JP6879873B2 - Failure probability evaluation system - Google Patents

Failure probability evaluation system Download PDF

Info

Publication number
JP6879873B2
JP6879873B2 JP2017172652A JP2017172652A JP6879873B2 JP 6879873 B2 JP6879873 B2 JP 6879873B2 JP 2017172652 A JP2017172652 A JP 2017172652A JP 2017172652 A JP2017172652 A JP 2017172652A JP 6879873 B2 JP6879873 B2 JP 6879873B2
Authority
JP
Japan
Prior art keywords
failure probability
failure
damage degree
fatigue damage
evaluation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172652A
Other languages
Japanese (ja)
Other versions
JP2019049419A (en
Inventor
洋輔 植木
洋輔 植木
智彬 山下
智彬 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017172652A priority Critical patent/JP6879873B2/en
Priority to PCT/JP2018/012683 priority patent/WO2019049406A1/en
Priority to TW107131227A priority patent/TWI683058B/en
Publication of JP2019049419A publication Critical patent/JP2019049419A/en
Application granted granted Critical
Publication of JP6879873B2 publication Critical patent/JP6879873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は,機械システムに含まれる複数の同型機械群の故障確率評価システムに関する。 The present invention relates to a failure probability evaluation system for a plurality of machines of the same type included in a machine system.

過去に,いくつかの機械システム疲労故障に対する余寿命評価法方法が提案されてきた。代表的な例として,線形累積損傷則(非特許文献1)を利用するものがある。具体的には例えば特許文献1に記載の方法がある。一方,機械コンポーネントの健全性を評価する他の方法として,異常診断あるいは予兆検知と呼ばれる手法が知られている(特許文献2)。 In the past, some methods for evaluating the remaining life of mechanical system fatigue failures have been proposed. As a typical example, there is one that uses the Miner's Rule of Cumulative Damage (Non-Patent Document 1). Specifically, for example, there is a method described in Patent Document 1. On the other hand, as another method for evaluating the soundness of mechanical components, a method called abnormality diagnosis or sign detection is known (Patent Document 2).

特開2015-229939JP 2015-229939 WO2016/117021WO2016 / 117021

M.A. Miner: Cumulative Damage in Fatigue, J. Appl. Mech., 12(3), ppA159-A164M.A. Miner: Cumulative Damage in Fatigue, J. Appl. Mech., 12 (3), ppA159-A164

機械システムにおいて,動的な荷重負荷に晒される機械要素や機械構造物(以下,機械コンポーネントと総称する)は,要求される寿命を満足するように疲労寿命設計がなされる。しかしながら,実際の使用において,これらに作用する動的荷重は使用環境や使用条件に応じてばらつく。同時に,これらの機械コンポーネントの各個体が有する疲労寿命も,潜在的にばらつきを有する。したがって,疲労寿命設計段階ではこれらのばらつき幅を想定した上で,疲労破壊・疲労故障に至らないように安全側の設計がなされる。しかし,近年では,機械システムが想定外の環境に曝されるケースや,省資源・省エネルギといった観点から,機械コンポーネントが有する寿命を安全に使い切るような機械システムの運用・保守が求められている。このような状況を鑑みれば,実際に稼動状態にある機械システムの各コンポーネントの余寿命をより正確に把握することは極めて重要である。また,前述したように機械コンポーネントが有する寿命は,ある確率分布に基づくばらつきを有する。したがって,余寿命とは確率論的に定義されるものであり,余寿命を評価することは,ある時点から任意の時間(余寿命)が経過した時点における故障確率を評価することと等価である。故障確率として対象の健全性を評価することができれば,対象が故障した際に発生する損失額と故障確率を掛け合わせることにより,損失額の期待値を理論的に算出することが可能となり,結果として運用・保守の意思決定を経済的な観点から容易に行うことができるようになる。 In a mechanical system, mechanical elements and mechanical structures (hereinafter collectively referred to as mechanical components) exposed to a dynamic load are designed for fatigue life so as to satisfy the required life. However, in actual use, the dynamic loads acting on them vary depending on the usage environment and usage conditions. At the same time, the fatigue life of each individual of these mechanical components also potentially varies. Therefore, at the fatigue life design stage, the safety side is designed so as not to lead to fatigue fracture or fatigue failure, assuming these variations. However, in recent years, there has been a demand for the operation and maintenance of mechanical systems that can safely use up the life of mechanical components from the viewpoints of cases where mechanical systems are exposed to unexpected environments and resource saving and energy saving. .. In view of this situation, it is extremely important to more accurately grasp the remaining life of each component of the mechanical system that is actually in operation. Further, as described above, the life of a mechanical component has a variation based on a certain probability distribution. Therefore, the remaining life is defined stochastically, and evaluating the remaining life is equivalent to evaluating the failure probability when an arbitrary time (remaining life) elapses from a certain point in time. .. If the soundness of the target can be evaluated as the failure probability, the expected value of the loss amount can be theoretically calculated by multiplying the loss amount generated when the target fails and the failure probability. As a result, operation and maintenance decisions can be easily made from an economic point of view.

このような背景の下,いくつかの機械システム疲労故障に対する余寿命評価法方法が提案されてきた。代表的な例は,線形累積損傷則(非特許文献1)を利用するものである。例えば機械構造物であれば,対象部位にひずみゲージなどのひずみや応力を計測するセンサを取り付けておき,その時刻歴データを取得する。得られた時刻歴データに対し,レインフロー法などの波形カウント法を適用し,ひずみや応力波形の発生頻度分布を求める。この発生頻度分布に対して,対象部位を構成する材料の疲労線図を参照し,線形累積損傷則により疲労損傷度を求める。ここで,疲労損傷度とは,対象の平均疲労寿命に対する疲労寿命の消費率を表す物理量である(特許文献1)。さらに,疲労損傷度が求まり,疲労線図に定義される寿命ばらつきを参照すれば,任意の疲労損傷度における故障確率を求めることが可能である。また,なんらかの手法を用いて,任意時間が経過した後の疲労損傷度を予測することが可能であれば,その際の故障確率を求めることも可能になり,余寿命を確率論的に評価することが可能となる。しかしながら,通常の機械コンポーネントにおける疲労寿命は,対象にもよるが1/10から10倍程度のばらつき幅を有することもある。したがって,このように比較的疲労寿命のばらつき幅が大きい機械コンポーネントに対しては,本手法のみによって運用・保守に必要な精度で余寿命や故障確率評価を提供することが難しいこともある。 Against this background, several methods for evaluating the remaining life of mechanical system fatigue failures have been proposed. A typical example is to use the Miner's Rule of Cumulative Damage (Non-Patent Document 1). For example, in the case of a mechanical structure, a strain gauge or other sensor that measures strain or stress is attached to the target site, and the time history data is acquired. A waveform counting method such as the rainflow method is applied to the obtained time history data to obtain the frequency distribution of strain and stress waveforms. For this occurrence frequency distribution, refer to the fatigue diagram of the materials that make up the target site, and determine the degree of fatigue damage by the linear cumulative damage rule. Here, the degree of fatigue damage is a physical quantity that represents the consumption rate of fatigue life with respect to the average fatigue life of the target (Patent Document 1). Furthermore, the degree of fatigue damage can be obtained, and the probability of failure at any degree of fatigue damage can be obtained by referring to the life variation defined in the fatigue diagram. In addition, if it is possible to predict the degree of fatigue damage after an arbitrary time has passed using some method, it is also possible to obtain the failure probability at that time, and the remaining life is evaluated stochastically. It becomes possible. However, the fatigue life of ordinary mechanical components may vary from 1/10 to 10 times depending on the target. Therefore, it may be difficult to provide the remaining life and failure probability evaluation with the accuracy required for operation and maintenance only by this method for mechanical components with such a relatively large variation in fatigue life.

