JP6872694B2 - Plate fin laminated heat exchanger and refrigeration system using it - Google Patents

Plate fin laminated heat exchanger and refrigeration system using it Download PDF

Info

Publication number
JP6872694B2
JP6872694B2 JP2019080596A JP2019080596A JP6872694B2 JP 6872694 B2 JP6872694 B2 JP 6872694B2 JP 2019080596 A JP2019080596 A JP 2019080596A JP 2019080596 A JP2019080596 A JP 2019080596A JP 6872694 B2 JP6872694 B2 JP 6872694B2
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
heat transfer
plate fin
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019080596A
Other languages
Japanese (ja)
Other versions
JP2020176791A (en
Inventor
拓也 奥村
拓也 奥村
一彦 丸本
一彦 丸本
憲昭 山本
憲昭 山本
健二 名越
健二 名越
崇裕 大城
崇裕 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019080596A priority Critical patent/JP6872694B2/en
Priority to CN202080004008.9A priority patent/CN112424544B/en
Priority to PCT/JP2020/003932 priority patent/WO2020217631A1/en
Publication of JP2020176791A publication Critical patent/JP2020176791A/en
Application granted granted Critical
Publication of JP6872694B2 publication Critical patent/JP6872694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明はプレートフィン積層型熱交換器とそれを用いた冷凍システムに関する。 The present invention relates to a plate fin laminated heat exchanger and a refrigerating system using the same.

一般に空気調和機や冷凍機等の冷凍システムは、圧縮機によって圧縮した冷媒を凝縮器や蒸発器等の熱交換器に循環させ第2流体と熱交換させて冷房もしくは暖房を行うが、前記熱交換器の熱交換効率によってシステムとしての性能や省エネ性が大きく左右される。従って、熱交換器は高効率化が強く求められている。 Generally, in a refrigerating system such as an air conditioner or a refrigerator, a refrigerant compressed by a compressor is circulated to a heat exchanger such as a condenser or an evaporator to exchange heat with a second fluid for cooling or heating. The heat exchange efficiency of the exchanger greatly affects the performance and energy saving of the system. Therefore, heat exchangers are strongly required to have high efficiency.

このような中にあって、空気調和機や冷凍機等の冷凍システムの熱交換器は、一般的には、フィン群に伝熱管を貫通させて構成したフィンチューブ型熱交換器が用いられており、伝熱管の細径化を図って熱交換効率の向上及び小型化が進められている。 Under such circumstances, as the heat exchanger of a refrigeration system such as an air conditioner or a refrigerator, a fin tube type heat exchanger configured by penetrating a heat transfer tube through a fin group is generally used. Therefore, the heat exchange efficiency is being improved and the size is being reduced by reducing the diameter of the heat transfer tube.

しかしながら、上記伝熱管の細径化には限度があるため、熱交換効率の向上及び小型化は限界に近づきつつある。 However, since there is a limit to the reduction in diameter of the heat transfer tube, improvement of heat exchange efficiency and miniaturization are approaching the limit.

一方、熱エネルギーを交換するために使用される熱交換器の中には、流路を有するプレートフィンを積層して構成したプレートフィン積層型熱交換器が知られている。 On the other hand, among the heat exchangers used for exchanging heat energy, a plate fin laminated heat exchanger formed by laminating plate fins having a flow path is known.

このプレートフィン積層型熱交換器は、プレートフィンに形成された流路を流れる冷媒と、積層されたプレートフィの間を流れる第2流体との間で熱交換を行うもので、冷媒量が少なく冷媒圧が低い車両用の空気調和機において使用されている(特許文献1参照)。 This plate fin laminated heat exchanger exchanges heat between the refrigerant flowing through the flow path formed in the plate fins and the second fluid flowing between the laminated plate fins, and the amount of refrigerant is small. It is used in an air conditioner for vehicles having a low refrigerant pressure (see Patent Document 1).

図11、図12は上記特許文献1記載のプレートフィン積層型熱交換器を示し、この熱交換器100は、冷媒が流れる伝熱流路101(図12参照)を有する多数のプレートフィン102を積層したプレートフィン積層体103の両側端面にエンドプレート104を積層配置し、前記伝熱流路101の左右両端部に流入側ヘッダ流路105及び流出側ヘッダ流路106を形成して構成している。 11 and 12 show the plate fin laminated heat exchanger described in Patent Document 1, and the heat exchanger 100 is laminated with a large number of plate fins 102 having a heat transfer flow path 101 (see FIG. 12) through which a refrigerant flows. The end plates 104 are laminated on both end faces of the plate fin laminated body 103, and the inflow side header flow path 105 and the outflow side header flow path 106 are formed at both left and right ends of the heat transfer flow path 101.

実用新案登録第3192719号公報Utility Model Registration No. 3192719

上記特許文献1記載のプレートフィン積層型熱交換器は、プレートフィン102に凹溝をプレス成形して伝熱流路101を形成しているので、当該伝熱流路101の断面積をフィンチューブ型の伝熱管に比べさらに小さくでき、熱交換効率を高め小型化することができる。 In the plate fin laminated heat exchanger described in Patent Document 1, since the heat transfer flow path 101 is formed by press-molding a concave groove in the plate fin 102, the cross-sectional area of the heat transfer flow path 101 is of the fin tube type. It can be made smaller than the heat transfer tube, and the heat exchange efficiency can be improved and the size can be reduced.

しかしながら、上記プレートフィン積層型熱交換器は、ヘッダ流路105,106の面積が各流路101の面積に比べ極端に大きいため、前記ヘッダ流路105,106部分の冷媒の圧力が大きなものとなってエンドプレート102のヘッダ流路105,106を有する部分(図10ではXで示すプレートフィン積層型熱交換器の上下部分)が外方に膨張変形するという傾向がみられる。 However, in the plate fin laminated heat exchanger, the area of the header flow paths 105 and 106 is extremely large compared to the area of each flow path 101, so that the pressure of the refrigerant in the header flow paths 105 and 106 is large. Therefore, there is a tendency that the portions of the end plate 102 having the header flow paths 105 and 106 (the upper and lower portions of the plate fin laminated heat exchanger shown by X in FIG. 10) expand and deform outward.

そこで出願人は図13に示すようにヘッダ流路部分での膨張変形を防止すべくエンドプレート102の少なくとも前記ヘッダ流路が設けられている部分に当該部分が外方へ膨張変形するのを抑制する膨張変形抑制手段107を設けることを提案している。 Therefore, as shown in FIG. 13, in order to prevent expansion and deformation in the header flow path portion, the applicant suppresses expansion and deformation of the portion of the end plate 102 at least in the portion where the header flow path is provided. It is proposed to provide the expansion / deformation suppressing means 107.

