JP6887074B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6887074B2
JP6887074B2 JP2018038298A JP2018038298A JP6887074B2 JP 6887074 B2 JP6887074 B2 JP 6887074B2 JP 2018038298 A JP2018038298 A JP 2018038298A JP 2018038298 A JP2018038298 A JP 2018038298A JP 6887074 B2 JP6887074 B2 JP 6887074B2
Authority
JP
Japan
Prior art keywords
flow path
heat transfer
heat exchanger
fluid
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018038298A
Other languages
Japanese (ja)
Other versions
JP2019152379A (en
Inventor
拓也 奥村
拓也 奥村
大輔 川添
大輔 川添
憲昭 山本
憲昭 山本
崇裕 大城
崇裕 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018038298A priority Critical patent/JP6887074B2/en
Publication of JP2019152379A publication Critical patent/JP2019152379A/en
Application granted granted Critical
Publication of JP6887074B2 publication Critical patent/JP6887074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は熱交換器、特に、その温度センサ取付け構成に関するものである。 The present invention relates to a heat exchanger, particularly a temperature sensor mounting configuration thereof.

一般に空気調和機や冷凍機等の熱交換器には熱交換器内を流れる冷媒等の流体の温度を検出する温度センサが設けてある。 Generally, heat exchangers such as air conditioners and refrigerators are provided with a temperature sensor that detects the temperature of a fluid such as a refrigerant flowing in the heat exchanger.

従来では、この温度センサは熱交換器のフィン間に挿入するなどして取り付けてある(例えば、特許文献1参照)。 Conventionally, this temperature sensor is attached by inserting it between the fins of a heat exchanger (see, for example, Patent Document 1).

図9は特許文献1に記載された熱交換器の温度センサ取り付け部位を示し、この熱交換器100ではフィン101の間に温度センサ102を突き刺すことによって取り付けてある。 FIG. 9 shows a temperature sensor attachment portion of the heat exchanger described in Patent Document 1, and in this heat exchanger 100, the temperature sensor 102 is attached by inserting the temperature sensor 102 between the fins 101.

特開2005−214738号公報Japanese Unexamined Patent Publication No. 2005-214738

上記特許文献1記載の温度センサ取付け構成では、冷媒が流れる流路近くに温度センサ102を取り付けているため、温度検出精度が高いという利点がある。 In the temperature sensor mounting configuration described in Patent Document 1, since the temperature sensor 102 is mounted near the flow path through which the refrigerant flows, there is an advantage that the temperature detection accuracy is high.

しかしながら、上記温度センサ取付け構成では、フィン101の間隔を温度センサ102が突き刺せるだけ広げる必要があり、フィンの間隔が大きくなる。 However, in the above temperature sensor mounting configuration, the distance between the fins 101 needs to be widened as much as the temperature sensor 102 can pierce, and the distance between the fins becomes large.

ところが、最近の熱交換器は熱交換効率を向上させる必要に迫られており、熱交換効率を高めるためフィンの間隔を狭くすることが求められている。しかし、上記特許文献1の温度センサ取付け構成ではフィンの間隔の縮小に限界があるため、別のセンサ取付け構成を提案する必要がある。 However, recent heat exchangers are under pressure to improve heat exchange efficiency, and it is required to narrow the fin spacing in order to improve heat exchange efficiency. However, since there is a limit to the reduction of the fin spacing in the temperature sensor mounting configuration of Patent Document 1, it is necessary to propose another sensor mounting configuration.

本発明はこのような点に鑑みてなしたもので、フィンの間隔を制限することなく温度センサを取り付けることができ、熱交換効率及び温度検出精度の向上を両立させた熱交換器の提供を目的としたものである。 The present invention has been made in view of these points, and provides a heat exchanger in which a temperature sensor can be attached without limiting the fin spacing, and both heat exchange efficiency and temperature detection accuracy are improved. It is the purpose.

本発明は、上記目的を達成するため、冷媒等の第1流体と空気等の第2流体とを熱交換させる板状の伝熱フィンを複数積層した構造で、前記第1流体が流れる伝熱流路と、前記第2流体が通る隙間と、前記第1流体の温度を検出する温度センサと、を備え、前記伝熱フィンを横切るように前記温度センサを挿入し装着したことを特徴とする構成としてある。 In order to achieve the above object, the present invention has a structure in which a plurality of plate-shaped heat transfer fins for heat exchange between a first fluid such as a refrigerant and a second fluid such as air are laminated, and the heat transfer flow through which the first fluid flows. A configuration including a path, a gap through which the second fluid passes, and a temperature sensor for detecting the temperature of the first fluid, and the temperature sensor is inserted and mounted so as to cross the heat transfer fins. There is.

本発明において、温度センサは伝熱フィンを横切る形、すなわち温度センサと伝熱フィンの積層方向が略平行になるように取付けられる。これにより、フィン間隔は温度センサの大きさに依存することがないため、フィンの間隔が狭い場合でも伝熱流路近くに取り付けることができ、流体温度の検出精度を向上させることができる。また、フィンの間隔が温度センサにより制限されないため、伝熱フィンの間隔をさらに狭いものとし、熱交換効率の高い熱交換器とすることが流体温度の検出精度を向上させるとともに可能である。 In the present invention, the temperature sensor is mounted so as to cross the heat transfer fins, that is, the stacking directions of the temperature sensor and the heat transfer fins are substantially parallel to each other. As a result, since the fin spacing does not depend on the size of the temperature sensor, it can be mounted near the heat transfer flow path even when the fin spacing is narrow, and the fluid temperature detection accuracy can be improved. Further, since the fin spacing is not limited by the temperature sensor, it is possible to further narrow the heat transfer fin spacing and use a heat exchanger with high heat exchange efficiency while improving the fluid temperature detection accuracy.

