、連続する心拍間隔であるT1とT2の差を取ると、次のようになる。
T1−T2=(TC1+ERR)−(TC2−ERR)=(TC1+ERR)−(TC1−ERR)=2ERR
Here, the difference between T1 and T2, which are continuous heartbeat intervals, is as follows.
T1-T2 = (TC1 + ERR)-(TC2-ERR) = (TC1 + ERR)-(TC1-ERR) = 2ERR

従って、基準ピークが変化した場合(直前の基準ピークと突出方向が異なるピークが基準ピークとなった場合)、変化した前後の心拍間隔の差は基準位置の誤差の2倍となる。 Therefore, when the reference peak changes (when the peak whose protrusion direction is different from the immediately preceding reference peak becomes the reference peak), the difference in the heartbeat interval before and after the change becomes twice the error of the reference position.

この点、本発明は、ピークの振幅に変動があっても優先方向のピークを連続的に基準ピークに設定し易くなり、よって、基準ピークの変化が抑制され、心拍間隔の変動も抑制されることになり、より誤差の小さい心拍間隔を測定可能となる。 In this respect, the present invention makes it easy to continuously set the peak in the priority direction as the reference peak even if the amplitude of the peak fluctuates, so that the change of the reference peak is suppressed and the fluctuation of the heartbeat interval is also suppressed. Therefore, it becomes possible to measure the heartbeat interval with a smaller error.

本発明の具体的な実施例について図面に基づいて説明する。 Specific examples of the present invention will be described with reference to the drawings.

本実施例は、QRS波を含むアナログ心電図信号をデジタル化してデジタル心電図信号を作成する信号処理手段1と、前記デジタル心電図信号から心拍間隔を測定する心拍間隔測定手段3とを有する生体の心拍間隔を測定可能な生体情報測定装置であって、前記心拍間隔測定手段3は、一拍分の前記QRS波内の一のピークを基準ピークに設定し、前記各一拍分のQRS波の前記基準ピーク同士の間隔から心拍間隔を測定すると共に、前記各基準ピークが上方向に突出するか下方向に突出するかを示す突出方向情報を夫々取得するように構成され、過去の一若しくは複数の前記突出方向情報をもとに、前記QRS波内で上方向若しくは下方向どちらに突出するピークを優先的に前記基準ピークに設定するかを決定する優先方向決定手段4を有し、前記心拍間隔測定手段3は、前記優先方向決定手段4により決定された優先方向のピークを優先して前記各QRS波内の前記基準ピークに設定するように構成されているものである。 In this embodiment, the heartbeat interval of a living body having a signal processing means 1 for digitizing an analog electrocardiogram signal including a QRS complex to create a digital electrocardiogram signal and a heartbeat interval measuring means 3 for measuring the heartbeat interval from the digital electrocardiogram signal. The heartbeat interval measuring means 3 sets one peak in the QRS complex for one beat as a reference peak, and the reference peak for each one beat of the QRS complex. It is configured to measure the heartbeat interval from the interval between the peaks and to acquire the protrusion direction information indicating whether each reference peak protrudes upward or downward, respectively, and one or more of the past It has a priority direction determining means 4 for determining whether to preferentially set a peak protruding upward or downward in the QRS complex as the reference peak based on the protruding direction information, and measures the heartbeat interval. The means 3 is configured to give priority to the peak in the priority direction determined by the priority direction determining means 4 and set it as the reference peak in each QRS complex.

具体的には本実施例は、生体に接触して心電図を取得する複数の電極2を有し、且つ、生体に着用可能(ウェアラブル)なものであり、このウェアラブルな生体情報測定装置(測定器)で測定した心拍間隔等を測定器とは別体の解析器に送信(出力)してこの解析器で詳細な分析を行う構成として、可能な限り小型化・軽量化したものである。 Specifically, this embodiment has a plurality of electrodes 2 that come into contact with a living body to acquire an electrocardiogram, and is wearable to the living body, and this wearable biological information measuring device (measuring device). The heartbeat interval and the like measured in () are transmitted (output) to an analyzer separate from the measuring device, and detailed analysis is performed by this analyzer, which is as compact and lightweight as possible.

図1を参照して各部を具体的に説明する。 Each part will be specifically described with reference to FIG.

信号処理手段1は、生体に接触する電極2の間の電位差から取り出したアナログ心電図信号をADコンバータ等で処理してデジタル心電図信号とするものである。 The signal processing means 1 processes an analog electrocardiogram signal extracted from a potential difference between electrodes 2 in contact with a living body with an AD converter or the like to obtain a digital electrocardiogram signal.

また、信号処理手段1は、心拍間隔の検出に不要な信号のみを取り除く(フィルタリング処理を行う)フィルタ手段を有する。フィルタ手段としては、例えばローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ、バンドストップフィルタ等を適宜使用できる。フィルタ手段を通過した心電図信号は、等時間隔でサンプリングされデジタル信号に変換される。 Further, the signal processing means 1 has a filtering means that removes only signals unnecessary for detecting the heartbeat interval (performs filtering processing). As the filter means, for example, a low-pass filter, a high-pass filter, a band-pass filter, a band-stop filter and the like can be appropriately used. The electrocardiogram signal that has passed through the filtering means is sampled at equal time intervals and converted into a digital signal.

