JP6889401B2 - Alkaline secondary battery state estimator - Google Patents

Alkaline secondary battery state estimator Download PDF

Info

Publication number
JP6889401B2
JP6889401B2 JP2017183786A JP2017183786A JP6889401B2 JP 6889401 B2 JP6889401 B2 JP 6889401B2 JP 2017183786 A JP2017183786 A JP 2017183786A JP 2017183786 A JP2017183786 A JP 2017183786A JP 6889401 B2 JP6889401 B2 JP 6889401B2
Authority
JP
Japan
Prior art keywords
reaction
current
cell
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017183786A
Other languages
Japanese (ja)
Other versions
JP2019061786A (en
Inventor
高橋 賢司
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017183786A priority Critical patent/JP6889401B2/en
Publication of JP2019061786A publication Critical patent/JP2019061786A/en
Application granted granted Critical
Publication of JP6889401B2 publication Critical patent/JP6889401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本開示は、水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池(アルカリ二次電池のセル)の内部温度を推定する技術に関する。 The present disclosure relates to a technique for estimating the internal temperature of a cell (cell of an alkaline secondary battery) including a positive electrode having nickel hydroxide and a negative electrode having a hydrogen storage alloy.

特許第4775524号公報(特許文献1)には、リチウムイオン二次電池のセルの内部温度と外部温度との差の関係を示す熱伝導方程式を用いて、セルの内部温度を推定する装置が開示されている。 Japanese Patent No. 4775524 (Patent Document 1) discloses an apparatus for estimating the internal temperature of a cell by using a heat conduction equation showing the relationship between the internal temperature and the external temperature of the cell of a lithium ion secondary battery. Has been done.

特許第4775524号公報Japanese Patent No. 4775524

しかしながら、特許文献1に開示された熱伝導方程式は、リチウムイオン二次電池を前提とした熱伝導式である。そのため、アルカリ二次電池のセルの内部温度を、特許文献1に開示された熱伝導方程式を単純に用いて推定しただけでは、アルカリ二次電池のセルの内部温度の推定精度が悪化してしまうことが懸念される。 However, the heat conduction equation disclosed in Patent Document 1 is a heat conduction formula premised on a lithium ion secondary battery. Therefore, if the internal temperature of the cell of the alkaline secondary battery is estimated simply by using the heat conduction equation disclosed in Patent Document 1, the estimation accuracy of the internal temperature of the cell of the alkaline secondary battery deteriorates. Is a concern.

本開示は、上述の課題を解決するためになされたものであって、その目的は、アルカリ二次電池のセル(単電池)の内部温度を精度よく推定することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to accurately estimate the internal temperature of a cell (cell) of an alkaline secondary battery.

本開示による状態推定装置は、水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池の状態推定装置であって、単電池の電流を検出するように構成された電流センサと、単電池の電圧を検出するように構成された電圧センサと、単電池の外面の温度を検出するように構成された温度センサと、単電池の内部温度を算出するように構成された制御装置とを備える。制御装置は、電流センサ、電圧センサおよび温度センサの検出結果を用いて、単電池の正極抵抗、負極抵抗、正極反応抵抗、および負極反応抵抗を算出する。制御装置は、電圧センサおよび温度センサの検出結果を用いて、正極での酸素発生反応に消費される電流である酸素発生電流を算出する。制御装置は、電流センサの検出値および酸素発生電流を用いて正極での充放電反応に消費される電流である正極主反応電流を算出する。制御装置は、電流センサの検出値、正極主反応電流、正極抵抗、および負極抵抗を用いて、単電池の充放電反応による第1発熱量を算出する。制御装置は、酸素発生電流および正極反応抵抗を用いて、正極での酸素発生反応による第2発熱量を算出する。制御装置は、電圧センサおよび温度センサの検出値を用いて、負極での酸素再結合反応に消費される電流である酸素再結合電流を算出する。制御装置は、酸素再結合電流および負極反応抵抗を用いて、負極での酸素再結合反応による第3発熱量を算出する。制御装置は、負極のエンタルピー変化に伴なう熱変化量を電流センサの検出値を用いて算出する。制御装置は、充放電反応、正極での酸素発生反応、および負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を温度センサの検出値を用いて算出する。制御装置は、温度センサの検出値、第1〜3発熱量、エンタルピー変化に伴なう熱変化量、およびエントロピー変化に伴なう熱変化量を用いて、単電池の内部温度を算出する。 The state estimation device according to the present disclosure is a state estimation device for a cell including a positive electrode having nickel hydroxide and a negative electrode having a hydrogen storage alloy, and includes a current sensor configured to detect the current of the cell and a current sensor configured to detect the current of the cell. A voltage sensor configured to detect the voltage of the cell, a temperature sensor configured to detect the temperature of the outer surface of the cell, and a control device configured to calculate the internal temperature of the cell. To be equipped. The control device calculates the positive electrode resistance, the negative electrode resistance, the positive electrode reaction resistance, and the negative electrode reaction resistance of the cell using the detection results of the current sensor, the voltage sensor, and the temperature sensor. The control device uses the detection results of the voltage sensor and the temperature sensor to calculate the oxygen evolution current, which is the current consumed in the oxygen evolution reaction at the positive electrode. The control device calculates the positive electrode main reaction current, which is the current consumed in the charge / discharge reaction at the positive electrode, using the detected value of the current sensor and the oxygen evolution current. The control device calculates the first calorific value due to the charge / discharge reaction of the cell using the detected value of the current sensor, the positive electrode main reaction current, the positive electrode resistance, and the negative electrode resistance. The control device calculates the second calorific value due to the oxygen evolution reaction at the positive electrode using the oxygen evolution current and the positive electrode reaction resistance. The control device uses the detected values of the voltage sensor and the temperature sensor to calculate the oxygen recombination current, which is the current consumed in the oxygen recombination reaction at the negative electrode. The control device uses the oxygen recombination current and the negative electrode reaction resistance to calculate the third calorific value due to the oxygen recombination reaction at the negative electrode. The control device calculates the amount of heat change accompanying the enthalpy change of the negative electrode using the detected value of the current sensor. The control device calculates the amount of heat change accompanying the entropy change due to the charge / discharge reaction, the oxygen generation reaction at the positive electrode, and the oxygen recombination reaction at the negative electrode using the detected value of the temperature sensor. The control device calculates the internal temperature of the cell using the detection value of the temperature sensor, the first to third calorific value, the amount of heat change accompanying the enthalpy change, and the amount of heat change accompanying the entropy change.

