JP6919304B2 - Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method - Google Patents

Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method Download PDF

Info

Publication number
JP6919304B2
JP6919304B2 JP2017083766A JP2017083766A JP6919304B2 JP 6919304 B2 JP6919304 B2 JP 6919304B2 JP 2017083766 A JP2017083766 A JP 2017083766A JP 2017083766 A JP2017083766 A JP 2017083766A JP 6919304 B2 JP6919304 B2 JP 6919304B2
Authority
JP
Japan
Prior art keywords
tank
anammox
nitrogen
denitrification
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083766A
Other languages
Japanese (ja)
Other versions
JP2018176131A (en
Inventor
将士 武川
将士 武川
孝明 徳富
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017083766A priority Critical patent/JP6919304B2/en
Publication of JP2018176131A publication Critical patent/JP2018176131A/en
Application granted granted Critical
Publication of JP6919304B2 publication Critical patent/JP6919304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、回分式(SBR)の一槽型ANAMMOXプロセスで、アンモニア性窒素含有排水、特に、高濃度のアンモニア性窒素を含むと共に、微生物分解性の有機成分(BOD成分)と懸濁物質(SS)の両方またはいずれかを含む排水、具体的にはメタン発酵消化液の脱水濾液等を処理する際に、原水中のBODやSSによる問題を解決する方法に関する。ここで、一槽型ANAMMOXプロセスとは、アンモニア酸化細菌とANAMMOX細菌の混合汚泥によってアンモニア性窒素の亜硝酸化と脱窒を同一槽内で行って、窒素を除去する排水処理プロセスを指す。 The present invention is a batch (SBR) one-tank type ANAMMOX process that contains ammoniacal nitrogen-containing wastewater, especially high concentrations of ammoniacal nitrogen, as well as biodegradable organic components (BOD components) and suspended solids (BOD components). The present invention relates to a method for solving problems caused by BOD and SS in raw water when treating wastewater containing both or either of SS), specifically, a dehydrated filtrate of methane fermentation digestive juice. Here, the one-tank type ANAMMOX process refers to a wastewater treatment process in which ammonia nitrogen is nitrite-denitrite and denitrified in the same tank by a mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria to remove nitrogen.

アンモニア性窒素含有排水の脱窒処理プロセスとして、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物であるANAMMOX細菌を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒するANAMMOXプロセスが知られている。 As a denitrification process for ammoniacal nitrogen-containing wastewater, ammonia nitrogen and nitrite are used by using ANAMMOX bacteria, which are independent nutrient microorganisms that use ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. The ANAMMOX process, which reacts with nitrogen to denitrify, is known.

ANAMMOX反応を利用した排水処理プロセスは、従来、亜硝酸型硝化槽とANAMMOX脱窒槽とを設け、亜硝酸化→ANAMMOX反応の順に処理を行う二槽型で行われていたが、近年、アンモニア酸化細菌とANAMMOX細菌を共生させた汚泥により、亜硝酸化とANAMMOX反応を一つの槽内で行う、一槽型ANAMMOXプロセスが開発された(特許文献1)。
また、一槽型ANAMMOXプロセスに有用なグラニュール汚泥として、ANAMMOX細菌を自己造粒させた一次生物膜体の表面をアンモニア酸化細菌で覆った生物膜二重構造体が提案されている(特許文献2)。
Conventionally, the wastewater treatment process using the ANAMMOX reaction has been carried out in a two-tank type in which a nitrite type nitrification tank and an ANAMMOX denitrification tank are provided and the treatment is performed in the order of nitrite formation → ANAMMOX reaction, but in recent years, ammonia oxidation has been carried out. A one-tank type ANAMMOX process has been developed in which nitrite formation and ANAMMOX reaction are carried out in one tank using sludge in which bacteria and ANAMMOX bacteria coexist (Patent Document 1).
Further, as a granule sludge useful for a one-tank type ANAMMOX process, a biofilm double structure in which the surface of a primary biofilm obtained by self-granulating ANAMMOX bacteria is covered with ammonia-oxidizing bacteria has been proposed (Patent Document). 2).

一槽型ANAMMOXプロセスは、回分式(SBR)(特許文献3)と連続式(特許文献4)のいずれの反応槽でも処理を行うことができるが、固液分離装置が不要で装置構造が簡単であるSBR式反応槽が利用されることが多い。 The one-tank type ANAMMOX process can be processed in both batch type (SBR) (Patent Document 3) and continuous type (Patent Document 4) reaction tanks, but a solid-liquid separation device is not required and the device structure is simple. The SBR type reaction tank is often used.

SBR式の一槽型ANAMMOX反応槽にBOD成分が流入した場合、
(1)ANAMMOX細菌と従属栄養脱窒細菌の間で亜硝酸性窒素による競合
(2)アンモニア酸化細菌と従属栄養脱窒細菌の間で酸素による競合
が起こり、結果として、汚泥中のアンモニア酸化細菌とANAMMOX細菌の割合が減少し、処理水質が悪化する問題がある。
When the BOD component flows into the SBR type one-tank type ANAMMOX reaction tank,
(1) Competition by nitrite nitrogen between ANAMMOX bacteria and dependent nutrient denitrifying bacteria (2) Oxygen competition between ammonia oxidizing bacteria and dependent feeding denitrifying bacteria, resulting in ammonia oxidizing bacteria in sludge There is a problem that the proportion of ANAMMOX bacteria decreases and the quality of treated water deteriorates.

そこで、ANAMMOXプロセスにおいて、原水にBODが含まれるときに、前処理として活性汚泥処理を行って阻害要因のBODを事前に除去することが提案されている(特許文献5)。 Therefore, in the ANAMMOX process, it has been proposed to perform activated sludge treatment as a pretreatment to remove the BOD of the inhibiting factor in advance when the raw water contains BOD (Patent Document 5).

しかし、この方法は、活性汚泥によるBOD酸化槽の後段に沈殿池が必要であるため、前処理装置の設置スペースが過大であり、ANAMMOXプロセスの省スペース化のメリットが失われてしまう欠点がある。
また、沈殿池での汚泥引抜量、返送量の管理が難しいことも問題となっている。例えば、汚泥引抜量が不足し、汚泥滞留時間(SRT)が長くなってしまった場合、汚泥中に硝化細菌が増殖し、アンモニア性窒素が硝酸性窒素に酸化されてしまう。この場合、後段のANAMMOX細菌の基質が不足し、ANAMMOX反応の活性が大きく低下して処理水の水質が悪化する。反対に、SRTを短くして汚泥濃度が低下した場合には、BOD汚泥負荷が大きくなり活性汚泥中に糸状菌が優占化することで汚泥の沈降性が悪化(バルキング)し、沈殿池で固液分離障害を引き起こして、ANAMMOX反応槽にSSが大量に流入する可能性がある。
However, this method has a drawback that the installation space of the pretreatment device is excessive because a settling basin is required after the BOD oxidation tank using activated sludge, and the merit of space saving of the ANAMMOX process is lost. ..
Another problem is that it is difficult to control the amount of sludge extracted and returned in the settling basin. For example, when the amount of sludge extracted is insufficient and the sludge residence time (SRT) becomes long, nitrifying bacteria grow in the sludge and ammoniacal nitrogen is oxidized to nitrate nitrogen. In this case, the substrate of the ANAMMOX bacteria in the subsequent stage is insufficient, the activity of the ANAMMOX reaction is greatly reduced, and the water quality of the treated water is deteriorated. On the contrary, when the SRT is shortened and the sludge concentration is lowered, the BOD sludge load becomes large and the filamentous fungi dominate in the activated sludge, resulting in deterioration of sludge sedimentation (bulking) and in the sedimentation basin. A large amount of SS may flow into the ANAMMOX reaction vessel, causing a solid-liquid separation failure.

ANAMMOXプロセスではまた、原水に浮遊懸濁物質(SS)が含まれる場合、沈降速度の速いSSがANAMMOX反応槽内に蓄積することで、見掛けの汚泥増殖速度が変化し、汚泥の管理が難しくなるという問題もある。この問題に対して、ANAMMOX反応槽の前段に凝集・沈殿槽などの物理化学的処理手段を設けた場合、pH調整剤、無機凝集剤、ポリマー(高分子凝集剤)の添加が必要となり、ランニングコストが高くなる。特に、メタン発酵消化液の脱水濾液のような無機炭素(IC)濃度が高い原水では、凝集剤による凝集効果が低く、凝集剤を多量に添加する必要がある。 In the ANAMMOX process, when suspended solids (SS) are contained in the raw water, SS with a high sedimentation rate accumulates in the ANAMMOX reaction tank, which changes the apparent sludge growth rate and makes sludge management difficult. There is also the problem. To solve this problem, if a physicochemical treatment means such as a coagulation / settling tank is provided in front of the ANAMMOX reaction tank, it is necessary to add a pH adjuster, an inorganic coagulant, and a polymer (polymer coagulant), and running. The cost is high. In particular, in raw water having a high inorganic carbon (IC) concentration such as a dehydrated filtrate of methane fermentation digestive juice, the coagulation effect of the coagulant is low, and it is necessary to add a large amount of the coagulant.

このようなことから、従来の一槽型ANAMMOXプロセスでは、原水にANAMMOX反応の阻害要因のBODが含まれる場合でも、省スペースで管理が容易な脱窒処理技術が求められていた。また、安価な方法で原水中のSSを除去することが求められていた。 For these reasons, in the conventional one-tank type ANAMMOX process, there has been a demand for a space-saving and easy-to-manage denitrification treatment technique even when the raw water contains BOD, which is an inhibitor of the ANAMMOX reaction. Further, it has been required to remove SS in raw water by an inexpensive method.