本発明は、上記構成により、熱交換効率及び温度検出精度を共に向上させた高性能な熱交換機を提供することができる。 According to the above configuration, the present invention can provide a high-performance heat exchanger in which both heat exchange efficiency and temperature detection accuracy are improved.

本発明の実施の形態1における伝熱フィン積層型熱交換器の外観を示す斜視図A perspective view showing the appearance of the heat transfer fin laminated heat exchanger according to the first embodiment of the present invention. 同伝熱フィン積層型熱交換器を分離した状態で示す分解斜視図An exploded perspective view showing the heat transfer fin laminated heat exchanger in a separated state. 同伝熱フィン積層型熱交換器の温度センサ取付け部を示す斜視図Perspective view showing the temperature sensor mounting part of the heat transfer fin laminated heat exchanger 同伝熱フィン積層体の温度センサ取付け前の状態を示す斜視図Perspective view showing the state of the heat transfer fin laminate before the temperature sensor is attached. 同伝熱フィン積層型熱交換器の伝熱フィン積層体を構成する伝熱フィンの平面図Top view of the heat transfer fins constituting the heat transfer fin laminate of the heat transfer fin laminated heat exchanger 同伝熱フィンの構成の一部を拡大して示す分解図Exploded view showing an enlarged part of the configuration of the heat transfer fin 同伝熱フィン積層型熱交換器における伝熱フィン積層体の伝熱流路群部分を切断して示す斜視図The perspective view which shows by cutting the heat transfer flow path group part of the heat transfer fin laminated body in the heat transfer fin laminated type heat exchanger. 同伝熱フィン積層型熱交換器における伝熱フィン積層体のヘッダ流路部分を切断して示す斜視図Perspective view showing by cutting the header flow path portion of the heat transfer fin laminate in the heat transfer fin laminate type heat exchanger. 従来の熱交換器の断面図Sectional view of conventional heat exchanger

第1の発明は、冷媒等の第1流体と空気等の第2流体とを熱交換させる板状の伝熱フィンを複数積層した構造で、前記第1流体が流れる伝熱流路と、前記第2流体が通る隙間と、前記第1流体の温度を検出する温度センサと、を備え、前記伝熱フィンを横切るように前記温度センサを挿入し装着したことを特徴とする構成としてある。 The first invention has a structure in which a plurality of plate-shaped heat transfer fins for heat exchange between a first fluid such as a refrigerant and a second fluid such as air are laminated, and the heat transfer flow path through which the first fluid flows and the first. The configuration is characterized in that it includes a gap through which the two fluids pass and a temperature sensor that detects the temperature of the first fluid, and the temperature sensor is inserted and mounted so as to cross the heat transfer fins.

これにより、温度センサは伝熱フィンを横切る形で取付けられるため、フィンピッチの間隔が狭い場合でも伝熱流路近くに取り付けることができ、流体温度の検出精度を向上させて信頼性を高めることができる。さらに、フィンの間隔が温度センサにより制限されないため、伝熱フィンの間隔をさらに狭いものとし、熱交換効率の高い熱交換器とすることが流体温度の検出精度を向上させるとともに可能である。 As a result, the temperature sensor is mounted across the heat transfer fins, so it can be mounted near the heat transfer flow path even when the fin pitch spacing is narrow, improving the accuracy of fluid temperature detection and improving reliability. it can. Further, since the fin spacing is not limited by the temperature sensor, the heat transfer fin spacing can be further narrowed to provide a heat exchanger with high heat exchange efficiency while improving the fluid temperature detection accuracy.

第2の発明は、第1の発明において、前記伝熱流路が、前記第1流体が平行に流れる流路領域と、前記流路領域に連通するヘッダ流路領域と、を有し、前記温度センサが前記流路領域以外の部分に設けられたことを特徴とする構成としてある。 In the second invention, in the first invention, the heat transfer flow path has a flow path region in which the first fluid flows in parallel and a header flow path region communicating with the flow path region, and the temperature. The configuration is characterized in that the sensor is provided in a portion other than the flow path region.

これにより、温度センサは流路領域を流れる第1流体から受ける影響を最小限にすることができ、伝熱流路内の第1流体温度の検出精度を向上させることができる。 As a result, the temperature sensor can minimize the influence of the first fluid flowing in the flow path region, and can improve the detection accuracy of the first fluid temperature in the heat transfer flow path.

第3の発明は、第1の発明又は第2の発明において、前記伝熱流路が前記伝熱フィンに凹条溝を設けることにより形成されたことを特徴とする構成としてある。 The third invention is characterized in that, in the first invention or the second invention, the heat transfer flow path is formed by providing a concave groove in the heat transfer fin.

これにより、伝熱流路を管で形成する場合に比べ大幅に細径化することができるので、フィンの間隔の狭小化と合わせ熱交換効率を大きく向上させることができる。また、温度検出精度が高まることにより、熱交換器の制御を適切に行うことができるため熱交換効率の精度も高い高性能な熱交換器とすることができる。 As a result, the diameter of the heat transfer flow path can be significantly reduced as compared with the case where the heat transfer flow path is formed of a pipe, so that the heat exchange efficiency can be greatly improved in combination with the narrowing of the fin spacing. Further, since the heat exchanger can be appropriately controlled by increasing the temperature detection accuracy, it is possible to obtain a high-performance heat exchanger having high accuracy of heat exchange efficiency.

第4の発明は、第1〜第3の発明において、前記伝熱フィンが孔を備え、前記孔に温度センサを挿入し装着したことを特徴とする構成としてある。 The fourth invention is characterized in that, in the first to third inventions, the heat transfer fin is provided with a hole, and the temperature sensor is inserted and mounted in the hole.