上記構成によれば、単電池の充放電反応による第1発熱量、正極での酸素発生反応による第2発熱量、負極での酸素再結合反応による第3発熱量、エンタルピー変化に伴なう熱変化量、エントロピー変化に伴なう熱変化量を考慮して、アルカリ二次電池のセルの内部温度が推定される。そのため、アルカリ二次電池のセル(単電池)の内部温度を精度よく推定することができる。 According to the above configuration, the first calorific value due to the charge / discharge reaction of the cell, the second calorific value due to the oxygen generation reaction at the positive electrode, the third calorific value due to the oxygen recombination reaction at the negative electrode, and the heat accompanying the change in enthalpy. The internal temperature of the cell of the alkaline secondary battery is estimated in consideration of the amount of change and the amount of heat change accompanying the change in entropy. Therefore, the internal temperature of the cell (cell) of the alkaline secondary battery can be estimated accurately.

電池システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of a battery system. セルの内部で生じる反応を模式的に示す図である。It is a figure which shows typically the reaction which occurs inside a cell. ECUの処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of an ECU.

以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.

<全体構成>
図1は、本実施の形態によるアルカリ二次電池の状態推定装置が適用される、電池システム1の全体構成の一例を示す図である。
<Overall configuration>
FIG. 1 is a diagram showing an example of the overall configuration of the battery system 1 to which the state estimation device for the alkaline secondary battery according to the present embodiment is applied.

電池システム1は、セル10と、電圧センサ31と、電流センサ32と、温度センサ33と、ECU(Electronic Control Unit)100とを備える。電池システム1は、複数のセル10を含む電池モジュールに蓄えられた電力を用いて走行可能な電動車両(ハイブリッド自動車、電気自動車など)などに搭載することができる。 The battery system 1 includes a cell 10, a voltage sensor 31, a current sensor 32, a temperature sensor 33, and an ECU (Electronic Control Unit) 100. The battery system 1 can be mounted on an electric vehicle (hybrid vehicle, electric vehicle, etc.) capable of traveling by using the electric power stored in the battery module including the plurality of cells 10.

セル10は、図示しない負荷(たとえば電動車両の駆動力を発生するモータジェネレータなど)に供給するための電力を蓄える。セル10は、水酸化ニッケルを正極に有するとともに水素吸蔵合金を負極に有するアルカリ二次電池(ニッケル水素二次電池:NiMH)である。 The cell 10 stores electric power for supplying a load (for example, a motor generator that generates a driving force of an electric vehicle) (not shown). The cell 10 is an alkaline secondary battery (nickel-metal hydride secondary battery: NiMH) having nickel hydroxide as a positive electrode and a hydrogen storage alloy as a negative electrode.

電圧センサ31は、セル10の端子間電圧を検出する。電流センサ32は、セル10を流れる電流を検出する。温度センサ33は、セル10のケース13(図2参照)の外面に取り付けられ、セル10の外部温度を検出する。以下では、電圧センサ31による検出値を「電池電圧V」とも記載し、電流センサ32による検出値を「電池電流I」とも記載し、温度センサ33による検出値を「電池外部温度T」とも記載する。 The voltage sensor 31 detects the voltage between the terminals of the cell 10. The current sensor 32 detects the current flowing through the cell 10. The temperature sensor 33 is attached to the outer surface of the case 13 (see FIG. 2) of the cell 10 and detects the external temperature of the cell 10. In the following, the value detected by the voltage sensor 31 is also described as “battery voltage V”, the value detected by the current sensor 32 is also described as “battery current I”, and the value detected by the temperature sensor 33 is also described as “battery external temperature T”. To do.

ECU100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵する。ECU100は、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)およびメモリに記憶された情報などに基づいて所定の演算処理を実行し、演算結果に基づいてセル10の内部温度を推定する。 The ECU 100 incorporates a CPU (Central Processing Unit) and a memory (not shown). The ECU 100 executes a predetermined calculation process based on the information (battery voltage V, battery current I, battery external temperature T) from the sensors 31 to 33 and the information stored in the memory, and the cell 10 is based on the calculation result. Estimate the internal temperature of the battery.

<アルカリ二次電池の内部温度の推定>
上述の特許文献1に記載されているように、セル10の内部温度と外部温度との差は、下記の式(1)に示す熱伝導方程式で推定することができる。
<Estimation of internal temperature of alkaline secondary battery>
As described in Patent Document 1 described above, the difference between the internal temperature and the external temperature of the cell 10 can be estimated by the heat conduction equation shown in the following equation (1).

