JP6845525B2 - Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device - Google Patents

Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device Download PDF

Info

Publication number
JP6845525B2
JP6845525B2 JP2016220845A JP2016220845A JP6845525B2 JP 6845525 B2 JP6845525 B2 JP 6845525B2 JP 2016220845 A JP2016220845 A JP 2016220845A JP 2016220845 A JP2016220845 A JP 2016220845A JP 6845525 B2 JP6845525 B2 JP 6845525B2
Authority
JP
Japan
Prior art keywords
electrocardiogram
wave
index
baseline
electrocardiogram signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220845A
Other languages
Japanese (ja)
Other versions
JP2018075310A (en
Inventor
聡 星出
聡 星出
七臣 苅尾
七臣 苅尾
達哉 米山
達哉 米山
奈津子 神馬
奈津子 神馬
剛 山内
剛 山内
匠 澤田
匠 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Jichi Medical University
Original Assignee
Fukuda Denshi Co Ltd
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd, Jichi Medical University filed Critical Fukuda Denshi Co Ltd
Priority to JP2016220845A priority Critical patent/JP6845525B2/en
Publication of JP2018075310A publication Critical patent/JP2018075310A/en
Application granted granted Critical
Publication of JP6845525B2 publication Critical patent/JP6845525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は心電図解析装置、心電図解析方法、および生体情報計測装置に関する。 The present invention relates to an electrocardiogram analyzer, an electrocardiogram analysis method, and a biometric information measuring device.

生活習慣病や加齢によって末梢血管の柔軟性が低下すると血圧が上昇し、心臓の負荷が増加する。心臓の負荷が増加した状態が継続すると、血液を全身に送り込むために収縮する左心室の心筋繊維が太くなり、左心室壁の厚さが増加する(左室肥大)。 When the flexibility of peripheral blood vessels decreases due to lifestyle-related diseases and aging, blood pressure rises and the load on the heart increases. As the heart load continues to increase, the myocardial fibers in the left ventricle, which contract to pump blood throughout the body, thicken and the thickness of the left ventricular wall increases (left ventricular hypertrophy).

左室肥大が進行すると、心筋間質の線維化が進行し、冠血流予備能が低下する。そして、心臓のしなやかさが低下することにより、左心室の拡張機能が低下し、十分な血流を全身に送れなくなると、心不全や重篤な不整脈などを引き起こす。そのため、左室肥大の有無や進行状態を把握することが重要である。 As left ventricular hypertrophy progresses, myocardial interstitial fibrosis progresses and coronary blood flow reserve decreases. When the suppleness of the heart is reduced, the diastolic function of the left ventricle is reduced and sufficient blood flow cannot be sent to the whole body, which causes heart failure and serious arrhythmia. Therefore, it is important to understand the presence or absence of left ventricular hypertrophy and the progress.

従来、左室肥大による心電図の変化として、R波の増高、QRS幅増加、ST区間の低下、T波減高、T波陰転(ストレインパターン)などが知られている。そして、心電図での左室肥大診断基準として、Sokolow-Lyon基準、Cornell Voltage、Cornell voltage-duration product(Cornell Productとも呼ばれる)などが知られている(非特許文献1)。これらはいずれも心電図のR波の大きさに依存した基準である。 Conventionally, as changes in the electrocardiogram due to left ventricular hypertrophy, an increase in R wave, an increase in QRS width, a decrease in ST section, a decrease in T wave, and a negative inversion of T wave (strain pattern) are known. As the diagnostic criteria for left ventricular hypertrophy on the electrocardiogram, Sokolow-Lyon criteria, Cornell Voltage, Cornell voltage-duration product (also called Cornell Product) and the like are known (Non-Patent Document 1). All of these are criteria that depend on the magnitude of the R wave on the electrocardiogram.

小森孝洋、苅尾七臣、「危険因子 心電図・左室肥大」、動脈硬化予防、第9巻第4号、第98〜101ページ、2011年1月10日発行、メジカルビュー社Takahiro Komori, Nanaomi Kayao, "Risk Factors ECG / Left Ventricular Hypertrophy", Prevention of Arteriosclerosis, Vol. 9, No. 4, pp. 98-101, Published January 10, 2011, Medical View, Inc.