これにより、冷媒の流量が多く圧力の高い熱交換器であっても、ヘッダ流路領域部分での外方への膨張変形を抑制し、ヘッダ流路領域部分での変形問題は解消することができた。 As a result, even in a heat exchanger having a large flow rate of refrigerant and high pressure, outward expansion deformation in the header flow path region portion can be suppressed, and the deformation problem in the header flow path region portion can be solved. did it.

また、出願人は図14に示すようにプレートフィン102のヘッダ流路105,106との間に設ける伝熱流路101を複数に分岐して熱交換性能を高めることも提案している。 The applicant also proposes to improve the heat exchange performance by branching the heat transfer flow path 101 provided between the header flow paths 105 and 106 of the plate fin 102 into a plurality of parts as shown in FIG.

しかしながら、伝熱流路101を複数に分岐した場合、長期間使用していると、ガス冷媒側のヘッダ流路106と分岐した各伝熱流路101とを繋ぐ連絡流路108部分で変形が生じる等、耐圧性に問題があることがわかってきた。 However, when the heat transfer flow path 101 is branched into a plurality of branches, if it is used for a long period of time, deformation occurs in the connecting flow path 108 portion connecting the header flow path 106 on the gas refrigerant side and each of the branched heat transfer flow paths 101. , It has become clear that there is a problem with pressure resistance.

すなわち、上記ガス冷媒が流れる連絡流路108は圧損低下等の観点からその断面積はガス冷媒側の各伝熱流路101を合わせた総断面積よりも大きく形成している。そのため、連絡流路108に流れる冷媒は各伝熱流路101を流れる冷媒の伝熱流路本数分以上とかなり多く流れることになる。したがって、連絡流路108部分では断面積が大きくなって広くなった外壁面全域に大量の冷媒による大きな圧力がかかり続ける。そのため、長期間使用しているうちに前記連絡流路108部分は、その壁面に加わり続けている圧力に耐えきれずに変形が始まる、ということがわかってきた。 That is, the cross-sectional area of the connecting flow path 108 through which the gas refrigerant flows is formed to be larger than the total cross-sectional area of the heat transfer flow paths 101 on the gas refrigerant side from the viewpoint of reducing pressure loss and the like. Therefore, the refrigerant flowing in the connecting flow path 108 flows in a considerably large amount, which is equal to or more than the number of heat transfer channels of the refrigerant flowing in each heat transfer flow path 101. Therefore, in the connecting flow path 108 portion, a large pressure due to a large amount of refrigerant continues to be applied to the entire outer wall surface where the cross-sectional area becomes large and wide. Therefore, it has been found that the connecting flow path 108 portion cannot withstand the pressure continuously applied to the wall surface and starts to be deformed after being used for a long period of time.

本発明はこのような点に鑑みてなしたもので、連絡流路部分の変形を防止することによって信頼性を向上させたプレートフィン積層型熱交換器とそれを用いた冷凍システムを提供することにある。 The present invention has been made in view of these points, and provides a plate fin laminated heat exchanger with improved reliability by preventing deformation of the connecting flow path portion and a freezing system using the same. It is in.

本発明は、上記目的を達成するため、その熱交換器は、第1流体が流れる流路を有するプレートフィン積層体の各プレートフィン積層間に第2流体を流して、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体のプレートフィンは、前記第1流体が並行に流れる複数の伝熱流路を有する流路領域と、前記流路領域の各伝熱流路に連通する入口側のヘッダ流路及び出口側のヘッダ流路を有したヘッダ領域と、を備えるとともに、前記伝熱流路は前記プレートフィンに凹状溝を設けて形成し、かつ、前記出口側のヘッダ流路と複数の伝熱流路とを結ぶ連絡流路の断面積は前記複数の伝熱流路を合わせた流路合計総断面積以下とした構成としている。 In order to achieve the above object, the heat exchanger causes the second fluid to flow between the plate fin laminates of the plate fin laminate having the flow path through which the first fluid flows, and the first fluid and the above. A heat exchanger that exchanges heat with a second fluid, the plate fins of the plate fin laminate have a flow path region having a plurality of heat transfer channels through which the first fluid flows in parallel, and the flow path. A header region having an inlet side header flow path and an outlet side header flow path communicating with each heat transfer flow path of the region is provided, and the heat transfer flow path is formed by providing a concave groove in the plate fin. Further, the cross-sectional area of the connecting flow path connecting the header flow path on the outlet side and the plurality of heat transfer flow paths is set to be equal to or less than the total cross-sectional area of the total flow path including the plurality of heat transfer flow paths.

これにより、ヘッダ流路と伝熱流路群とを結ぶ連絡流路に掛かる第1流体の圧力は小さなものとなって耐圧性能を向上させることができ、長期間使用していても連絡流路部分での変形を防止することができる。 As a result, the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the heat transfer flow path group becomes small, and the pressure resistance performance can be improved, and the connecting flow path portion can be used for a long period of time. It is possible to prevent deformation at.

本発明は、上記構成により、連絡流路部分での変形を防止して信頼性の高いプレートフィン積層型熱交換器とそれを用いた冷凍システムを提供することができる。 According to the above configuration, the present invention can provide a highly reliable plate fin laminated heat exchanger by preventing deformation in the connecting flow path portion and a freezing system using the same.

本発明の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図A perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present invention. 同プレートフィン積層型熱交換器の分解斜視図An exploded perspective view of the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器のプレートとエンドプレートを示す分解斜視図An exploded perspective view showing the plate and end plate of the plate fin laminated heat exchanger. (a)(b)同プレートフィン積層型熱交換器の各プレートを示す平面図(A) (b) Plan view showing each plate of the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器におけるプレートフィンの積層状態を示す分解斜視図An exploded perspective view showing a laminated state of plate fins in the plate fin laminated heat exchanger. 同プレートフィン積層型熱交換器におけるプレートフィンの積層斜視図Laminated perspective view of plate fins in the same plate fin laminated heat exchanger 図6のA−A線断面図Sectional view taken along line AA of FIG. 本発明の実施の形態1におけるプレートフィン積層型熱交換器の変形例を示す分解斜視図An exploded perspective view showing a modified example of the plate fin laminated heat exchanger according to the first embodiment of the present invention. 本発明のプレート積層型熱交換器を用いた実施の形態2における空気調和機の冷凍サイクル図The refrigerating cycle diagram of the air conditioner according to the second embodiment using the plate laminated heat exchanger of the present invention. 同空気調和機の概略断面図Schematic cross-sectional view of the air conditioner 従来のプレートフィン積層型熱交換器の断面図Cross-sectional view of a conventional plate fin laminated heat exchanger 同従来のプレートフィン積層型熱交換器におけるプレートフィンの平面図Top view of plate fins in the conventional plate fin laminated heat exchanger 本出願人が提案するプレートフィン積層型熱交換器の外観を示す斜視図Perspective view showing the appearance of the plate fin laminated heat exchanger proposed by the applicant. 同本出願人が提案するプレートフィンの平面図Plan view of plate fins proposed by the applicant