特表2001−506535号公報Special Table 2001-506535 Gazette 特許第4613474号公報Japanese Patent No. 461374 特許第5347221号公報Japanese Patent No. 5347221 特開2010−221193号公報Japanese Unexamined Patent Publication No. 2010-22193 特許第4649911号公報Japanese Patent No. 4649911

本発明は上記従来の問題点を解決し、SBR式の一槽型ANAMMOXプロセスによるアンモニア性窒素含有排水の脱窒処理において、原水にANAMMOX反応の阻害要因のBODやSSが含まれる場合でも、省スペースかつ管理容易な方法でBODを除去することができ、また、原水中のSSを安価に除去することができるアンモニア性窒素含有排水の脱窒処理装置及び処理方法を提供することを課題とする。 The present invention solves the above-mentioned conventional problems, and in the denitrification treatment of ammoniacal nitrogen-containing wastewater by the SBR type one-tank type ANAMMOX process, even if the raw water contains BOD or SS which is an inhibitory factor of the ANAMMOX reaction, it can be saved. It is an object of the present invention to provide a denitrification treatment device and a treatment method for ammoniacal nitrogen-containing wastewater, which can remove BOD by a space and easy-to-manage method and can remove SS in raw water at low cost. ..

本発明者らは、上記課題を解決すべく検討を重ねた結果、SBR式の一槽型ANAMMOX反応槽の前段に、SBR式の好気性生物処理槽を設け、このSBR式の好気性生物処理槽で、原水中のBODやSSを除去することにより、上記課題を解決することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above problems, the present inventors have provided an SBR-type aerobic biological treatment tank in front of the SBR-type one-tank type ANAMMOX reaction tank, and this SBR-type aerobic biological treatment. It has been found that the above problems can be solved by removing BOD and SS in raw water in a tank.
That is, the gist of the present invention is as follows.

[1] アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した回分式の一槽型ANAMMOX反応槽と、該ANAMMOX反応槽の前段に設けられた回分式の好気性生物処理槽と、アンモニア性窒素含有排水を原水として該好気性生物処理槽に導入する手段と、該好気性生物処理槽の処理水を前記ANAMMOX反応槽に導入する手段と、該ANAMMOX反応槽の処理水を排出する手段とを有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [1] A batch-type one-tank type ANAMMOX reaction tank containing mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria, a batch-type aerobic biological treatment tank provided in front of the ANAMMOX reaction tank, and an ammonia nitrogen-containing It has means for introducing wastewater into the aerobic biological treatment tank as raw water, means for introducing the treated water from the aerobic biological treatment tank into the ANAMMOX reaction tank, and means for discharging the treated water from the ANAMMOX reaction tank. A denitrification treatment device for ammoniacal nitrogen-containing wastewater.

[2] [1]において、前記好気性生物処理槽内において沈降した前記原水中のSSの引抜手段を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [2] In [1], a denitrification treatment apparatus for ammoniacal nitrogen-containing wastewater, which comprises a means for drawing out SS in the raw water that has settled in the aerobic organism treatment tank.

[3] [1]又は[2]において、前記好気性生物処理槽と前記ANAMMOX反応槽との間に中継槽を有し、該好気性生物処理槽の処理水が該中継槽を経て該ANAMMOX反応槽に導入されることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [3] In [1] or [2], a relay tank is provided between the aerobic biological treatment tank and the ANAMMOX reaction tank, and the treated water in the aerobic biological treatment tank passes through the relay tank and the ANAMMOX. A denitrification treatment device for ammoniacal nitrogen-containing wastewater, which is characterized by being introduced into a reaction vessel.

[4] [1]ないし[3]のいずれかにおいて、前記ANAMMOX反応槽の後段に、硝化槽、脱窒槽及び再曝気槽、或いは循環式脱窒・硝化槽、或いは脱窒槽を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [4] In any one of [1] to [3], a nitrification tank, a denitrification tank and a reaeration tank, a circulating denitrification / nitrification tank, or a denitrification tank is provided after the ANAMMOX reaction tank. A denitrification treatment device for ammonia-containing nitrogen-containing wastewater.

[5] [1]ないし[4]のいずれかにおいて、前記ANAMMOX反応槽の後段に、凝集・沈殿槽、凝集・加圧浮上分離槽、又は沈殿槽を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [5] In any of [1] to [4], the ammonia nitrogen-containing tank is characterized by having a coagulation / settling tank, a coagulation / pressurized flotation separation tank, or a settling tank after the ANAMMOX reaction tank. Wastewater denitrification treatment equipment.

[6] [1]ないし[5]のいずれかにおいて、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [6] In any one of [1] to [5], a denitrification treatment apparatus for ammonia nitrogen-containing wastewater, wherein the raw water is a dehydrated filtrate of an anaerobic digestive juice.

[7] アンモニア性窒素含有排水を原水として、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した一槽型ANAMMOX反応槽を用いて回分式で脱窒処理する方法において、該ANAMMOX反応槽の前段に回分式の好気性生物処理槽を設け、該原水を該好気性生物処理槽で処理した後、該ANAMMOX反応槽で処理することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [7] In a method of batch denitrification using a one-tank type ANAMMOX reaction tank containing a mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria using ammonia nitrogen-containing wastewater as raw water, in the pre-stage of the ANAMMOX reaction tank. A method for denitrifying ammonia nitrogen-containing wastewater, which comprises providing a batch-type aerobic biological treatment tank, treating the raw water in the aerobic biological treatment tank, and then treating the raw water in the ANAMMOX reaction tank.

[8] [7]において、前記好気性生物処理槽において、前記原水中のSSを沈降させて引き抜くことにより、該原水中のSSを除去することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [8] In [7], in the aerobic biological treatment tank, the SS in the raw water is settled and pulled out to remove the SS in the raw water, which is characterized by denitrification of the ammoniacal nitrogen-containing wastewater. Processing method.

[9] [7]又は[8]において、前記好気性生物処理槽と前記ANAMMOX反応槽との間に中継槽を設け、該好気性生物処理槽の処理水を該中継槽を介して該ANAMMOX反応槽に導入することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [9] In [7] or [8], a relay tank is provided between the aerobic biological treatment tank and the ANAMMOX reaction tank, and the treated water of the aerobic biological treatment tank is passed through the relay tank to the ANAMMOX. A method for denitrifying ammonia-based nitrogen-containing wastewater, which is characterized by being introduced into a reaction vessel.

[10] [7]ないし[9]のいずれかにおいて、前記ANAMMOX反応槽の後段に、硝化槽、脱窒槽及び再曝気槽、或いは、循環式脱窒・硝化槽、或いは脱窒槽を設け、該ANAMMOX反応槽の処理水を更に脱窒処理することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [10] In any of [7] to [9], a nitrification tank, a denitrification tank and a reaeration tank, a circulation type denitrification / nitrification tank, or a denitrification tank is provided after the ANAMMOX reaction tank. A method for denitrifying ammonia-based nitrogen-containing wastewater, which further denitrifies the treated water in the ANAMMOX reaction tank.

[11] [7]ないし[10]のいずれかにおいて、前記ANAMMOX反応槽の後段に凝集・沈殿槽、凝集・加圧浮上槽、又は沈殿槽を設け、該ANAMMOX反応槽の処理水を凝集・沈殿、凝集・加圧浮上、又は沈殿処理することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [11] In any of [7] to [10], a coagulation / settling tank, a coagulation / pressurized flotation tank, or a settling tank is provided after the ANAMMOX reaction tank, and the treated water in the ANAMMOX reaction tank is coagulated. A method for denitrifying ammonia nitrogen-containing wastewater, which comprises precipitation, aggregation / pressure flotation, or precipitation treatment.

[12] [7]ないし[11]のいずれかにおいて、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [12] The method for denitrifying ammonia nitrogen-containing wastewater according to any one of [7] to [11], wherein the raw water is a dehydrated filtrate of an anaerobic digestive juice.

本発明によれば、SBR式の一槽型ANAMMOX反応槽の前段にSBR式の好気性生物処理槽を設け、この好気性生物処理槽で原水中のBODを分解除去すると共に、原水由来のSSを沈降させて除去することができる。
SBR式の好気性生物処理槽は、沈殿池を必要としないため、省スペースであり、また、汚泥返送の必要もなく、汚泥引き抜き等の管理も容易に行えるため、汚泥引抜の過不足に起因する水質の悪化等の問題も解消される。
According to the present invention, an SBR-type aerobic biological treatment tank is provided in front of the SBR-type one-tank type ANAMMOX reaction tank, and the BOD in the raw water is decomposed and removed in this aerobic biological treatment tank, and the SS derived from the raw water is decomposed and removed. Can be settled and removed.
The SBR type aerobic biological treatment tank does not require a settling basin, so it saves space, and there is no need to return sludge, and sludge extraction can be easily managed, which is caused by excess or deficiency of sludge extraction. Problems such as deterioration of water quality will be solved.