しかしながら、例えばR波の大きさは、左室肥大の初期段階では増加が認められるものの、症状が進行すると減少に転じる場合がある。そのため、例えば左室肥大がかなり進行した状態は、上述の基準で検出できない場合がある。 However, for example, the magnitude of the R wave may increase in the initial stage of left ventricular hypertrophy, but may turn to decrease as the symptom progresses. Therefore, for example, a state in which left ventricular hypertrophy has progressed considerably may not be detected by the above-mentioned criteria.

本発明はこのような従来技術の課題に鑑みてなされたものであり、心電図信号に基づく左室肥大の新たな診断基準として利用可能な、R波の大きさに依存しない指標を算出可能な心電図解析装置、心電図解析方法、および生体情報計測装置の提供を目的とする。 The present invention has been made in view of such problems of the prior art, and an electrocardiogram capable of calculating an index independent of the magnitude of the R wave, which can be used as a new diagnostic criterion for left ventricular hypertrophy based on an electrocardiogram signal. An object of the present invention is to provide an analysis device, an electrocardiogram analysis method, and a biological information measurement device.

上述の目的は、左室側壁の電気的活動を反映する心電図信号を取得する取得手段と、心電図信号において、S波の終了点からT波の終了点までのST−T区間を検出する検出手段と、ST−T区間について、予め定められた基線のレベルを基準とした心電図信号の値の和に基づく指標を、左室肥大に関する指標として算出する算出手段と、
上述の目的は、を有し、算出手段は、ST−T区間について、基線と、心電図信号が表す波形との間に形成される領域の符号付きの大きさの和を指標として算出することを特徴とする心電図解析装置によって達成される。
The above-mentioned purpose is an acquisition means for acquiring an electrocardiogram signal reflecting the electrical activity of the left ventricular side wall, and a detection means for detecting an ST-T section from the end point of the S wave to the end point of the T wave in the electrocardiogram signal. And a calculation means for calculating an index based on the sum of the values of the electrocardiogram signals based on a predetermined baseline level for the ST-T section as an index related to left ventricular hypertrophy.
The foregoing objects, have a calculation means for ST-T segment, and the baseline, that is calculated as an indicator of the magnitude sum of the signed area formed between the waveform represented by the ECG signal Achieved by the featured electrocardiogram analyzer.

このような構成により、本発明によれば、心電図信号に基づく左室肥大の新たな診断基準として利用可能な、R波の大きさに依存しない指標を算出可能な心電図解析装置、心電図解析方法、および生体情報計測装置を提供できる。 With such a configuration, according to the present invention, an electrocardiogram analysis device capable of calculating an index independent of the magnitude of the R wave, which can be used as a new diagnostic criterion for left ventricular hypertrophy based on an electrocardiogram signal, an electrocardiogram analysis method, And can provide a biometric information measuring device.

本発明の実施形態に係る心電図解析装置の一例としての心電計の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the electrocardiograph as an example of the electrocardiogram analysis apparatus which concerns on embodiment of this invention. 本発明の実施形態で用いる指標を模式的に示した図である。It is a figure which showed typically the index used in embodiment of this invention. 本発明の実施形態に係る心電図解析処理に関するフローチャートである。It is a flowchart about the electrocardiogram analysis processing which concerns on embodiment of this invention. 本発明の実施例1に関する評価結果を示す図である。It is a figure which shows the evaluation result about Example 1 of this invention.

以下、図面を参照して本発明をその例示的な実施形態に基づいて詳細に説明する。図1は、本発明の実施形態に係る心電図解析装置の一例としての、心電計100の機能構成例を示すブロック図である。なお、心電計に限らず、心電図信号を計測可能な任意の電子機器(例えば生体情報モニタ、ホルター心電計、携帯心電計など)に本発明を適用可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings based on an exemplary embodiment. FIG. 1 is a block diagram showing a functional configuration example of an electrocardiograph 100 as an example of an electrocardiogram analysis device according to an embodiment of the present invention. The present invention can be applied not only to an electrocardiograph but also to any electronic device capable of measuring an electrocardiogram signal (for example, a biological information monitor, a Holter electrocardiograph, a portable electrocardiograph, etc.).