一方,機械コンポーネントの健全性を評価するその他の方法として,異常診断あるいは予兆検知と呼ばれる手法がある(特許文献2)。あらかじめ,健全な状態にある機械コンポーネントの稼動状態を定量的に定義あるいは学習しておく。ここで稼動状態とは,対象の振動加速度や周波数,温度など,健全性に応じて変化することが期待される物理量あるいはそれらの組合せによって表現される状態量である。稼働中は状態量を常時評価しておき,健全状態からの逸脱度に応じてアラートを発報したり,自動的に機械システムを停止させたりする応用例がある。本手法では,直接的に健全性をモニタリングするため,比較的高感度な健全性変化の検知を期待出来る。しかし,本手法を応用して定量的に余寿命や故障確率を算出するためには,状態量の変化と,ある状態量変化が発生した場合における余寿命あるいは故障確率の関係を予め取得しておく必要があるが,材料レベルではなく,機械コンポーネントレベルあるいは機械システムレベルでの事前試験が必要となるため,その時間やコストを考慮すれば現実的とは言いがたい。 On the other hand, as another method for evaluating the soundness of mechanical components, there is a method called abnormality diagnosis or sign detection (Patent Document 2). Quantitatively define or learn the operating state of a machine component in a healthy state in advance. Here, the operating state is a physical quantity that is expected to change according to soundness, such as the vibration acceleration, frequency, and temperature of the object, or a state quantity expressed by a combination thereof. There is an application example in which the state quantity is constantly evaluated during operation, an alert is issued according to the degree of deviation from the healthy state, or the mechanical system is automatically stopped. Since this method directly monitors the soundness, it can be expected to detect soundness changes with relatively high sensitivity. However, in order to quantitatively calculate the remaining life and failure probability by applying this method, the relationship between the change in state quantity and the remaining life or failure probability when a certain state quantity change occurs is acquired in advance. Although it is necessary to keep it, it is not realistic considering the time and cost because it requires pre-testing at the mechanical component level or mechanical system level instead of the material level.

また,例えば風力発電システムのように,稼動状態が時々刻々変化する機械システムにおいては,余寿命を最初から時間の単位で算出する方式は実用的ではない。例えば風力発電システムでは,風況や制御条件に応じて,各機械コンポーネントに作用する単位時間当たりの負荷が異なる。そのため,想定するこれらの条件に応じて,余寿命や故障確率が変化することが望ましいが,時間単位での余寿命評価では,このような要求に対応することができない。 Further, in a mechanical system whose operating state changes from moment to moment, such as a wind power generation system, a method of calculating the remaining life in units of time from the beginning is not practical. For example, in a wind power generation system, the load acting on each mechanical component per unit time differs depending on the wind conditions and control conditions. Therefore, it is desirable that the remaining life and the failure probability change according to these assumed conditions, but the remaining life evaluation on an hourly basis cannot meet such requirements.

先に述べたとおり,機械システムの疲労による故障確率あるいは余寿命を評価する方法としては,線形累積損傷則に基づく手法が知られているが,その精度は実用上十分でないことが多い。また,異常診断に基づく健全性評価方式では,比較的高精度に健全性変化を検知可能であるが,定量的に故障確率を評価するためには,時間・コストを要する事前試験が必要となる。また,余寿命を時間で評価する手法は,特に稼動状態が一定でない機械システムでは,実用上不都合が生じる場合が多い。したがって,風力発電システムなどの不確定要素の強い環境下で運用される機械システム向けに,実用的かつ高精度な故障確率評価または余寿命評価を提供するシステムの出現が待たれていた。 As mentioned above, as a method for evaluating the failure probability or remaining life due to fatigue of a mechanical system, a method based on the linear cumulative damage rule is known, but its accuracy is often not sufficient for practical use. In addition, the soundness evaluation method based on abnormality diagnosis can detect soundness changes with relatively high accuracy, but in order to quantitatively evaluate the failure probability, a preliminary test that requires time and cost is required. .. In addition, the method of evaluating the remaining life by time often causes practical inconvenience, especially in mechanical systems whose operating state is not constant. Therefore, the emergence of a system that provides practical and highly accurate failure probability evaluation or remaining life evaluation for mechanical systems operated in an environment with strong uncertainties such as wind power generation systems has been awaited.

上記課題を解決するために,例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,機械システムに含まれる複数の機械要素の故障確率を評価するシステムであって,前記機械要素の疲労損傷または経年変化によって変化する物理量1を基にして,前記機械要素の健全性を表す状態量を評価する手段と,前記機械要素が受ける荷重や負荷によって変化する物理量2若しくは前記機械要素の運転データを基にして,前記機械要素の累積疲労損傷度を評価する手段と,前記状態量および前記疲労損傷度を保存する保存部と,前記複数の機械要素のうち,故障が発生した機械要素における前記状態量と前記疲労損傷度に基づき,前記複数の機械要素のうち故障が発生していない機械要素の故障確率を算出する故障確率評価部と,を有することを特徴とした故障確率評価システム。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. For example, it is a system for evaluating the failure probability of a plurality of machine elements included in a mechanical system, and the mechanical elements are fatigued or damaged or aged. Based on the physical quantity 1 that changes due to change, the means for evaluating the state quantity that represents the soundness of the machine element, and the physical quantity 2 that changes depending on the load or load received by the machine element or the operation data of the machine element. A means for evaluating the cumulative fatigue damage degree of the machine element, a storage unit for storing the state amount and the fatigue damage degree, and the state amount of the machine element in which a failure has occurred among the plurality of machine elements. A failure probability evaluation system characterized by having a failure probability evaluation unit that calculates a failure probability of a machine element in which a failure has not occurred among the plurality of machine elements based on the degree of fatigue damage.