これにより、温度センサ挿入用の孔を伝熱フィン積層時の位置決めピン孔として利用することができ、温度センサ装着とフィン位置決めを合理的に行い構成の簡素化を図ることができる。 As a result, the hole for inserting the temperature sensor can be used as a positioning pin hole when the heat transfer fins are laminated, and the temperature sensor can be rationally mounted and the fins can be positioned to simplify the configuration.

第5の発明は、第2〜第4の発明において、前記伝熱流路を折り返すことで、入口側と出口側の前記ヘッダ流路が前記伝熱フィンの一端部側に纏めた構成とし、一対のエンドプレート間に前記伝熱フィンを挟み込み、前記ヘッダ流路領域を設けた一端部を連結手段で締結固定し、前記ヘッダ流路領域とは反対側の他端側に前記温度センサを取り付けたことを特徴とする構成としてある。 In the fifth aspect of the invention, in the second to fourth inventions, the heat transfer flow paths are folded back so that the header flow paths on the inlet side and the outlet side are gathered on one end side of the heat transfer fins. The heat transfer fin was sandwiched between the end plates of the above, and one end of the header flow path region was fastened and fixed by a connecting means, and the temperature sensor was attached to the other end side opposite to the header flow path region. It is a configuration characterized by that.

これにより、ヘッダ部分に第1流体が集中して大きな圧力が加わっても、連結手段による締結固定によってヘッダ部分が流体圧力で変形することを防止することができる。それと同時に、他端側は流体圧力がほとんどない状態であるため、連結手段による締結固定箇所を少なくすることができ、温度センサの取り付け位置を連結手段によって制約されることなく伝熱流路近くに設定することができる。すなわち、圧力変形がなく、かつ、第1流体の温度検出精度が高い熱交換器とすることができる。 As a result, even if the first fluid is concentrated on the header portion and a large pressure is applied, it is possible to prevent the header portion from being deformed by the fluid pressure due to fastening and fixing by the connecting means. At the same time, since there is almost no fluid pressure on the other end side, the number of fastening and fixing points by the connecting means can be reduced, and the mounting position of the temperature sensor is set near the heat transfer flow path without being restricted by the connecting means. can do. That is, it is possible to obtain a heat exchanger that has no pressure deformation and has high temperature detection accuracy of the first fluid.

以下、本発明の実施の形態について、添付の図面を参照しながら説明する。なお、本発明の実施の形態では本発明の適用が最も効果的な伝熱フィン積層型熱交換器を例にして説明するが、これに限定されるものではなく、以下の実施形態において説明する技術的思想と同等の熱交換器の構成を含むものである。すなわち、例えばフィンアンドチューブ型の熱交換器であっても、チューブに温度センサを設けた場合よりも精度の高い温度センサを実現することができる。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the embodiment of the present invention, the heat transfer fin laminated heat exchanger in which the application of the present invention is most effective will be described as an example, but the present invention is not limited to this, and the following embodiments will be described. It includes a heat exchanger configuration equivalent to the technical idea. That is, for example, even in a fin-and-tube type heat exchanger, it is possible to realize a temperature sensor with higher accuracy than when a temperature sensor is provided in the tube.

(実施の形態1)
図1は本実施の形態の伝熱フィン積層型熱交換器(以下、単に熱交換器と称する)の外観を示す斜視図、図2は伝熱フィン積層型熱交換器を分離した状態で示す分解斜視図、図3は伝熱フィン積層型熱交換器の温度センサ取付け部を示す斜視図、図4は伝熱フィン積層体の温度センサ取付け前の状態を示す斜視図、図5は伝熱フィン積層型熱交換器の伝熱フィン積層体を構成する伝熱フィンの平面図、図6は伝熱フィンの構成の一部を拡大して示す分解図、図7は伝熱フィン積層型熱交換器における伝熱フィン積層体の伝熱流路群部分を切断して示す斜視図、図8は伝熱フィン積層型熱交換器における伝熱フィン積層体のヘッダ流路部分を切断して示す斜視図ある。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the heat transfer fin laminated heat exchanger (hereinafter, simply referred to as a heat exchanger) of the present embodiment, and FIG. 2 shows a state in which the heat transfer fin laminated heat exchanger is separated. An exploded perspective view, FIG. 3 is a perspective view showing a temperature sensor mounting portion of the heat transfer fin laminated heat exchanger, FIG. 4 is a perspective view showing a state of the heat transfer fin laminated body before mounting the temperature sensor, and FIG. 5 is a heat transfer. A plan view of the heat transfer fins constituting the heat transfer fin laminate of the fin laminated heat exchanger, FIG. 6 is an enlarged exploded view showing a part of the heat transfer fin configuration, and FIG. 7 is a heat transfer fin laminated heat. A perspective view showing by cutting the heat transfer flow path group portion of the heat transfer fin laminate in the exchanger, FIG. 8 is a perspective view showing by cutting the header flow path portion of the heat transfer fin laminate in the heat transfer fin laminated heat exchanger. There is a figure.

図1〜図8に示すように、本実施の形態の熱交換器1は、長方形の板状である複数の伝熱フィン2aを積層して構成された伝熱フィン積層体2と、蒸発器として用いる場合には入口となり凝縮器として用いる場合は出口となる管A4及びその逆となる管B5とを有している。 As shown in FIGS. 1 to 8, the heat exchanger 1 of the present embodiment includes a heat transfer fin laminate 2 formed by laminating a plurality of heat transfer fins 2a having a rectangular plate shape, and an evaporator. It has a tube A4 that serves as an inlet when used as a condenser and a tube B5 which serves as an outlet when used as a condenser and vice versa.