さらに、心電図信号(誘導信号)を計測するための構成は本発明に必須でない。本発明に係る心電図解析装置は、予め計測された心電図データを、通信可能に接続された外部装置(サーバ装置、記憶装置など)や、記憶媒体(メモリカードなど)から取得するなど、任意の方法で取得可能な任意の電子機器で実現できる。このような電子機器には例えばパーソナルコンピュータ(ノート型、デスクトップ型など)、携帯電話機、タブレット端末、メディアプレーヤなどが含まれるが、これらに限定されない。 Further, a configuration for measuring an electrocardiogram signal (induction signal) is not essential to the present invention. The electrocardiogram analysis device according to the present invention is an arbitrary method such as acquiring pre-measured electrocardiogram data from an external device (server device, storage device, etc.) or a storage medium (memory card, etc.) connected in a communicable manner. It can be realized with any electronic device that can be obtained with. Such electronic devices include, but are not limited to, for example, personal computers (notebook type, desktop type, etc.), mobile phones, tablet terminals, media players, and the like.

図1において、CPU1はROM2に格納されている制御プログラムをRAM3に読み出して実行することにより、後述する心電図解析処理を始めとした、心電計100の各種機能を実現する。ROM2はCPU1が実行するプログラムや、メニュー画面などを表示するためのGUIデータ、ユーザ設定データ、初期設定データなど、処理に必要なパラメータ等を記憶する不揮発性メモリであり、少なくとも一部が書き換え可能であってよい。RAM3はCPU1が実行するプログラムを展開する領域や、変数やデータ等の一時記憶領域として用いられる。メモリカード4は生体電極から入力される心電図信号や、別の生体電気信号やデータをデジタルデータの形式で記憶する記憶装置である。メモリカード4は、カードスロット5に対して着脱可能に装着される。 In FIG. 1, the CPU 1 reads a control program stored in the ROM 2 into the RAM 3 and executes it to realize various functions of the electrocardiograph 100, including an electrocardiogram analysis process described later. ROM 2 is a non-volatile memory that stores parameters required for processing such as programs executed by CPU 1, GUI data for displaying menu screens, user setting data, initial setting data, etc., and at least a part of them can be rewritten. It may be. The RAM 3 is used as an area for developing a program executed by the CPU 1 and a temporary storage area for variables, data, and the like. The memory card 4 is a storage device that stores an electrocardiogram signal input from a bioelectrode or another bioelectric signal or data in the form of digital data. The memory card 4 is detachably attached to the card slot 5.

表示部6は例えば液晶表示装置である。操作部8は電源のオン、オフや計測の開始、停止、各種イベント入力などを行ったり、各種の設定を行なったりするためのスイッチ、ボタンなどからなる。操作部8は表示部6に設けられたタッチパネルを含んでもよい。 The display unit 6 is, for example, a liquid crystal display device. The operation unit 8 includes switches, buttons, and the like for turning the power on and off, starting and stopping measurement, inputting various events, and making various settings. The operation unit 8 may include a touch panel provided on the display unit 6.

また、アナログ−デジタル変換器(A/D変換器)9は心電図電極12から誘導コードを通じて入力されるアナログ信号をデジタル信号に変換する。センサ用I/F10は、心電図電極12からの心電図信号(誘導信号)を取得するためのインターフェースである。なお、センサ用I/F10には心電図電極12以外にも、SpO(動脈血酸素飽和度)センサや血圧・脈波計測用のカフなどを接続可能であってもよい。
通信インターフェース20は例えばホストコンピュータやプリンタ等の外部機器40と通信を行うための通信インターフェースであり、有線および/または無線通信規格に準拠した構成を有する。なお、プリンタは外部機器40としてではなく、内蔵機器として通信インターフェース20に接続されてもよい。
Further, the analog-digital converter (A / D converter) 9 converts an analog signal input from the electrocardiogram electrode 12 through an induction code into a digital signal. The sensor I / F 10 is an interface for acquiring an electrocardiogram signal (induction signal) from the electrocardiogram electrode 12. In addition to the electrocardiogram electrode 12, a SpO 2 (arterial oxygen saturation) sensor, a cuff for measuring blood pressure / pulse wave, or the like may be connected to the sensor I / F 10.
The communication interface 20 is a communication interface for communicating with an external device 40 such as a host computer or a printer, and has a configuration conforming to a wired and / or wireless communication standard. The printer may be connected to the communication interface 20 as a built-in device instead of the external device 40.