Figure 0006889401
Figure 0006889401

式(1)において、「T」はセル10の内部温度を示し、「T」はセル10の外部温度(温度センサ33による検出値)を示し、「t」は時間を示し、「Δt」は時間刻みを示し、「λ」は熱伝導率を示し、「ρ」は密度を示し、「c」は比熱を示し、「x」は熱拡散距離を示し、「q」はセル10の内部における単位体積当たりの発熱量を示し、「k1」および「k2」はそれぞれ補正係数を示す。 In the formula (1), "T p " indicates the internal temperature of the cell 10, "T s " indicates the external temperature of the cell 10 (value detected by the temperature sensor 33), "t" indicates the time, and "Δt". "" Indicates the time step, "λ" indicates the thermal conductivity, "ρ" indicates the density, "c" indicates the specific heat, "x" indicates the thermal diffusion distance, and "q p " indicates the cell 10. Indicates the amount of heat generated per unit volume inside the above, and "k1" and "k2" indicate correction coefficients, respectively.

また、式(1)は、下記の式(2)で表わすことができる。 Further, the equation (1) can be expressed by the following equation (2).

Figure 0006889401
Figure 0006889401

式(2)の「α」および「β」は、それぞれ下記の式(3)、(4)によって表わされる。 “Α” and “β” in the formula (2) are represented by the following formulas (3) and (4), respectively.

Figure 0006889401
Figure 0006889401

Figure 0006889401
Figure 0006889401

ここで、セル10の内部温度Tは、補正係数k1,k2を調整することによって、セル内部の最大温度や、セルの内部抵抗を反映する温度(以下「性能温度」ともいう)と見なすことができる。 Here, the internal temperature T p of the cell 10, by adjusting the correction coefficients k1, k2, the maximum temperature and the internal cells (hereinafter also referred to as "capability temperature") at which reflects the internal resistance of the cell and be considered Can be done.

セル10の内部温度Tは、上記の式(1)あるいは式(2)〜(4)で表わされる熱伝導式を用いることによって推定することができる。 The internal temperature T p of the cell 10 can be estimated by using a thermal conduction represented by the above formula (1) or Equation (2) to (4).

しかしながら、特許文献1に開示された上記の式(1)〜(4)は、リチウムイオン二次電池を前提とした熱伝導式である。そのため、ニッケル水素二次電池のセル10の内部温度T(セル内部の最大温度あるいは性能温度)を、リチウムイオン二次電池を前提とした上記の式(1)〜(4)を単純に用いて推定しただけでは、内部温度Tの推定精度が悪化してしまうことが懸念される。特に、ニッケル水素二次電池の副反応が大きい使用条件下(たとえばSOC(State Of Charge)の高い状態で連続的に放電あるいは充電する場合)では、内部温度Tの推定精度が顕著に悪化し得る。以下、この点について詳しく説明する。 However, the above equations (1) to (4) disclosed in Patent Document 1 are thermal conduction equations premised on a lithium ion secondary battery. Therefore, the internal temperature T p (maximum temperature or performance the temperature inside the cell) of the cell 10 of the nickel-hydrogen secondary battery, the above equation (1) assuming a lithium ion secondary battery simply using to (4) simply by estimation Te, estimation accuracy of the internal temperature T p is a concern that deteriorated. In particular, the side reaction is large under the conditions of use of the nickel-hydrogen secondary battery (e.g. SOC (if continuously discharged or charged in a high state of State Of Charge)), the estimated accuracy of the internal temperature T p is significantly deteriorated obtain. This point will be described in detail below.

図2は、ニッケル水素二次電池のセル10の内部で生じる反応を模式的に示す図である。セル10は、金属製のケース13で覆われている。セル10の内部には、水酸化ニッケルを有する正極11と、負極12と、それらをイオン的に結合するアルカリ性の電解液とが備えられる。 FIG. 2 is a diagram schematically showing a reaction occurring inside the cell 10 of a nickel-metal hydride secondary battery. The cell 10 is covered with a metal case 13. Inside the cell 10, a positive electrode 11 having nickel hydroxide, a negative electrode 12, and an alkaline electrolytic solution that ionicly binds them are provided.

ニッケル水素二次電池のセル10の内部においては、まず、リチウムイオン二次電池と同様に、電池の主反応(充放電反応)が生じる。さらに、セル10の内部においては、ニッケル水素二次電池の特有の副反応として、正極での自己放電(酸素発生)反応、負極での再結合反応(正極で発生した酸素が負極に移動し、水素と反応してOHに戻る反応)が生じる。したがって、セル10の内部で発生する発熱量には、主反応による発熱量qmainと、正極での酸素発生反応による発熱量qgenと、負極での酸素再結合反応による発熱量qcombとが含まれることになる。 Inside the cell 10 of the nickel-metal hydride secondary battery, first, the main reaction (charge / discharge reaction) of the battery occurs as in the case of the lithium ion secondary battery. Further, inside the cell 10, as a side reaction peculiar to the nickel-metal hydride secondary battery, a self-discharge (oxygen generation) reaction at the positive electrode and a recombination reaction at the negative electrode (oxygen generated at the positive electrode moves to the negative electrode, and the negative electrode is moved. Reaction with hydrogen to return to OH − ) occurs. Therefore, the calorific value generated inside the cell 10 includes the calorific value q main due to the main reaction, the calorific value q gen due to the oxygen evolution reaction at the positive electrode, and the calorific value q comb due to the oxygen recombination reaction at the negative electrode. Will be included.

ここで、正極の主反応に消費される電流(以下「正極主反応電流Imain,p」ともいう)と、正極の副反応(酸素発生)に消費される電流(以下「酸素発生電流Igen」ともいう)と、セル10の総電流(電流センサ32によって検出される電池電流I)との関係は、下記の式(5)で表わされる。 Here, the current consumed for the main reaction of the positive electrode (hereinafter , also referred to as “positive electrode main reaction current I main, p ”) and the current consumed for the side reaction (oxygen generation) of the positive electrode (hereinafter, “oxygen generation current I gen”). The relationship between the total current of the cell 10 (the battery current I detected by the current sensor 32) is expressed by the following equation (5).