本発明のアンモニア性窒素含有排水の脱窒処理装置の実施の形態の一例を示す系統図である。It is a system diagram which shows an example of embodiment of the denitrification treatment apparatus of the ammoniacal nitrogen-containing wastewater of this invention. 本発明のアンモニア性窒素含有排水の脱窒処理装置の実施の形態の他の例を示す系統図である。It is a system diagram which shows another example of embodiment of the denitrification treatment apparatus of the ammoniacal nitrogen-containing wastewater of this invention. 本発明のアンモニア性窒素含有排水の脱窒処理装置の実施の形態の別の例を示す系統図である。It is a system diagram which shows another example of embodiment of the denitrification treatment apparatus of the ammoniacal nitrogen-containing wastewater of this invention. 本発明のアンモニア性窒素含有排水の脱窒処理装置の実施の形態の別の例を示す系統図である。It is a system diagram which shows another example of embodiment of the denitrification treatment apparatus of the ammoniacal nitrogen-containing wastewater of this invention. 実施例1におけるBOD酸化槽内の溶解性CODCr濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the soluble COD Cr concentration in the BOD oxidation tank in Example 1.

以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.

本発明では、アンモニア性窒素含有排水を原水として、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容したANAMMOX反応槽(以下「一槽型ANAMMOX槽」又は「ANAMMOX槽」と称す場合がある。)を用いてSBR式で脱窒処理するに当たり、反応槽の前段にSBR式の好気性生物処理槽(以下、「BOD酸化槽」と称す場合がある。)を設け、原水中のBODをこのBOD酸化槽で酸化分解すると共に、原水中のSSを沈降分離して除去した後、一槽型ANAMMOX槽に導入してANAMMOX処理する。 In the present invention, an ANAMMOX reaction tank (hereinafter, may be referred to as a "one-tank type ANAMMOX tank" or "ANAMMOX tank") containing a mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria using ammonia nitrogen-containing wastewater as raw water. When denitrifying with the SBR method, an SBR type aerobic biological treatment tank (hereinafter, may be referred to as "BOD oxidation tank") is provided in front of the reaction tank, and the BOD in the raw water is oxidized by this BOD. After oxidative decomposition in the tank and sedimentation and separation of SS in the raw water to remove it, it is introduced into a one-tank type ANAMMOX tank and subjected to ANAMMOX treatment.

[ANAMMOXプロセス]
本発明において処理対象となるアンモニア性窒素含有排水は、アンモニア酸化細菌とANAMMOX細菌を含むグラニュールと接触させて窒素処理可能なアンモニア性窒素または有機性窒素を含む液であればよいが、本発明は特に高濃度アンモニア性窒素と、BOD及びSSの両方またはどちらかを含む排水に対して高い効果が得られる。このような排水の具体的な例としては、好気性消化液(メタン発酵消化液)の脱水濾液が挙げられる。嫌気性消化液の脱水濾液は、一般的に500mg−N/L以上のアンモニア性窒素を含有し、メタン発酵槽や脱水機の運転状況にもよるが1,000mg/L以上のBODとSSを含有している場合がある。また、原水中のSSやBOD濃度が低い場合でも、原水中にポリマーや殺菌剤などが含まれている場合にはアンモニア酸化細菌またはANAMMOX細菌を阻害して処理水の水質が悪化するため、このような場合にも本発明方法を適用するとよい。
[ANAMMOX process]
The ammoniacal nitrogen-containing wastewater to be treated in the present invention may be a liquid containing ammoniacal nitrogen or organic nitrogen that can be treated with nitrogen by contacting with a granule containing ammonia-oxidizing bacteria and ANAMMOX bacteria. Is particularly effective against high concentrations of ammoniacal nitrogen and wastewater containing BOD and / or SS. Specific examples of such wastewater include a dehydrated filtrate of an aerobic digestive juice (methane fermentation digestive juice). The dehydrated filtrate of the anaerobic digestive juice generally contains 500 mg-N / L or more of ammoniacal nitrogen, and has a BOD and SS of 1,000 mg / L or more depending on the operating conditions of the methane fermenter and the dehydrator. May contain. In addition, even if the SS or BOD concentration in the raw water is low, if the raw water contains a polymer or a bactericide, it inhibits ammonia-oxidizing bacteria or ANAMMOX bacteria and deteriorates the water quality of the treated water. The method of the present invention may be applied even in such a case.

本発明においてアンモニア性窒素の亜硝酸化に用いられるアンモニア酸化細菌は、従来よりアンモニア性窒素の亜硝酸化に用いられている細菌であって、好気性下にアンモニア性窒素を酸化して亜硝酸性窒素に転換する細菌である。 The ammonia-oxidizing bacteria used for nitrite formation of ammoniacal nitrogen in the present invention are bacteria conventionally used for nitrite formation of ammoniacal nitrogen, and nitrite by oxidizing ammoniacal nitrogen under aerobic conditions. It is a bacterium that converts to sex nitrogen.

本発明において脱窒に用いられるANAMMOX細菌は、Planctomycetesに属す細菌であって、嫌気性雰囲気でアンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させる脱窒細菌である。このようなANAMMOX細菌は従来の脱窒に用いられた従属栄養性の脱窒細菌とは異なり、独立栄養性の細菌であるため、脱窒に際して従来の脱窒細菌には必要であったメタノール等の栄養源の添加を必要としない。またANAMMOX細菌は、アンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させるため、アンモニア性窒素と亜硝酸性窒素を同時に除去でき、しかも有害な副生物を生成しない。 The ANAMMOX bacterium used for denitrification in the present invention is a bacterium belonging to Planctomycetes, which is a denitrifying bacterium that reacts ammoniacal nitrogen and nitrite nitrogen in an anaerobic atmosphere and directly converts them into nitrogen gas. Unlike the heterotrophic denitrifying bacterium used for conventional denitrification, such ANAMMOX bacterium is an autotrophic bacterium. Does not require the addition of nutrient sources. Further, since ANAMMOX bacteria react ammonia nitrogen and nitrite nitrogen and directly convert them into nitrogen gas, ammonia nitrogen and nitrite nitrogen can be removed at the same time, and harmful by-products are not produced.

本発明において、ANAMMOX槽で用いるアンモニア酸化細菌とANAMMOX細菌の混合汚泥としては、特に、ANAMMOX細菌の自己造粒物の一次生物膜体の表面をアンモニア酸化細菌で覆った生物二重構造体であることが好ましい。
以下、この本発明に好適な処理汚泥について説明する。
In the present invention, the mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria used in the ANAMMOX tank is, in particular, a biological double structure in which the surface of the primary biofilm of the self-granulated product of ANAMMOX bacteria is covered with ammonia-oxidizing bacteria. Is preferable.
Hereinafter, the treated sludge suitable for the present invention will be described.

ANAMMOX細菌の自己造粒物は、常法に従って、ANAMMOX細菌を自己造粒させることによって形成することができる。
なお、ANAMMOX細菌の自己造粒物の場合、ANAMMOX細菌だけでは自己造粒に期間を要するので、核となる物質を添加し、その核の周りにANAMMOX細菌の生物膜を形成させる。この場合、核として用いられる微生物自己造粒物としては、メタン菌グラニュールの嫌気性微生物の自己造粒物を用いることができる。メタン菌自己造粒物は、UASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性汚泥床)法もしくはEGSB(Expanded Granule Sludge Bed;展開粒状汚泥床)法でメタン発酵が行われているメタン発酵槽で使用されているものを適用できる。これらの自己造粒物はそのままの状態で、又はその破砕物として用いることができる。ANAMMOX細菌はこのような微生物自己造粒物に付着しやすく、自己造粒物の形成に要する時間が短縮される。また、核として非生物的な材料を用いるよりも経済的である。
The self-granulation of ANAMMOX bacteria can be formed by self-granulation of ANAMMOX bacteria according to a conventional method.
In the case of self-granulation of ANAMMOX bacteria, since it takes a long time for ANAMMOX bacteria to self-granulate, a core substance is added to form a biofilm of ANAMMOX bacteria around the nucleus. In this case, as the self-granulation of the microorganism used as the nucleus, the self-granulation of the anaerobic microorganism of the methanogen granule can be used. Methanogen self-granulated products are produced in a methane fermenter in which methane fermentation is carried out by the UASB (Upflow Anaerobic Sludge Blanket) method or the EGSB (Expanded Granule Sludge Bed) method. The one used can be applied. These self-granulated products can be used as they are or as crushed products thereof. ANAMMOX bacteria are likely to adhere to such microbial self-granulations, reducing the time required to form self-granulations. It is also more economical than using abiotic materials as nuclei.

ANAMMOX細菌の自己造粒物である一次生物膜体の形状には特に制限はなく、粒状(球状、立方体状、その他の異形形状)、ひも状、棒状等の長尺状、フィルム状等の平面形状等の多種多様の形状を採用することができ、その大きさについても任意であるが、取り扱い性、生物膜二重構造体の形成効率等の面から、次のような大きさであることが好ましい。
粒状の場合:直径又は一辺の長さが3〜20mm
長尺状の場合:長さ3〜2000mm程度、太さ0.1〜5mmφ
平面状の場合:面積制限なし、厚み0.1〜5mm
The shape of the primary biofilm, which is a self-granulated product of ANAMMOX bacteria, is not particularly limited, and is granular (spherical, cubic, or other irregular shape), string-shaped, rod-shaped or other long-shaped, film-shaped or other flat surface. A wide variety of shapes such as shapes can be adopted, and the size is arbitrary, but from the viewpoint of handleability, formation efficiency of biofilm double structure, etc., the size should be as follows. Is preferable.
Granular: 3 to 20 mm in diameter or side length
In the case of long shape: length 3 to 2000 mm, thickness 0.1 to 5 mmφ
In the case of flat surface: No area limit, thickness 0.1 to 5 mm

このような一次生物膜体の表面をアンモニア酸化細菌で覆って生物二重構造体とするには、例えば、この一次生物膜体を硝化槽に投入し、これを硝化槽から流出しないように保持する。硝化槽に一次生物膜体を投入したのみでは流出のおそれがある場合には、一次生物膜体が流出しないように、硝化槽にスクリーンを設けることが好ましい。または、一次生物膜体を硝化液と共に流出させ、沈殿槽に導入して固液分離し、分離した一次生物膜体を硝化槽に戻してもよい。 In order to cover the surface of such a primary biofilm with ammonia-oxidizing bacteria to form a biological double structure, for example, the primary biofilm is placed in a nitrification tank and held so as not to flow out of the nitrification tank. do. When there is a risk of outflow only by putting the primary biofilm into the nitrification tank, it is preferable to provide a screen in the nitrification tank so that the primary biofilm does not flow out. Alternatively, the primary biofilm may be discharged together with the nitrification solution, introduced into a settling tank for solid-liquid separation, and the separated primary biofilm may be returned to the nitrification tank.