第1の発明は、熱交換器であり、この熱交換器は、第1流体が流れる流路を有するプレートフィン積層体の各プレートフィン積層間に第2流体を流して、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体のプレートフィンは、前記第1流体が並行に流れる複数の伝熱流路を有する流路領域と、前記流路領域の各伝熱流路に連通する入口側のヘッダ流路及び出口側のヘッダ流路を有したヘッダ領域と、を備えるとともに、前記伝熱流路は前記プレートフィンに凹状溝を設けて形成し、かつ、前記出口側のヘッダ流路と前記複数の伝熱流路とを結ぶ連絡流路の断面積は前記複数の伝熱流路を合わせた流路合計総断面積以下とした構成としている。 The first invention is a heat exchanger, in which a second fluid is allowed to flow between each plate fin laminate of a plate fin laminate having a flow path through which the first fluid flows, and the first fluid and the first fluid. A heat exchanger that exchanges heat with the second fluid, the plate fins of the plate fin laminate have a flow path region having a plurality of heat transfer channels through which the first fluid flows in parallel, and the flow. A header area having an inlet side header flow path and an outlet side header flow path communicating with each heat transfer flow path in the path region is provided, and the heat transfer flow path is formed by providing a concave groove in the plate fin. In addition, the cross-sectional area of the connecting flow path connecting the header flow path on the outlet side and the plurality of heat transfer flow paths is set to be equal to or less than the total cross-sectional area of the total flow path including the plurality of heat transfer flow paths.

これにより、ヘッダ流路と伝熱流路群とを結ぶ連絡流路に掛かる第1流体の圧力は小さなものとなって耐圧性能を向上させることができ、長期間使用していても連絡流路部分での変形を防止することができる。 As a result, the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the heat transfer flow path group becomes small, and the pressure resistance performance can be improved, and the connecting flow path portion can be used for a long period of time. It is possible to prevent deformation at.

第2の発明は、第1の発明において、前記連絡流路の断面積は複数の伝熱流路の少なくとも1本の流路断面積以下とした構成としている。 In the second invention, in the first invention, the cross-sectional area of the connecting flow path is set to be equal to or less than the cross-sectional area of at least one flow path of the plurality of heat transfer flow paths.

これにより、連絡流路はその壁面の表面積を伝熱流路の壁面表面積レベルまで抑えて当該連絡流路部分に掛かる第1流体からの圧力を大幅に低下させ、その変形をより確実に防止でき、信頼性を大きく向上させることができる。 As a result, the surface area of the wall surface of the connecting flow path can be suppressed to the level of the surface area of the wall surface of the heat transfer flow path, the pressure from the first fluid applied to the connecting flow path portion can be significantly reduced, and the deformation can be prevented more reliably. The reliability can be greatly improved.

第3の発明は、第1の発明において、前記連絡流路の断面積は3m以下とした構成としている。 In the third invention, in the first invention, the cross-sectional area of the connecting flow path is 3 m 2 or less.

これにより、連絡流路の壁面に掛かる冷媒等の第1流体の圧力を家庭用及び業務用エアコンに規定されている圧力以下に抑えることができ、家庭用及び業務用エアコン等の第1流体となる冷媒量が多く圧力も高い機器であっても連絡流路部分の変形を確実に防止して信頼性の高い熱交換器とすることができる。 As a result, the pressure of the first fluid such as the refrigerant applied to the wall surface of the connecting flow path can be suppressed to the pressure specified for the household and commercial air conditioners or less, and the pressure of the first fluid such as the household and commercial air conditioners can be suppressed. Even if the equipment has a large amount of refrigerant and a high pressure, it is possible to reliably prevent deformation of the connecting flow path portion and obtain a highly reliable heat exchanger.

第4の発明は冷凍システムであり、この冷凍システムは冷凍サイクルを構成する熱交換器を前記第1〜第3の発明のいずれかに記載のプレートフィン積層型熱交換器としたものである。 A fourth invention is a freezing system, in which the heat exchanger constituting the freezing cycle is a plate fin laminated heat exchanger according to any one of the first to third inventions.

これにより、この冷凍システムは、プレートフィン積層型熱交換器の特徴である小型、高性能効果を生かしつつ信頼性の高い冷凍システムとすることができる。 As a result, this refrigeration system can be made into a highly reliable refrigeration system while taking advantage of the small size and high performance effect that are the characteristics of the plate fin laminated heat exchanger.

以下、本発明の実施の形態について、添付の図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

なお、本開示の熱交換器は、以下の実施の形態に記載したプレートフィン積層型熱交換器の構成に限定されるものではなく、以下の実施の形態において説明する技術的思想と同等の熱交換器の構成を含むものである。 The heat exchanger of the present disclosure is not limited to the configuration of the plate fin laminated heat exchanger described in the following embodiments, and has the same heat as the technical idea described in the following embodiments. It includes the configuration of the exchanger.

(実施の形態1)
図1は本発明の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図、図2はプレートフィン積層型熱交換器の分解斜視図、図3はプレートフィン積層型熱交換器のプレートとエンドプレートを示す分解斜視図、図4(a)(b)はプレートフィン積層型熱交換器の各プレートを示す平面図、図5はプレートフィン積層型熱交換器におけるプレートフィンの積層状態を示す分解斜視図、図6はプレートフィン積層型熱交換器におけるプレートフィンの積層斜視図、図7は図6のA−A線断面図である。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present invention, FIG. 2 is an exploded perspective view of the plate fin laminated heat exchanger, and FIG. 3 is a plate fin laminated heat exchanger. 4 (a) and 4 (b) are plan views showing each plate of the plate fin laminated heat exchanger, and FIG. 5 is a laminated plate fin in the plate fin laminated heat exchanger. An exploded perspective view showing a state, FIG. 6 is a laminated perspective view of plate fins in a plate fin laminated heat exchanger, and FIG. 7 is a sectional view taken along line AA of FIG.

図1、図2に示すように、本実施の形態の熱交換器1は、略弓型形状のプレートフィン積層体2の両側に平面視が略同一形状のエンドプレート3a、3bを接合一体化して構成している。そして、略弓型形状の一端部側に、蒸発器として用いる場合には入口となり凝縮器として用いる場合は出口となる管A4及びその逆となる管B5とを有している。 As shown in FIGS. 1 and 2, in the heat exchanger 1 of the present embodiment, end plates 3a and 3b having substantially the same plan view are joined and integrated on both sides of a substantially bow-shaped plate fin laminate 2. It is composed of. A tube A4, which serves as an inlet when used as an evaporator and an outlet when used as a condenser, and a tube B5 which vice versa are provided on one end side of a substantially bow-shaped shape.