フィルタ手段により取り除く信号の例としては、ADコンバータのナイキスト周波数を超える高周波数成分の信号、ハムノイズ、筋電ノイズ、外来ノイズ等がある。なお、波形が歪むと心拍間隔が変化することから、フィルタ手段としては歪率が低くて線形性が高いものが望まれる。ノイズ等の不要な信号を取り除いた後の心電図信号を、心拍間隔の検出に使用する。ADコンバータのナイキスト周波数を超える高周波成分の信号以外は、サンプリング後に取り除いても良い。デジタル化する際のサンプリング間隔は250Hz以上とする。従って、4ms以下の心拍間隔の測定が可能となる。 Examples of signals to be removed by the filter means include signals having high frequency components exceeding the Nyquist frequency of the AD converter, hum noise, myoelectric noise, external noise, and the like. Since the heartbeat interval changes when the waveform is distorted, a filter means having a low distortion rate and a high linearity is desired. The electrocardiogram signal after removing unnecessary signals such as noise is used for detecting the heartbeat interval. Signals having high frequency components exceeding the Nyquist frequency of the AD converter may be removed after sampling. The sampling interval for digitization shall be 250 Hz or higher. Therefore, it is possible to measure the heartbeat interval of 4 ms or less.

信号処理手段1において上述のようにしてデジタル化されたデジタル心電図信号が入力される心拍間隔測定手段3は、一拍分のQRS波内の一のピークを基準ピークに設定し、前記各一拍分のQRS波の前記基準ピーク同士の間隔から心拍間隔を測定すると共に、前記各基準ピークが上方向に突出するか下方向に突出するかを示す突出方向情報を夫々取得するものである。心拍間隔は心拍間隔出力手段5に送られ、突出方向情報は優先方向決定手段4に送られる。 The heartbeat interval measuring means 3 in which the digital electrocardiogram signal digitized as described above is input in the signal processing means 1 sets one peak in the QRS complex for one beat as a reference peak, and sets each one beat as the reference peak. The heartbeat interval is measured from the interval between the reference peaks of the QRS complex of the minute, and the protrusion direction information indicating whether each reference peak protrudes upward or downward is acquired. The heartbeat interval is sent to the heartbeat interval output means 5, and the protruding direction information is sent to the priority direction determining means 4.

本実施例では、心拍間隔測定手段3は、一拍分のQRS波内の各ピークの高低差を比較して最も高低差が大きいピークを基準ピークに設定し、各一拍分の前記QRS波の前記基準ピーク同士の間隔から心拍間隔を測定するように構成されている。 In this embodiment, the heartbeat interval measuring means 3 compares the height difference of each peak in the QRS complex for one beat, sets the peak with the largest height difference as the reference peak, and sets the QRS wave for each beat as the reference peak. It is configured to measure the heartbeat interval from the interval between the reference peaks.

また、本実施例は、過去の一若しくは複数の前記突出方向情報をもとに、前記QRS波内で上方向若しくは下方向どちらに突出するピークを優先的に前記基準ピークに設定するかを決定する優先方向決定手段4を有しており、前記心拍間隔測定手段3は、前記優先方向決定手段4により決定された優先方向のピークを優先して前記各QRS波内の前記基準ピークに設定する。 Further, in this embodiment, it is determined whether to preferentially set the peak protruding upward or downward in the QRS complex as the reference peak based on the past one or a plurality of the protruding direction information. The priority direction determining means 4 is provided, and the heartbeat interval measuring means 3 preferentially sets a peak in the priority direction determined by the priority direction determining means 4 to the reference peak in each QRS complex. ..

即ち、優先方向決定手段4には心拍間隔測定手段3で取得した各基準ピークの突出方向情報が順次蓄積され、この過去の突出方向情報を基に優先方向が決定されて心拍間隔測定手段3に送られる。 That is, the protruding direction information of each reference peak acquired by the heartbeat interval measuring means 3 is sequentially accumulated in the priority direction determining means 4, and the priority direction is determined based on the past protruding direction information, and the heartbeat interval measuring means 3 is used. Sent.

また、心拍間隔測定手段3は、前記QRS波内の各ピークの高低差を比較する際、前記優先方向決定手段4により決定された優先方向のピークが前記基準ピークに設定され易くなるように、前記ピークの高低差を補正して比較する高低差補正手段を備えている。 Further, when the heart rate interval measuring means 3 compares the height difference of each peak in the QRS complex, the peak in the priority direction determined by the priority direction determining means 4 can be easily set as the reference peak. It is provided with a height difference correction means for correcting and comparing the height difference of the peak.

また、優先方向決定手段4は、非測定時は優先方向を決定しない中立状態(優先方向が特定されていない状態)であり、測定開始後に順次蓄積される各基準ピークの突出方向情報(上方向若しくは下方向)から優先方向を決定する。 Further, the priority direction determining means 4 is in a neutral state (a state in which the priority direction is not specified) in which the priority direction is not determined at the time of non-measurement, and the projecting direction information (upward direction) of each reference peak sequentially accumulated after the start of measurement. Or downward) to determine the priority direction.

また、本実施例では、前記優先方向決定手段4は、所定数の過去の前記突出方向情報中で出現数が多い方向を優先方向として決定する。この際、所定数の過去の前記突出方向情報中で出現数が同数の場合、上方向を優先方向として決定する。 Further, in the present embodiment, the priority direction determining means 4 determines a direction having a large number of appearances in a predetermined number of past protruding direction information as a priority direction. At this time, if the number of appearances is the same in the predetermined number of past protrusion direction information, the upward direction is determined as the priority direction.

前記優先方向決定手段4で決定された優先方向ではないピークが所定回数連続して前記基準ピークに設定された場合、前記優先方向決定手段4は蓄積した基準ピークの突出方向情報を全てリセットし中立状態となるように構成されている。 When peaks in the non-priority direction determined by the priority direction determining means 4 are continuously set to the reference peak a predetermined number of times, the priority direction determining means 4 resets all the accumulated reference peak protrusion direction information and is neutral. It is configured to be in a state.