本発明は公知技術と同様に,センサによる計測やシミュレーションに基づき,対象の疲労損傷度を評価する機能を有すると同時に,センサ計測に基づく健全性状態評価機能を備える。さらに,機械システムの余寿命を時間軸ではなく,疲労損傷度軸で評価することによって,稼動状態が一定でない機械システムに対しても有効な余寿命評価を提供することが可能となる。また,ある健全性状態が観測された条件における余寿命のばらつきに確率分布を仮定する統計モデリングによって,任意の損傷度がさらに累積した将来における故障確率を提供することが可能となる。 Similar to the known technique, the present invention has a function of evaluating the degree of fatigue damage of a target based on measurement and simulation by a sensor, and at the same time, has a function of evaluating a soundness state based on sensor measurement. Furthermore, by evaluating the remaining life of a mechanical system not on the time axis but on the fatigue damage degree axis, it is possible to provide an effective remaining life evaluation even for a mechanical system whose operating state is not constant. In addition, statistical modeling that assumes a probability distribution for the variation in remaining life under the condition that a certain health state is observed makes it possible to provide a failure probability in the future in which an arbitrary degree of damage is further accumulated.

本発明を軸受群に適用した場合の動作を説明する模式図。The schematic diagram explaining the operation when this invention is applied to a bearing group. 本発明を軸受群に適用し,ある一つの軸受に故障が発生した以降の動作を説明する模式図。The schematic diagram explaining the operation after a failure occurs in one bearing by applying this invention to a bearing group. 本発明の実施例の1つにおける表示部による表示例。A display example by a display unit in one of the examples of the present invention. 本発明における故障確率算出方法を説明する模式図。The schematic diagram explaining the failure probability calculation method in this invention. 本発明の実施例の1つにおける表示部による表示例。A display example by a display unit in one of the examples of the present invention.

以下,実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.

図1は,機械コンポーネント(機械要素)として回転軸受1を例にとり,本発明における故障確率評価システム100の動作を模式的に説明する図である。本発明は,複数の,望ましくは同種の,機械コンポーネント群を対象とする。観測対象である各機械コンポーネントには,健全性を反映して変化する物理量を計測するセンサと,疲労損傷度を評価することを目的とし,機械コンポーネントが受ける荷重や負荷によって変化する物理量を計測するセンサをそれぞれ取り付ける。本実施例においては,前者が加速度センサ2,後者がロードセル3および回転計4にそれぞれ該当する。すなわち,加速度センサ2によって,損傷が生じた軸受から生じる回転振動加速度を計測し,ロードセル3と回転計4によって軸受に作用する荷重の振幅と繰り返し数を取得する。なお,健全性を評価する物理量は直接計測する必要があるため,そのための少なくとも1つのセンサは本実施例において必須であるが,対象に負荷される荷重は,必ずしも直接計測されなくともよい。例えば,風力発電機や自動車に用いられる回転軸受であれば,前者であれば風況や発電量の履歴,後者であれば速度やエンジン回転数の履歴など,機械コンポーネントの運転データから,軸受に負荷される荷重の履歴を推定することも可能である。また,本実施例では,加速度センサ2による健全性評価を前提とするが,センサの種類を加速度センサに限定するものではなく,例えばAEセンサや温度センサを用いたり,複数種類のセンサを組み合わせて用いたりしてもよい。また,荷重や負荷によって変化する物理量を計測するセンサはひずみセンサでもよい。各種センサは故障確率評価システム100の一部として新たに設置してもよいし,故障確率評価システム100に図示されない信号受信部があり,機械コンポーネントに設置されているセンサーの検出値を受信するようにしてもよい。 FIG. 1 is a diagram schematically explaining the operation of the failure probability evaluation system 100 in the present invention, taking the rotary bearing 1 as a mechanical component (machine element) as an example. The present invention is directed to a plurality of, preferably the same type, set of mechanical components. Each mechanical component to be observed has a sensor that measures the physical quantity that changes to reflect the soundness, and the physical quantity that changes depending on the load and load received by the mechanical component for the purpose of evaluating the degree of fatigue damage. Install each sensor. In this embodiment, the former corresponds to the acceleration sensor 2, the latter corresponds to the load cell 3 and the tachometer 4, respectively. That is, the acceleration sensor 2 measures the rotational vibration acceleration generated from the damaged bearing, and the load cell 3 and the tachometer 4 acquire the amplitude and the number of repetitions of the load acting on the bearing. Since it is necessary to directly measure the physical quantity for evaluating the soundness, at least one sensor for that purpose is indispensable in this embodiment, but the load applied to the target does not necessarily have to be directly measured. For example, in the case of rotary bearings used in wind power generators and automobiles, the load on the bearings is based on the operation data of mechanical components such as the history of wind conditions and power generation in the former case and the history of speed and engine speed in the latter case. It is also possible to estimate the history of the load to be applied. Further, in this embodiment, the soundness evaluation by the acceleration sensor 2 is premised, but the type of the sensor is not limited to the acceleration sensor. For example, an AE sensor or a temperature sensor is used, or a plurality of types of sensors are combined. You may use it. Further, the sensor that measures the load and the physical quantity that changes depending on the load may be a strain sensor. Various sensors may be newly installed as a part of the failure probability evaluation system 100, or the failure probability evaluation system 100 has a signal receiver (not shown) so as to receive the detection value of the sensor installed in the mechanical component. It may be.

加速度センサ2によって得られた振動加速度データは,A/D変換部5を経て,状態評価部6に伝送される。ここで,振動加速度データは,軸受1の健全性を評価する状態量に変換される。健全性を示す状態量はいくつかの手法が考えられるが,例えば軸受であれば,繰り返しの荷重負荷に伴って,内輪あるいは外輪に微細なクラックやフレーキングが発生する場合がある。これらの損傷位置を内部の転動体が通過するたびに,振動が発生する。したがって,回転数に転動体数を乗じた値に相当する周波数に転動体数を乗じた周波数帯の加速度実効値などを用いることが効果的である。すなわち,本実施例では,特定周波数帯の加速度実効値を,健全性を表す状態量(以下,状態量)として,以降の評価に用いる。前述のように,複数種類のセンサを用いる場合には,例えばクラスタリング分析などを適用することにより,得られる複数の物理量データを1つの状態量として変換して用いることが望ましい。得られた状態量は,状態量変化一時保存部8に伝送され,一時的に時系列データとして保存される。ここで,時系列データの保存期間は任意に設定してよいが,対象の保守や交換作業に必要なリードタイムと同等の期間を設定することが,機能を損なわずに必要な記憶領域を抑制するという観点から最も効果的である。 The vibration acceleration data obtained by the acceleration sensor 2 is transmitted to the state evaluation unit 6 via the A / D conversion unit 5. Here, the vibration acceleration data is converted into a state quantity for evaluating the soundness of the bearing 1. There are several possible methods for determining the state quantity that indicates soundness. For example, in the case of bearings, fine cracks and flaking may occur in the inner ring or outer ring due to repeated loading. Vibration is generated each time the rolling element inside passes through these damaged positions. Therefore, it is effective to use the acceleration effective value of the frequency band obtained by multiplying the number of rolling elements by the frequency corresponding to the value obtained by multiplying the number of rotations by the number of rolling elements. That is, in this embodiment, the effective acceleration value of the specific frequency band is used for the subsequent evaluation as a state quantity (hereinafter, state quantity) indicating soundness. As described above, when using a plurality of types of sensors, it is desirable to convert the obtained multiple physical quantity data into one state quantity and use it by applying, for example, clustering analysis. The obtained state quantity is transmitted to the state quantity change temporary storage unit 8 and temporarily stored as time-series data. Here, the retention period of time-series data may be set arbitrarily, but setting a period equivalent to the lead time required for maintenance or replacement work of the target suppresses the required storage area without impairing the function. It is the most effective from the viewpoint of doing.