このような構成を有する心電計100を用いて心電図信号(誘導信号)の取得及び記録を行う場合、被検者の体表面の所定の位置に心電図電極12を取り付け、心電図電極12に一端を接続された誘導コードの他端をセンサ用I/F10に接続する。 When acquiring and recording an electrocardiogram signal (induction signal) using an electrocardiograph 100 having such a configuration, the electrocardiogram electrode 12 is attached to a predetermined position on the body surface of the subject, and one end is attached to the electrocardiogram electrode 12. The other end of the connected induction cord is connected to the sensor I / F10.

本実施形態においては、心電図信号から左室肥大に関する特徴を検出するため、左室側壁の電気的活動を反映する誘導を得るように心電図電極12を配置する。具体的には例えばI、aVL、V5、V6、X、CM5、mCM5、CC5、MCL5、(もしくはこれらと同等または類似する誘導)の1つ以上を取得するように心電図電極12を配置する。具体的にどの誘導を取得するかは心電図電極12の電極数や種類に応じて決定することができる。 In this embodiment, in order to detect features related to left ventricular hypertrophy from the electrocardiogram signal, the electrocardiogram electrode 12 is arranged so as to obtain a guide that reflects the electrical activity of the left ventricular side wall. Specifically, the electrocardiogram electrode 12 is arranged so as to acquire one or more of, for example, I, aVL, V5, V6, X, CM5, mCM5, CC5, MCL5, (or an induction equivalent to or similar to these). The specific lead to be acquired can be determined according to the number and types of the electrocardiogram electrodes 12.

例えば操作部8の操作によって電源が投入されると、CPU1は初期化処理など、心電図信号の取得を開始する前のタイミングで、心電図信号を取得するための動作モードの設定処理を行うことができる。また、CPU1は必要に応じて、心電図信号の記録動作の開始前に、日時や、被検者を特定可能な情報(例えば患者IDなど)を、ユーザに設定させるための入力画面などを表示してもよい。 For example, when the power is turned on by the operation of the operation unit 8, the CPU 1 can perform an operation mode setting process for acquiring the electrocardiogram signal at a timing before starting the acquisition of the electrocardiogram signal, such as an initialization process. .. Further, if necessary, the CPU 1 displays an input screen for allowing the user to set the date and time and information that can identify the subject (for example, patient ID) before the start of the electrocardiogram signal recording operation. You may.

そして、例えば操作部8からの記録開始指示の入力や、電源投入時からの所定時間経過などに応じて、CPU1は心電図の記録動作を開始する。なお、心電図信号の取得自体は、記録開始指示より前に実行されてよい。例えば、表示部6に現在の動作モードに応じた波形表示を行うことで、動作モードの設定が正しく行われているかどうかをユーザが確認することを可能にする。 Then, for example, the CPU 1 starts the electrocardiogram recording operation in response to the input of the recording start instruction from the operation unit 8 or the elapse of a predetermined time from the time when the power is turned on. The acquisition of the electrocardiogram signal itself may be executed before the recording start instruction. For example, by displaying the waveform according to the current operation mode on the display unit 6, it is possible for the user to confirm whether or not the operation mode is set correctly.

心電図信号はA/D変換器9により所定のサンプリングレート(例えば125Hz〜数KHz)でサンプリングされ、デジタル信号の形式でメモリカード4や外部機器40に記録される。なお、心電図信号の計測ならびに記録動作は本発明と直接関係がなく、また従来と同様であってよいため、これ以上の説明は省略する。 The electrocardiogram signal is sampled by the A / D converter 9 at a predetermined sampling rate (for example, 125 Hz to several KHz) and recorded in the memory card 4 or the external device 40 in the form of a digital signal. Since the measurement and recording operation of the electrocardiogram signal is not directly related to the present invention and may be the same as the conventional one, further description thereof will be omitted.

(提案する指標の説明)
本実施形態では、左室肥大によって心電図に生じるストレインパターンと呼ばれるST区間およびT波の形状変化、具体的にはST区間の下降とT波の陰転化を評価する新たな指標を提案する。
具体的には、QRS区間(またはS波)の終了点(SE)およびT波の終了点(TE)までの区間(ST−T区間)における、基線のレベルを基準とした心電図信号の値の和に基づく指標を提案する。
(Explanation of proposed indicators)
In the present embodiment, we propose a new index for evaluating the shape change of the ST section and the T wave called the strain pattern caused by the left ventricular hypertrophy, specifically, the descent of the ST section and the negative conversion of the T wave.
Specifically, the value of the electrocardiogram signal based on the baseline level in the section (ST-T section) up to the end point (SE) of the QRS complex (or S wave) and the end point (TE) of the T wave. We propose an index based on the sum.