心拍間隔出力手段5は、得られた心拍間隔を無線送信若しくは有線送信するか、生体情報測定装置内に保存するか、生体情報測定装置に設けた表示手段で表示するか、心拍間隔を利用する手段に心拍間隔を渡すために出力等するものである。 The heart rate interval output means 5 uses the heart rate interval by wirelessly or wiredly transmitting the obtained heart rate interval, storing it in the biometric information measuring device, displaying it by the display means provided in the biometric information measuring device, or using the heartbeat interval. It is an output or the like to pass the heartbeat interval to the means.

以下、心拍間隔測定手段3及び優先方向決定手段4を上述のように構成した理由について詳述する。 Hereinafter, the reason why the heart rate interval measuring means 3 and the priority direction determining means 4 are configured as described above will be described in detail.

心拍間隔測定手段3は、最も高低差のあるピーク(Q波、R波若しくはS波の頂点)を基準ピークとし、基準ピーク同士の時間的間隔を心拍間隔とする。心拍間隔の基準ピークは、波形の上方向のピークでも下方向のピークでも良い。なぜなら、心臓の異常状態、例えば、心室期外収縮、突発性脚ブロック等を除くと、心電図信号の波形形状は急激に大きく変化しないため、どちらのピークを心拍間隔の基準位置としても、心拍間隔の差は小さいからである。 The heartbeat interval measuring means 3 uses the peak having the largest height difference (the apex of the Q wave, R wave, or S wave) as a reference peak, and sets the time interval between the reference peaks as the heartbeat interval. The reference peak of the heartbeat interval may be an upward peak or a downward peak of the waveform. This is because the waveform shape of the electrocardiogram signal does not change significantly except for abnormal cardiac conditions such as premature ventricular contraction and sudden bundle branch block. Therefore, regardless of which peak is used as the reference position for the heartbeat interval, the heartbeat interval This is because the difference between them is small.

心拍波形(心電図信号の定義の中で心電図と同じ周波数帯域の信号であり、かつ、心臓の心室の収縮を表す波形のこと)のQRS波は、一般的に下方向のピークQ波、上方向のピークR波、下方向のピークS波で表される(図2(a))。なお、簡略化のために、Q波、R波、S波以外のP波、T波、U波、δ波、ε波、J波等については省略する。 The QRS complex of the heartbeat waveform (a signal in the same frequency band as the electrocardiogram in the definition of the electrocardiogram signal and representing the contraction of the ventricle of the heart) is generally a downward peak Q wave and an upward peak Q wave. It is represented by a peak R wave and a downward peak S wave (FIG. 2 (a)). For the sake of simplicity, P wave, T wave, U wave, δ wave, ε wave, J wave and the like other than Q wave, R wave and S wave will be omitted.

Q波、R波、S波は心臓の状態や個人差等により夫々波の振幅および幅が変化する。極端な場合には、図2(b)(c)のようにQ波、R波、S波のいずれかが存在しないこと、若しくは図2(d)(e)のように複数存在すること(R’波、S’波)がある。 The amplitude and width of the Q wave, R wave, and S wave change depending on the state of the heart and individual differences. In an extreme case, one of the Q wave, the R wave, and the S wave does not exist as shown in FIGS. 2 (b) and 2 (c), or a plurality of Q waves, R waves, and S waves exist as shown in FIGS. There are R'waves and S'waves).

ここで、一方向のみ(上方向のみ若しくは下方向のみ)のピークに限定して基準ピークを設定しない理由を述べる。図5に上下のいずれか一方にしかピークが発生しない波形を示す。一方向のみのピークに限定して基準ピークを設定した場合、限定した方向と逆方向のピークのみの心電図信号の心拍波形が入力されたとき心拍間隔の基準ピーク位置は未設定となるので、心拍間隔の検出ができず未検出となる。従って、一方向のみのピークを基準ピークに設定する対策はできない。 Here, the reason why the reference peak is not set only for the peak in only one direction (only in the upward direction or only in the downward direction) will be described. FIG. 5 shows a waveform in which a peak occurs in only one of the upper and lower sides. If the reference peak is set only for the peak in only one direction, the reference peak position of the heartbeat interval is not set when the heartbeat waveform of the electrocardiogram signal is input only for the peak in the direction opposite to the limited direction. The interval cannot be detected and is not detected. Therefore, it is not possible to take measures to set a peak in only one direction as a reference peak.

この問題の対策として、本実施例では、過去に上方向の基準ピークが多い(優先方向決定手段4に蓄積された過去n拍分の突出方向情報中で上方向の数が多い)場合には、心拍間隔測定手段3での次の検出で上方向のピークを優先的に基準ピークに設定し、下方向の基準ピークが多い場合には次の検出で下方向のピークを優先的に基準ピークに設定する。上方向ピークを優先にする場合、上方向のピークはピーク間の振幅を嵩上げし、下方向のピークはピーク間の振幅を嵩下げするように高低差補正手段を構成する。逆に、下方向のピークを優先する場合、上方向のピークはピーク間の振幅を嵩下げし、下方向のピークはピーク間の振幅を嵩上げする。高低差補正手段の詳細については後述する。 As a countermeasure for this problem, in this embodiment, when there are many upward reference peaks in the past (the number of upwards is large in the protruding direction information for the past n beats accumulated in the priority direction determining means 4). In the next detection by the heartbeat interval measuring means 3, the upward peak is preferentially set as the reference peak, and when there are many downward reference peaks, the downward peak is preferentially set as the reference peak in the next detection. Set to. When the upward peak is prioritized, the height difference correction means is configured so that the upward peak raises the amplitude between the peaks and the downward peak raises the amplitude between the peaks. On the contrary, when the downward peak is prioritized, the upward peak increases the amplitude between peaks, and the downward peak increases the amplitude between peaks. The details of the height difference correction means will be described later.