硝化槽への一次生物膜体の投入量は、原水中のアンモニア濃度や、処理水量等の硝化槽負荷等に応じて適宜決定されるが、通常の場合、MLSSとして500〜5000mg/Lとなるように投入することが好ましい。 The amount of the primary biofilm charged into the nitrification tank is appropriately determined according to the ammonia concentration in the raw water, the load on the nitrification tank such as the amount of treated water, etc., but is usually 500 to 5000 mg / L as MLSS. It is preferable to put in as such.

硝化槽に一次生物膜体を投入して保持することにより、一次生物膜体の表面にアンモニア酸化細菌の生物膜が形成され、ANAMMOXプロセスに好適なANAMMOX細菌の一次生物膜体をアンモニア酸化細菌で覆った生物膜二重構造体を得ることができる。 By putting the primary biofilm into the nitrification tank and holding it, a biofilm of ammonia-oxidizing bacteria is formed on the surface of the primary biofilm, and the primary biofilm of ANAMMOX bacteria suitable for the ANAMMOX process is made of ammonia-oxidizing bacteria. A covered biofilm double structure can be obtained.

[回分式(SBR)の運転]
本発明では、BOD酸化槽とANAMMOX槽ともにSBR式で運転を行う。その運転方法は、原水導入工程→曝気工程→汚泥沈殿工程→汚泥引抜工程→処理水排出工程、または原水導入及び曝気工程(原水導入と曝気を同時に行う)→(必要に応じて更に曝気工程→)汚泥沈殿工程→汚泥引抜工程→処理水排出工程のいずれの運転方式でもよい。
なお、ANAMMOX槽では、汚泥引抜工程は、必ずしも実施する必要はなく、必要に応じて実施される。
[Operation of batch type (SBR)]
In the present invention, both the BOD oxidation tank and the ANAMMOX tank are operated by the SBR method. The operation method is raw water introduction process → aeration process → sludge sedimentation process → sludge extraction process → treated water discharge process, or raw water introduction and aeration process (raw water introduction and aeration are performed at the same time) → (further aeration process if necessary → ) Any operation method of sludge sedimentation step → sludge extraction step → treated water discharge step may be used.
In the ANAMMOX tank, the sludge extraction step does not necessarily have to be carried out, but is carried out as needed.

原水に微生物阻害性がある場合やpHが高い場合は、バッチの開始時に一度に基質を流入させるFill&Draw式ではANAMMOX槽内の阻害物質濃度やpHが高くなり、微生物活性を阻害することがあるため、Fed−Batch式を選択するのが好ましい。この場合は、後述の通り、BOD酸化槽とANAMMOX槽の間に中継槽を設置するのが望ましい。
槽内水の排出量については、BOD酸化槽およびANAMMOX槽ともに、満水時の水位に対して10〜80%の水位の範囲で適宜設定することができる。
If the raw water is microbially inhibitory or has a high pH, the Fill & Draw method, in which the substrate is flowed in at once at the start of the batch, increases the concentration and pH of the inhibitor in the ANAMMOX tank, which may inhibit microbial activity. , Fed-Batch formula is preferably selected. In this case, as will be described later, it is desirable to install a relay tank between the BOD oxidation tank and the ANAMMOX tank.
The amount of water discharged from the tank can be appropriately set in the range of 10 to 80% of the water level at the time of full water in both the BOD oxidation tank and the ANAMMOX tank.

なお、原水のBOD濃度に変動がある場合には、BOD酸化槽の槽出口にスクリーン設置し、微生物担体を少量(5〜20%)添加することで、急なBOD濃度上昇に対して対応することができる。 If the BOD concentration of raw water fluctuates, a screen is installed at the outlet of the BOD oxidation tank and a small amount (5 to 20%) of microbial carrier is added to cope with a sudden increase in BOD concentration. be able to.

[BOD酸化槽における処理]
<フロックを形成しない浮遊性の汚泥(浮遊菌)による処理>
BOD酸化槽で細菌によりフロックが形成されると必要な細菌ごとSSとして引き抜かれて槽内に必要な細菌を保持することが難しくなる。この場合において、ある程度フロックが残留するようにSSの引き抜きをコントロールすると、経時的にフロックを足場にして硝化菌が増殖してしまい、原水中のアンモニア性窒素が硝酸性窒素にまで酸化されてしまい不適当である。よって、BOD酸化槽は浮遊式で行うことが好ましく、そのために、BOD酸化槽の運転条件は、回分式(SBR)に加え、SRTを短く、一過式かつ高BOD汚泥負荷とすることにより、浮遊菌の優占化を促進して処理することが好ましい。
[Treatment in BOD oxidation tank]
<Treatment with floating sludge (floating bacteria) that does not form flocs>
When flocs are formed by bacteria in the BOD oxidation tank, the necessary bacteria are extracted as SS and it becomes difficult to retain the necessary bacteria in the tank. In this case, if the extraction of SS is controlled so that the flocs remain to some extent, the nitrifying bacteria will grow on the flocs as a scaffold over time, and the ammoniacal nitrogen in the raw water will be oxidized to nitrate nitrogen. Inappropriate. Therefore, it is preferable that the BOD oxidation tank is a floating type, and therefore, the operating conditions of the BOD oxidation tank are set to a short SRT, a transient type, and a high BOD sludge load in addition to the batch type (SBR). It is preferable to promote the dominance of airborne bacteria for treatment.

従って、本発明に係るSBR式BOD酸化槽では、以下のような運転を行うことが好ましい。
(1)汚泥沈殿工程で、沈降汚泥をSRT5日以下、好ましくは3日以下、例えば1〜2日になるように、沈殿したSSを引き抜く。SRTが下記下限より長いと硝化菌が増殖し易くなる。なお、汚泥の引き抜きは、間欠的に行う他、連続的に行ってもよい。
(2)BOD酸化槽を一過式とし、引き抜き汚泥の返送、供給を行わない。汚泥返送を行うと、硝化菌が増殖し易くなる。
(3)BOD酸化槽のBOD汚泥負荷は2〜20kg−BOD/kg−SS/dayとする。BOD酸化槽のBOD汚泥負荷が上記下限より低いとフロックを形成し易くなり、上記上限よりも高いと処理不十分となる傾向がある。
(4)BOD酸化槽の汚泥沈殿工程の時間を15分〜2時間とする。沈殿工程の時間が15分未満では、原水由来のSSを十分に除去し得ず、一方2時間程度を費やせば原水由来のSSの殆どが除去される。
即ち、ANAMMOX槽の汚泥沈殿工程で静置沈降分離するグラニュール(グラニュールの沈降速度は遅いもので1〜5m/hr)より沈降速度の速いSSは、BOD酸化槽からANAMMOX槽に供給されないようにする必要があるので、BOD酸化槽において沈降速度の速いSSを分離除去しておく必要がある。槽内のどの水位まで槽内水を引抜くかにもよるが、そのための大よその沈殿工程の時間は上記の通り設定される。
Therefore, in the SBR type BOD oxide tank according to the present invention, it is preferable to perform the following operations.
(1) In the sludge sedimentation step, the sedimented sludge is withdrawn so that the SRT is 5 days or less, preferably 3 days or less, for example, 1 to 2 days. If the SRT is longer than the lower limit below, nitrifying bacteria are likely to grow. The sludge may be extracted intermittently or continuously.
(2) The BOD oxidation tank will be a transient type, and the drawn sludge will not be returned or supplied. When the sludge is returned, nitrifying bacteria are likely to grow.
(3) The BOD sludge load of the BOD oxidation tank is 2 to 20 kg-BOD / kg-SS / day. If the BOD sludge load in the BOD oxidation tank is lower than the above lower limit, flocs are likely to be formed, and if it is higher than the above upper limit, the treatment tends to be insufficient.
(4) The time of the sludge settling step in the BOD oxidation tank is set to 15 minutes to 2 hours. If the time of the precipitation step is less than 15 minutes, SS derived from raw water cannot be sufficiently removed, while if about 2 hours are spent, most of SS derived from raw water is removed.
That is, SS having a faster settling speed than the granule (the settling speed of the granule is slow, 1 to 5 m / hr) that is statically settled and separated in the sludge settling step of the ANAMMOX tank is not supplied from the BOD oxidation tank to the ANAMMOX tank. Therefore, it is necessary to separate and remove SS having a high sedimentation rate in the BOD oxidation tank. Although it depends on the water level in the tank to which the water in the tank is drawn, the time of the precipitation step for that purpose is set as described above.