指標は例えば、ST−T区間における、
(a)基線のレベルを0とした心電図信号の値の和、もしくは
(b)基線と、心電図信号が表す波形との間に形成される領域の符号付きの大きさの和
であってよい。ここで、領域の符号付きの大きさとは、基線より上に形成される領域の大きさの符号を正、基線より下に形成される領域の大きさの符号を負とした大きさを意味する。
The index is, for example, in the ST-T section.
It may be (a) the sum of the values of the electrocardiogram signal with the baseline level set to 0, or (b) the sum of the signed sizes of the regions formed between the baseline and the waveform represented by the electrocardiogram signal. Here, the signed size of the region means a size in which the sign of the size of the region formed above the baseline is positive and the sign of the size of the region formed below the baseline is negative. ..

図2は、指標AUSTの例を模式的に示した図である。図2(a)および(c)は、基線23を自拍のQRS区間(またはQ波)の開始点(QB)と、自拍のT波の終了点(TE)とを通る直線とした場合を示している。また、図2(b)は、基線24を自拍および次拍のP波の開始点(PB)を結ぶ直線とした場合を示している。なお、基線はこれらに限定されず、例えば自拍のPB、QB、またはTEを通る水平な直線などであってもよい。なお、複数拍の心電図信号を平均して得られる1つの平均波形から指標AUSTを算出する場合には、その平均波形の区分点だけに基づく基線を設定する。 FIG. 2 is a diagram schematically showing an example of the index AUST. 2 (a) and 2 (c) show a case where the baseline 23 is a straight line passing through the start point (QB) of the QRS complex (or Q wave) of the self-beat and the end point (TE) of the T wave of the self-beat. ing. Further, FIG. 2B shows a case where the baseline 24 is a straight line connecting the start points (PB) of the P waves of the self-beat and the next beat. The baseline is not limited to these, and may be, for example, a horizontal straight line passing through PB, QB, or TE of the self-beat. When calculating the index AUST from one average waveform obtained by averaging the electrocardiogram signals of a plurality of beats, a baseline is set based only on the division point of the average waveform.

指標(a)については、例えば、ST−T区間で得られた心電図信号の値から基線レベルの値を減じた結果の和として算出することができる。また、指標(b)については、例えば、ST−T区間で得られた心電図信号の値から基線レベルの値を減じた結果に、所定値(例えばサンプリング間隔)を乗じた結果の和として算出することができる。つまり、図2(c)のように、心電図信号のST−T区間に、基線23より下の区間と上の区間とが存在する場合、基線の下側に形成される領域33(または心電図信号の値)の大きさは負、基線の上側に形成される領域34(または心電図信号の値)の大きさは正として和を求める。 The index (a) can be calculated as, for example, the sum of the results obtained by subtracting the baseline level value from the ECG signal value obtained in the ST-T section. The index (b) is calculated as, for example, the sum of the results obtained by subtracting the baseline level value from the value of the electrocardiogram signal obtained in the ST-T section and multiplying it by a predetermined value (for example, sampling interval). be able to. That is, as shown in FIG. 2C, when there are a section below the baseline 23 and a section above the baseline in the ST-T section of the electrocardiogram signal, the region 33 (or the electrocardiogram signal) formed below the baseline is formed. The magnitude of (value) is negative, and the magnitude of the region 34 (or the value of the electrocardiogram signal) formed above the baseline is positive, and the sum is calculated.

なお、指標AUSTの算出には、ST−T区間で得られた心電図信号の全ての計測値(サンプル値)を用いてもよいが、例えば計測値(サンプル値)を1つおきに用いて算出するなど、一部の計測値を用いなくてもよい。 In addition, in the calculation of the index AUST, all the measured values (sample values) of the electrocardiogram signals obtained in the ST-T section may be used, but for example, every other measured value (sample value) is used for calculation. It is not necessary to use some measured values.