また、伝熱フィン積層体2の積層方向の両側(図1では上側及び下側)には、伝熱フィン2aと平面視が略同一形状のエンドプレート3a、3bが設けられている。エンドプレート3a、3bは、剛性を有する板材で形成されており、例えばアルミニウム、アルミニウム合金、ステンレスなどの金属材を研削により金属加工して形成されている。 Further, end plates 3a and 3b having substantially the same shape as the heat transfer fins 2a in a plan view are provided on both sides (upper side and lower side in FIG. 1) of the heat transfer fin laminate 2 in the stacking direction. The end plates 3a and 3b are made of a rigid plate material, and are formed by metal processing a metal material such as aluminum, an aluminum alloy, or stainless steel by grinding.

なお、エンドプレート3a、3b、複数の伝熱フィン2aは積層された状態でロウ付け接合されて一体化している。 The end plates 3a and 3b and the plurality of heat transfer fins 2a are brazed and joined in a laminated state to be integrated.

また、本実施の形態では、伝熱フィン積層体2の両側のエンドプレート3a、3bは、ボルト・ナット若しくはカシメピン軸等の連結手段9によってその長手方向両端部が連結固定されている。すなわち、伝熱フィン積層体両側のエンドプレート3a、3bは伝熱フィン積層体2を挟持した形で伝熱フィン積層体2を機械的に連結固定した形となっている。 Further, in the present embodiment, the end plates 3a and 3b on both sides of the heat transfer fin laminate 2 are connected and fixed at both ends in the longitudinal direction by connecting means 9 such as bolts and nuts or caulking pin shafts. That is, the end plates 3a and 3b on both sides of the heat transfer fin laminate 2 are mechanically connected and fixed by sandwiching the heat transfer fin laminate 2.

また、伝熱フィン2aは、後述するように、内部に第1流体である冷媒が流れる複数の並行した伝熱流路群を有しており、この伝熱流路群は略U字状に形成されていて、これと繋がる管A4、管B5は、伝熱フィン積層体2の一方側(図1では左側)のエンドプレート3aの一端部側に纏めて配置されている。 Further, as will be described later, the heat transfer fins 2a have a plurality of parallel heat transfer flow paths in which the refrigerant, which is the first fluid, flows, and the heat transfer flow paths are formed in a substantially U shape. The pipes A4 and B5 connected to the pipes A4 and B5 are collectively arranged on one end side of the end plate 3a on one side (left side in FIG. 1) of the heat transfer fin laminate 2.

詳述すると、伝熱フィン2aは、図5に示すように、複数の並行した伝熱流路(以下、冷媒流路と称す)11とこれに繋がるヘッダ流路A8およびヘッダ流路B10を形成した一対の板状部材、第1板状部材6a及び第2板状部材6b(図6参照)を向い合せにロウ付け接合して構成してあり、複数の冷媒流路11は略U字状に形成されていて、冷媒流路11にそれぞれ繋がるヘッダ流路A8とヘッダ流路B10とが一端部側に纏まった形となっている。 More specifically, as shown in FIG. 5, the heat transfer fins 2a form a plurality of parallel heat transfer channels (hereinafter referred to as refrigerant channels) 11 and a header flow path A8 and a header flow path B10 connected thereto. A pair of plate-shaped members, a first plate-shaped member 6a and a second plate-shaped member 6b (see FIG. 6) are brazed and joined to face each other, and a plurality of refrigerant flow paths 11 are substantially U-shaped. The header flow path A8 and the header flow path B10, which are formed and are connected to the refrigerant flow path 11, are integrated on one end side.

そして、上記構成の伝熱フィン2aは、図7、図8に示すように多数積層して熱交換器の主体をなす伝熱フィン積層体2を構成しており、伝熱フィン2a同士の間には伝熱フィン2aの長辺両端部及び冷媒流路11間に適宜設けた複数の突起12(図5参照)によって第2流体である空気が流れる隙間を形成している。 As shown in FIGS. 7 and 8, the heat transfer fins 2a having the above configuration are laminated to form a heat transfer fin laminate 2 which is the main body of the heat exchanger, and are between the heat transfer fins 2a. A gap through which air, which is a second fluid, flows is formed by a plurality of protrusions 12 (see FIG. 5) appropriately provided between both ends of the long side of the heat transfer fin 2a and the refrigerant flow path 11.

なお、冷媒流路11は第1板状部材6a及び第2板状部材6bの凹条溝によって形成してあり、容易に細径化できるようになっている。 The refrigerant flow path 11 is formed by the concave grooves of the first plate-shaped member 6a and the second plate-shaped member 6b, so that the diameter can be easily reduced.

また、冷媒流路11のうちヘッダ流路A8に繋がるヘッダ流路A側冷媒流路11aとヘッダ流路B10に繋がるヘッダ流路B側冷媒流路11bとの間には、これら両者間の熱移動を防止すべくスリット溝15が設けられてある。 Further, among the refrigerant flow paths 11, between the header flow path A side refrigerant flow path 11a connected to the header flow path A8 and the header flow path B side refrigerant flow path 11b connected to the header flow path B10, heat between the two is generated. A slit groove 15 is provided to prevent movement.