このように、BOD酸化槽では、汚泥返送しない一過式とし、SRT5日以下、好ましくは3日以下とし、さらにBOD汚泥負荷を2kg−BOD/kg−SS/day以上の高い負荷で運転することで、フロックの形成を抑制して浮遊菌によってBOD除去を行うことが好ましい。
浮遊菌は、沈降速度0.01m/hr以下と非常に遅いため、BOD酸化槽の汚泥沈殿工程で沈降除去されず、BOD酸化槽の処理水と共にANAMMOX槽に流入するが、後述の通り、ANAMMOX槽でも同様に汚泥沈殿工程で除去されないため、槽内に蓄積することなく処理水として排出される。
In this way, in the BOD oxidation tank, the sludge should not be returned as a transient type, the SRT should be 5 days or less, preferably 3 days or less, and the BOD sludge load should be operated at a high load of 2 kg-BOD / kg-SS / day or more. Therefore, it is preferable to suppress the formation of flocs and remove BOD by airborne bacteria.
Since the floating bacteria have a very slow sedimentation rate of 0.01 m / hr or less, they are not settled and removed in the sludge sedimentation step of the BOD oxidation tank, and flow into the ANAMMOX tank together with the treated water of the BOD oxidation tank. Similarly, since it is not removed in the sludge sedimentation step in the tank, it is discharged as treated water without accumulating in the tank.

<BOD酸化に伴う固液分離手段の省略>
従来法では、BOD酸化槽にてフロックを形成する活性汚泥によりBODを分解し、沈殿池で固液分離を行っていた。
これに対して、本発明では、汚泥返送を行わずSRTを短く設定することで浮遊菌を優占化させてBODを除去するようにする。浮遊菌は、BOD酸化槽の処理水とともにANAMMOX槽に流入するが、非常に沈降速度が遅いため、ANAMMOX槽の汚泥沈殿工程において沈降して蓄積することなく、ANAMMOX槽の処理水(ANAMMOX処理水)と共に流出する。本発明では、このことで、BOD酸化槽とANAMMOX槽の間に沈殿池を設ける必要がなくなり、従来技術と比べて省スペース化を図ることができる。
<Omission of solid-liquid separation means associated with BOD oxidation>
In the conventional method, BOD is decomposed by activated sludge forming flocs in a BOD oxidation tank, and solid-liquid separation is performed in a settling basin.
On the other hand, in the present invention, the sludge is not returned and the SRT is set short to dominate the floating bacteria and remove the BOD. Floating bacteria flow into the ANAMMOX tank together with the treated water in the BOD oxidation tank, but because the sedimentation rate is very slow, the suspended bacteria do not settle and accumulate in the sludge sedimentation step of the ANAMMOX tank, and the treated water in the ANAMMOX tank (ANAMMOX treated water). ) And leak. In the present invention, this eliminates the need to provide a settling basin between the BOD oxidation tank and the ANAMMOX tank, and can save space as compared with the prior art.

<原水由来のSSの選択的除去>
従来の一槽型ANAMMOX槽では、原水由来のSSが流入した場合、ANAMMOXグラニュールと同等の沈降速度を有するSSが汚泥沈殿工程で沈殿し、槽内に蓄積していく問題がある。
本発明では、BOD酸化槽の汚泥沈殿工程で、沈降速度の速いSSを沈降させて引き抜くことができ、原水由来のSSがANAMMOX槽に流入・蓄積することを抑制することができる。
このように、原水にSSが含まれる場合、本発明では、BOD酸化槽の汚泥沈殿工程を利用して、ANAMMOX槽に蓄積するような沈降速度の速い原水由来のSSを沈降させて引き抜くことで、原水由来のSSがANAMMOX槽へ蓄積されることを避けることができる。ANAMMOX槽では、通常沈降速度1〜5m/hr程度のグラニュールを沈殿させて槽内に維持するため、それより速い沈降速度を持つSSを除去できるように、前述の通り、BOD酸化槽の沈殿工程の時間を決定するのが好ましい。
BOD酸化槽で沈降したSSの引き抜きは、決められた頻度で行う必要はないが、硝化細菌の増殖を抑制するためSRTは5日以下、好ましくは3日以下で運転する。
<Selective removal of SS derived from raw water>
In the conventional one-tank type ANAMMOX tank, when SS derived from raw water flows in, there is a problem that SS having a sedimentation rate equivalent to that of ANAMMOX granules precipitates in the sludge sedimentation step and accumulates in the tank.
In the present invention, in the sludge sedimentation step of the BOD oxidation tank, SS having a high sedimentation rate can be sedimented and extracted, and SS derived from raw water can be suppressed from flowing into and accumulating in the ANAMMOX tank.
As described above, when SS is contained in the raw water, in the present invention, the sludge sedimentation step of the BOD oxidation tank is used to settle and extract the SS derived from the raw water having a high sedimentation rate such as accumulating in the ANAMMOX tank. , SS derived from raw water can be prevented from accumulating in the ANAMMOX tank. In the ANAMMOX tank, granules having a sedimentation speed of about 1 to 5 m / hr are usually precipitated and maintained in the tank. It is preferable to determine the time of the process.
The extraction of SS settled in the BOD oxidation tank does not need to be performed at a predetermined frequency, but the SRT is operated in 5 days or less, preferably 3 days or less in order to suppress the growth of nitrifying bacteria.

[ANAMMOX槽における処理]
アンモニア性窒素の亜硝酸化とANAMMOX反応の反応式は、下記式1、式2に示す通りである。式1と式2をまとめた、一槽型ANAMMOX反応は、下記式3の通りである。式3より、一槽型ANAMMOX反応では、アンモニア除去に伴ってpHが低下するが、高pHの原水が導入される場合には、必要に応じてpH調整剤(酸等)を添加して、ANAMMOX細菌を阻害しないpH域(pH 6.7〜8.3)に調整することが好ましい。
<アンモニア性窒素の亜硝酸化>
1.0NH +1.5O→1.0NO+HO+2.0H 式1
<ANAMMOX反応>
1.0NH +1.32NO +0.066HCO
1.02N+0.26NO +0.066CH0.50.15
+2.03HO+0.13OH 式2
<一槽型ANAMMOX反応による脱窒反応>
1.0NH +0.65O
0.44N+0.11NO +1.14H+1.43HO 式3
[Treatment in ANAMMOX tank]
The reaction formulas of the nitrite formation of ammoniacal nitrogen and the ANAMMOX reaction are as shown in the following formulas 1 and 2. The one-tank type ANAMMOX reaction in which Formulas 1 and 2 are summarized is as shown in Formula 3 below. From Equation 3, in the one-tank type ANAMMOX reaction, the pH decreases with the removal of ammonia, but when high pH raw water is introduced, a pH adjuster (acid, etc.) is added as necessary. It is preferable to adjust the pH to a pH range (pH 6.7 to 8.3) that does not inhibit ANAMMOX bacteria.
<Nitriteization of ammoniacal nitrogen>
1.0NH 4 + + 1.5O 2 → 1.0NO 2 + H 2 O + 2.0H + Equation 1
<ANAMMOX reaction>
1.0NH 4 + + 1.32NO 2 - + 0.066HCO 3 - →
1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15
+ 2.03H 2 O + 0.13OH - Equation 2
<Denitrification reaction by one-tank type ANAMMOX reaction>
1.0NH 4 + + 0.65O 2
0.44N 2 + 0.11NO 3 - + 1.14H + + 1.43H 2 O Formula 3

また、ANAMMOX槽では、前述の通り、BOD酸化槽から流入した浮遊菌や沈降速度の遅いSSが、ANAMMOX槽の汚泥沈殿工程でANAMMOX汚泥と共に沈降せずに、処理水中に含まれてANAMMOX槽から流出するように、ANAMMOX槽における汚泥沈殿工程の時間は15分〜2時間(ただし、BOD酸化槽における汚泥沈澱工程の時間と同じかそれよりも短くする)となるように設定することが好ましい。 Further, in the ANAMMOX tank, as described above, the airborne bacteria flowing from the BOD oxidation tank and the SS having a slow sedimentation rate are contained in the treated water from the ANAMMOX tank without settling together with the ANAMMOX sludge in the sludge sedimentation step of the ANAMMOX tank. It is preferable to set the time of the sludge sedimentation step in the ANAMMOX tank to be 15 minutes to 2 hours (however, the time is the same as or shorter than the time of the sludge sedimentation step in the BOD oxidation tank) so as to flow out.

[後処理]
前述の通り、ANAMMOXプロセスの反応式は式3の通りであり、原水のアンモニア性窒素1molに対して、0.11molの硝酸性窒素が生成することから、処理水に硝酸性窒素が残存する。この濃度が、排水処理の必要な基準を満たさない場合などには、ANAMMOX槽の後段に仕上げ処理として硝化−脱窒−再曝気プロセス、脱窒−硝化プロセス(循環法)、又は脱窒プロセスを設けることで、残存する硝酸性窒素を除去することが好ましい。
[Post-processing]
As described above, the reaction formula of the ANAMMOX process is as shown in Formula 3, and 0.11 mol of nitrate nitrogen is produced with respect to 1 mol of ammonia nitrogen in the raw water, so that nitrate nitrogen remains in the treated water. If this concentration does not meet the required criteria for wastewater treatment, a nitrification-denitrification-re-aeration process, a denitrification-nitrification process (circulation method), or a denitrification process is performed as a finishing treatment in the subsequent stage of the ANAMMOX tank. It is preferable to remove the residual nitrate nitrogen by providing the mixture.