Figure 0006889401
Figure 0006889401

酸素発生電流Igenは、セル10のOCV(Open Circuit Voltage、起電圧)および温度に依存する特性を有することが知られている。そのため、たとえば、OCVおよび温度と酸素発生電流Igenとの対応関係を示すマップを予め実験等によって求めておき、このマップを参照して実際のセル10のOCVおよび温度に対応する酸素発生電流Igenを算出することができる。 The oxygen evolution current I gen is known to have properties that depend on the OCV (Open Circuit Voltage) and temperature of the cell 10. Therefore, for example, a map showing the correspondence between OCV and temperature and oxygen evolution current I gen is obtained in advance by experiments or the like, and the oxygen evolution current I corresponding to the OCV and temperature of the actual cell 10 is referred to with reference to this map. The gen can be calculated.

あるいは、下記の式(6)に示すような電気化学反応式(ターフェル式)に基づいて、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)を入力として、酸素発生電流Igenを逐次算出することも可能である。 Alternatively, based on the electrochemical reaction formula (Tafel equation) as shown in the following equation (6), oxygen is input from the sensors 31 to 33 (battery voltage V, battery current I, battery external temperature T). It is also possible to sequentially calculate the generated current I gen.

Figure 0006889401
Figure 0006889401

式(6)において、「α」は電極反応の移動係数を示し、「F」はファラデー定数を示し、「Ueq,gen」は酸素発生の基準電圧を示し、「i0,gen」は酸素発生の交換電流密度を示す。 In equation (6), "α" indicates the transfer coefficient of the electrode reaction, "F" indicates the Faraday constant, "U eq, gen " indicates the reference voltage for oxygen evolution, and "i 0, gen " indicates oxygen. The exchange current density of occurrence is shown.

なお、式(6)の「V」は、電池電圧Vから、直流抵抗由来のオーム損と、負極反応抵抗由来の過電圧との影響を除いた値である。直流抵抗、負極反応抵抗は、温度やOCVのマップあるいは関数として予め保持しておくことができる。また、電気化学反応式としては、バトラーボルマー式を利用してもよい。 The “V” in the formula (6) is a value obtained by removing the influence of the ohm loss derived from the DC resistance and the overvoltage derived from the negative electrode reaction resistance from the battery voltage V. The DC resistance and the negative electrode reaction resistance can be stored in advance as a map or function of temperature and OCV. Further, as the electrochemical reaction formula, the Butler-Volmer equation may be used.

上記より、正極主反応電流Imain,pは、Imain,p=I−Igenとなる。なお、正極上での副反応(酸素発生)が無視できるレベルの電圧領域では、酸素発生電流Igenはゼロと近似することができる。 From the above, the positive electrode main reaction current I main, p is I main, p = I-I gen . In the voltage region where the side reaction (oxygen evolution) on the positive electrode is negligible, the oxygen evolution current I gen can be approximated to zero.

同様に、負極上での副反応(酸素吸収)に消費される電流(以下「酸素再結合電流Icomb」ともいう)も、セル10のOCVおよび温度に依存する特性を有することが知られている。そのため、たとえば、OCVおよび温度と酸素再結合電流Icombとの対応関係を示すマップを予め実験等によって求めておき、このマップを参照して実際のセル10のOCVおよび温度に対応する酸素再結合電流Icombを算出することができる。 Similarly, the current consumed for a side reaction (oxygen absorption) on the negative electrode (hereinafter also referred to as "oxygen recombination current Icomb ") is known to have characteristics depending on the OCV and temperature of the cell 10. There is. Therefore, for example, a map showing the correspondence between OCV and temperature and the oxygen recombination current Icomb is obtained in advance by experiments or the like, and oxygen recombination corresponding to the OCV and temperature of the actual cell 10 is referred to with reference to this map. The current I comb can be calculated.

あるいは、下記の式(7)に示すような電気化学反応式(ターフェル式)に基づいて、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)を入力として、酸素再結合電流Icombを逐次算出することも可能である。 Alternatively, based on the electrochemical reaction formula (Tafel equation) as shown in the following equation (7), oxygen is input from the sensors 31 to 33 (battery voltage V, battery current I, battery external temperature T). It is also possible to sequentially calculate the recombination current I comb.

Figure 0006889401
Figure 0006889401

式(7)において、「Ueq,comb」は酸素吸収の基準電圧を示し、「i0,comb」は酸素吸収の交換電流密度を示す。ここで、酸素吸収の基準電圧Ueq,combおよび交換電流密度i0,combは、酸素発生時と同様の値としてもよいし、異なる値であってもよい。 In the formula (7), "U eq, comb " indicates the reference voltage for oxygen absorption, and "i 0, comb " indicates the exchange current density for oxygen absorption. Here, the reference voltage U eq, comb and the exchange current density i 0, comb for oxygen absorption may be the same values as when oxygen is generated, or may be different values.

なお、式(7)の「V」は、式(6)と同様、電池電圧Vから、直流抵抗由来のオーム損と、負極反応抵抗由来の過電圧との影響を除いた値である。本開示では、正極から負極への酸素移動には、時間遅れがあることを前提としている。また、セル10内の酸素量がゼロになった場合、式(7)の反応は生じないとしてモデル構築を行なっている。 Note that "V" in the formula (7) is a value obtained by removing the influence of the ohm loss derived from the DC resistance and the overvoltage derived from the negative electrode reaction resistance from the battery voltage V, as in the formula (6). The present disclosure presupposes that there is a time delay in the transfer of oxygen from the positive electrode to the negative electrode. Further, when the amount of oxygen in the cell 10 becomes zero, the reaction of the formula (7) does not occur, and the model is constructed.