さらにこの例では、図5に示すようにヘッダ流路B側冷媒流路11bは通路部14により、伝熱フィン2aの内側寄りに位置する流路群と外側寄りに位置する流路群に分かれている。冷媒流路11は前述の伝熱フィン2aの外側流路群より内側流路群を形成する流路の本数を多くし、図6に示すようにヘッダ流路B10の通路部14と対向する部分は冷媒流路のない無孔部16を設けている。これは、熱交換器を凝縮器として使用した時に入口側となるヘッダ流路B10からヘッダ流路B側冷媒流路11bへと流れる冷媒が無孔部16の壁部に衝突して前述の伝熱フィン2aの外側流路と内側流路それぞれへ均等に流れるように構成してある。そのため、ヘッダ流路B側冷媒流路11b間で冷媒量が不均一になることがなく、熱交換効率の良い熱交換器を実現できる。 Further, in this example, as shown in FIG. 5, the header flow path B side refrigerant flow path 11b is divided into a flow path group located closer to the inside and a flow path group located closer to the outside of the heat transfer fin 2a by the passage portion 14. ing. The refrigerant flow path 11 has a larger number of flow paths forming the inner flow path group than the outer flow path group of the heat transfer fin 2a described above, and is a portion facing the passage portion 14 of the header flow path B10 as shown in FIG. Is provided with a non-perforated portion 16 having no refrigerant flow path. This is because when the heat exchanger is used as a condenser, the refrigerant flowing from the header flow path B10 on the inlet side to the refrigerant flow path 11b on the header flow path B side collides with the wall portion of the non-perforated portion 16 and is transmitted as described above. It is configured to flow evenly to each of the outer flow path and the inner flow path of the heat fin 2a. Therefore, the amount of refrigerant does not become non-uniform between the header flow paths B side refrigerant flow paths 11b, and a heat exchanger with good heat exchange efficiency can be realized.

上記のように構成された本実施形態の熱交換器1は、冷媒が伝熱フィン積層体2の伝熱フィン2aの内部の冷媒流路11群を長手方向に並行に流れUターンして折り返しヘッダ流路A8或いはヘッダ流路B10から管A4あるいは管B5を通して排出される。一方、第2流体である空気は、伝熱フィン積層体2を構成する伝熱フィン2aの積層間に形成された隙間を通り抜ける。このとき、第2流体である空気の熱が伝熱フィン2aを介して第1流体である冷媒に伝わることにより第1流体と第2流体との熱交換が行われる。 In the heat exchanger 1 of the present embodiment configured as described above, the refrigerant flows in the refrigerant flow path 11 group inside the heat transfer fins 2a of the heat transfer fin laminate 2 in parallel in the longitudinal direction, makes a U-turn, and is folded back. It is discharged from the header flow path A8 or the header flow path B10 through the pipe A4 or the pipe B5. On the other hand, air, which is the second fluid, passes through the gap formed between the stacks of the heat transfer fins 2a constituting the heat transfer fin laminate 2. At this time, the heat of the air, which is the second fluid, is transferred to the refrigerant, which is the first fluid, via the heat transfer fins 2a, so that heat exchange between the first fluid and the second fluid is performed.

ここで、上記構成の伝熱フィン積層体2を主体としたこの熱交換器は、図3、図4に示すように、伝熱フィン積層体2の一端部側に前記冷媒流路11群を流れる冷媒の温度を検出する温度センサ17が取り付けてある。 Here, as shown in FIGS. 3 and 4, this heat exchanger mainly composed of the heat transfer fin laminate 2 having the above configuration has the refrigerant flow path 11 group on one end side of the heat transfer fin laminate 2. A temperature sensor 17 that detects the temperature of the flowing refrigerant is attached.

温度センサ17は伝熱フィン積層体2のフィン積層方向にこれと交差するように挿入して装着してある。すなわち、伝熱フィン積層体2の伝熱フィン2aには図5に示すように前記入口及び出口となるヘッダ流路A8、ヘッダ流路B10が設けられた側とは反対側の端部に孔18が設けてある。この孔18は冷媒流路11が設けられた流路領域Pとは別の場所であって、冷媒流路11の近く、この例では図5に示すように冷媒流路11がUターンするコーナ部に設けてある。そして、この孔18と対向するようにエンドプレート3bにも同様の孔18が設けてあり、このエンドプレート3bの孔18より温度センサ17を伝熱フィン2aの積層方向と交差するように挿入して装着してある。これにより温度センサ17は伝熱フィン2aを横切るような形で伝熱フィン積層体2内に埋め込まれた形となる。 The temperature sensor 17 is inserted and mounted so as to intersect the fin stacking direction of the heat transfer fin laminate 2. That is, as shown in FIG. 5, the heat transfer fins 2a of the heat transfer fin laminate 2 have holes at the ends opposite to the side where the header flow paths A8 and the header flow paths B10, which are the inlets and outlets, are provided. 18 is provided. This hole 18 is a location different from the flow path region P in which the refrigerant flow path 11 is provided, and is near the refrigerant flow path 11. In this example, as shown in FIG. 5, the corner where the refrigerant flow path 11 makes a U-turn. It is provided in the section. A similar hole 18 is also provided in the end plate 3b so as to face the hole 18, and the temperature sensor 17 is inserted through the hole 18 of the end plate 3b so as to intersect the stacking direction of the heat transfer fins 2a. It is attached. As a result, the temperature sensor 17 is embedded in the heat transfer fin laminate 2 so as to cross the heat transfer fins 2a.

なお、エンドプレート3bに孔18を設けたが、エンドプレート3のどちらに孔18を設けても良い。 Although the end plate 3b is provided with the hole 18, the hole 18 may be provided in either of the end plates 3.

以上のように構成した熱交換器について、次にその作用効果を説明する。なお、作用効果は、熱交換器を蒸発器として使用している場合を例にして説明する。 Next, the action and effect of the heat exchanger configured as described above will be described. The action and effect will be described by taking the case where the heat exchanger is used as an evaporator as an example.