また、ANAMMOX槽の処理水には、浮遊菌とBOD酸化槽で除去できなかった沈降速度の遅いSSが含まれている。これについても、排水処理の必要な基準を満たさない場合などには、ANAMMOX槽の後段に固液分離手段(凝集沈殿プロセス、凝集加圧浮上プロセス、又は沈殿プロセス)を設けることでSSを取り除いてもよい。 In addition, the treated water in the ANAMMOX tank contains airborne bacteria and SS with a slow sedimentation rate that could not be removed by the BOD oxidation tank. In this case as well, if the required standards for wastewater treatment are not met, SS is removed by providing a solid-liquid separation means (coagulation sedimentation process, coagulation pressure flotation process, or sedimentation process) in the subsequent stage of the ANAMMOX tank. May be good.

[具体的な槽構成]
以下に図1〜4を参照して本発明のアンモニア性窒素含有排水の脱窒処理装置の具体的な槽構成を説明する。図1〜4は本発明のアンモニア性窒素含有排水の脱窒処理装置の実施の形態の一例を示す系統図であり、同一機能を奏する部材には、同一符号を付してある。なお、いずれも、曝気のための曝気配管やブロアは図示を省略してある。
[Specific tank configuration]
The specific tank configuration of the denitrification treatment apparatus for ammoniacal nitrogen-containing wastewater of the present invention will be described below with reference to FIGS. 1 to 4. FIGS. 1 to 4 are system diagrams showing an example of an embodiment of the denitrification treatment apparatus for ammonia nitrogen-containing wastewater of the present invention, and members having the same function are designated by the same reference numerals. In each case, the aeration piping and blower for aeration are not shown.

図1は、BOD酸化槽1とANAMMOX槽2とを直列に接続したアンモニア性窒素含有排水の脱窒処理装置を示し、原水は、配管11よりBOD酸化槽1に導入され、SBS式で処理される。
このBOD酸化槽1の汚泥沈殿工程で沈降した原水由来のSSは、配管12より引き抜かれる。BOD酸化槽1の処理水は、アンモニア性窒素とBOD酸化槽1内の浮遊菌と沈殿工程で沈降しなかったSSを含むものであり、この処理水は、配管13よりANAMMOX槽2に導入され、SBR式でANAMMOX処理されてアンモニア性窒素が除去され、処理水は配管14より排出される。
このANAMMOX槽2の処理水には、BOD酸化槽1からの浮遊菌とANAMMOX槽2の沈殿工程で沈降しなかったSSが含まれる。
FIG. 1 shows a denitrification treatment device for ammonia-based nitrogen-containing wastewater in which a BOD oxidation tank 1 and an ANAMMOX tank 2 are connected in series, and raw water is introduced into the BOD oxidation tank 1 from a pipe 11 and treated by an SBS method. NS.
The SS derived from the raw water that has settled in the sludge settling step of the BOD oxidation tank 1 is pulled out from the pipe 12. The treated water in the BOD oxidation tank 1 contains ammoniacal nitrogen, airborne bacteria in the BOD oxidation tank 1, and SS that did not settle in the precipitation step, and this treated water is introduced into the ANAMMOX tank 2 from the pipe 13. , SBR formula ANAMMOX treatment removes ammoniacal nitrogen, and the treated water is discharged from the pipe 14.
The treated water in the ANAMMOX tank 2 contains airborne bacteria from the BOD oxidation tank 1 and SS that did not settle in the sedimentation step of the ANAMMOX tank 2.

前述の通り、原水に微生物阻害性がある場合やpHが高い場合は、バッチの開始時に一度に基質を流入させるFill&Draw式では槽内の阻害物質濃度やpHが高くなり、微生物活性を阻害することがあるため、Fed−Batch式を選択するのが好ましい。この場合において、図2に示すように、BOD酸化槽1とANAMMOX槽2の間に中継槽3を設置するのが望ましい。
図2は、BOD酸化槽1とANAMMOX槽2との間に中継槽3を設け、配管13からのBOD酸化槽1の処理水を中継槽3を介して配管15よりANAMMOX槽2に導入するようにしたこと以外は、図1に示す脱窒処理装置と同様の構成とされている。
As mentioned above, if the raw water is microbially inhibitory or has a high pH, the Fill & Draw method, in which the substrate flows in at once at the start of the batch, increases the concentration and pH of the inhibitor in the tank and inhibits microbial activity. Therefore, it is preferable to select the Fed-Batch formula. In this case, as shown in FIG. 2, it is desirable to install the relay tank 3 between the BOD oxidation tank 1 and the ANAMMOX tank 2.
In FIG. 2, a relay tank 3 is provided between the BOD oxidation tank 1 and the ANAMMOX tank 2, and the treated water of the BOD oxidation tank 1 from the pipe 13 is introduced into the ANAMMOX tank 2 from the pipe 15 via the relay tank 3. The configuration is the same as that of the denitrification treatment apparatus shown in FIG.

このように中継槽3を設けた場合、各槽の運転サイクルを下記表1に示すようにすることができ、各槽における曝気時間を長く確保することができるようになる。 When the relay tank 3 is provided in this way, the operation cycle of each tank can be as shown in Table 1 below, and the aeration time in each tank can be secured for a long time.

Figure 0006919304
Figure 0006919304

即ち、中継槽がない場合、BOD酸化槽からの排水時間(処理水排出工程)=ANAMMOX槽への流入時間(原水導入工程)となるため、ANAMMOX槽への流入時間を長くしようとすると、BOD酸化槽における排水時間も長くなり、BOD酸化槽における曝気時間を長くとることができなくなる。この場合において、中継槽を設けることで、BOD酸化槽からの排水時間=中継槽への流入時間、ANAMMOX槽への流入時間=中継槽からの排水時間となり、ANAMMOX槽への流入時間を長くとっても、BOD酸化槽から排水時間はこの時間とは関係なく設定できるため、BOD酸化槽における曝気時間を十分に確保することができるようになる。 That is, if there is no relay tank, the drainage time from the BOD oxidation tank (treated water discharge step) = the inflow time into the ANAMMOX tank (raw water introduction step). The drainage time in the oxidation tank is also long, and the aeration time in the BOD oxidation tank cannot be long. In this case, by providing the relay tank, the drainage time from the BOD oxidation tank = the inflow time to the relay tank, the inflow time to the ANAMMOX tank = the drainage time from the relay tank, and the inflow time to the ANAMMOX tank can be made longer. Since the drainage time from the BOD oxidation tank can be set regardless of this time, a sufficient aeration time in the BOD oxidation tank can be secured.

前述の通り、ANAMMOX処理水には硝酸性窒素が残存するため、この濃度が、排水処理の必要な基準を満たさない場合などには、ANAMMOX槽の後段に仕上げ処理として硝化−脱窒−再曝気プロセス、脱窒−硝化プロセス(循環法)、または脱窒プロセスを設けて、残存する硝酸性窒素を除去することが好ましい。 As mentioned above, nitrate nitrogen remains in the ANAMMOX treated water, so if this concentration does not meet the required standards for wastewater treatment, nitrification-denitrification-reaeration is performed as a finishing treatment in the subsequent stage of the ANAMMOX tank. It is preferred to provide a process, denitrification-nitrification process (circulation method), or denitrification process to remove residual nitrate nitrogen.

図3(a)は、ANAMMOX槽2の後段に脱窒槽4を設けた装置を示し、図3(b)はANAMMOX槽2の後段に硝化槽5A、脱窒槽5B、再曝気槽5Cを設けた装置を示し、図3(c)は、ANAMMOX槽2の後段に循環式脱窒・硝化槽6を設けた装置を示す。 FIG. 3A shows an apparatus in which a denitrification tank 4 is provided after the ANAMMOX tank 2, and FIG. 3B shows a nitrification tank 5A, a denitrification tank 5B, and a reaeration tank 5C after the ANAMMOX tank 2. An apparatus is shown, and FIG. 3 (c) shows an apparatus in which a circulation type denitrification / nitrification tank 6 is provided after the ANAMMOX tank 2.

図3(a)の装置では、ANAMMOX槽2からのANAMMOX処理水が配管14より脱窒槽4に送給されて、硝酸性窒素が嫌気性処理により窒素ガスに変換されて除去され、脱窒処理水は、配管16より系外へ排出される。図3(b)の装置では、ANAMMOX槽2からのANAMMOX処理水が配管14より硝化槽5A、脱窒槽5B、再曝気槽5Cで順次処理された後、配管16より系外へ排出される。図3(c)の装置では、ANAMMOX槽2からのANAMMOX処理水が、配管14より脱窒槽6Aを経て配管17より硝化槽6Bに導入され、硝化槽6Bの処理水の一部が配管18より脱窒槽6Aに循環されて処理されることで、ANAMMOX処理水中の窒素の硝化・脱窒処理が行われ、処理水は配管16より系外へ排出される。 In the apparatus of FIG. 3A, the ANAMMOX-treated water from the ANAMMOX tank 2 is supplied from the pipe 14 to the denitrification tank 4, and the nitrate nitrogen is converted into nitrogen gas by the anaerobic treatment and removed, and the denitrification treatment is performed. Water is discharged from the system through the pipe 16. In the apparatus of FIG. 3B, the ANAMMOX treated water from the ANAMMOX tank 2 is sequentially treated from the pipe 14 in the nitrification tank 5A, the denitrification tank 5B, and the reaeration tank 5C, and then discharged from the pipe 16 to the outside of the system. In the apparatus of FIG. 3C, the ANAMMOX treated water from the ANAMMOX tank 2 is introduced into the nitrification tank 6B from the pipe 17 via the denitrification tank 6A from the pipe 14, and a part of the treated water in the nitrification tank 6B is introduced from the pipe 18. By being circulated and treated in the denitrification tank 6A, nitrification and denitrification treatment of nitrogen in the ANAMMOX treated water is performed, and the treated water is discharged to the outside of the system from the pipe 16.