上記プレートフィン積層体2の両側のエンドプレート3a、3bは、プレートフィン積層体2を挟持した形でロー付けされ、ボルト・ナット若しくはカシメピン軸等の締結手段9によりその長手方向両端部を連結固定し、熱交換器としての剛性を保持している。 The end plates 3a and 3b on both sides of the plate fin laminate 2 are brazed so as to sandwich the plate fin laminate 2, and both ends in the longitudinal direction are connected and fixed by fastening means 9 such as bolts, nuts or caulking pin shafts. However, it retains the rigidity as a heat exchanger.

また、プレートフィン積層体2を構成するプレートフィン2aは、図4に示す一対のプレート6a、6bをロー付け等により接合して冷媒等の第1流体(以下、冷媒と称する)が流れる伝熱流路を有する流路領域と流路領域の各伝熱流路に連通する入口側及び出口側のヘッダ流路を有したヘッダ領域とを備えた構成としてあり、図6に示すように多数積層して各プレートフィン2a同士の間に空気等の第2流体(以下、空気と称する)が流れる積層間隔を形成している。そして、上記プレートフィン2aに設けた前記伝熱流路を流れる冷媒と各プレートフィン2a同士の間の積層間隙を流れる空気との間で熱交換する。 Further, the plate fins 2a constituting the plate fin laminate 2 are a heat transfer flow in which a first fluid such as a refrigerant (hereinafter referred to as a refrigerant) flows by joining the pair of plates 6a and 6b shown in FIG. 4 by brazing or the like. The configuration includes a flow path region having a path and a header area having header flow paths on the inlet side and the outlet side communicating with each heat transfer flow path in the flow path region, and a large number of them are stacked as shown in FIG. A stacking interval is formed between the plate fins 2a through which a second fluid such as air (hereinafter referred to as air) flows. Then, heat is exchanged between the refrigerant flowing through the heat transfer flow path provided in the plate fins 2a and the air flowing through the stacking gap between the plate fins 2a.

上記プレートフィン2aを構成する一対のプレート6a、6bは、図5に示すように、その一方のプレート6aに、管A4及び管B5に繋がるヘッダ流路A8およびヘッダ流路B10となる開口8a,10a及びその開口縁に設けたリング状凹溝8b,10bと、リング状凹溝8b,10bより導出した連絡流路用凹溝11aと、連絡流路用凹溝11aの端部に設けた分流路用凹溝12aと、分流路用凹溝12aより分岐形成した複数の略U字状に並行した流路形成用凹溝14aが設けてある。 As shown in FIG. 5, the pair of plates 6a and 6b constituting the plate fins 2a have an opening 8a, which serves as a header flow path A8 and a header flow path B10 connected to the pipe A4 and the pipe B5 in one of the plates 6a. Ring-shaped concave grooves 8b and 10b provided at 10a and its opening edge, connecting flow path concave grooves 11a derived from ring-shaped concave grooves 8b and 10b, and diversion provided at the end of the connecting flow path concave groove 11a. A concave groove 12a for a road and a plurality of concave grooves 14a for forming a flow path that are branched and formed from the concave groove 12a for a branch flow path and are parallel to each other in a substantially U shape are provided.

一方、他方のプレート6bには、ヘッダ流路A8およびヘッダ流路B10となる開口8c,10c及びその開口縁に設けたリング状凹溝8d,10dと、前記プレート6aの連絡流路用凹溝11aの端部と対向する部分に位置する分流路用凹溝12bと、分流路用凹溝12bより分岐形成した複数の略U字状に並行した流路形成用凹溝14bとが設けてある。 On the other hand, the other plate 6b has openings 8c and 10c serving as header flow paths A8 and header flow paths B10, ring-shaped concave grooves 8d and 10d provided at the openings edges thereof, and concave grooves for connecting flow paths of the plate 6a. A groove 12b for branch flow path located at a portion facing the end portion of 11a and a plurality of concave grooves 14b for forming a flow path that are branched and formed from the concave groove 12b for branch flow path and are parallel to each other in a substantially U shape are provided. ..

そして、上記一対のプレート6a、6bは、上記開口8a,10aと8c,10c及びその開口縁に設けたリング状凹溝8b,10bと8d,10d同士、及び分流路用凹溝12aと12b及び流路形成用凹溝14aと14b同士がそれぞれ合致するようにしてロー付け等により接合し、開口8a,10a,8c,10c及びその開口縁のリング状凹溝8b,10b,8d,10d部分でヘッダ流路A8およびヘッダ流路B10を形成し、連絡流路用凹溝11aで連絡流路11を形成し、分流路用凹溝12a,12bと流路形成用凹溝14a,14b同士で分流路12と伝熱流路14を形成している。 The pair of plates 6a and 6b are formed by the ring-shaped concave grooves 8b, 10b and 8d, 10d provided at the openings 8a, 10a and 8c, 10c and the opening edges thereof, and the groove 12a and 12b for the branch flow path. The groove 14a and 14b for forming a flow path are joined by brazing so as to match each other, and at the openings 8a, 10a, 8c, 10c and the ring-shaped concave grooves 8b, 10b, 8d, 10d at the opening edge. The header flow path A8 and the header flow path B10 are formed, the connecting flow path 11 is formed by the connecting flow path concave groove 11a, and the diversion flow path concave grooves 12a and 12b and the flow path forming concave grooves 14a and 14b are separated from each other. The path 12 and the heat transfer flow path 14 are formed.

なお、上記伝熱流路14は、図4のプレートフィン全体図に示すように、プレートフィン2aの外形と同様略弓型に屈曲させたうえUターンする形状としてあり、図5、図6に示すように、ヘッダ流路A8に繋がりガス冷媒が流れる側となる2本の伝熱往き流路14−1群とヘッダ流路B10に繋がり液冷媒が流れる側となる6本の伝熱戻り流路14−2群との間にこれら両者間の熱移動を防止する断熱スリット16が形成している。 As shown in the overall view of the plate fins of FIG. 4, the heat transfer flow path 14 has a shape that is bent in a substantially bow shape and then makes a U-turn, similar to the outer shape of the plate fins 2a, and is shown in FIGS. 5 and 6. As described above, the two heat transfer flow paths 14-1 group connected to the header flow path A8 and on the side where the gas refrigerant flows, and the six heat transfer return flow paths connected to the header flow path B10 on the side where the liquid refrigerant flows. A heat insulating slit 16 is formed between the group 14-2 and the group 14-2 to prevent heat transfer between the two groups.