一方、負極の水素吸蔵合金に水素が吸蔵される際は、下記の式(8)に従い、負極のエンタルピー変化(△H[kJ/mol])に伴う熱変化量qを考慮するのが望ましい。負極の水素吸蔵合金に吸蔵される水素モル数は、酸素再結合電流Icombおよびファラデー定数から算出することができるため、負極のエンタルピー変化に伴う熱変化量qも逐次算出することができる(後述の式(14)参照)。 On the other hand, when hydrogen is occluded in the hydrogen storage alloy of the negative electrode, it is desirable to consider the amount of heat change q h accompanying the enthalpy change (ΔH [kJ / mol]) of the negative electrode according to the following formula (8). .. Since the number of hydrogen moles stored in the hydrogen storage alloy of the negative electrode can be calculated from the oxygen recombination current I comb and the Faraday constant, the amount of heat change q h due to the enthalpy change of the negative electrode can also be calculated sequentially ( See equation (14) below).

Figure 0006889401
Figure 0006889401

さらに、リチウムイオン二次電池における正極および負極のエントロピー変化は一般的に小さく無視可能なレベルであるが、ニッケル水素二次電池における正極および負極のエントロピー変化はリチウムイオン二次電池に比べて比較的大きい。そのため、ニッケル水素二次電池のセル10の内部の発熱量を算出する際には、各反応によるエントロピー変化に伴なう熱変化量q(後述の式(15)参照)を考慮するのが望ましい。 Furthermore, the positive and negative electrode entropy changes in lithium-ion secondary batteries are generally small and negligible, but the positive and negative electrode entropy changes in nickel-metal hydride secondary batteries are relatively small compared to lithium-ion secondary batteries. large. Therefore, when calculating the amount of heat generated inside the cell 10 of the nickel-metal hydride secondary battery, it is necessary to consider the amount of heat change q s (see equation (15) described later) that accompanies the change in entropy due to each reaction. desirable.

以上より、本実施の形態によるECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、各反応のエントロピー変化に伴なう熱変化量qという、5つの熱変化量を考慮して、ニッケル水素二次電池のセル10の内部温度を推定する。そのため、ニッケル水素二次電池のセル10の内部温度を精度よく推定することができる。 From the above, the ECU 100 according to the present embodiment has a calorific value q main due to the main reaction, a calorific value q gen due to the oxygen evolution reaction at the positive electrode, a calorific value q comb due to the oxygen recombination reaction at the negative electrode, and an enthalpy change at the negative electrode. The internal temperature of the cell 10 of the nickel hydrogen secondary battery is estimated in consideration of five heat changes, that is, the amount of heat change q h accompanying and the amount of heat change q s associated with the enthalpy change of each reaction. Therefore, the internal temperature of the cell 10 of the nickel-metal hydride secondary battery can be estimated accurately.

<<セルの内部温度の推定フロー>>
図3は、ECU100がセル10の内部温度を推定する場合に実行する処理手順の一例を示すフローチャートである。まず、ECU100は、センサ31〜33からそれぞれ電池電圧V、電池電流Iおよび電池外部温度Tを取得する(ステップS10)。
<< Estimated flow of cell internal temperature >>
FIG. 3 is a flowchart showing an example of a processing procedure executed when the ECU 100 estimates the internal temperature of the cell 10. First, the ECU 100 acquires the battery voltage V, the battery current I, and the battery external temperature T from the sensors 31 to 33, respectively (step S10).

次いで、ECU100は、直流抵抗R、正極抵抗R、負極抵抗R、正極反応抵抗Rc,p、負極反応抵抗Rc,nを算出する(ステップS12)。直流抵抗Rは、電子抵抗およびイオン抵抗に関連する抵抗成分である。正極抵抗Rは、電池内で正極に由来する抵抗成分の総和である。負極抵抗Rは、電池内で負極に由来する抵抗成分の総和である。正極反応抵抗Rc,pは、正極活物質と電解液との界面における電荷移動に関連する抵抗成分である。負極反応抵抗Rc,nは、負極活物質と電解液との界面における電荷移動に関連する抵抗成分である。 Next, the ECU 100 calculates the DC resistance R d , the positive electrode resistance R p , the negative electrode resistance R n , the positive electrode reaction resistance R c, p , and the negative electrode reaction resistance R c, n (step S12). The DC resistance R d is a resistance component related to electron resistance and ion resistance. The positive electrode resistance R p is the sum of the resistance components derived from the positive electrode in the battery. The negative electrode resistance R n is the sum of the resistance components derived from the negative electrode in the battery. The positive electrode reaction resistances R c and p are resistance components related to charge transfer at the interface between the positive electrode active material and the electrolytic solution. The negative electrode reaction resistances R c and n are resistance components related to charge transfer at the interface between the negative electrode active material and the electrolytic solution.

ECU100は、たとえば、セル10の状態(電池電圧V、電池電流Iおよび電池外部温度T)と各抵抗(直流抵抗R、正極抵抗R、負極抵抗R、正極反応抵抗Rc,p、負極反応抵抗Rc,n)との対応関係をそれぞれ規定する複数のマップ(Rマップ、Rマップ、Rマップ、Rc,pマップ、Rc,nマップ)をメモリから読出し、読み出したマップを参照して現在のセル10の状態に対応する各抵抗の値を算出する。なお、これらのマップは、予め実験等によって求めてメモリに記憶しておくことができる。 In the ECU 100, for example, the state of the cell 10 (battery voltage V, battery current I and battery external temperature T) and each resistance (DC resistance R d , positive resistance R p , negative negative resistance R n , positive reaction resistance R c, p , Read and read from the memory a plurality of maps (R d map, R p map, R n map, R c, p map, R c, n map) that define the correspondence with the negative electrode reaction resistance R c, n). The value of each resistor corresponding to the current state of the cell 10 is calculated with reference to the map. It should be noted that these maps can be obtained in advance by experiments or the like and stored in the memory.