いずれの場合も、原水中の窒素を高度に除去した高水質の脱窒処理水を得ることができる。 In either case, it is possible to obtain high-quality denitrified treated water from which nitrogen in the raw water has been highly removed.

図4(a)〜(c)は、それぞれ、ANAMMOX処理水中のSSを除去するための沈殿槽7、凝集槽8と沈殿槽7、又は凝集・加圧浮上分離槽9を設けた装置を示し、ANAMMOX槽2からのANAMMOX処理水は、脱窒槽4で処理された後、それぞれ、沈殿槽7、凝集槽8と沈殿槽7、又は凝集・加圧浮上分離槽9に導入されてSSの除去処理がなされた後、配管19より系外へ排出される。 4 (a) to 4 (c) show an apparatus provided with a settling tank 7, a coagulation tank 8 and a settling tank 7, or a coagulation / pressure flotation separation tank 9 for removing SS in ANAMMOX-treated water, respectively. After being treated in the denitrification tank 4, the ANAMMOX-treated water from the ANAMMOX tank 2 is introduced into the settling tank 7, the coagulation tank 8 and the settling tank 7, or the coagulation / pressure flotation separation tank 9, respectively, to remove SS. After the treatment, it is discharged to the outside of the system from the pipe 19.

なお、図4(a)〜(c)における沈殿槽7、凝集槽8と沈殿槽7、又は凝集・加圧浮上分離槽9は、ANAMMOX槽2の後段に直接設けてもよく、図3(b)における再曝気槽5cの後段に設けてもよく、また、図3(c)における硝化槽6Bの後段に設けてもよい。
また、図3,4に示す装置において、図2におけると同様にBOD酸化槽1とANAMMOX槽2との間に中継槽3を設けてもよい。
The settling tank 7, the coagulation tank 8 and the settling tank 7, or the coagulation / pressure flotation separation tank 9 in FIGS. 4 (a) to 4 (c) may be provided directly after the ANAMMOX tank 2, and FIG. It may be provided after the re-aeration tank 5c in b), or may be provided after the nitrification tank 6B in FIG. 3 (c).
Further, in the apparatus shown in FIGS. 3 and 4, a relay tank 3 may be provided between the BOD oxidation tank 1 and the ANAMMOX tank 2 as in FIG. 2.

以下に実施例を挙げて、本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
アンモニア性窒素1,800mg/Lに調整した合成排水に、酢酸、プロピオン酸をCODCr2,000mg/Lになるように添加し、さらに活性汚泥をSS3,000mg/Lになるように添加することで、BODとSSを含む模擬排水を調製した。
この模擬排水を原水として、SBR式BOD酸化槽の試験装置で処理を行い、処理水をSBR式一槽型ANAMMOX槽のラボ試験装置で処理することで、本発明の実施例の模擬試験を行った。
[Example 1]
Acetic acid and propionic acid should be added to COD Cr 2,000 mg / L, and activated sludge should be added to SS 3,000 mg / L to the synthetic wastewater adjusted to ammonia nitrogen 1,800 mg / L. So, a simulated wastewater containing BOD and SS was prepared.
Using this simulated wastewater as raw water, it is treated with a test device of an SBR type BOD oxidation tank, and the treated water is treated with a laboratory test device of an SBR type one-tank type ANAMMOX tank to perform a simulated test of an embodiment of the present invention. rice field.

BOD酸化槽の容積は2L、一槽型ANAMMOX槽の容積は3Lとした。装置の水温は30℃に設定した。pHは一槽型ANAMMOX槽のみpH調整剤を用いて7.8に調整した。種汚泥として、BOD酸化槽には合成排水で培養した活性汚泥をMLSS1,000mg/Lになるように投入し、ANAMMOX槽には合成排水で培養した一槽型ANAMMOXグラニュール(前述の生物二重構造体)を、沈降体積で槽容積の30%になるように投入した。 The volume of the BOD oxidation tank was 2 L, and the volume of the one-tank type ANAMMOX tank was 3 L. The water temperature of the device was set to 30 ° C. The pH was adjusted to 7.8 using a pH adjuster only in the one-tank type ANAMMOX tank. As seed sludge, activated sludge cultivated in synthetic effluent was put into the BOD oxidation tank so as to reach MLSS 1,000 mg / L, and in the ANAMMOX tank, a single-tank type ANAMMOX granule cultivated in synthetic effluent (the above-mentioned biological double). The structure) was charged so that the settling volume was 30% of the tank volume.

BOD酸化槽の1バッチあたりの交換水量は1L(槽容積の50%)とした。SBRサイクルは、原水の導入工程5min、曝気工程8.15hr、汚泥沈殿工程15min、汚泥引抜工程3min、処理水排出工程5minとした。SRTは3dayである。
ANAMMOX槽にはBOD酸化槽の処理水を通水し、交換水量は槽容積の33%(1L)とした。SBRサイクルは、被処理水の導入工程5min、曝気工程8.4hr、沈殿工程15min、処理水排出5minとした(窒素負荷1.5kg−N/m/day)。
なおバッチ数を2.8バッチ/日と想定し、BOD酸化槽のBOD汚泥負荷を5kg−BOD/kg−SS/バッチと設定した。
The amount of exchanged water per batch of the BOD oxidation tank was 1 L (50% of the tank volume). The SBR cycle consisted of a raw water introduction step of 5 min, an aeration step of 8.15 hr, a sludge sedimentation step of 15 min, a sludge extraction step of 3 min, and a treated water discharge step of 5 min. SRT is 3 days.
The treated water of the BOD oxidation tank was passed through the ANAMMOX tank, and the amount of exchanged water was 33% (1 L) of the tank volume. The SBR cycle was 5 min for the introduction step of the water to be treated, 8.4 hr for the aeration step, 15 min for the precipitation step, and 5 min for the discharge of the treated water (nitrogen load 1.5 kg-N / m 3 / day).
The number of batches was assumed to be 2.8 batches / day, and the BOD sludge load in the BOD oxidation tank was set to 5 kg-BOD / kg-SS / batch.

BOD酸化槽を30日運転した後、1バッチ中のBOD酸化槽内の溶解性CODCr濃度変化を測定した。この結果を図1に示す。図1に示されるように、溶解性CODCrは、時間と共に減少し、4hr後には40mg/L以下になった。1バッチ終了後の酢酸とプロピオン酸の濃度を分析した結果、それぞれ検出下限値以下となっていた。BOD酸化槽の処理水の窒素濃度は、アンモニア性窒素が1,760mg/L、亜硝酸性窒素、硝酸性窒素は1mg/L以下であったことから、BOD酸化槽で硝化は起こらなかったことが分かる。また、BOD酸化槽では沈降速度の速いSSが除去され、処理水のSSは241mg/Lとなった。 After operating the BOD oxidation tank for 30 days, the change in the concentration of soluble COD Cr in the BOD oxidation tank in one batch was measured. The result is shown in FIG. As shown in FIG. 1, the soluble COD Cr decreased with time and became 40 mg / L or less after 4 hours. As a result of analyzing the concentrations of acetic acid and propionic acid after the completion of one batch, the concentrations were below the lower limit of detection, respectively. The nitrogen concentration of the treated water in the BOD oxidation tank was 1,760 mg / L for ammonia nitrogen and 1 mg / L or less for nitrite nitrogen and nitrate nitrogen, so nitrification did not occur in the BOD oxidation tank. I understand. Further, in the BOD oxidation tank, SS having a high sedimentation rate was removed, and the SS of the treated water became 241 mg / L.

このBOD酸化槽の処理水を30日間、一槽型ANAMMOX槽に通水して処理したところ、処理水(ANAMMOX処理水)の窒素濃度は、アンモニア性窒素0.9mg/L、亜硝酸性窒素5.6mg/L、硝酸性窒素146mg/Lとなり、十分に窒素が除去された。また、このときのSV(スラッジボリューム)は34%であり、SSの蓄積はほとんど見られなかった。
実施例1の試験結果を表2にまとめて示す。
When the treated water in this BOD oxidation tank was passed through a one-tank type ANAMMOX tank for 30 days for treatment, the nitrogen concentration of the treated water (ANAMMOX treated water) was 0.9 mg / L of ammoniacal nitrogen and nitrite nitrogen. The ratio was 5.6 mg / L and nitrate nitrogen was 146 mg / L, and nitrogen was sufficiently removed. Moreover, the SV (sludge volume) at this time was 34%, and the accumulation of SS was hardly observed.
The test results of Example 1 are summarized in Table 2.

[比較例1]
実施例1において、BOD酸化槽を省略したこと以外は同様に模擬試験を行った。
その結果、処理水(ANAMMOX処理水)中には、アンモニア性窒素が678mg/L程度残存し、窒素除去率は59%と低くなった。
これは、ANAMMOX槽に有機物が流入したことで、アンモニア酸化細菌と従属栄養脱窒細菌の間で酸素による競合が生じ、アンモニア酸化速度が低下したことが原因と考えられる。また、このときのSVは63%であり、ANAMMOXグラニュールとは異なるフロックが蓄積していることが確認された。これは原水由来のSSやBODによって増殖した従属栄養細菌と考えられた。
比較例1の試験結果を表2にまとめて示す。
[Comparative Example 1]
In Example 1, a mock test was carried out in the same manner except that the BOD oxidation tank was omitted.
As a result, about 678 mg / L of ammoniacal nitrogen remained in the treated water (ANAMMOX treated water), and the nitrogen removal rate was as low as 59%.
It is considered that this is because the inflow of organic matter into the ANAMMOX tank caused competition due to oxygen between the ammonia-oxidizing bacteria and the heterotrophic denitrifying bacteria, and the ammonia oxidation rate decreased. In addition, the SV at this time was 63%, and it was confirmed that flocs different from those of ANAMMOX granules were accumulated. This was considered to be a heterotrophic bacterium grown by SS or BOD derived from raw water.
The test results of Comparative Example 1 are summarized in Table 2.