(心電図信号の解析処理)
次に、本実施形態に係る心電図信号の解析処理について図3のフローチャートを用いて説明する。解析処理は心電図信号の計測時に実施してもよいし、記録済みの心電図信号に対して実施してもよい。また、上述したように、心電計100のような計測装置ではなく、計測機能を持たない装置で実施してもよい。以下では、予めROM2に記憶された心電図信号の解析プログラムをRAM3に展開してCPU1が実行することによって解析処理を実行するものとするが、解析処理の少なくとも一部がASIC、ASSP、FPGA等のハードウェア回路によって実現されてもよい。
(Electrocardiogram signal analysis processing)
Next, the electrocardiogram signal analysis process according to the present embodiment will be described with reference to the flowchart of FIG. The analysis process may be performed at the time of measuring the electrocardiogram signal, or may be performed on the recorded electrocardiogram signal. Further, as described above, it may be carried out by a device having no measurement function instead of a measurement device such as the electrocardiograph 100. In the following, it is assumed that the analysis process is executed by expanding the analysis program of the electrocardiogram signal stored in the ROM 2 in advance into the RAM 3 and executing the analysis process by the CPU 1. However, at least a part of the analysis process is performed by ASIC, ASSP, FPGA, or the like. It may be realized by a hardware circuit.

S101でCPU1は、メモリカード4もしくは通信可能に接続された外部機器40から、解析対象の心電図信号を取得する。取得する心電図信号は、上述の通り、左室側壁における電気的活動を反映する誘導であり、ここでは典型例としてV5誘導の信号を取得するものとする。なお、左室側壁における電気的活動を反映する誘導が複数計測されている場合には、それらの2つ以上を取得してもよい。例えば標準12誘導が計測されている場合であれば、V5誘導に加えてI誘導aVL誘導、およびV6の1つ以上について信号を取得することができる。複数種類の誘導の信号を取得する場合、同じ計測期間についての心電図信号を取得する。CPU1は取得した心電図信号をRAM3に記憶する。解析対象の計測期間が長時間にわたる場合、S101では所定時間分ずつ心電図信号を取得する。 In S101, the CPU 1 acquires an electrocardiogram signal to be analyzed from the memory card 4 or the external device 40 communicably connected. As described above, the acquired electrocardiogram signal is a lead that reflects the electrical activity on the side wall of the left ventricle, and here, as a typical example, it is assumed that the signal of the V5 lead is acquired. When a plurality of inductions reflecting the electrical activity on the side wall of the left ventricle are measured, two or more of them may be acquired. For example, if standard 12 leads are being measured, signals can be acquired for one or more of leads I, aVL, and V6 in addition to leads V5. When acquiring signals for multiple types of leads, ECG signals for the same measurement period are acquired. The CPU 1 stores the acquired electrocardiogram signal in the RAM 3. When the measurement period of the analysis target is long, S101 acquires an electrocardiogram signal for a predetermined time.

次にS103でCPU1は、RAM3に記憶されている心電図信号のサンプル列に対し、必要に応じてノイズ除去などの前処理を適用してから、公知の方法で一拍ごとの波形に分割したのち、直近の所定拍数分の心電図信号から1つの平均波形信号を生成する。平均波形信号を何拍分の信号から生成するかは任意に定めることができるが、例えば10拍分とすることができる。なお、例えば診察時や健康診断などにおいて医療機関で計測される場合のように、安静状態で計測される心電図信号については平均せずにそのまま用いてもよい。また、信号レベルが極端に大きい(小さい)区間や、ノイズの影響を受けていると思われる区間のように、安定した計測が行われていない区間の信号や、不整脈が発生していると思われる区間の信号は除外する。 Next, in S103, the CPU 1 applies preprocessing such as noise removal to the sample sequence of the electrocardiogram signal stored in the RAM 3 as necessary, and then divides the sample sequence into waveforms for each beat by a known method. , Generates one average waveform signal from the most recent ECG signals for a predetermined number of beats. The number of beats of the average waveform signal to be generated can be arbitrarily determined, but can be, for example, 10 beats. It should be noted that the electrocardiogram signal measured in a resting state may be used as it is without averaging, for example, when it is measured at a medical institution at the time of a medical examination or a medical examination. In addition, it seems that signals in sections where stable measurement is not performed, such as sections where the signal level is extremely high (small) or sections that are thought to be affected by noise, and arrhythmias are occurring. Signals in the section are excluded.