次いで、ECU100は、正極上での酸素発生電流Igenを算出する(ステップS14)。たとえば、ECU100は、既に述べたように、OCV(電池電圧V)および温度(電池外部温度T)と酸素発生電流Igenとの対応関係を規定するマップ、あるいは上述の式(6)に示すような電気化学反応式から、酸素発生電流Igenを算出する。 Next, the ECU 100 calculates the oxygen evolution current I gen on the positive electrode (step S14). For example, as described above, the ECU 100 has a map that defines the correspondence between the OCV (battery voltage V) and temperature (battery external temperature T) and the oxygen evolution current I gen , or as shown in the above equation (6). The oxygen evolution current I gen is calculated from the above electrochemical reaction formula.

次いで、ECU100は、正極上での酸素発生電流Igenを電池電流Iから差し引いた値を、正極主反応電流Imain,pとして算出する(ステップS16)。 Next, the ECU 100 calculates the value obtained by subtracting the oxygen evolution current I gen on the positive electrode from the battery current I as the positive electrode main reaction current I mine, p (step S16).

次いで、ECU100は、主反応による発熱量qmainを算出する(ステップS18)。まず、ECU100は、正極主反応による発熱量qmain,p、負極主反応による発熱量qmain,nを下記の式(9)、式(10)を用いてそれぞれ算出する。 Next, the ECU 100 calculates the calorific value q mine due to the main reaction (step S18). First, the ECU 100 calculates the calorific value q main, p due to the positive electrode main reaction and the calorific value q main, n due to the negative electrode main reaction using the following equations (9) and (10), respectively.

Figure 0006889401
Figure 0006889401

Figure 0006889401
Figure 0006889401

そして、ECU100は、下記の式(11)に示すように、正極主反応による発熱量qmain,pと負極主反応による発熱量qmain,nとの合計を、主反応による発熱量qmainとして算出する。 Then, ECU 100, as shown in the following equation (11), the heating value q main by Seikyokunushi reaction, the amount of heat generated by p and the negative main reaction q main, the sum of n, as the heating value q main by the main reaction calculate.

Figure 0006889401
Figure 0006889401

次いで、ECU100は、下記の式(12)を用いて、正極での酸素発生反応による発熱量qgenを算出する(ステップS20)。 Next, the ECU 100 calculates the calorific value q gen due to the oxygen evolution reaction at the positive electrode using the following formula (12) (step S20).

Figure 0006889401
Figure 0006889401

次いで、ECU100は、負極での酸素再結合電流Icombを算出する(ステップS22)。たとえば、ECU100は、既に述べたように、OCV(電池電圧V)および温度(電池外部温度T)と酸素再結合電流Icombとの対応関係を規定するマップ、あるいは上述の式(7)に示すような電気化学反応式から、酸素再結合電流Icombを算出する。 Next, the ECU 100 calculates the oxygen recombination current I comb at the negative electrode (step S22). For example, as described above, the ECU 100 is shown in the map that defines the correspondence between the OCV (battery voltage V) and temperature (battery external temperature T) and the oxygen recombination current Icomb , or in the above equation (7). The oxygen recombination current Icomb is calculated from such an electrochemical reaction formula.

次いで、ECU100は、下記の式(13)を用いて、負極での酸素再結合反応による発熱量qcombを算出する(ステップS24)。 Next, the ECU 100 calculates the calorific value q comb due to the oxygen recombination reaction at the negative electrode using the following formula (13) (step S24).

Figure 0006889401
Figure 0006889401

次いで、ECU100は、下記の式(14)を用いて、負極でのエンタルピー変化に伴う熱変化量qを算出する(ステップS26)。 Next, the ECU 100 calculates the amount of heat change q h associated with the enthalpy change at the negative electrode using the following equation (14) (step S26).

Figure 0006889401
Figure 0006889401

式(14)において、「ΔH」はエンタルピー変化量(単位:kJ/mol)を示し、「M」は反応モル数を示す。 In the formula (14), "ΔH" indicates the amount of change in enthalpy (unit: kJ / mol), and "M" indicates the number of reaction moles.

次いで、ECU100は、下記の式(15)を用いて、各反応によるエントロピー変化に伴なう熱変化量qを考慮するのが望ましい。
(ステップS28)。
Next, it is desirable that the ECU 100 considers the amount of heat change q s accompanying the entropy change due to each reaction by using the following equation (15).
(Step S28).

Figure 0006889401
Figure 0006889401

式(15)において、「T・ΔSmain」は主反応によるエントロピー変化に伴なう熱変化量を示し、「T・ΔSgen」は正極での酸素発生反応によるエントロピー変化に伴なう熱変化量を示し、「T・ΔScomb」は負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を示す。なお、主反応によるエントロピー変化に伴なう熱変化量T・ΔSmainは、正極のエントロピー変化に伴なう熱変化量と、負極のエントロピー変化に伴なう熱変化量との総和である。 In the formula (15), "T · ΔS main " indicates the amount of heat change accompanying the entropy change due to the main reaction, and "T · ΔS gen " indicates the amount of heat change accompanying the entropy change due to the oxygen evolution reaction at the positive electrode. The amount is shown, and "T · ΔS comb " indicates the amount of heat change accompanying the change in entropy due to the oxygen recombination reaction at the negative electrode. The amount of heat change T · ΔS main associated with the change in entropy due to the main reaction is the sum of the amount of heat change accompanying the change in entropy of the positive electrode and the amount of heat change accompanying the change in entropy of the negative electrode.