ここで、上方向のピークと下方向のピークのピーク間の振幅について説明する。上方向のピークの振幅は、上方向のピークの直前に下方向のピークがある場合は下方向のピークから上方向のピークまでの高低差、上方向のピークの直前に下方向のピークがない場合は定常状態から上方向のピークまでの高低差とする。下方向のピークの振幅は、下方向のピークの直前に上方向のピークがある場合は上方向のピークから下方向のピークまでの高低差、下方向のピークの直前に上方向のピークがない場合は定常状態から下方向のピークまでの高低差とする。 Here, the amplitude between the peak in the upward direction and the peak in the downward direction will be described. The amplitude of the upward peak is the height difference from the downward peak to the upward peak when there is a downward peak immediately before the upward peak, and there is no downward peak immediately before the upward peak. In the case, the height difference from the steady state to the upward peak is used. The amplitude of the downward peak is the height difference from the upward peak to the downward peak when there is an upward peak immediately before the downward peak, and there is no upward peak immediately before the downward peak. In the case, the height difference from the steady state to the downward peak is used.

優先方向決定手段4において優先方向は、上述の通り過去n拍分の心電図信号の心拍波形において基準ピークに設定されたピークの突出方向情報中で、出現数が多い方向に決定する。なお、出現数が同数の場合は上方向を優先方向に決定する。上方向を優先するのは、心拍間隔が本来対象としている上方向のR波に相当するピークを優先したいからである。nが少ないと優先する方向が変わり易く、対策の意味をなさない。nが多いと優先する方向を変えなければならない状況でも変わらない状態になり、悪影響が出る。従って、nは適切な数値にする必要がある。nは信号処理手段1と心拍間隔測定手段3によって最適な数値は異なるが、弊害を考慮すると4以上64以下の値にすることが望ましい。更に、計算の効率を考慮すると、2のべき乗(4,8,16,32,64)に限定することが望ましい。nが4未満では、優先するピークを指定する意味が薄れ、nが65以上(処理効率を上げるには2のべき乗をとる必要があるため、処理効率を考慮する場合の次のnは128となる)となると、波形形状が変化した場合、心拍間隔が1秒、且つ、nが128の場合に2分以上継続してから優先方向が変化することを意味し、優先方向の固定のし過ぎで悪影響が出る可能性がある。 In the priority direction determining means 4, the priority direction is determined in the direction in which the number of occurrences is large in the protruding direction information of the peak set as the reference peak in the heartbeat waveform of the electrocardiogram signal for the past n beats as described above. If the number of appearances is the same, the upward direction is determined as the priority direction. The reason for giving priority to the upward direction is that it is desired to give priority to the peak corresponding to the upward R wave, which is the original target of the heartbeat interval. If n is small, the priority direction is likely to change, and it does not make sense to take measures. If there is a large amount of n, the state will not change even in a situation where the priority direction must be changed, which will have an adverse effect. Therefore, n needs to be an appropriate value. The optimum value of n differs depending on the signal processing means 1 and the heart rate interval measuring means 3, but it is desirable to set it to a value of 4 or more and 64 or less in consideration of adverse effects. Further, considering the efficiency of calculation, it is desirable to limit it to a power of 2 (4,8,16,32,64). If n is less than 4, the meaning of specifying the priority peak is diminished, and n is 65 or more (since it is necessary to take a power of 2 to increase processing efficiency, the next n when considering processing efficiency is 128. When the waveform shape changes, it means that the priority direction changes after the heartbeat interval is 1 second and n is 128 for 2 minutes or more, and the priority direction is fixed too much. May have an adverse effect.

次に高低差補正手段について詳述する。優先の度合い(高低差補正手段による補正の度合い。優先度Φ)は以下のように設定する。 Next, the height difference correction means will be described in detail. The degree of priority (degree of correction by the height difference correction means. Priority Φ) is set as follows.

現在の波形の位置をx、直前の心電図信号の心拍波形の振幅(検出したピークの振幅)をAmp(x-1)としたとき、優先度Φは次のようになる。
Φ=Amp(x-1)φ
When the position of the current waveform is x and the amplitude of the heartbeat waveform of the immediately preceding electrocardiogram signal (amplitude of the detected peak) is Amp (x-1), the priority Φ is as follows.
Φ = Amp (x-1) φ

ここで、φは優先度を設定するためのパラメータである。φを適切な数値にしないと、nと同様な弊害が発生する。nと同様に弊害を考慮すると、φの値は、0.1以上0.9以下の範囲にすることが望ましい。0.1未満ではピークを優先させる効果がほぼなく、0.9を超えると優先させすぎるために、ピークの優先方向を変えるべき場面で変わらなくなる。 Here, φ is a parameter for setting the priority. If φ is not set to an appropriate value, the same adverse effects as n will occur. Considering the harmful effects as in n, it is desirable that the value of φ is in the range of 0.1 or more and 0.9 or less. If it is less than 0.1, there is almost no effect of giving priority to the peak, and if it exceeds 0.9, it is given too much priority, so that it does not change when the priority direction of the peak should be changed.

このΦを使用して、直前の波形の振幅(Peak to Peak)を比較するときに、現在のピークが優先方向の場合は、「Amp(x)」と「Amp(x-1)-Φ」とを比較することで、直前の振幅より振幅が大きいと判定し易くする(基準ピークに設定され易くする。)。 When comparing the amplitude (Peak to Peak) of the previous waveform using this Φ, if the current peak is in the priority direction, "Amp (x)" and "Amp (x-1) -Φ" By comparing with, it is easy to determine that the amplitude is larger than the immediately preceding amplitude (it is easy to set the reference peak).

また、現在のピークが優先しない方向の場合は、「Amp(x)」と「Amp(x-1)+Φ」とを比較することで、直前の振幅より振幅が小さいと判定し易くする。 In the case where the current peak does not have priority, it is easy to determine that the amplitude is smaller than the immediately preceding amplitude by comparing "Amp (x)" and "Amp (x-1) + Φ".