熱交換器を蒸発器として使用している場合、冷媒は入口配管となる管A4から流入し、ヘッダ流路A8を介して伝熱フィン積層体2の伝熱フィン2aの内部の冷媒流路11群を長手方向に並行に流れUターンして折り返しヘッダ流路B10を介して出口配管となる管B5から排出される。一方、第2流体である空気は、伝熱フィン積層体2を構成する伝熱フィン2aの積層間に形成された隙間を通り抜ける。このとき、空気の熱が伝熱フィン2aを介して冷媒に伝わり、冷媒は温められ空気は冷やされることにより第1流体である冷媒と第2流体である空気との熱交換が行われる。 When the heat exchanger is used as an evaporator, the refrigerant flows in from the pipe A4 which is the inlet pipe, and the refrigerant flow path 11 inside the heat transfer fin 2a of the heat transfer fin laminate 2 passes through the header flow path A8. The group flows in parallel in the longitudinal direction, makes a U-turn, and is discharged from the pipe B5 that serves as the outlet pipe via the folded header flow path B10. On the other hand, air, which is the second fluid, passes through the gap formed between the stacks of the heat transfer fins 2a constituting the heat transfer fin laminate 2. At this time, the heat of the air is transferred to the refrigerant through the heat transfer fins 2a, the refrigerant is heated and the air is cooled, so that heat exchange between the refrigerant as the first fluid and the air as the second fluid is performed.

一方、伝熱フィン積層体2に設けられた温度センサ17は冷媒流路11群を流れる冷媒の温度を検出し、当該温度データは、例えば膨張弁(図示せず)や圧縮機の周波数を制御するための入力データとして使用される。 On the other hand, the temperature sensor 17 provided in the heat transfer fin laminate 2 detects the temperature of the refrigerant flowing in the refrigerant flow path 11 group, and the temperature data controls, for example, the frequency of an expansion valve (not shown) or a compressor. It is used as input data for

ここで、温度センサ17は伝熱フィン2aの積層方向を横切るように挿入され、伝熱フィン2aを横切る形で取付けられるので、フィンの積層方向に突き刺して設ける場合のようにフィンの間隔を広くする必要がなく、伝熱フィン2aのフィンの間隔が狭くても取り付けることができる。 Here, the temperature sensor 17 is inserted so as to cross the stacking direction of the heat transfer fins 2a, and is attached so as to cross the heat transfer fins 2a. It is not necessary to do so, and it can be attached even if the distance between the fins of the heat transfer fins 2a is narrow.

また、温度センサ17が伝熱フィン2aに設けられている冷媒流路11同士間に突き刺される形とならないので、これを傷つけるようなことがなくなるうえに、図5の孔18位置から理解できるように冷媒流路11近くに温度センサ17を取り付けることができるので、流体温度の検出精度を向上させて信頼性を高めることができる。 Further, since the temperature sensor 17 is not pierced between the refrigerant flow paths 11 provided in the heat transfer fins 2a, it is not damaged and can be understood from the position of the hole 18 in FIG. Since the temperature sensor 17 can be attached near the refrigerant flow path 11, the accuracy of detecting the fluid temperature can be improved and the reliability can be improved.

また、前記熱交換器は、外部から流体を導入し排出するための出入り口を有する一対のヘッダ流路A8およびヘッダ流路B10と、ヘッダ流路A8およびヘッダ流路B10とをつなぐ冷媒流路11とを備えていて、冷媒流路11は伝熱フィン2aに凹条溝を設けて形成してある。 Further, the heat exchanger is a refrigerant flow path 11 that connects a pair of header flow paths A8 and header flow path B10 having an inlet / outlet for introducing and discharging a fluid from the outside, and a header flow path A8 and a header flow path B10. The refrigerant flow path 11 is formed by providing a concave groove in the heat transfer fin 2a.

これにより、冷媒流路11はこれを管で形成する場合に比べ大幅に細径化することができる。よって、フィン間隔の狭小化と合わせ熱交換効率を大きく向上させることができ、温度検出精度が高くより熱交換効率の高い高性能な熱交換器とすることができる。 As a result, the diameter of the refrigerant flow path 11 can be significantly reduced as compared with the case where the refrigerant flow path 11 is formed of a pipe. Therefore, the heat exchange efficiency can be greatly improved in combination with the narrowing of the fin spacing, and a high-performance heat exchanger having high temperature detection accuracy and higher heat exchange efficiency can be obtained.

また、温度センサ17は伝熱フィン2aの第1流体が並行に流れる複数の冷媒流路11を有する流路領域P以外の部分に設けてあるから、流路領域Pを流れる第2流体が温度センサ17に触れるのを抑制することができる。したがって、第2流体から受ける影響を最小限にすることができ、冷媒流路11内の冷媒温度の検出精度を向上させることができる。 Further, since the temperature sensor 17 is provided in a portion other than the flow path region P having a plurality of refrigerant flow paths 11 through which the first fluid of the heat transfer fins 2a flows in parallel, the temperature of the second fluid flowing through the flow path region P is high. It is possible to suppress touching the sensor 17. Therefore, the influence of the second fluid can be minimized, and the accuracy of detecting the refrigerant temperature in the refrigerant flow path 11 can be improved.

更に、温度センサ17を挿入装着する伝熱フィン2aの孔18は伝熱フィン積層時の位置決めピン孔として利用することができる。よって、伝熱フィン積層時の位置決めピン孔を別途設ける必要がなく、構成の簡素化を図りつつフィン積層ずれを防止することができる。 Further, the hole 18 of the heat transfer fin 2a into which the temperature sensor 17 is inserted and mounted can be used as a positioning pin hole when the heat transfer fins are laminated. Therefore, it is not necessary to separately provide a positioning pin hole when laminating the heat transfer fins, and it is possible to prevent the fins from being misaligned while simplifying the configuration.

また、入口及び出口のヘッダ流路A8、ヘッダ流路B10を有するヘッダ領域Hと、このヘッダ領域Hのヘッダ流路A8とヘッダ流路B10との間をつなぐ複数の冷媒流路11を有する流路領域Pと、を有する伝熱フィン2aを積層して構成したこの種の伝熱フィン積層熱交換器は、ヘッダ流路A8、ヘッダ流路B10内の冷媒流量が多いため冷媒から大きな圧力を受け変形しやすくなる。 Further, a flow having a plurality of header flow paths 11 connecting an inlet and outlet header flow paths A8 and a header region H having a header flow path B10 and a header flow path A8 and a header flow path B10 in the header area H. This type of heat transfer fin laminated heat exchanger configured by laminating the heat transfer fins 2a having the path region P and the path region P exerts a large pressure from the refrigerant because the flow rate of the refrigerant in the header flow path A8 and the header flow path B10 is large. It becomes easy to receive and deform.