次いで、ECU100は、セル10の内部温度Tを算出する(ステップS30)。
まず、ECU100は、セル10の内部における単位体積当たりの発熱量qを、下記の式(16)を用いて算出する。すなわち、ECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、および各反応のエントロピー変化に伴なう熱変化量qの5つの熱変化量の総和を、セル10の内部における単位体積当たりの発熱量qとして算出する。
Then, ECU 100 calculates the internal temperature T p of the cell 10 (step S30).
First, ECU 100 is a heating value q p per unit volume in the interior of the cell 10 is calculated using equation (16) below. That is, in the ECU 100, the calorific value q main due to the main reaction, the calorific value q gen due to the oxygen generation reaction at the positive electrode, the calorific value q comb due to the oxygen recombination reaction at the negative electrode, and the thermal change amount due to the enthalpy change at the negative electrode. The sum of the five thermal changes of q h and the thermal change q s accompanying the enthalpy change of each reaction is calculated as the calorific value q p per unit volume inside the cell 10.

Figure 0006889401
Figure 0006889401

そして、上記の式(16)を用いて算出された発熱量q(t)および温度センサ33によって検出された外部温度T(T)を、上記の式(1)に代入することによって、セル10の内部温度Tを算出する。 Then, by substituting the calorific value q p (t) calculated using the above formula (16) and the external temperature T (T s ) detected by the temperature sensor 33 into the above formula (1), to calculate the internal temperature T p of the cell 10.

以上のように、本実施の形態によるECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、各反応のエントロピー変化に伴なう熱変化量qという、5つの熱変化量を考慮して、ニッケル水素二次電池のセル10の内部温度を推定する。そのため、ニッケル水素二次電池のセル10の内部温度を精度よく推定することができる。 As described above, in the ECU 100 according to the present embodiment, the calorific value q mine due to the main reaction, the calorific value q gen due to the oxygen evolution reaction at the positive electrode, the calorific value q comb due to the oxygen recombination reaction at the negative electrode, and the enthalpy at the negative electrode The internal temperature of the cell 10 of the nickel hydrogen secondary battery is estimated in consideration of the five thermal changes, that is, the thermal change q h associated with the change and the thermal change q s associated with the enthalpy change of each reaction. To do. Therefore, the internal temperature of the cell 10 of the nickel-metal hydride secondary battery can be estimated accurately.

<変形例>
上述の実施の形態によるセル10においては、ケース13が熱伝導性の高い金属製であるため、温度センサ33の取付位置に関わらず、セル10の表面温度が常にほぼ一定と仮定することができる。そのため、図3のステップS30において、温度センサ33によって検出された外部温度T(T)を、そのまま上記の式(1)に代入するようにしていた。
<Modification example>
In the cell 10 according to the above-described embodiment, since the case 13 is made of a metal having high thermal conductivity, it can be assumed that the surface temperature of the cell 10 is always substantially constant regardless of the mounting position of the temperature sensor 33. .. Therefore, in step S30 in FIG. 3, the external temperature T (T s) detected by the temperature sensor 33, had it as substituted into the above equation (1).

しかしながら、ニッケル水素二次電池では、セルの外装体に樹脂が用いられることも想定される。セルの外装体に樹脂が用いられる場合、温度センサ33の取付位置によっては、セルの外装体の熱抵抗(温度差)を考慮するようにしてもよい。すなわち、温度センサ33の値をセルの外装体由来の熱抵抗を考慮して補正した上で、上記の式(1)に代入するようにしてもよい。 However, in a nickel-metal hydride secondary battery, it is assumed that a resin is used for the outer body of the cell. When resin is used for the outer body of the cell, the thermal resistance (temperature difference) of the outer body of the cell may be taken into consideration depending on the mounting position of the temperature sensor 33. That is, the value of the temperature sensor 33 may be corrected in consideration of the thermal resistance derived from the outer body of the cell, and then substituted into the above equation (1).

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 電池システム、10 セル、11 正極、12 負極、13 ケース、31 電圧センサ、32 電流センサ、33 温度センサ。 1 battery system, 10 cells, 11 positive electrode, 12 negative electrode, 13 cases, 31 voltage sensor, 32 current sensor, 33 temperature sensor.

Claims (1)