同じ人が連続して心電図信号の心拍波形を測定したとき、心臓の異常状態を除き、心電図信号の波形形状が大きく変化することは少ないため、積極的に波形の形状変化を追う必要はないが、測定中に波形形状が変化した場合の対策として、直近の優先方向が変わっていない状態で検出方向(基準ピークの方向)が優先方向とm回連続して異なる場合、優先すべき方向が変わったと見なす。波形形状が変わる原因としては、呼吸、姿勢、運動状態、発汗状態、電極2の位置ずれによる生体との接触位置、電極2と生体の接触状態等の変化が考えられる。 When the same person continuously measures the heartbeat waveform of the electrocardiogram signal, the waveform shape of the electrocardiogram signal rarely changes significantly except for the abnormal state of the heart, so it is not necessary to actively follow the shape change of the waveform. As a countermeasure when the waveform shape changes during measurement, if the detection direction (reference peak direction) differs from the priority direction m times in a row without changing the latest priority direction, the priority direction changes. It is considered to be. Possible causes of the change in the corrugated shape include changes in breathing, posture, exercise state, sweating state, contact position with the living body due to misalignment of the electrode 2, contact state between the electrode 2 and the living body, and the like.

上述のmの回数を適切に設定しないと心拍間隔に誤差が生じる原因となるので、nが4以上64以下であることを考慮し、mは4以上n/2以下とする。mが少ないと優先方向決定手段4の効果が得られなくなり、mが多いと保存している心拍間隔の付属情報としての突出方向情報(上方向のピーク(R波)であるか下方向のピーク(S波)であるかを示す情報)のリセットの意味が無くなる。nが7以下のときは、通常の優先方向の判断で優先方向が変わり意味をなさないのでこの対策は盛り込まない。 If the number of times of m described above is not set appropriately, an error may occur in the heartbeat interval. Therefore, considering that n is 4 or more and 64 or less, m is set to 4 or more and n / 2 or less. If m is small, the effect of the priority direction determining means 4 cannot be obtained, and if m is large, the protruding direction information (upward peak (R wave) or downward peak) as ancillary information of the stored heartbeat interval is obtained. The meaning of resetting (information indicating whether it is (S wave)) is lost. When n is 7 or less, the priority direction is changed by the normal judgment of the priority direction and it does not make sense, so this measure is not included.

心拍間隔と共に取得される突出方向情報の出現数が上下方向で同等の場合は、上方向のピーク(R波)を優先する。保存する心拍間隔の突出方向情報の履歴が偶数の場合や、初期化後十分に時間が経過しておらず「中立」情報が残っていた場合に発生する可能性がある。なお、本実施例の優先方向決定手段4における中立状態とは、過去n拍分の突出方向情報が全て上方向でも下方向でもない「中立」情報で埋められた状態を示す。 When the number of occurrences of the protruding direction information acquired together with the heartbeat interval is the same in the vertical direction, the peak in the upward direction (R wave) is prioritized. It may occur when the history of the protruding direction information of the heartbeat interval to be saved is an even number, or when "neutral" information remains after sufficient time has not passed since the initialization. The neutral state in the priority direction determining means 4 of the present embodiment means a state in which all the protruding direction information for the past n beats is filled with "neutral" information that is neither upward nor downward.

初期状態等で過去の心拍間隔の突出方向情報が全て「中立」のとき、Amp(x-1)が存在せず優先度Φが決定できないため、優先方向を決定しない中立状態とする。2回目以降は、過去の突出方向情報に基づいて優先方向を決める(新たな突出方向情報が保存されると共に、最も古い突出方向情報が消去される。)。 When all the information on the protruding direction of the past heartbeat interval is "neutral" in the initial state or the like, Amp (x-1) does not exist and the priority Φ cannot be determined. Therefore, the neutral state is set in which the priority direction is not determined. From the second time onward, the priority direction is determined based on the past protrusion direction information (new protrusion direction information is saved and the oldest protrusion direction information is deleted).

本実施例と従来例とで検出される基準ピーク(基準位置)がどのように変わるか図6及び図7を用いて以下説明する。 How the reference peak (reference position) detected between the present embodiment and the conventional example changes will be described below with reference to FIGS. 6 and 7.

図6及び図7で示す破線○印(上方向のピークα、下方向のピークα’)は、基準ピーク(基準位置)に設定されたピークである。 The broken line circles (upward peak α, downward peak α') shown in FIGS. 6 and 7 are peaks set as reference peaks (reference positions).

図6は、上方向のピークαを常に検出し上方向のピークαが検出できないときのみ下方向のピークα’を検出する方法(図6(a)。従来例)と、本実施例(図6(b))とを比較したものである。 FIG. 6 shows a method of always detecting the upward peak α and detecting the downward peak α'only when the upward peak α cannot be detected (FIG. 6 (a). Conventional example) and the present embodiment (FIG. 6). This is a comparison with 6 (b)).

従来例において、波形A11及びA13では上方向のピークαを検出でき、波形A12及びA14では上方向のピークαが検出できない場合、検出するピーク(基準ピーク)の位置が上下交互に変化する。 In the conventional example, when the upward peak α can be detected in the waveforms A11 and A13 and the upward peak α cannot be detected in the waveforms A12 and A14, the positions of the detected peaks (reference peaks) change alternately up and down.

一方、本実施例では、波形A21を検出するときに下方向を優先して検出する状態とすると、波形A21、A22、A23及びA24のピークの高低差は上方向のピークの振幅(定常位置から上方向のピークまでの高低差)より下方向のピークの振幅(上方向のピークから基準位置である下方向のピークまでの高低差)の方が大きく、優先方向も同じため、下方向のピークα’を常に基準位置とすることができる。 On the other hand, in this embodiment, assuming that the downward direction is prioritized when detecting the waveform A21, the height difference between the peaks of the waveforms A21, A22, A23 and A24 is the amplitude of the upward peak (from the steady position). The amplitude of the downward peak (the height difference from the upward peak to the downward peak, which is the reference position) is larger than the upward peak (height difference to the upward peak), and the priority direction is the same, so the downward peak α'can always be the reference position.