そして、CPU1は、平均波形信号(または計測された一拍分の心電図信号)に対して、上述した指標AUSTを算出する。具体的には、S1031でCPU1は公知の方法により波形区分点を検出し、QRS波の区間およびST−T区間を決定する。次にS1033でCPU1は基線を決定し、決定した基線を表す関数を求める。上述したように、様々な基線を用いることができるが、ここでは自拍のQ波の開始点(QB)とT波の終了点(TE)とを結ぶ直線を基線として用いるものとする。従って、基線を表す関数は、
y=(TEの計測値−QBの計測値)/(TEに対応する時刻−QBに対応する時刻)t+の計測値
ただし、yは基線レベル、tはQBに対応する時刻をt=0とする経過時間
として決定することができる。
Then, the CPU 1 calculates the above-mentioned index AUST with respect to the average waveform signal (or the measured electrocardiogram signal for one beat). Specifically, in S1031, the CPU 1 detects the waveform division point by a known method and determines the QRS wave section and the ST-T section. Next, in S1033, the CPU 1 determines a baseline and obtains a function representing the determined baseline. As described above, various baselines can be used, but here, a straight line connecting the start point (QB) of the self-beating Q wave and the end point (TE) of the T wave is used as the baseline. Therefore, the function that represents the baseline is
y = (measured value of TE-measured value of QB) / (time corresponding to TE-time corresponding to QB) measured value of t + where y is the baseline level and t is the time corresponding to QB as t = 0. It can be determined as the elapsed time to be performed.

S1035でCPU1は、平均波形信号(または計測された一拍分の心電図信号)の、S波の終了点(SE)からT波の終了点(TE)までの時間区間(SE−TE区間)に得られた個々の計測値(サンプル値)について、対応する時刻の基線レベルとの差
(計測値−基線レベル)
を符号付きで積算することにより、指標AUST(上述の指標(a))を算出する。
In S1035, the CPU 1 sets the time interval (SE-TE interval) from the end point (SE) of the S wave to the end point (TE) of the T wave of the average waveform signal (or the measured electrocardiogram signal for one beat). Difference between the obtained individual measured values (sample values) and the baseline level at the corresponding time (measured value-baseline level)
Is signed and integrated to calculate the index AUST (index (a) described above).

なお、指標AUSTとして上述の指標(b)を算出する場合には、
(計測値−基線レベル)×サンプリング周期
を符号付きで積算すればよい。
When calculating the above-mentioned index (b) as the index AUST,
(Measured value-baseline level) x sampling period may be integrated with a sign.

次にCPU1はS105で、算出した指標AUSTが予め定められた閾値未満か否かを判定し、閾値未満と判定されればS107に、判定されなければS111に、それぞれ処理を進める。ここで用いる閾値は、少なくとも解析する誘導の種類に応じて予め決定し、ROM2に保存してことができる。また、より正確な判定のために、解析する誘導の種類と、被検者の性別、年齢(範囲)、体重(範囲)など他の1つ以上の項目との組み合わせごとに閾値を決定して保存しておくこともできる。 Next, the CPU 1 determines in S105 whether or not the calculated index AUST is less than a predetermined threshold value, and if it is determined that it is less than the threshold value, it proceeds to S107, and if it is not determined, it proceeds to S111. The threshold value used here can be determined in advance at least according to the type of induction to be analyzed and stored in ROM 2. In addition, for more accurate determination, a threshold value is determined for each combination of the type of induction to be analyzed and one or more other items such as the subject's gender, age (range), and body weight (range). You can also save it.

S107でCPU1は、左室肥大の疑いがあると判定する。そして、S109でCPU1は、メッセージを表示部6に表示したり、解析した心電図波形とともにプリントアウトするなどしてその場で報知したり、解析した拍(自拍)の心電図信号のデータにイベント情報を関連づけて記録したりする。なお、ここでは説明および理解を容易にするために、指標AUSTと閾値との大小関係だけで左室肥大の疑いがあると判定するものとした。しかし、S波やR波の大きさやQRS区間の幅に基づく従前の診断基準のような他の条件の1つ以上を組み合わせて用いてもよい。例えば、Sokolow-Lyon基準、Cornell Voltage、およびCornell voltage-duration productのいずれか1つ以上と、指標AUSTが閾値未満であることの両方、または少なくとも一つを満たす場合に左室肥大の疑いがあると判定することができる。 In S107, the CPU 1 determines that there is a suspicion of left ventricular hypertrophy. Then, in S109, the CPU 1 displays a message on the display unit 6, prints it out together with the analyzed electrocardiogram waveform, and notifies the user on the spot, or outputs event information to the analyzed electrocardiogram signal data of the beat (self-beat). Record in association. Here, in order to facilitate explanation and understanding, it is determined that there is a suspicion of left ventricular hypertrophy only by the magnitude relationship between the index AUST and the threshold value. However, one or more of the other conditions, such as conventional diagnostic criteria based on the magnitude of the S wave or R wave and the width of the QRS complex, may be used in combination. For example, suspected left ventricular hypertrophy if one or more of the Sokolow-Lyon criteria, Cornell Voltage, and Cornell voltage-duration products and both or at least one of the indicators AUST is below the threshold. Can be determined.