しかしながら、本実施の形態では冷媒流路11を略U字状にUターンさせて入り口側及び出口側のヘッダA8、ヘッダ流路B10を伝熱フィン2aの一端部側に纏めるとともに、ヘッダ流路A8、ヘッダ流路B10を一対のエンドプレート3a、3bで挟み込んで連結手段9で締結固定している。そのため、ヘッダ流路A8、ヘッダ流路B10部分に第1流体の大きな圧力が加わっても、連結手段9による締結固定によってヘッダ流路A8、ヘッダ流路B10部分が変形することを防止することができる。そして、冷媒の大きな圧力を受ける部分を伝熱フィン2aの一端部側のみとすることができるので、他端側のフィン締結固定は一箇所もしくは廃止することができる。したがって、伝熱フィン2aのヘッダ領域と反対側の端部は温度センサ17を装着するに十分なスペースを確保することができる。そして、温度センサ17は連結手段9によって邪魔されることなく、すなわち連結手段9の位置に制約されることなく、冷媒流路11近くといったフィン端部の最適位置に設定することができ、圧力変形がなく、かつ、第1流体の温度検出精度が高い熱交換器とすることができる。これにより、冷媒流路11の細径化とフィン間隔の狭小化による熱交換効率の向上を実現しつつ冷媒圧力による圧力変形もなく、しかも第1流体の温度検出精度が高い熱交換器とすることができる。 However, in the present embodiment, the refrigerant flow path 11 is U-turned in a substantially U-shape so that the header A8 and the header flow path B10 on the inlet side and the outlet side are gathered on one end side of the heat transfer fin 2a, and the header flow path A8 and the header flow path B10 are sandwiched between a pair of end plates 3a and 3b and fastened and fixed by the connecting means 9. Therefore, even if a large pressure of the first fluid is applied to the header flow path A8 and the header flow path B10, it is possible to prevent the header flow path A8 and the header flow path B10 from being deformed by fastening and fixing by the connecting means 9. it can. Since the portion that receives a large pressure of the refrigerant can be limited to only one end side of the heat transfer fin 2a, the fin fastening and fixing on the other end side can be done at one place or abolished. Therefore, a sufficient space can be secured for mounting the temperature sensor 17 at the end portion of the heat transfer fin 2a on the side opposite to the header region. Then, the temperature sensor 17 can be set at the optimum position of the fin end such as near the refrigerant flow path 11 without being disturbed by the connecting means 9, that is, without being restricted by the position of the connecting means 9, and the pressure deformation. It is possible to obtain a heat exchanger having no temperature detection accuracy of the first fluid and having high temperature detection accuracy. As a result, the heat exchange efficiency is improved by reducing the diameter of the refrigerant flow path 11 and narrowing the fin spacing, and there is no pressure deformation due to the refrigerant pressure, and the heat exchanger has high temperature detection accuracy of the first fluid. be able to.

以上、本発明に係る熱交換器について、上記実施の形態を用いて説明したが、本発明は、これに限定されるものではない。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではないと考えられるべきであり、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The heat exchanger according to the present invention has been described above using the above-described embodiment, but the present invention is not limited thereto. That is, it should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive, and the scope of the present invention is indicated by the claims rather than the above description, and the patent. It is intended to include all changes within the meaning and scope of the claims.

例えば、熱交換器はこの実施の形態ではフィン積層型熱交換器としたが、どのような熱交換器であってもよく、例えばプレートフィンに冷媒流路となる管を貫設して構成したフィンチューブ型熱交換器、あるいは入り口側及び出口側のヘッダ流路管を冷媒流路となるチューブ管で接続したタイプの熱交換器等々種々のものに適用できる。 For example, the heat exchanger is a fin-laminated heat exchanger in this embodiment, but any heat exchanger may be used. For example, the plate fin is configured by penetrating a pipe serving as a refrigerant flow path. It can be applied to various types of heat exchangers such as a fin tube type heat exchanger or a type of heat exchanger in which the header flow path tubes on the inlet side and the outlet side are connected by a tube tube serving as a refrigerant flow path.

また、本実施の形態の熱交換器では冷媒流路11群がUターンするものを例示したが、これはUターンさせることなく直線状のものとしてヘッダ流路Aとヘッダ流路Bを伝熱フィンの左右端部に分けて設けたものであってもよい。 Further, in the heat exchanger of the present embodiment, an example in which the refrigerant flow path 11 group makes a U-turn is illustrated, but this is a linear one without making a U-turn and heat is transferred between the header flow path A and the header flow path B. It may be provided separately at the left and right ends of the fin.

本発明は、交換効率及び温度検出精度を共に向上させて高性能な熱交換機とすることができる。よって、家庭用及び業務用エアコン等に用いる熱交換器や各種冷凍機器等に幅広く利用でき、その産業的価値は大なるものがある。 INDUSTRIAL APPLICABILITY According to the present invention, both the exchange efficiency and the temperature detection accuracy can be improved to obtain a high-performance heat exchanger. Therefore, it can be widely used in heat exchangers and various refrigerating devices used for home and commercial air conditioners, and has great industrial value.