そして、上記構成のプレートフィン積層体2のプレートフィン2aは、当該プレートフィン2aの長手方向に沿って適宜設けた複数の突起15(図4参照)によって伝熱流路14同士の間に空気が流れる積層間隔T1(図7参照)を形成している。 Then, in the plate fins 2a of the plate fin laminate 2 having the above configuration, air flows between the heat transfer flow paths 14 by a plurality of protrusions 15 (see FIG. 4) appropriately provided along the longitudinal direction of the plate fins 2a. A stacking interval T1 (see FIG. 7) is formed.

また、上記連絡流路11同士間にも間隔T2を形成しており、この間隔T2を介しても空気が流れるようにして熱交換効率を高めている。 Further, an interval T2 is also formed between the connecting flow paths 11, and air flows through the interval T2 to improve the heat exchange efficiency.

ここで、上記ガス冷媒が流れる側の連絡流路11は前記各伝熱流路14を合わせた流路合計総断面積、ここではガス冷媒が流れる側となる6本の伝熱戻り流路14−2群の各伝熱流路を合わせた流路合計総断面積以下の断面積となるように形成している。特に本実施の形態では連絡流路11の断面積は伝熱戻り流路14−2群の伝熱流路1本の断面積以下に設定している。 Here, the connecting flow path 11 on the side through which the gas refrigerant flows is the total cross-sectional area of the flow paths including the heat transfer flow paths 14, and here, the six heat transfer return flow paths 14 on the side through which the gas refrigerant flows. It is formed so that the total cross-sectional area of each of the two groups of heat transfer channels is equal to or less than the total cross-sectional area of the flow paths combined. In particular, in the present embodiment, the cross-sectional area of the connecting flow path 11 is set to be equal to or less than the cross-sectional area of one heat transfer flow path of the heat transfer return flow path 14-2 group.

次に上記のように構成したプレートフィン積層型熱交換器について、その作用効果を説明する。 Next, the operation and effect of the plate fin laminated heat exchanger configured as described above will be described.

本実施の形態の熱交換器は、例えば蒸発条件で使用されている時、管A4から気液二相状態の液冷媒がプレートフィン積層体2の入り口側のヘッダ流路A8内に流入する。ヘッダ流路A8内に流入した液冷媒は、図6及び図7に示す流路構成から明らかなように、各プレートフィン2aの連絡流路11及び分流路12を介して伝熱流路14の伝熱往き流路14−1群へ流れる。各プレートフィン2aの伝熱往き流路14−1群に流れた冷媒はUターンし伝熱戻り流路14−2群、ヘッダ流路B10を介して管B5より冷凍システムの冷媒回路へと流出する。 When the heat exchanger of the present embodiment is used, for example, under evaporation conditions, a liquid refrigerant in a gas-liquid two-phase state flows from the pipe A4 into the header flow path A8 on the inlet side of the plate fin laminate 2. As is clear from the flow path configurations shown in FIGS. 6 and 7, the liquid refrigerant flowing into the header flow path A8 is transferred to the heat transfer flow path 14 via the communication flow path 11 and the branch flow path 12 of each plate fin 2a. It flows to the heat transfer flow path 14-1 group. The refrigerant flowing into the heat transfer outflow flow path 14-1 group of each plate fin 2a makes a U-turn and flows out from the pipe B5 to the refrigerant circuit of the refrigeration system via the heat transfer return flow path 14-2 group and the header flow path B10. To do.

そして、上記伝熱流路14の伝熱往き流路14−1から伝熱戻り流路14−2群を介して管B5へと流れる際に冷媒はガス化し、前記プレートフィン積層体2のプレートフィン積層間隔を通り抜ける空気と熱交換する。 Then, when the refrigerant flows from the heat transfer flow path 14-1 of the heat transfer flow path 14 to the pipe B5 via the heat transfer return flow path 14-2 group, the refrigerant is gasified and the plate fins of the plate fin laminate 2 are used. It exchanges heat with the air that passes through the stacking interval.

上記のようにして熱交換が行われるが、前記ガス化した冷媒が流れる伝熱戻り流路14−2群からのガス冷媒をヘッダ流路B10へと流すガス冷媒側の連絡流路11はその断面積を前記複数の伝熱戻り流路14−2群の各伝熱流路を合わせた流路合計総断面積以下としているから、その内部を流れる冷媒流量は少ないものとなる。したがって、連絡流路11の壁面に掛かる冷媒圧力は小さなものとなって耐圧性能が向上する。よって、長期間使用していても連絡流路部分での変形を防止することができる。 The heat exchange is performed as described above, and the connecting flow path 11 on the gas refrigerant side that flows the gas refrigerant from the heat transfer return flow path 14-2 group through which the gasified refrigerant flows to the header flow path B10 is the same. Since the cross-sectional area is equal to or less than the total total cross-sectional area of the total cross-sectional area of the combined heat transfer flow paths of the plurality of heat transfer return flow paths 14-2 groups, the flow rate of the refrigerant flowing inside the cross-sectional area is small. Therefore, the refrigerant pressure applied to the wall surface of the connecting flow path 11 becomes small, and the pressure resistance performance is improved. Therefore, even if it is used for a long period of time, it is possible to prevent deformation in the connecting flow path portion.

特に本実施の形態では、上記連絡流路11の断面積は複数の伝熱戻り流路14−2群の少なくとも1本の流路断面積以下としているから、その壁面に掛かる圧力は大幅に低減でき、当該連絡流路部分での変形をより確実に防止し、信頼性を大きく向上させることができる。 In particular, in the present embodiment, since the cross-sectional area of the connecting flow path 11 is equal to or less than the cross-sectional area of at least one of the plurality of heat transfer return flow paths 14-2 groups, the pressure applied to the wall surface thereof is significantly reduced. It is possible to more reliably prevent deformation in the connecting flow path portion and greatly improve reliability.

また、上記連絡流路11の断面積は、3m以下としておくと、連絡流路11の壁面に掛かる冷媒の圧力を家庭用及び業務用エアコンに規定されている圧力以下に抑えることができる。したがって、既述したように冷媒量が多い熱交換器、あるいは圧縮比率が高い環境対応型の冷媒を用いた熱交換器であっても、プレートフィン積層体2のガス冷媒側の連絡流路11部分の膨張変形を防止できる。そして、冷媒の圧力をより高い状態で使用して、効率の高い熱交換器とすることができる。 Further, when the cross-sectional area of the connecting flow path 11 is set to 3 m 2 or less, the pressure of the refrigerant applied to the wall surface of the connecting flow path 11 can be suppressed to the pressure specified for the home and commercial air conditioners or less. Therefore, even in a heat exchanger having a large amount of refrigerant as described above or a heat exchanger using an environment-friendly refrigerant having a high compression ratio, the connecting flow path 11 on the gas refrigerant side of the plate fin laminate 2 It is possible to prevent expansion and deformation of the part. Then, the pressure of the refrigerant can be used in a higher state to obtain a highly efficient heat exchanger.