Figure 0006919304
Figure 0006919304

1 BOD酸化槽
2 ANAMMOX槽
3 中継槽
4,5B,6A 脱窒槽
5A,6B 硝化槽
5C 再曝気槽
7 沈殿槽
8 凝集槽
9 凝集・加圧浮上分離槽
1 BOD Oxidation Tank 2 ANAMMOX Tank 3 Relay Tank 4, 5B, 6A Denitrification Tank 5A, 6B Nitrification Tank 5C Reaeration Tank 7 Sedimentation Tank 8 Coagulation Tank 9 Coagulation / Dissolved Float Separation Tank

Claims (10)

アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した回分式の一槽型ANAMMOX反応槽と、
該ANAMMOX反応槽の前段に設けられた回分式の好気性生物処理槽と、
アンモニア性窒素含有排水を原水として該好気性生物処理槽に導入する手段と、
該好気性生物処理槽の処理水を前記ANAMMOX反応槽に導入する手段と、
該ANAMMOX反応槽の処理水を排出する手段と
を有するアンモニア性窒素含有排水の脱窒処理装置であって、
前記好気性生物処理槽と前記ANAMMOX反応槽との間に中継槽を有し、該好気性生物処理槽の処理水が該中継槽を経て該ANAMMOX反応槽に導入されることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。
A batch-type one-tank type ANAMMOX reaction tank containing mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria,
A batch-type aerobic biological treatment tank provided in front of the ANAMMOX reaction tank, and a batch-type aerobic biological treatment tank.
A means for introducing ammonia nitrogen-containing wastewater as raw water into the aerobic biological treatment tank,
A means for introducing the treated water from the aerobic biological treatment tank into the ANAMMOX reaction tank, and
A denitrification treatment device for ammoniacal nitrogen-containing wastewater having a means for discharging treated water from the ANAMMOX reaction tank.
Ammonia characterized by having a relay tank between the aerobic biological treatment tank and the ANAMMOX reaction tank, and the treated water of the aerobic biological treatment tank is introduced into the ANAMMOX reaction tank via the relay tank. A denitrification treatment device for wastewater containing sexual nitrogen.
請求項1において、前記好気性生物処理槽内において沈降した前記原水中のSSの引抜手段を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 The denitrification treatment apparatus for ammonia nitrogen-containing wastewater according to claim 1, wherein the SS is extracted from the raw water that has settled in the aerobic biological treatment tank. 請求項1又は2において、前記ANAMMOX反応槽の後段に、硝化槽、脱窒槽及び再曝気槽、或いは循環式脱窒・硝化槽、或いは脱窒槽を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 The ammoniacal nitrogen-containing wastewater according to claim 1 or 2 , wherein a nitrification tank, a denitrification tank and a reaeration tank, a circulating denitrification / nitrification tank, or a denitrification tank is provided after the ANAMMOX reaction tank. Denitrification processing equipment. 請求項1ないしのいずれか1項において、前記ANAMMOX反応槽の後段に、凝集・沈殿槽、凝集・加圧浮上分離槽、又は沈殿槽を有することを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 The removal of ammoniacal nitrogen-containing wastewater according to any one of claims 1 to 3 , wherein a coagulation / settling tank, a coagulation / pressurized flotation separation tank, or a settling tank is provided after the ANAMMOX reaction tank. Nitrogen treatment equipment. 請求項1ないしのいずれか1項において、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 The device for denitrifying ammonia-based nitrogen-containing wastewater according to any one of claims 1 to 4 , wherein the raw water is a dehydrated filtrate of an anaerobic digestive juice. アンモニア性窒素含有排水を原水として、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した一槽型ANAMMOX反応槽を用いて回分式で脱窒処理する方法において、
該ANAMMOX反応槽の前段に回分式の好気性生物処理槽を設け、
該原水を該好気性生物処理槽で処理した後、該ANAMMOX反応槽で処理するアンモニア性窒素含有排水の脱窒処理方法であって、
前記好気性生物処理槽と前記ANAMMOX反応槽との間に中継槽を設け、該好気性生物処理槽の処理水を該中継槽を介して該ANAMMOX反応槽に導入することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。
In a method of batch denitrification using a one-tank type ANAMMOX reaction tank containing mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria using ammonia nitrogen-containing wastewater as raw water.
A batch-type aerobic biological treatment tank was provided in front of the ANAMMOX reaction tank.
A method for denitrifying ammonia nitrogen-containing wastewater, which treats the raw water in the aerobic biological treatment tank and then treats it in the ANAMMOX reaction tank.
Ammonia-based, characterized in that a relay tank is provided between the aerobic biological treatment tank and the ANAMMOX reaction tank, and the treated water of the aerobic biological treatment tank is introduced into the ANAMMOX reaction tank via the relay tank. Denitrification treatment method for nitrogen-containing wastewater.
請求項において、前記好気性生物処理槽において、前記原水中のSSを沈降させて引き抜くことにより、該原水中のSSを除去することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 The method for denitrifying ammonia nitrogen-containing wastewater according to claim 6 , wherein the SS in the raw water is removed by sedimenting and pulling out the SS in the aerobic biological treatment tank. 請求項6又は7において、前記ANAMMOX反応槽の後段に、硝化槽、脱窒槽及び再曝気槽、或いは、循環式脱窒・硝化槽、或いは脱窒槽を設け、該ANAMMOX反応槽の処理水を更に脱窒処理することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 In claim 6 or 7 , a nitrification tank, a denitrification tank and a reaeration tank, a circulating denitrification / nitrification tank, or a denitrification tank is provided after the ANAMMOX reaction tank, and the treated water in the ANAMMOX reaction tank is further added. A method for denitrifying wastewater containing ammoniacal nitrogen, which comprises denitrifying. 請求項ないしのいずれか1項において、前記ANAMMOX反応槽の後段に凝集・沈殿槽、凝集・加圧浮上槽、又は沈殿槽を設け、該ANAMMOX反応槽の処理水を凝集・沈殿、凝集・加圧浮上、又は沈殿処理することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 In any one of claims 6 to 8 , a coagulation / settling tank, a coagulation / pressurized flotation tank, or a settling tank is provided after the ANAMMOX reaction tank, and the treated water in the ANAMMOX reaction tank is agglomerated / settled and agglomerated. -A method for denitrifying ammonia-based nitrogen-containing wastewater, which is characterized by pressure flotation or precipitation treatment. 請求項ないしのいずれか1項において、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 The method for denitrifying ammonia nitrogen-containing wastewater according to any one of claims 6 to 9 , wherein the raw water is a dehydrated filtrate of an anaerobic digestive juice.
JP2017083766A 2017-04-20 2017-04-20 Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method Active JP6919304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083766A JP6919304B2 (en) 2017-04-20 2017-04-20 Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083766A JP6919304B2 (en) 2017-04-20 2017-04-20 Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method

Publications (2)

Publication Number Publication Date
JP2018176131A JP2018176131A (en) 2018-11-15
JP6919304B2 true JP6919304B2 (en) 2021-08-18

Family

ID=64280498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083766A Active JP6919304B2 (en) 2017-04-20 2017-04-20 Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method

Country Status (1)

Country Link
JP (1) JP6919304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255710A (en) * 2019-06-14 2019-09-20 杭州师范大学 A kind of tandem type anaerobic ammonia oxidation process for high-ammonia wastewater room temperature denitrogenation
CN110451641B (en) * 2019-08-29 2020-09-18 南京大学 Starting method of short-cut denitrification and anaerobic ammonia oxidation coupling denitrification integrated system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937764B2 (en) * 2001-07-23 2007-06-27 栗田工業株式会社 Denitrification equipment
JP3821011B2 (en) * 2002-02-21 2006-09-13 栗田工業株式会社 Wastewater treatment method and treatment apparatus
JP4284700B2 (en) * 2004-03-25 2009-06-24 株式会社日立プラントテクノロジー Nitrogen removal method and apparatus
JP4649911B2 (en) * 2004-08-19 2011-03-16 栗田工業株式会社 Treatment of organic matter and nitrogen-containing wastewater
JP6475584B2 (en) * 2015-07-09 2019-02-27 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method

Also Published As

Publication number Publication date
JP2018176131A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JP5592677B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
US20050045557A1 (en) Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
US8323487B2 (en) Waste water treatment apparatus
JP2003245689A (en) Method and apparatus for treating wastewater
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
Lim et al. Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP6919304B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
KR20000021183A (en) Method for managing wastewater including high concentrated organic matter.
JP3937764B2 (en) Denitrification equipment
KR101489134B1 (en) Advanced treatment method for purifying wastewater
WO2018116507A1 (en) Activated sludge method for biological simultaneous removal of nitrogen and phosphorous
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
JPH0788500A (en) Method for treating sewage countercurrent water
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
JP2002172399A (en) Denitrification treatment method
KR101931346B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150