1 熱交換器
2 伝熱フィン積層体
2a 伝熱フィン
3、3a、3b エンドプレート
4 管A
5 管B
6a 第1板状部材
6b 第2板状部材
8 ヘッダ流路A
9 連結手段
10 ヘッダ流路B
11 冷媒流路(伝熱流路)
11a ヘッダ流路A側冷媒流路
11b ヘッダ流路B側冷媒流路
12 突起
14 通路部
15 スリット溝
16 無孔部
17 温度センサ
18 孔
1 Heat exchanger 2 Heat transfer fin laminate 2a Heat transfer fins 3, 3a, 3b End plate 4 Tube A
5 Tube B
6a 1st plate-shaped member 6b 2nd plate-shaped member 8 Header flow path A
9 Connecting means 10 Header flow path B
11 Refrigerant flow path (heat transfer flow path)
11a Header flow path A side refrigerant flow path 11b Header flow path B side refrigerant flow path 12 Protrusion 14 Passage part 15 Slit groove 16 No hole part 17 Temperature sensor 18 holes

Claims (4)

第1流体と第2流体とを熱交換させる板状の伝熱フィンを複数積層した構造で、前記伝熱フィンには、該フィンの積層時に用いる位置決めピンが挿入される孔を備え、前記第1流体が流れる伝熱流路と、前記第2流体が通る隙間と、前記第1流体の温度を検出する温度センサと、を備え、前記伝熱フィンを横切るように前記位置決め用の孔に前記温度センサを挿入し装着したことを特徴とする熱交換器。 It has a structure in which a plurality of plate-shaped heat transfer fins for heat exchange between the first fluid and the second fluid are laminated, and the heat transfer fins are provided with a hole into which a positioning pin used for laminating the fins is inserted . A heat transfer flow path through which one fluid flows, a gap through which the second fluid passes, and a temperature sensor for detecting the temperature of the first fluid are provided, and the temperature is formed in the positioning hole so as to cross the heat transfer fin. A heat exchanger characterized in that a sensor is inserted and attached. 前記伝熱流路は、前記第1流体が平行に流れる流路領域と、前記流路領域に連通するヘッダ流路領域と、を有し、前記温度センサは前記流路領域以外の部分に設けられたことを特徴とする請求項1に記載の熱交換器。 The heat transfer flow path has a flow path region in which the first fluid flows in parallel and a header flow path region communicating with the flow path region, and the temperature sensor is provided in a portion other than the flow path region. The heat exchanger according to claim 1, wherein the heat exchanger is characterized in that. 前記伝熱流路は前記伝熱フィンに凹条溝を設けて形成されたことを特徴とする請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the heat transfer flow path is formed by providing a concave groove in the heat transfer fin. 前記伝熱流路は、折り返すことで、入口側と出口側の前記ヘッダ流路が前記伝熱フィンの一端部側に纏めた構成とし、一対のエンドプレート間に前記伝熱フィンを挟み込み、前記ヘッダ流路領域を設けた一端部を連結手段で締結固定し、前記ヘッダ流路領域とは反対側の他端側に前記温度センサを取り付けたことを特徴とする請求項2〜3のいずれか1項に記載の熱交換器。 The heat transfer flow path is folded back so that the header flow paths on the inlet side and the outlet side are gathered on one end side of the heat transfer fins, and the heat transfer fins are sandwiched between the pair of end plates to form the header. Any one of claims 2 to 3 , wherein one end of the flow path region is fastened and fixed by a connecting means, and the temperature sensor is attached to the other end side opposite to the header flow path region. The heat exchanger described in the section.
JP2018038298A 2018-03-05 2018-03-05 Heat exchanger Active JP6887074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038298A JP6887074B2 (en) 2018-03-05 2018-03-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038298A JP6887074B2 (en) 2018-03-05 2018-03-05 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019152379A JP2019152379A (en) 2019-09-12
JP6887074B2 true JP6887074B2 (en) 2021-06-16

Family

ID=67948729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038298A Active JP6887074B2 (en) 2018-03-05 2018-03-05 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6887074B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031232B2 (en) * 1996-03-04 2000-04-10 松下電器産業株式会社 Stacked heat exchanger for absorption heat pump
SE530957C2 (en) * 2004-09-08 2008-11-04 Ep Technology Ab Heat exchanger with temperature controlled valve
JP3858484B2 (en) * 1998-11-24 2006-12-13 松下電器産業株式会社 Laminate heat exchanger
SE536618C2 (en) * 2010-10-22 2014-04-01 Alfa Laval Corp Ab Heat exchanger plate and plate heat exchanger
JP6504367B2 (en) * 2016-03-28 2019-04-24 パナソニックIpマネジメント株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2019152379A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP5617935B2 (en) Heat exchanger and air conditioner
JP4122578B2 (en) Heat exchanger
US9766015B2 (en) Heat exchanger
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
JP6923051B2 (en) Heat exchanger and heat pump equipment
US20130186604A1 (en) Micro-channel heat exchanger including independent heat exchange circuits and method
US11060761B2 (en) Plate heat exchanger and water heater including same
WO2015106726A1 (en) Collecting pipe assembly and heat exchanger provided with collecting pipe assembly
JP2018189352A (en) Heat exchanger
JP2017180857A (en) Heat exchanger
JP6887074B2 (en) Heat exchanger
US11874034B2 (en) Heat exchanger
EP3137836B1 (en) Improved heat exchanger
JP2001027484A (en) Serpentine heat-exchanger
JP6929451B2 (en) Air conditioner and heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JP6120998B2 (en) Laminated header, heat exchanger, and air conditioner
JP4663434B2 (en) Heat exchanger
JP2005155996A (en) Heat exchanger
US20220136785A1 (en) Heat exchanger
US11988463B2 (en) Microchannel heat exchanger for appliance condenser
JP2006090636A (en) Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger
JP7209821B2 (en) Heat exchanger and refrigeration cycle equipment
JP2000105095A (en) Heat exchanger
WO2022085067A1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6887074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151