水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池の状態推定装置であって、
前記単電池の電流を検出するように構成された電流センサと、
前記単電池の電圧を検出するように構成された電圧センサと、
前記単電池の外面の温度を検出するように構成された温度センサと、
前記単電池の内部温度を算出するように構成された制御装置とを備え、
前記制御装置は、
前記電流センサ、前記電圧センサおよび前記温度センサの検出結果を用いて、前記単電池の正極抵抗、負極抵抗、正極反応抵抗、および負極反応抵抗を算出し、
前記電圧センサおよび前記温度センサの検出結果を用いて、前記正極での酸素発生反応に消費される電流である酸素発生電流を算出し、
前記電流センサの検出値および前記酸素発生電流を用いて前記正極での充放電反応に消費される電流である正極主反応電流を算出し、
前記電流センサの検出値、前記正極主反応電流、前記正極抵抗、および前記負極抵抗を用いて、前記単電池の充放電反応による第1発熱量を算出し、
前記酸素発生電流および前記正極反応抵抗を用いて、前記正極での酸素発生反応による第2発熱量を算出し、
前記電圧センサおよび前記温度センサの検出値を用いて、前記負極での酸素再結合反応に消費される電流である酸素再結合電流を算出し、
前記酸素再結合電流および前記負極反応抵抗を用いて、前記負極での酸素再結合反応による第3発熱量を算出し、
前記負極のエンタルピー変化に伴なう熱変化量を前記電流センサの検出値を用いて算出し、
前記充放電反応、前記正極での酸素発生反応、および前記負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を前記温度センサの検出値を用いて算出し、
前記温度センサの検出値、前記第1〜3発熱量、前記エンタルピー変化に伴なう熱変化量、および前記エントロピー変化に伴なう熱変化量を用いて、前記単電池の内部温度を算出する、アルカリ二次電池の状態推定装置。
A state estimation device for a cell including a positive electrode having nickel hydroxide and a negative electrode having a hydrogen storage alloy.
A current sensor configured to detect the current of the cell and
A voltage sensor configured to detect the voltage of the cell and
A temperature sensor configured to detect the temperature of the outer surface of the cell and
A control device configured to calculate the internal temperature of the cell is provided.
The control device is
Using the detection results of the current sensor, the voltage sensor, and the temperature sensor, the positive electrode resistance, the negative electrode resistance, the positive electrode reaction resistance, and the negative electrode reaction resistance of the cell are calculated.
Using the detection results of the voltage sensor and the temperature sensor, the oxygen evolution current, which is the current consumed in the oxygen evolution reaction at the positive electrode, is calculated.
Using the detected value of the current sensor and the oxygen evolution current, the positive electrode main reaction current, which is the current consumed in the charge / discharge reaction at the positive electrode, is calculated.
Using the detected value of the current sensor, the positive electrode main reaction current, the positive electrode resistance, and the negative electrode resistance, the first calorific value due to the charge / discharge reaction of the cell is calculated.
Using the oxygen evolution current and the positive electrode reaction resistance, the second calorific value due to the oxygen evolution reaction at the positive electrode was calculated.
Using the detected values of the voltage sensor and the temperature sensor, the oxygen recombination current, which is the current consumed in the oxygen recombination reaction at the negative electrode, is calculated.
Using the oxygen recombination current and the negative electrode reaction resistance, the third calorific value due to the oxygen recombination reaction at the negative electrode was calculated.
The amount of heat change accompanying the change in enthalpy of the negative electrode was calculated using the detected value of the current sensor.
The amount of heat change accompanying the change in entropy due to the charge / discharge reaction, the oxygen generation reaction at the positive electrode, and the oxygen recombination reaction at the negative electrode was calculated using the detected value of the temperature sensor.
The internal temperature of the cell is calculated using the detected values of the temperature sensor, the first to third calorific value, the amount of heat change accompanying the enthalpy change, and the amount of heat change accompanying the entropy change. , Alkaline secondary battery state estimation device.
JP2017183786A 2017-09-25 2017-09-25 Alkaline secondary battery state estimator Active JP6889401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183786A JP6889401B2 (en) 2017-09-25 2017-09-25 Alkaline secondary battery state estimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183786A JP6889401B2 (en) 2017-09-25 2017-09-25 Alkaline secondary battery state estimator

Publications (2)

Publication Number Publication Date
JP2019061786A JP2019061786A (en) 2019-04-18
JP6889401B2 true JP6889401B2 (en) 2021-06-18

Family

ID=66177506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183786A Active JP6889401B2 (en) 2017-09-25 2017-09-25 Alkaline secondary battery state estimator

Country Status (1)

Country Link
JP (1) JP6889401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405043B2 (en) * 2020-09-02 2023-12-26 トヨタ自動車株式会社 Evaluation method for secondary batteries
CN115615343B (en) * 2022-12-05 2023-07-28 中汽数据有限公司 Power battery safety monitoring method, electronic equipment and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151166A (en) * 2000-11-10 2002-05-24 Japan Storage Battery Co Ltd Method and device for temperature adjustment of secondary battery
JP5008863B2 (en) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 Secondary battery control device, secondary battery deterioration determination method using secondary battery temperature estimation method
FR2929410B1 (en) * 2008-03-28 2010-04-09 Inst Francais Du Petrole METHOD FOR ESTIMATING NON-MEASURABLE CHARACTERISTICS OF AN ELECTROCHEMICAL SYSTEM
FR2949565B1 (en) * 2009-09-02 2012-12-21 Inst Francais Du Petrole IMPROVED METHOD FOR ESTIMATING NON-MEASURABLE CHARACTERISTICS OF AN ELECTROCHEMICAL SYSTEM
JP6179541B2 (en) * 2015-03-17 2017-08-16 トヨタ自動車株式会社 Secondary battery cooling system
KR101880195B1 (en) * 2016-02-05 2018-07-20 한국과학기술원 Optimized battery charging method based on thermodynamic information of a battery

Also Published As

Publication number Publication date
JP2019061786A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5850142B2 (en) Battery state estimation apparatus and method
EP2804249B1 (en) Method for controlling and device for controlling secondary battery
US8521456B2 (en) State estimation method and state estimation apparatus of electric storage element
JP7274368B2 (en) battery control system
US11181584B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
WO2013173589A1 (en) Battery system and method with parameter estimator
JP5704108B2 (en) Battery system and estimation method
JP2009264962A (en) Method and apparatus for estimating remaining capacity of secondary battery
US11187755B2 (en) Apparatus and method for estimating SOC of battery
US11079440B2 (en) Management device, energy storage module, management method, and computer program
KR102572652B1 (en) Method for estimating state of charge of battery
US20200018798A1 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
WO2017047192A1 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JP2012198175A (en) Battery state monitor device
JP6889401B2 (en) Alkaline secondary battery state estimator
JP5886225B2 (en) Battery control device and battery control method
JP2010040324A (en) Estimation method of state of charge of battery module, and charging method using this
JP5849537B2 (en) Estimation apparatus and estimation method
JP2016004726A (en) Battery system
JP7375473B2 (en) Energy storage amount estimating device, energy storage amount estimation method, and computer program
JP7428135B2 (en) Energy storage element management device, energy storage device, vehicle, and energy storage element management method
JP7100151B2 (en) Battery control device
JP2023045804A (en) battery unit
JP2022155231A (en) battery unit
JP2023045893A (en) battery unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210504

R151 Written notification of patent or utility model registration

Ref document number: 6889401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151