また、上記の如く連絡流路11の断面積を、複数の伝熱戻り流路14−2群の各伝熱流路を合わせた流路合計総断面積以下、もしくは、伝熱戻り流路14−2群の少なくとも1本の流路断面積以下、あるいは3m以下とすることによって、図7に示すように連絡流路11同士の間にも間隔T2を形成することができる。これにより、当該間隔T2にも空気を流すことができ、連絡流路11の耐圧性を確保しつつ熱交換効率を高めることができる。 Further, as described above, the cross-sectional area of the connecting flow path 11 is equal to or less than the total cross-sectional area of the total cross-sectional area of the combined heat transfer flow paths of the plurality of heat transfer return flow paths 14-2 groups, or the heat transfer return flow path 14-. By setting the cross-sectional area of at least one of the two groups to be less than or equal to the cross-sectional area of one of the flow paths, or not more than 3 m 2 , the interval T2 can be formed between the connecting flow paths 11 as shown in FIG. As a result, air can flow through the interval T2, and the heat exchange efficiency can be improved while ensuring the pressure resistance of the connecting flow path 11.

即ち、連絡流路11の耐圧性を確保するためには、例えば積層方向に重なる連絡流路11の外壁面同士を突き合わせれば連絡流路11の断面積を小さくしなくても耐圧を確保することができるが、この場合、上記連絡流路11同士間の間隔がなくなるので当該部分を熱交換領域として利用できなくなる。しかしながら、本実施の形態のように構成すれば、前記した如く連絡流路11同士間にも間隔T2を形成して熱交換領域として使用でき、熱交換効率を高めることができる。 That is, in order to secure the pressure resistance of the connecting flow path 11, for example, if the outer wall surfaces of the connecting flow paths 11 overlapping in the stacking direction are butted against each other, the pressure resistance can be secured without reducing the cross-sectional area of the connecting flow path 11. However, in this case, since the distance between the connecting flow paths 11 is eliminated, the portion cannot be used as the heat exchange region. However, if it is configured as in the present embodiment, as described above, a space T2 can be formed between the connecting flow paths 11 to be used as a heat exchange region, and the heat exchange efficiency can be improved.

なお、連絡流路11の断面積を小さくすることによって懸念される圧損については、伝熱流路14、すなわち圧損が大きくなるガス側冷媒が流れる伝熱戻り流路14−2の伝熱流路を複数設けて多パス型としているので、1流路当たりの流量が小さくなって、性能へ与える影響を最小限に抑えることができ、実用上問題ないレベルとすることができる。 Regarding the pressure loss caused by reducing the cross-sectional area of the connecting flow path 11, there are a plurality of heat transfer flow paths 14 of the heat transfer flow path 14, that is, the heat transfer return flow path 14-2 through which the gas-side refrigerant having a large pressure loss flows. Since the multi-pass type is provided, the flow rate per flow path is reduced, the influence on the performance can be minimized, and the level can be set to a level that does not cause a problem in practical use.

また、本実施形態の熱交換器は、前記プレートフィン2aに設ける伝熱流路14群は略U字状に形成して折り返すようにしているから、プレートフィン2aを大きく(長さ寸法を長く)することなく冷媒流路長を長くすることができる。 Further, in the heat exchanger of the present embodiment, since the heat transfer flow path 14 group provided in the plate fin 2a is formed in a substantially U shape and folded back, the plate fin 2a is made large (the length dimension is made long). It is possible to lengthen the length of the refrigerant flow path without doing so.

これにより、熱交換器の小型化を図りつつ、冷媒と空気の熱交換効率を高め、冷凍システムの効率を向上させることができる。 As a result, it is possible to improve the efficiency of the refrigerating system by increasing the heat exchange efficiency between the refrigerant and the air while reducing the size of the heat exchanger.

なお、上記熱交換器1は伝熱流路14がUターンする形態のもので説明したが、これは図8に示すようにプレートフィン2aの一端側にヘッダ流路管A8、反対側にヘッダ流路管B10を設けてこれらの間を繋ぐ伝熱流路14は一方向のみの直線状のものであってもよいものである。この場合、前記実施の形態で説明した伝熱往き流路14−1群と伝熱戻り流路14−2群は同じ伝熱流路14となって、ガス冷媒側となるヘッダ流路、例えば出口側のヘッダ流路B10側の連絡流路11の断面積は伝熱往き流路14−1群と伝熱戻り流路14−2群が一緒になる伝熱流路14の流路合計総断面積以下、もしくは、少なくとも1本の流路断面積以下、あるいは3m以下とすればよいものである。 The heat exchanger 1 has been described in a form in which the heat transfer flow path 14 makes a U-turn, but as shown in FIG. 8, this is a header flow path tube A8 on one end side of the plate fin 2a and a header flow on the opposite side. The heat transfer flow path 14 provided with the passage pipe B10 and connecting the passage pipes B10 may be linear in only one direction. In this case, the heat transfer forward flow path 14-1 group and the heat transfer return flow path 14-2 group described in the above embodiment are the same heat transfer flow path 14, and the header flow path on the gas refrigerant side, for example, the outlet. The cross-sectional area of the connecting flow path 11 on the side header flow path B10 is the total cross-sectional area of the heat transfer flow path 14 in which the heat transfer forward flow path 14-1 group and the heat transfer return flow path 14-2 group are combined. Below, or at least one flow path cross-sectional area or less, or 3 m 2 or less may be used.

以上、本実施の形態では、熱交換器を蒸発器として使用した場合を例にして説明したので、便宜上、上記ガス冷媒側となるヘッダ流路を出口側のヘッダ流路、液側のヘッダ流路を入口側のヘッダ流路と称しているが、凝縮器として使用する場合は出口側と入口側が逆になるものである。よって、本発明の請求項で言う出口側のヘッダ流路はガス冷媒側となるヘッダ流路を意味し、入口側のヘッダ流路は液側のヘッダ流路を意味する。 As described above, in the present embodiment, the case where the heat exchanger is used as the evaporator has been described as an example. Therefore, for convenience, the header flow path on the gas refrigerant side is the header flow path on the outlet side and the header flow on the liquid side. The path is called the header flow path on the inlet side, but when used as a condenser, the outlet side and the inlet side are reversed. Therefore, the header flow path on the outlet side in the claims of the present invention means the header flow path on the gas refrigerant side, and the header flow path on the inlet side means the header flow path on the liquid side.

(実施の形態2)
本実施の形態2は、実施の形態1におけるプレートフィン積層型熱交換器を用いて構成した空気調和機である。
(Embodiment 2)
The second embodiment is an air conditioner configured by using the plate fin laminated heat exchanger according to the first embodiment.