一方,ロードセル3および回転計4を用いて得られる荷重振幅および繰り返し数は,疲労損傷度評価部7に伝送される。疲労損傷度評価部7では,線形累積損傷則(非特許文献1)に基づき疲労損傷度を算出する。本実施例ではロードセル3より取得した荷重を荷重振幅とし,回転計4より取得した回転数を繰り返し数として疲労損傷度を算出するが,例えば機械構造物を対象とする場合には,ロードセル3に換えてひずみゲージなどのひずみセンサを用いて,評価部位の応力時系列変化を直接計測する方式としてもよい。算出された疲労損傷度は,前記状態量と同様に損傷度変化一時保存部9に伝送され,ここで一時的に保存される。ここでの保存期間も,前記状態量変化一時保存部8の保存期間と同様に,保守や交換作業のリードタイムと同等に設定することが最も効果的である。 On the other hand, the load amplitude and the number of repetitions obtained by using the load cell 3 and the tachometer 4 are transmitted to the fatigue damage evaluation unit 7. The fatigue damage evaluation unit 7 calculates the fatigue damage degree based on the linear cumulative damage rule (Non-Patent Document 1). In this embodiment, the load acquired from the load cell 3 is used as the load amplitude, and the number of rotations acquired from the tachometer 4 is used as the number of repetitions to calculate the degree of fatigue damage. Alternatively, a strain sensor such as a strain gauge may be used to directly measure the stress time-series change of the evaluation site. The calculated fatigue damage degree is transmitted to the damage degree change temporary storage unit 9 in the same manner as the state quantity, and is temporarily stored here. It is most effective to set the storage period here to be the same as the lead time for maintenance and replacement work, similar to the storage period of the state quantity change temporary storage unit 8.

以上に示した状態評価部6,疲労損傷度評価部7は,図1中ではそれぞれ独立した構成要素として示したが,本発明はこれらの実装形態を特に制限するものではない。例えば,それぞれを単一のコンピュータシステムの中のソフトウェアで構成しても機能の実現上問題はない。また,状態量変化一時保存部および損傷度変化一時保存部についても,独立した構成要素として示したが,同一の記憶装置上に構成してもよい。また,以上の構成要素は,図1に示すように対象とする全ての機械コンポーネント(すなわち1番目からn番目の軸受全て)について用意するが,状態評価部6や疲労損傷度評価部7,状態量変化一時保存部8や損傷度変化一時保存部9は,共通のハードウェア上に構成する方式としてもよい。 The state evaluation unit 6 and the fatigue damage evaluation unit 7 shown above are shown as independent components in FIG. 1, but the present invention does not particularly limit these mounting modes. For example, even if each of them is composed of software in a single computer system, there is no problem in realizing the function. In addition, although the state quantity change temporary storage unit and the damage degree change temporary storage unit are also shown as independent components, they may be configured on the same storage device. Further, as shown in FIG. 1, the above components are prepared for all the target mechanical components (that is, all the first to nth bearings), but the state evaluation unit 6, the fatigue damage degree evaluation unit 7, and the state. The amount change temporary storage unit 8 and the damage degree change temporary storage unit 9 may be configured on common hardware.

図2は,図1の構成でシステムを運用中に,個体番号nの軸受が故障した時点以降において,未故障状態にあるその他の軸受(ここでは個体番号1)の故障確率を評価する際のシステムの動作を模式的に説明する図である。まず,故障が発生した個体については,各センサからのデータ伝送が停止するが,故障発生を契機として,状態量変化一時保存部9および損傷度変化一時保存部8に保存されていた状態量変化および損傷度変化の時系列データは,故障履歴評価部12に伝送される。詳細は後述するが,故障履歴評価部12では任意の状態量が観測されたとき,その時点から任意の損傷度がさらに累積した時点までに故障が発生する確率(故障確率)を定義づける統計モデル20(関係式)が構築される。この統計モデルは,故障確率評価部11に伝送され,未故障の個体についての現時点で状態量と合わせて,任意の損傷度が累積した後の故障確率が算定される。このとき同個体については,これまでの損傷度変化が損傷度変化一時保存部9に保存されているため,損傷度変化の傾向から以降の損傷度変化を損傷度変化予測部10において予測し(すなわち損傷度変化と時間経過の関係を定義し),故障確率評価部11において,故障確率変化と時間経過の関係を評価する方式を採用してもよい。 FIG. 2 shows the failure probability of other bearings (individual number 1 in this case) that have not failed since the time when the bearing of individual number n failed during the operation of the system with the configuration of FIG. It is a figure explaining the operation of the system schematically. First, for an individual in which a failure has occurred, data transmission from each sensor is stopped, but when the failure occurs, the state quantity change stored in the state quantity change temporary storage unit 9 and the damage degree change temporary storage unit 8 is triggered. The time-series data of the damage degree change is transmitted to the failure history evaluation unit 12. The details will be described later, but in the failure history evaluation unit 12, when an arbitrary state quantity is observed, a statistical model that defines the probability that a failure will occur (failure probability) from that point to the point when an arbitrary degree of damage is further accumulated. 20 (relational expression) is constructed. This statistical model is transmitted to the failure probability evaluation unit 11, and the failure probability after the accumulation of arbitrary damage degrees is calculated together with the current state quantity of the unfailed individual. At this time, for the same individual, since the damage degree change so far is stored in the damage degree change temporary storage unit 9, the damage degree change prediction unit 10 predicts the subsequent damage degree change from the tendency of the damage degree change ( That is, the relationship between the change in damage degree and the passage of time is defined), and the failure probability evaluation unit 11 may adopt a method of evaluating the relationship between the change in failure probability and the passage of time.