図7は、高低差の大きいピークを検出する方法(図7(a)。従来例)と、本実施例(図7(b))とを比較したものである。 FIG. 7 is a comparison between a method of detecting a peak having a large height difference (FIG. 7 (a), a conventional example) and this embodiment (FIG. 7 (b)).

従来例の波形B11及びB13では、下方向のピークが左側より右側の方が低いため、上方向のピークの振幅(B11とB13の基準位置の直前の上方向のピークと、その上方向のピークの直前の下方向のピークの間の高低差)より下方向のピークの振幅(B11とB13の基準位置とその直前の上方向のピークの間の高低差)の方が大きいと判断し、下方向のピークα’を基準ピークとして設定する。波形B12及びB14では、下方向のピークの振幅(B12とB14の基準位置と基準位置の直後の下方向のピークの間の高低差)より上方向のピークの振幅(B12とB14の基準位置の直前の下方向のピークと基準位置の間の高低差)の方が大きいと判断し、上方向のピークαを基準ピークとして設定する。よって、基準位置を上方向と下方向に交互に検出する。 In the waveforms B11 and B13 of the conventional example, the downward peak is lower on the right side than on the left side, so the amplitude of the upward peak (the upward peak immediately before the reference position of B11 and B13 and the upward peak thereof). It is judged that the amplitude of the downward peak (the height difference between the reference positions of B11 and B13 and the upward peak immediately before it) is larger than the amplitude of the downward peak (the height difference between the downward peaks immediately before). The peak α'in the direction is set as the reference peak. In waveforms B12 and B14, the amplitude of the peak above the amplitude of the downward peak (the height difference between the reference position of B12 and B14 and the downward peak immediately after the reference position) (at the reference position of B12 and B14). It is judged that the height difference between the immediately preceding downward peak and the reference position) is larger, and the upward peak α is set as the reference peak. Therefore, the reference position is detected alternately in the upward direction and the downward direction.

一方、本実施例では、一方向のピークを優先して検出しており、図7(b)ではB21を検出するときに上方向を優先して検出する状態とすると、波形B21、B22、B23及びB24は、上方向を検出し易くするように比較時に高低差を補正するため、全て上方向のピークαを基準ピーク(基準位置)として設定できる。 On the other hand, in this embodiment, the peak in one direction is preferentially detected, and in FIG. 7B, assuming that the upward direction is preferentially detected when B21 is detected, the waveforms B21, B22, and B23 In and B24, since the height difference is corrected at the time of comparison so as to make it easier to detect the upward direction, all the peaks α in the upward direction can be set as the reference peak (reference position).

以上、図6,7のケースでは、本実施例を利用することで心電図信号の波形形状が変化しても基準ピークの突出方向を一定にすることができる。基準ピークの突出方向を一定にできている間は、基準ピークの突出方向が変化した場合に混入する数十msの誤差が混入しないため、この原因による心拍間隔の誤差を無くすことができる。 As described above, in the cases of FIGS. 6 and 7, by using this embodiment, the protruding direction of the reference peak can be made constant even if the waveform shape of the electrocardiogram signal changes. As long as the protruding direction of the reference peak is kept constant, an error of several tens of ms, which is mixed when the protruding direction of the reference peak changes, is not mixed, so that the error of the heartbeat interval due to this cause can be eliminated.

従って、本発明の背景技術で挙げたような心拍間隔の応用研究において、本実施例を用いて優先方向の基準ピークを連続して検出している間(基準ピークの突出方向が一定の間)は、波形形状の変化を原因とする誤判断を無くすことができる。 Therefore, in the applied research of the heartbeat interval as mentioned in the background technique of the present invention, while the reference peak in the priority direction is continuously detected by using this embodiment (while the protrusion direction of the reference peak is constant). Can eliminate the misjudgment caused by the change in the waveform shape.

なお、本実施例は上述のように構成しているが、図8,9に図示したような構成としても良い。 Although this embodiment is configured as described above, it may be configured as shown in FIGS. 8 and 9.

即ち、無線送信後に心拍間隔を測定する場合、無線送信するデータが増大する。無線送信するデータが増大した場合、送信するための電力が多くかかり、省電力化が図れない。省電力化が図れないと電池を大きくする必要があるため、生体情報測定装置の小型化が難しい。ただし、大量のデータを無線送信しても省電力化が可能な通信手段が現れた場合は、図8に図示した別例1のように、電極2及び信号処理手段1と心拍間隔測定手段3等とを別体の装置に設ける構成とし、デジタル心電図信号を送受信する無線送信手段6及び無線受信手段7を夫々の装置に備えた構成として無線送信後に心拍間隔を測定する構成としても良い。この場合、無線受信手段以降は身に着ける必要がないので、身に着ける測定器のメンテナンスがし易い、無線受信手段以降の手段の変更が容易である等の利点がある。 That is, when the heartbeat interval is measured after wireless transmission, the data to be wirelessly transmitted increases. When the amount of data to be transmitted wirelessly increases, a large amount of power is required for transmission, and power saving cannot be achieved. If power saving cannot be achieved, it is necessary to increase the size of the battery, which makes it difficult to miniaturize the biometric information measuring device. However, when a communication means capable of saving power even if a large amount of data is wirelessly transmitted appears, the electrode 2, the signal processing means 1, and the heartbeat interval measuring means 3 are shown as in another example 1 shown in FIG. Etc. may be provided in a separate device, and the wireless transmitting means 6 and the wireless receiving means 7 for transmitting and receiving digital electrocardiogram signals may be provided in each device to measure the heartbeat interval after wireless transmission. In this case, since it is not necessary to wear the wireless receiving means or later, there are advantages such as easy maintenance of the measuring instrument to be worn and easy change of the means after the wireless receiving means.