図9は空気調和機の冷凍サイクル図、図10は同空気調和機の室内機を示す概略断面図である。 FIG. 9 is a refrigeration cycle diagram of the air conditioner, and FIG. 10 is a schematic cross-sectional view showing the indoor unit of the air conditioner.

図9、図10において、この空気調和機は、室外機51と、室外機51に接続された室内機52から構成されている。室外機51には、冷媒を圧縮する圧縮機53、冷房暖房運転時の冷媒回路を切り替える四方弁54、冷媒と外気の熱を交換する室外熱交換器55、冷媒を減圧する減圧器56、室外送風機59が配設されている。また、室内機52には、冷媒と室内空気の熱を交換する室内熱交換器57と、室内送風機58とが配設されている。そして、前記圧縮機53、四方弁54、室内熱交換器57、減圧器56、室外熱交換器55を冷媒回路で連結してヒートポンプ式冷凍サイクルを形成している。 In FIGS. 9 and 10, the air conditioner is composed of an outdoor unit 51 and an indoor unit 52 connected to the outdoor unit 51. The outdoor unit 51 includes a compressor 53 for compressing the refrigerant, a four-way valve 54 for switching the refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 55 for exchanging heat between the refrigerant and the outside air, a decompressor 56 for reducing the refrigerant, and an outdoor unit. A blower 59 is arranged. Further, the indoor unit 52 is provided with an indoor heat exchanger 57 for exchanging heat between the refrigerant and the indoor air, and an indoor blower 58. Then, the compressor 53, the four-way valve 54, the indoor heat exchanger 57, the decompressor 56, and the outdoor heat exchanger 55 are connected by a refrigerant circuit to form a heat pump type refrigeration cycle.

なお、本実施形態による冷媒回路には、テトラフルオロプロペンまたはトリフルオロプロペン、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、単体、もしくはそれぞれ2成分混合または3成分混合した冷媒を使用している。 In the refrigerant circuit according to the present embodiment, a refrigerant in which tetrafluoropropene or trifluoropropene, difluoromethane or pentafluoroethane or tetrafluoroethane is used alone, or a mixture of two components or three components, respectively, is used.

上記構成からなる空気調和機は、冷房運転時には、四方弁54を圧縮機53の吐出側と室外熱交換器55とが連通するように切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通って室外熱交換器55に送られる。そして、外気と熱交換して放熱し、高圧の液冷媒となり、減圧器56に送られる。減圧器56では減圧されて低温低圧の二相冷媒となり、室内機52に送られる。室内機52では、冷媒は室内熱交換器57に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに冷媒は室外機51に戻り、四方弁54を経由して圧縮機53に戻される。 The air conditioner having the above configuration switches the four-way valve 54 so that the discharge side of the compressor 53 and the outdoor heat exchanger 55 communicate with each other during the cooling operation. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 55 through the four-way valve 54. Then, it exchanges heat with the outside air to dissipate heat, becomes a high-pressure liquid refrigerant, and is sent to the decompressor 56. In the decompressor 56, the pressure is reduced to become a low-temperature low-pressure two-phase refrigerant, which is sent to the indoor unit 52. In the indoor unit 52, the refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes, and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 51 and is returned to the compressor 53 via the four-way valve 54.

暖房運転時には、四方弁54を圧縮機53の吐出側と室内機52とが連通するように切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通り、室内機52に送られる。高温高圧の冷媒は室内熱交換器57に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時、室内空気は加熱されて室内を暖房する。その後、冷媒は減圧器56に送られ、減圧器56において減圧されて低温低圧の二相冷媒となり、室外熱交換器55に送られて外気と熱交換して蒸発気化し、四方弁54を経由して圧縮機53へ戻される。 During the heating operation, the four-way valve 54 is switched so that the discharge side of the compressor 53 and the indoor unit 52 communicate with each other. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 54, and is sent to the indoor unit 52. The high-temperature and high-pressure refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air to dissipate heat, and is cooled to become a high-pressure liquid refrigerant. At this time, the indoor air is heated to heat the room. After that, the refrigerant is sent to the compressor 56, decompressed in the compressor 56 to become a low-temperature low-pressure two-phase refrigerant, sent to the outdoor heat exchanger 55 to exchange heat with the outside air, evaporate and vaporize, and pass through the four-way valve 54. Then, it is returned to the compressor 53.

上記のように構成された空気調和機は、その室外熱交換器55或いは室内熱交換器57に前記実施の形態で示した熱交換器を使用することにより、当該熱交換器が小型、高性能で、信頼性の高いプレートフィン積層型熱交換器であるから、省エネ性及び信頼性の高い冷凍システムとすることができる。 The air conditioner configured as described above has a small size and high performance by using the heat exchanger shown in the above embodiment for the outdoor heat exchanger 55 or the indoor heat exchanger 57. Since it is a highly reliable plate fin laminated heat exchanger, it can be a highly energy-saving and highly reliable refrigeration system.

以上、本発明に係るプレートフィン積層型熱交換器及びそれを用いた冷凍システムについて、上記実施の形態を用いて説明したが、本発明はこれらに限定されるものではない。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The plate fin laminated heat exchanger according to the present invention and the refrigerating system using the same have been described above using the above-described embodiment, but the present invention is not limited thereto. That is, the embodiments disclosed this time are exemplary and not restrictive in all respects, and the scope of the present invention is indicated by the claims and has the same meaning and scope as the claims. All changes are included.

本発明は、上記したように、ヘッダ流路と伝熱流路とを繋ぐ連絡流路部分での変形を防止して信頼性が高く、小型、高性能なプレートフィン積層型熱交換器とそれを用いた冷凍システムを提供することができる。よって、家庭用及び業務用エアコン等に用いる熱交換器や各種冷凍機器等に幅広く利用でき、その産業的価値は大なるものがある。 As described above, the present invention provides a highly reliable, compact, high-performance plate fin laminated heat exchanger that prevents deformation in the connecting flow path portion that connects the header flow path and the heat transfer flow path, as described above. The refrigeration system used can be provided. Therefore, it can be widely used in heat exchangers and various refrigerating devices used for home and commercial air conditioners, and has great industrial value.