故障確率評価部11において算定される故障確率は,以降の累積損傷度あるいは時間との関係として定義付けられる関数であり,1つの値に定まるものではない。したがって,表示部13においては,図3に示すように現時点以降の損傷度の累積状況または時間の経過に伴った故障確率の変化として,グラフ形式で表示することにより,ユーザーは以降における運用・保守の意思決定を容易に行うことができるようになる。例えば,運転モードを切り替えることが可能な機械システムで,運転モードによって対象への負荷が変化するものであれば,図3に示すように,各運転モードそれぞれで以降の運転を行った際の故障確率変化を表示させれば,保守の時期の決定と併せて運用方針の決定も効率的に支援することが可能となる。 The failure probability calculated by the failure probability evaluation unit 11 is a function defined as a relationship with the subsequent cumulative damage degree or time, and is not fixed to one value. Therefore, as shown in FIG. 3, the display unit 13 displays in a graph format as the cumulative status of the damage degree after the present time or the change in the failure probability with the passage of time, so that the user can operate and maintain it in the subsequent operation and maintenance. You will be able to make decisions easily. For example, in a mechanical system that can switch the operation mode, if the load on the target changes depending on the operation mode, as shown in Fig. 3, a failure occurs when the subsequent operation is performed in each operation mode. By displaying the probability change, it is possible to efficiently support the decision of the operation policy as well as the decision of the maintenance time.

故障確率評価の結果,比較的近い未来に高い故障確率が算出された場合は,結果を表示させるのみならず,対象の制御装置に対して停止命令あるいは縮退運転命令を送信する機能を持たせることが望ましい。故障の直近とならないと状態量変化が検出されたいような対象についてはユーザーの判断を待っていると,早い段階で故障発生につながる可能性がある。その場合は,評価結果に応じてシステムを自動的に停止あるいは縮退運転させるような機能を持たせることで,故障の発生を未然に防止しやすくなる。 If a high failure probability is calculated in the relatively near future as a result of the failure probability evaluation, not only the result should be displayed, but also a function to send a stop command or a degenerate operation command to the target control device should be provided. Is desirable. Waiting for the user's judgment about the target for which the state quantity change should be detected unless it is the latest of the failure may lead to the failure at an early stage. In that case, it is easy to prevent the occurrence of failure by providing a function to automatically stop or degenerate the system according to the evaluation result.

前述した任意の損傷度が蓄積した後の,故障確率を定義づける統計モデルの構築方法について,図4の模式図を用いて説明する。まず,ステップS1として,故障が発生した個体番号nの軸受については,故障に至る直前までの状態量時系列データ19(S=f(t))と損傷度時系列データ18(D=f(t))が保存されている。 The method of constructing a statistical model that defines the failure probability after the above-mentioned arbitrary damage degree is accumulated will be described with reference to the schematic diagram of FIG. First, as step S1, for the bearing with the individual number n in which the failure occurred, the state quantity time series data 19 (S = f (t)) and the damage degree time series data 18 (D = f (D = f (D = f)) up to just before the failure occurred. t)) is saved.

次に,ステップS2として,これら2つの時系列データを故障に至るまでの損傷度増分(ΔD)と状態量の関係X(ΔD =f(St))として関係づける。すなわち,観測された状態量を変数として,故障に至るまでの損傷度増分を関数として表すことと等価である。具体的には,状態量時系列データ19(S=f(t))と損傷度時系列データ18(D=f(t))において,同じ時間t1に記録された状態量と,t1から故障発生するまでの損傷度差分をデータセットとして,故障が発生した個体番号nが故障に至るまでの過程における状態量と損傷度増分の関係を表すデータを生成する。次にこのデータに対して,ある確率分布に従うばらつきを仮定した統計モデリングを行い,統計モデル20を取得する。統計モデリングの手法としては,最も簡易的には正規分布を仮定する最小二乗法を用いてもよいが,確率分布を当てはめるべき損傷度増分は非負の値として定義されるため,正規分布を仮定することは厳密には適当でない。軸受を対象とした発明者らの検討では,非負値の分布として定義されるガンマ分布を確率密度関数(PDF)として採用した一般化線形モデル(GLM)が,比較的よくデータの分布を表現することが分かっている。このとき,GLMのリンク関数には逆数関数を用いることが望ましい。 Next, as step S2, these two time-series data are related as the relationship X (ΔD = f (S t )) between the damage degree increment (ΔD) leading to the failure and the state quantity. In other words, it is equivalent to expressing the increment of damage degree until failure as a function with the observed state quantity as a variable. Specifically, in the state quantity time series data 19 (S = f (t)) and the damage degree time series data 18 (D = f (t)), the status quantity recorded at the same time t1 and the failure from t1. Using the damage degree difference until the occurrence occurs as a data set, data showing the relationship between the state amount and the damage degree increment in the process until the failure occurs is generated for the individual number n in which the failure occurred. Next, statistical modeling is performed on this data assuming variations according to a certain probability distribution, and statistical model 20 is acquired. As the method of statistical modeling, the least squares method that assumes a normal distribution may be used in the simplest way, but since the damage increment to which the probability distribution should be applied is defined as a non-negative value, a normal distribution is assumed. That is not strictly appropriate. In the study of the inventors on bearings, the generalized linear model (GLM), which adopted the gamma distribution defined as the non-negative distribution as the probability density function (PDF), expresses the data distribution relatively well. I know that. At this time, it is desirable to use the reciprocal function for the GLM link function.

故障が発生した個体番号nにおける,故障までの損傷度増分ΔD と,観測された状態量Sの関係が統計モデル20として定義づけられたので,それに基づき,次にステップS3として,故障確率Fと故障までの損傷度増分ΔD の関係を定義づける。故障がまだ発生していない何れかの個体において,ある状態量S1が観測され,それ以降に任意の損傷度ΔDaが増加したことを仮定する。ここで状態量S1における故障までの損傷度増分のPDFをP=f(S1)と表す。このとき損傷度増分ΔDaだけ,以降に損傷度が増加した時点における故障確率Fは,数式1と表される。 Since the relationship between the damage increment ΔD until the failure and the observed state quantity S in the individual number n where the failure occurred was defined as the statistical model 20, the failure probability F and the failure probability F are then set as step S3. Define the relationship of damage increment ΔD until failure. It is assumed that a certain state quantity S1 is observed in any individual that has not yet failed, and that the arbitrary degree of damage ΔD a increases thereafter. Here, the PDF of the damage degree increment until the failure in the state quantity S1 is expressed as P = f (S1). At this time, the failure probability F at the time when the damage degree is increased by the damage degree increment ΔD a is expressed by Equation 1.