また、データ保存後に心拍間隔を測定する場合、データを保存するための電力および保存しておくための容量が多くなるため、省電力化が図れず、無線送信後の場合と同様に、小型化が難しい。ただし、大量のデータを保存しても省電力化が可能な保存手段が現れた場合は、図9に図示した別例2のように、電極2及び信号処理手段1と心拍間隔測定手段3等とを別体の装置に設ける構成とし、デジタル心電図信号を保存・読込するデータ保存手段8及びデータ読込手段9を夫々の装置に備えた構成としてデータ保存後に後から心拍間隔を測定する構成としても良い。この場合も、図8の場合と同様、データ読込手段以降は身に着ける必要が無いので、身に着ける測定器のメンテナンスがし易い、データ読込手段以降の手段の変更が容易である等の利点がある。 In addition, when measuring the heartbeat interval after data storage, the power for storing the data and the capacity for storing the data increase, so that power saving cannot be achieved and the size is reduced as in the case after wireless transmission. Is difficult. However, if a storage means capable of saving power even if a large amount of data is stored appears, the electrode 2, the signal processing means 1, the heartbeat interval measuring means 3, etc., as shown in another example 2 shown in FIG. And are provided in a separate device, and the data storage means 8 and the data reading means 9 for storing and reading the digital electrocardiogram signal are provided in each device, and the heartbeat interval is measured after the data is stored. good. In this case as well, as in the case of FIG. 8, since it is not necessary to wear it after the data reading means, there are advantages such as easy maintenance of the measuring instrument to be worn and easy change of the means after the data reading means. There is.

本実施例は上述のように構成したから、デジタル心電図信号の一拍分の一のQRS波の基準ピーク(R波、S波若しくはQ波の頂点)と隣り合う他のQRS波の基準ピーク(R波、S波若しくはQ波の頂点)との間隔から心拍間隔を測定する際、心拍間隔測定手段3が心拍間隔を測定すると共に、各基準ピークの突出方向情報も取得し、この突出方向情報をもとに優先方向を決定し、ピークの振幅に変動があっても優先方向のピークを連続的に基準ピークに設定し易くすることで、基準ピークの変化が抑制され、心拍間隔の変動も抑制されることになり、より誤差の小さい心拍間隔を測定可能となる。 Since this embodiment is configured as described above, the reference peak of the QRS wave (the peak of the R wave, the S wave, or the Q wave) of one beat of the digital electrocardiogram signal and the reference peak of another QRS wave (the peak of the Q wave) adjacent to the reference peak (R wave, S wave, or Q wave peak). When measuring the heartbeat interval from the distance from the R wave, S wave, or Q wave apex), the heartbeat interval measuring means 3 measures the heartbeat interval and also acquires the protruding direction information of each reference peak, and this protruding direction information. By determining the priority direction based on the above and making it easier to continuously set the peak in the priority direction as the reference peak even if the peak amplitude fluctuates, the change in the reference peak is suppressed and the fluctuation in the heartbeat interval also It will be suppressed, and it will be possible to measure the heartbeat interval with a smaller error.

よって、本実施例は、可及的に誤差の小さい心拍間隔を測定可能な実用的な生体情報測定装置となる。 Therefore, this embodiment is a practical biometric information measuring device capable of measuring a heartbeat interval with as little error as possible.

1 信号処理手段
3 心拍間隔測定手段
4 優先方向決定手段
1 Signal processing means 3 Heart rate interval measuring means 4 Priority direction determining means

Claims (7)