1 熱交換器
2 プレートフィン積層体
2a プレートフィン
3a、3b エンドプレート
4 管A
5 管B
6a プレート
6b プレート
8 ヘッダ流路A
8a,8c 開口
8b,8d リング状凹溝
9 締結手段(ボルト・ナット)
10 ヘッダ流路B
10a,10c 開口
10b,10d リング状凹溝
11 連絡流路
11a,11b 連絡流路用凹溝
12 分流路
12a,12b 分流路用凹溝
14 伝熱流路
14−1 伝熱往き流路
14−2 伝熱戻り流路
14a 流路形成用凹溝
14b 流路形成用凹溝
15 突起
16 断熱スリット
51 室外機
52 室内機
53 圧縮機
54 四方弁
55 室外熱交換器
56 減圧器
57 室内熱交換器
58 室内送風機
1 Heat exchanger 2 Plate fin laminate 2a Plate fin 3a, 3b End plate 4 Tube A
5 Tube B
6a plate 6b plate 8 header flow path A
8a, 8c Opening 8b, 8d Ring-shaped concave groove 9 Fastening means (bolts and nuts)
10 Header flow path B
10a, 10c Opening 10b, 10d Ring-shaped concave groove 11 Communication flow path 11a, 11b Concave groove for communication flow path 12-minute flow path 12a, 12b Concave groove for branch flow path 14 Heat transfer flow path 14-1 Heat transfer flow path 14-2 Heat transfer return flow path 14a Concave groove for flow path formation 14b Concave groove for flow path formation 15 Protrusion 16 Insulation slit 51 Outdoor unit 52 Indoor unit 53 Compressor 54 Four-way valve 55 Outdoor heat exchanger 56 Decompressor 57 Indoor heat exchanger 58 Indoor blower

Claims (3)

第1流体が流れる流路を有するプレートフィン積層体の各プレートフィン積層間に第2流体を流して、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体のプレートフィンは、前記第1流体が並行に流れる複数の伝熱流路を有する流路領域と、前記伝熱流路の下方にあって前記流路領域の各伝熱流路に連通する入口側のヘッダ流路及び出口側のヘッダ流路を有したヘッダ領域と、を備えるとともに、前記伝熱流路は前記プレートフィンに凹状溝を設けて形成し、かつ、前記出口側のヘッダ流路と伝熱流路群とを結ぶ連絡流路は、単一の流路からなり、前記連絡流路の断面積が前記複数の伝熱流路を合わせた流路合計総断面積以下で、連絡流路の断面積は3mm 以下としたプレートフィン積層型熱交換器。 A heat exchanger in which a second fluid is allowed to flow between each plate fin laminate of a plate fin laminate having a flow path through which the first fluid flows, and heat is exchanged between the first fluid and the second fluid. The plate fins of the plate fin laminate communicate with a flow path region having a plurality of heat transfer flow paths through which the first fluid flows in parallel and each heat transfer flow path in the flow path region below the heat transfer flow path. A header region having an inlet side header flow path and an outlet side header flow path is provided, and the heat transfer flow path is formed by providing a concave groove in the plate fin, and the outlet side header flow. The connecting flow path connecting the path and the heat transfer flow path group is composed of a single flow path, and the cross-sectional area of the connecting flow path is equal to or less than the total total cross-sectional area of the flow path including the plurality of heat transfer flow paths. A plate fin laminated heat exchanger with a road cross-sectional area of 3 mm 2 or less. 前記連絡流路の断面積は複数の伝熱流路の少なくとも1本の流路断面積以下とした請求項1に記載のプレートフィン積層型熱交換器。 The plate fin laminated heat exchanger according to claim 1, wherein the cross-sectional area of the connecting flow path is equal to or less than the cross-sectional area of at least one of the plurality of heat transfer channels. 冷凍サイクルを構成する熱交換器を前記請求項1〜2のいずれかに記載のプレートフィン積層型熱交換器とした冷凍システム。 A refrigeration system in which the heat exchanger constituting the refrigeration cycle is the plate fin laminated heat exchanger according to any one of claims 1 and 2.
JP2019080596A 2019-04-22 2019-04-22 Plate fin laminated heat exchanger and refrigeration system using it Active JP6872694B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019080596A JP6872694B2 (en) 2019-04-22 2019-04-22 Plate fin laminated heat exchanger and refrigeration system using it
CN202080004008.9A CN112424544B (en) 2019-04-22 2020-02-03 Plate fin stacked type heat exchanger and refrigeration system using the same
PCT/JP2020/003932 WO2020217631A1 (en) 2019-04-22 2020-02-03 Plate fin stacking-type heat exchanger and refrigeration system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019080596A JP6872694B2 (en) 2019-04-22 2019-04-22 Plate fin laminated heat exchanger and refrigeration system using it

Publications (2)

Publication Number Publication Date
JP2020176791A JP2020176791A (en) 2020-10-29
JP6872694B2 true JP6872694B2 (en) 2021-05-19

Family

ID=72937534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080596A Active JP6872694B2 (en) 2019-04-22 2019-04-22 Plate fin laminated heat exchanger and refrigeration system using it

Country Status (3)

Country Link
JP (1) JP6872694B2 (en)
CN (1) CN112424544B (en)
WO (1) WO2020217631A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599496A (en) * 1982-06-26 1984-01-18 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Single body plate in which inside for plate-fin type heat exchanger is changed into manifold
JPH0713552B2 (en) * 1985-11-15 1995-02-15 松下電器産業株式会社 Refrigerator evaporator
JP2786728B2 (en) * 1990-08-14 1998-08-13 昭和アルミニウム株式会社 Stacked heat exchanger
US7413003B2 (en) * 2006-09-15 2008-08-19 Halla Climate Control Corporation Plate for heat exchanger
JP6785409B2 (en) * 2016-10-21 2020-11-18 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it
JP6767620B2 (en) * 2016-10-21 2020-10-14 パナソニックIpマネジメント株式会社 Heat exchanger and freezing system using it
JP6888211B2 (en) * 2018-07-13 2021-06-16 株式会社三井E&Sマシナリー Vaporizer

Also Published As

Publication number Publication date
WO2020217631A1 (en) 2020-10-29
JP2020176791A (en) 2020-10-29
CN112424544B (en) 2022-03-29
CN112424544A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6767620B2 (en) Heat exchanger and freezing system using it
JP6785409B2 (en) Heat exchanger and refrigeration system using it
JP6767637B2 (en) Heat exchanger and freezing system using it
CN109564070B (en) Heat exchanger and refrigeration system using the same
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
JP2019152367A (en) Heat exchange unit and air conditioner using the same
JP6785408B2 (en) Heat exchanger and refrigeration system using it
JP6767621B2 (en) Heat exchanger and freezing system using it
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6934609B2 (en) Heat exchanger and freezing system using it
JP6887075B2 (en) Heat exchanger and freezing system using it
JP2020118369A (en) Plate fin lamination type heat exchanger, and refrigeration system using the same
JP2000241094A (en) Plate type heat exchanger and refrigerating system
JP6934608B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2019100563A (en) Heat exchanger and refrigeration system using the same
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP6913858B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6827186B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2023000451A (en) Plate fin lamination-type heat exchanger and refrigeration system using the same
JP2020186834A (en) Heat exchanger, and air conditioner using the same
JP2020079651A (en) Air conditioner
CN114838604A (en) Plate fin stacked type heat exchanger and refrigeration system using the same
JP2019066132A (en) Multi-path type heat exchanger and refrigeration system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6872694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151