Figure 0006879873
Figure 0006879873

これは,統計モデリングによって得られたPDFに対する累積分布関数(CDF)を用いて累積確率を算出することと等価である。すなわち,故障がまだ発生していない個体で観測された任意の状態量Sによって,参照すべきPDFが決定され,次に,以降に増加すると想定する損傷度増分ΔDaを,対応するCDFに代入することで,故障がまだ発生してない個体における故障確率Fを算出することが可能である。したがって,ある状態量Sが観測されたとき,以降の損傷度増分の増加に伴う故障確率Fの変化21は,統計モデルより得られるPDFに対応するCDFそのものに他ならない。 This is equivalent to calculating the cumulative probability using the Cumulative Distribution Function (CDF) for PDF obtained by statistical modeling. That is, the PDF to be referred to is determined by the arbitrary state quantity S observed in the individual in which the failure has not yet occurred, and then the damage degree increment ΔD a, which is assumed to increase thereafter, is substituted into the corresponding CDF. By doing so, it is possible to calculate the failure probability F in an individual in which a failure has not yet occurred. Therefore, when a certain state quantity S is observed, the change 21 of the failure probability F with the subsequent increase in the degree of damage increment is nothing but the CDF itself corresponding to the PDF obtained from the statistical model.

以上の手順により,故障が発生した個体番号nにおける故障までの損傷度増分ΔD と観測された状態量Sの関係である統計モデル20を用いて,類似の環境におかれた,特に同型機械であって,故障がまだ発生していない他の個体で観測された状態量Sに基づき,他の個体ごとに故障確率Fが算出できる。 By the above procedure, using the statistical model 20 which is the relationship between the damage increment ΔD until the failure and the observed state quantity S at the individual number n where the failure occurred, the machine was placed in a similar environment, especially in the same type machine. Therefore, the failure probability F can be calculated for each other individual based on the state quantity S observed in the other individuals for which the failure has not yet occurred.

更に,異なる負荷条件で運転した場合の時間当たりの損傷度ΔDaの関係に基づき,故障確率Fを時間に基づき表すことで,今後異なる負荷条件で運転した場合の故障確率Fの変動を予測することができる。図3の故障確率予測16の表示は,メニュー151で選択した個体番号1の現在の状態量Sに基づき,それぞれ高出力モード,通常モード,縮退モードで運転した場合の運転時間による故障確率Fの変動を表示している。図3の全体状況サマリ17は,個体番号1〜10のそれぞれで選択された運転モードにおける,10日後の故障確率Fを表示している。これにより,ユーザーは以降における運用・保守の意思決定を容易に行うことができるようになる。 Furthermore, by expressing the failure probability F based on the time based on the relationship of the damage degree ΔD a per hour when operating under different load conditions, the fluctuation of the failure probability F when operating under different load conditions is predicted in the future. be able to. The display of the failure probability prediction 16 in FIG. 3 is based on the current state quantity S of the individual number 1 selected in the menu 151, and the failure probability F based on the operation time when operating in the high output mode, the normal mode, and the degenerate mode, respectively. The fluctuation is displayed. The overall situation summary 17 of FIG. 3 displays the failure probability F after 10 days in the operation mode selected for each of the individual numbers 1 to 10. This makes it easier for users to make subsequent operational and maintenance decisions.

実施例1においては,図3に示したように現在から未来に渡る故障確率の変化を表示する方式を採用した。本方式は,運用・保守の意思決定の支援という観点からは有効な方式といえる。しかしながら,図1中の状態評価部6において算出される状態量は,例えば軸受で計測される振動数に基づき算出されるため,大きな傾向変化とは別に,運転状況により短周期の変動が観測される可能性がある。各個体の故障確率Fを算出する前提となる状態量の時間変動が比較的大きい場合には,図3中の故障確率将来予測表示16におけるグラフ全体が過度に頻繁に更新されてしまう可能性がある。その場合には,図5中の故障確率予測履歴表示部22に示すように,故障確率を評価する未来の時点を時間または損傷度増分値で予め固定しておき,故障確率評価結果のこれまでの推移を表示するような形式としてもよい。図5では例えば故障確率予測履歴表示部22で表示する予測時期を,メニュー152で選択できるようにしている。このような表示形式を採用することで,これまでの故障確率評価結果の履歴を容易に確認することができるので,以降の傾向をユーザーが容易に推定することが可能となる。 In the first embodiment, as shown in FIG. 3, a method of displaying the change in the failure probability from the present to the future was adopted. This method can be said to be an effective method from the viewpoint of supporting operation and maintenance decision-making. However, since the state quantity calculated by the state evaluation unit 6 in FIG. 1 is calculated based on, for example, the frequency measured by the bearing, short-period fluctuations are observed depending on the operating conditions, apart from large trend changes. There is a possibility that If the time variation of the state quantity that is the premise for calculating the failure probability F of each individual is relatively large, the entire graph in the failure probability future prediction display 16 in FIG. 3 may be updated excessively frequently. is there. In that case, as shown in the failure probability prediction history display unit 22 in FIG. 5, the future time point for evaluating the failure probability is fixed in advance by the time or the damage degree increment value, and the failure probability evaluation result so far. It may be in a format that displays the transition of. In FIG. 5, for example, the prediction time to be displayed on the failure probability prediction history display unit 22 can be selected from the menu 152. By adopting such a display format, the history of the failure probability evaluation results so far can be easily confirmed, so that the user can easily estimate the subsequent tendency.

実施例1および実施例2においては,同型の機械コンポーネントの故障を契機として,故障に至るまでのデータを統計的に処理することにより,未故障の対象の故障確率を評価した。この手法では,状態量に基づく分析となるため高精度な評価が可能となるが,一方で実際の故障データが得られるまでの間は故障確率を定義することはできない。そこで,対象となる機械コンポーネント群の中でいずれかの故障が発生するまでの間は,背景技術の項で述べたように,図1中の疲労損傷度評価部7で得られる累積疲労損傷度を用いて故障確率を定義してもよい。この期間において,実際に故障した同じ群の他の個体データに基づく予測ほど高い予測精度は期待できないが,故障データが取得できない状態であっても,システム構成を大きく変更せずに故障確率を評価することが可能となる。 In the first and second embodiments, the failure probability of the unfailed target was evaluated by statistically processing the data up to the failure triggered by the failure of the mechanical component of the same type. This method enables highly accurate evaluation because the analysis is based on the state quantity, but on the other hand, the failure probability cannot be defined until the actual failure data is obtained. Therefore, as described in the background technology section, the cumulative fatigue damage degree obtained by the fatigue damage degree evaluation unit 7 in FIG. 1 until any failure occurs in the target mechanical component group. The failure probability may be defined using. During this period, the prediction accuracy cannot be expected to be as high as the prediction based on other individual data of the same group that actually failed, but even if the failure data cannot be acquired, the failure probability is evaluated without significantly changing the system configuration. It becomes possible to do.