QRS波を含むアナログ心電図信号をデジタル化してデジタル心電図信号を作成する信号処理手段と、前記デジタル心電図信号から心拍間隔を測定する心拍間隔測定手段とを有する生体の心拍間隔を測定可能な生体情報測定装置であって、
前記心拍間隔測定手段は、一拍分の前記QRS波内の一のピークを基準ピークに設定し、前記各一拍分のQRS波の前記基準ピーク同士の間隔から心拍間隔を測定すると共に、前記各基準ピークが上方向に突出するか下方向に突出するかを示す突出方向情報を夫々取得するように構成され、
過去の一若しくは複数の前記突出方向情報をもとに、前記QRS波内で上方向若しくは下方向どちらに突出するピークを優先的に前記基準ピークに設定するかを決定する優先方向決定手段を有し、この優先方向決定手段は、所定数の過去の前記突出方向情報中で出現数が多い方向を優先方向として決定するものであり、
前記心拍間隔測定手段は、前記優先方向決定手段により決定された優先方向のピークを優先して前記各QRS波内の前記基準ピークに設定するように構成されていることを特徴とする生体情報測定装置。
Biological information measurement capable of measuring the heartbeat interval of a living body having a signal processing means for digitizing an analog electrocardiogram signal including a QRS wave to create a digital electrocardiogram signal and a heartbeat interval measuring means for measuring the heartbeat interval from the digital electrocardiogram signal. It ’s a device,
The heartbeat interval measuring means sets one peak in the QRS complex for one beat as a reference peak, measures the heartbeat interval from the interval between the reference peaks of the QRS complex for each beat, and measures the heartbeat interval. It is configured to acquire protrusion direction information indicating whether each reference peak protrudes upward or downward.
There is a priority direction determining means for determining whether to preferentially set a peak projecting upward or downward in the QRS complex as the reference peak based on the past one or a plurality of the projecting direction information. However, this priority direction determining means determines the direction in which the number of occurrences is large in the predetermined number of past protrusion direction information as the priority direction.
The biological information measurement means is configured to preferentially set a peak in a priority direction determined by the priority direction determining means to the reference peak in each QRS complex. Device.
請求項1記載の生体情報測定装置において、前記心拍間隔測定手段は、一拍分の前記QRS波内の各ピークの高低差を比較して最も高低差が大きいピークを基準ピークに設定するように構成されていることを特徴とする生体情報測定装置。 In the biometric information measuring device according to claim 1, the heartbeat interval measuring means compares the height difference of each peak in the QRS complex for one beat and sets the peak having the largest height difference as a reference peak. A biological information measuring device characterized by being configured. 請求項2記載の生体情報測定装置において、前記QRS波内の各ピークの高低差を比較する際、前記優先方向決定手段により決定された優先方向のピークが前記基準ピークに設定され易くなるように、前記ピークの高低差を補正して比較する高低差補正手段を備えたことを特徴とする生体情報測定装置。 In the biometric information measuring device according to claim 2, when comparing the height difference of each peak in the QRS complex, the peak in the priority direction determined by the priority direction determining means can be easily set as the reference peak. , A biological information measuring device comprising a height difference correction means for correcting and comparing the height difference of the peak. 請求項1〜3いずれか1項に記載の生体情報測定装置において、前記信号処理手段はフィルタリング処理を行うフィルタ手段を有することを特徴とする生体情報測定装置。 The biometric information measuring device according to any one of claims 1 to 3, wherein the signal processing means includes a filter means for performing filtering processing. 請求項1〜4いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段は、非測定時は優先方向を決定しない中立状態であることを特徴とする生体情報測定装置。 The biometric information measuring device according to any one of claims 1 to 4, wherein the priority direction determining means is in a neutral state in which the priority direction is not determined at the time of non-measurement. 請求項1〜5いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段は、所定数の過去の前記突出方向情報中で出現数が同数の場合、上方向を優先方向として決定することを特徴とする生体情報測定装置。 In the biometric information measuring device according to any one of claims 1 to 5, the priority direction determining means determines the upward direction as the priority direction when the number of appearances is the same in a predetermined number of past protruding direction information. A biological information measuring device characterized by 請求項1〜いずれか1項に記載の生体情報測定装置において、前記優先方向決定手段で決定された優先方向ではないピークが所定回数連続して前記基準ピークに設定された場合、前記優先方向決定手段が優先方向を決定しない中立状態となるように構成されていることを特徴とする生体情報測定装置。 In the biometric information measuring apparatus according to any one of claims 1 to 6 , when a peak that is not the priority direction determined by the priority direction determining means is continuously set to the reference peak a predetermined number of times, the priority direction A biological information measuring device characterized in that the determining means is configured to be in a neutral state in which the priority direction is not determined.
JP2019067079A 2019-03-29 2019-03-29 Biological information measuring device Active JP6921889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067079A JP6921889B2 (en) 2019-03-29 2019-03-29 Biological information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067079A JP6921889B2 (en) 2019-03-29 2019-03-29 Biological information measuring device

Publications (2)

Publication Number Publication Date
JP2020162917A JP2020162917A (en) 2020-10-08
JP6921889B2 true JP6921889B2 (en) 2021-08-18

Family

ID=72715345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067079A Active JP6921889B2 (en) 2019-03-29 2019-03-29 Biological information measuring device

Country Status (1)

Country Link
JP (1) JP6921889B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580289B2 (en) * 2002-02-05 2004-10-20 株式会社ノーリツ ECG signal processor
JP5243375B2 (en) * 2009-09-09 2013-07-24 日本光電工業株式会社 Biological signal processing device and medical device control method
US8594775B2 (en) * 2011-05-10 2013-11-26 Medtronic, Inc. Techniques for determining morphological stability of cardiac cycles
JP5883487B1 (en) * 2014-09-09 2016-03-15 ユニオンツール株式会社 Biological information measuring device

Also Published As

Publication number Publication date
JP2020162917A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN103596492B (en) Ear wearable vital sign monitor
Lázaro et al. Wearable armband device for daily life electrocardiogram monitoring
US6553251B1 (en) Method and arrangement for heartbeat detection
RU2517583C2 (en) Method and device for analysis of ballistocardiographic signals
JP5336803B2 (en) Pulse wave measuring device
JP4468398B2 (en) Autonomic nerve index measuring device and autonomic nerve index measuring method
US20100228103A1 (en) Multifaceted implantable syncope monitor - mism
US20070106183A1 (en) Apparatus, method and system of measuring sleep state
US8852114B2 (en) Heart pulse rate monitor
JP5376768B2 (en) Pulse wave measuring device
JP2009011585A (en) Apparatus and method for pulse wave processing
US20140257124A1 (en) Atrial fibrillation analyzer and program
US20200221958A1 (en) System for measuring heart rate
JP5221926B2 (en) Heart rate variability analysis method and analysis apparatus
TWI576088B (en) Physiological parameters monitoring method of wearable device
CN113974630A (en) Mental health detection method and device
CN111481185A (en) Continuous blood pressure estimation device and method based on pre-ejection period
JP6921889B2 (en) Biological information measuring device
JP2019030520A (en) Myoelectricity measurement apparatus, method, and program
JP6450025B2 (en) Respiration estimation method and apparatus
JP2770694B2 (en) Biological information processing device
US8301230B2 (en) Method for reducing baseline drift in a biological signal
US20200237240A1 (en) Vital-sign estimation apparatus and calibration method for vital-sign estimator
US20160066796A1 (en) Biological information measuring apparatus
JP6603584B2 (en) Periodic wave detection device, periodic wave detection method and program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210728

R150 Certificate of patent or registration of utility model

Ref document number: 6921889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150