また故障履歴評価部12は,故障評価システムとは別体で設けることもできる。その場合,故障が発生した際の故障個体データに基づき故障履歴評価部12で評価用の統計モデルを作成し,故障評価システムに保存しておき,統計モデルに基づき故障確率評価部11が複数の機械コンポーネントを含む機械システムの故障評価を行う。 The failure history evaluation unit 12 can also be provided separately from the failure evaluation system. In that case, the failure history evaluation unit 12 creates a statistical model for evaluation based on the individual failure data when a failure occurs, saves it in the failure evaluation system, and has a plurality of failure probability evaluation units 11 based on the statistical model. Perform failure assessment of mechanical systems including mechanical components.

1. 軸受
2. 加速度センサ
3. ロードセル
4. 回転計
5. A/D変換部
6. 状態評価部
7. 疲労損傷度評価部
8. 状態量変化一時保存部
9. 損傷度変化一時保存部
10. 損傷度変化予測部
11. 故障確率評価部
12. 故障履歴評価部
13. 表示部
14. 制御部
15. 表示部における表示内容
16. 故障確率将来予測表示
17. 故障確率全体状況サマリ
18. 損傷度時系列データ
19. 状態量時系列データ
20. 統計モデル
21. 故障確率予測
22. 故障確率予測履歴表示部
1. Bearing
2. Accelerometer
3. Load cell
4. Tachometer
5. A / D converter
6. Condition evaluation department
7. Fatigue damage evaluation department
8. State quantity change temporary storage unit
9. Damage degree change temporary storage unit
10. Damage degree change prediction unit
11. Failure Probability Evaluation Department
12. Failure history evaluation department
13. Display
14. Control unit
15. Display contents on the display
16. Failure probability future forecast display
17. Summary of overall failure probability
18. Damage degree time series data
19. State quantity time series data
20. Statistical model
21. Failure probability prediction
22. Failure probability prediction history display

Claims (11)

同型の機械コンポーネント群に含まれる複数の機械要素の故障確率を評価するシステムであって,
年変化によって変化する物理量,前記機械要素が受ける荷重や負荷によ変化を表す物理量,若しくは前記機械要素の運転データを基にして前記機械要素の累積疲労損傷度を評価する手段と,
前記累積疲労損傷度と故障確率と余命とを関連付けて前記機械要素の健全性を表す状態量を評価する手段と,
前記状態量および前記累積疲労損傷度を保存する保存部と,
前記複数の機械要素のうち,健全性を表す状態量が低下した機械要素における前記状態量と前記累積疲労損傷度に基づき,前記複数の機械要素のうち健全性を表す状態量が低下していない機械要素の故障確率を算出する故障確率評価部と,
前記複数の機械要素のうち,故障が発生した機械要素における前記状態量と故障発生までの前記累積疲労損傷度の増分の関係を統計的に関係づける故障履歴評価部と、
を有することを特徴とした故障確率評価システム。
It is a system that evaluates the failure probability of multiple machine elements included in the same type of machine component group .
Physical quantity that varies over the year changes, before Symbol physical quantity representing the change that by the load or loads the machine element is subjected, young properly evaluates the cumulative fatigue damage degree of the machine element based on operating data of the machine element Means and
A means for evaluating the state quantity representing the soundness of the machine element by associating the cumulative fatigue damage degree with the failure probability and the remaining life.
A storage unit that stores the state quantity and the cumulative fatigue damage degree,
Among the plurality of machine elements, the state quantity representing the soundness of the plurality of machine elements has not decreased based on the state quantity and the cumulative fatigue damage degree of the machine element having a reduced state quantity indicating the soundness. A failure probability evaluation unit that calculates the failure probability of machine elements, and
Among the plurality of machine elements, a failure history evaluation unit that statistically correlates the relationship between the state quantity of the machine element in which the failure has occurred and the increment of the cumulative fatigue damage degree until the failure occurs.
A failure probability evaluation system characterized by having.
前記保存部は任意の期間の状態量及び累積疲労損傷度を,一時的に保存することを特徴とする一時保存部であることを特徴とする,請求項1に記載の故障確率評価システム。 The failure probability evaluation system according to claim 1, wherein the storage unit is a temporary storage unit that temporarily stores the state quantity and the cumulative fatigue damage degree for an arbitrary period. 前記物理量は荷重若しくはひずみであることを特徴とする,請求項1から請求項のいずれかに記載の故障確率評価システム。 The failure probability evaluation system according to any one of claims 1 to 2 , wherein the physical quantity is a load or a strain. 前記機械要素は同型の軸受であることを特徴とする,請求項1から請求項のいずれかに記載の故障確率評価システム。 The failure probability evaluation system according to any one of claims 1 to 3 , wherein the mechanical element is a bearing of the same type. 前記累積疲労損傷度を評価する手段は,線形累積損傷則に基づいて疲労損傷度を算出することを特徴とした請求項1から請求項のいずれかに記載の故障確率評価システム。 The failure probability evaluation system according to any one of claims 1 to 4 , wherein the means for evaluating the cumulative fatigue damage degree is to calculate the fatigue damage degree based on the linear cumulative damage rule. 前記状態量を評価する手段において,複数種類の前記物理量に基づいて状態量を算出することを特徴とした,請求項1から請求項のいずれかに記載の故障確率評価システム。 In means for evaluating the quantity of state, and characterized by calculating a state quantity on the basis of the physical quantity of a plurality of types, failure probability evaluation system according to any one of claims 1 to 5. 前記故障履歴評価部は,前記健全性を表す状態量が低下した機械要素の前記状態量及び疲労損傷度の時系列データを用いて,故障発生までの前記疲労損傷度の増分を関数とし,前記状態量を変数とした統計モデルを生成し,前記統計モデルにおける前記疲労損傷度の増分のばらつきを表す確率密度関数に対応する累積分布関数を算出することを特徴とした請求項に記載の故障確率評価システム。 The failure history evaluation unit uses the time-series data of the state amount and the fatigue damage degree of the mechanical element whose state amount indicating the soundness has decreased, and uses the increment of the fatigue damage degree until the failure occurs as a function. generating a statistical model in which the state quantity as a variable, a fault of claim 1 that has been characterized for calculating the cumulative distribution function corresponding to the probability density function representing the variation of the fatigue damage of the increment in the statistical model Probability evaluation system. 前記統計モデルは一般化線形モデルであることを特徴とした請求項に記載の故障確率評価システム。 The failure probability evaluation system according to claim 7 , wherein the statistical model is a generalized linear model. 前記確率密度関数はガンマ分布を用いることを特徴とした請求項または請求項のいずれかに記載の故障確率評価システム。 Failure probability evaluation system according to any of the probability density function according to claim 7 or claim 8 characterized by using a gamma distribution. 前記故障確率評価部によって算出された前記複数の機械要素のうちいずれか一つ以上についての故障確率と,将来想定される疲労損傷度の増分または時間の関係を,グラフとして表示する機能を備えた表示部を有することを特徴とした請求項1から請求項のいずれかに記載の故障確率評価システム。 It has a function to display as a graph the relationship between the failure probability for any one or more of the plurality of machine elements calculated by the failure probability evaluation unit and the increment or time of the fatigue damage degree expected in the future. The failure probability evaluation system according to any one of claims 1 to 9 , characterized in that it has a display unit. 前記故障確率評価部によって算出された前記複数の機械要素のうちいずれか一つ以上についての故障確率のうち,将来想定される疲労損傷度の増分または時間によって決定される未来における少なくとも1つの状態について評価された故障確率について,現時点までの予測値と前記疲労損傷度または時間の関係をグラフとして表示する表示部を有することを特徴とした請求項1から請求項のいずれかに記載の故障確率評価システム。 Of the failure probabilities for any one or more of the plurality of machine elements calculated by the failure probability evaluation unit, at least one state in the future determined by the increment or time of the fatigue damage degree assumed in the future. The failure probability according to any one of claims 1 to 9 , wherein the evaluated failure probability has a display unit that displays the relationship between the predicted value up to the present time and the fatigue damage degree or time as a graph. Evaluation system.
JP2017172652A 2017-09-08 2017-09-08 Failure probability evaluation system Active JP6879873B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017172652A JP6879873B2 (en) 2017-09-08 2017-09-08 Failure probability evaluation system
PCT/JP2018/012683 WO2019049406A1 (en) 2017-09-08 2018-03-28 Failure probability evaluation system
TW107131227A TWI683058B (en) 2017-09-08 2018-09-06 Failure probability assessment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172652A JP6879873B2 (en) 2017-09-08 2017-09-08 Failure probability evaluation system

Publications (2)

Publication Number Publication Date
JP2019049419A JP2019049419A (en) 2019-03-28
JP6879873B2 true JP6879873B2 (en) 2021-06-02

Family

ID=65634965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172652A Active JP6879873B2 (en) 2017-09-08 2017-09-08 Failure probability evaluation system

Country Status (3)

Country Link
JP (1) JP6879873B2 (en)
TW (1) TWI683058B (en)
WO (1) WO2019049406A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879873B2 (en) * 2017-09-08 2021-06-02 株式会社日立製作所 Failure probability evaluation system
US11814818B2 (en) 2019-09-30 2023-11-14 Hitachi Construction Machinery Co., Ltd. Fatigue management system
JP7437907B2 (en) * 2019-10-24 2024-02-26 株式会社日立製作所 Soundness evaluation device, soundness evaluation system, and soundness evaluation method
CN110926784B (en) * 2019-12-10 2021-07-27 上海欧秒电力监测设备有限公司 GIS circuit breaker fault on-line monitoring device based on sound
KR102348387B1 (en) * 2020-05-18 2022-01-06 한국항공대학교산학협력단 Rotating body health evaluation system and method thereof
CN111881603B (en) * 2020-07-17 2023-04-14 北京理工大学 Mechanical structure fatigue reliability assessment method considering failure correlation
US11952149B2 (en) * 2020-09-17 2024-04-09 General Electric Company System and method of forecasting aircraft engine operational data for predictive analytics
JP2022053036A (en) * 2020-09-24 2022-04-05 国立大学法人大阪大学 Degradation-status prediction system and degradation-status prediction method
KR102666166B1 (en) 2021-03-31 2024-05-14 한국철도기술연구원 Diagnostic method for bearing faults
EP4170157A1 (en) * 2021-10-22 2023-04-26 General Electric Renovables España S.L. System and method for learning-based predictive fault detection and avoidance for wind turbines
CN115293296B (en) * 2022-09-28 2022-12-20 中国人民解放军海军工程大学 Mechanical equipment fault positioning optimization method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366397A (en) * 2001-06-06 2002-12-20 Omron Corp Method, device, and system for determining maintenance time
JP5025676B2 (en) * 2009-03-25 2012-09-12 株式会社東芝 Monitoring device and monitoring method
JP5439357B2 (en) * 2010-12-28 2014-03-12 三菱重工業株式会社 Construction time selection device and construction time selection method
JP5827598B2 (en) * 2012-06-06 2015-12-02 株式会社日立製作所 Failure probability calculating device, failure probability calculating method, and railway maintenance system
US9683913B2 (en) * 2014-07-23 2017-06-20 The Boeing Company System and method for evaluating remaining life of an operative sub-system of a vehicle
JP6879873B2 (en) * 2017-09-08 2021-06-02 株式会社日立製作所 Failure probability evaluation system

Also Published As

Publication number Publication date
TWI683058B (en) 2020-01-21
TW201912930A (en) 2019-04-01
JP2019049419A (en) 2019-03-28
WO2019049406A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6879873B2 (en) Failure probability evaluation system
US10527520B2 (en) Operating wind motors and determining their remaining useful life
JP6524336B2 (en) Remaining life evaluation device and method, wind power generation system
JP6430596B2 (en) Equipment control based on failure judgment
JP4832609B1 (en) Abnormal sign diagnosis device and abnormality sign diagnosis method
US20110106510A1 (en) Methods, apparatus and computer readable storage mediums for model-based diagnosis
CN101835974B (en) Method for determining fatigue damage in a power train of a wind turbine
EP2384971B1 (en) Method of determining a maneuver performed by an aircraft
KR102073323B1 (en) AI Structure Integrity Management System
KR20160017681A (en) System and method for managing wind plant
US10612996B2 (en) Structural state evaluation system for smart structure using multi-sensing
US20170261406A1 (en) Physical component fault diagnostics
US10677765B2 (en) Structural health monitoring of cyclically loaded structures
JP6315836B2 (en) Windmill monitoring device, windmill monitoring method, and windmill monitoring program
WO2016195092A1 (en) Anomaly sensing device
Iliopoulos et al. Continuous fatigue assessment of an offshore wind turbine using a limited number of vibration sensors
JP6664776B1 (en) Abnormality determination method and abnormality determination system for structure
JP6720101B2 (en) Aircraft management device, method and program
JP6742014B1 (en) Abnormality discrimination method for structure and abnormality discrimination system
NO345180B1 (en) Fatigue mapping process of physical asset
EP2946257A1 (en) Adjusted operating time of a component in a wind turbine
JP2017101596A (en) Diagnosis vehicle for wind power generator and diagnosis system with diagnosis vehicle
KR20230073587A (en) System and method for predicting operating safety of power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6879873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150