S111でCPU1は、解析処理を終了するか否かを判定し、終了すると判定されれば解析処理を終了し、判定されなければ処理をS101に戻して解析処理を継続する。CPU1は、解析対象の心電図信号の全てに対して解析が終了した場合や、ユーザによる終了指示が検出された場合に、解析処理を終了すると判定することができる。 In S111, the CPU 1 determines whether or not to end the analysis process, ends the analysis process if it is determined to end, returns the process to S101 if it is not determined, and continues the analysis process. The CPU 1 can determine that the analysis process is completed when the analysis is completed for all the electrocardiogram signals to be analyzed or when the end instruction by the user is detected.

なお、ここでは心電図解析処理において指標AUSTの算出のみを説明したが、実際には不整脈など他の異常心電図の検出処理なども実行される。 Although only the calculation of the index AUST has been described here in the electrocardiogram analysis process, in reality, other abnormal electrocardiogram detection processes such as arrhythmia are also executed.

また、ここではメモリカード4や外部機器40に記録済みの心電図信号を取得する場合について説明したが、計測してリアルタイムで心電図をプリントアウトする心電計においても、図3に示した処理を実行することができる。この場合、一般的には安静状態で計測が行われるため、S103でのAUST算出を一拍ごとに実施してもよい。また、計測時間(10秒程度)中に得られた心電図信号の平均波形に対してAUST算出を実施してもよい。 Further, although the case of acquiring the electrocardiogram signal recorded in the memory card 4 or the external device 40 has been described here, the process shown in FIG. 3 is also executed in the electrocardiograph that measures and prints out the electrocardiogram in real time. can do. In this case, since the measurement is generally performed in a resting state, the AUST calculation in S103 may be performed for each beat. Further, the AUST calculation may be performed on the average waveform of the electrocardiogram signal obtained during the measurement time (about 10 seconds).

(実施例)
日本人における家庭血圧の心血管予後推定能に関する研究(J−HOP:Japan Morning Surge - Home Blood Pressure)の対象患者4310名のうち、心電図信号が計測されている834名(平均年齢63±11才、うち男性52%)に対してフォローアップ中の心電図信号データを用いて指標AUSTの検証を行った。
(Example)
Of the 4310 patients subject to the study on the ability to estimate the cardiovascular prognosis of home blood pressure in Japanese (J-HOP: Japan Morning Surge --Home Blood Pressure), 834 patients whose electrocardiogram signals were measured (mean age 63 ± 11 years) , Of which 52% were male), the index AUST was verified using the electrocardiogram signal data during follow-up.

具体的には、各患者について計測日時が最も古い心電図信号データ(10秒間)のうちV5誘導の正常拍の信号の平均波形について、QBとTEとを通る直線を基線として、基線レベルを0としたときの心電図信号の値をST−T区間において加算した指標AUST(上述の指標(a))をコンピュータを用いて算出した。また、同様にaVLおよびV3誘導の信号についてCornell voltageも算出した。 Specifically, for each patient, the average waveform of the V5-lead normal beat signal among the electrocardiogram signal data (10 seconds) with the oldest measurement date and time is set to 0 with the straight line passing through QB and TE as the baseline. The index AUST (the above-mentioned index (a)) obtained by adding the values of the electrocardiogram signals at the time of the calculation in the ST-T section was calculated using a computer. Similarly, Cornell voltage was also calculated for the signals of aVL and V3 leads.

指標AUSTの値を小さい順(絶対値が最大の負の値から絶対値が最大の正の値への順)にソートし、20%ごとに区分した。そして、最も小さい値の区間に指標AUSTに対応する患者をQ1(167人)とし、以降Q2、Q3、Q4、Q5(計667人)とした。また、Cornell Voltageを満たす患者群をCV−LVH(+)(125人)、満たさない患者群をCV−LVH(−)(709人)とした。 The values of the index AUST were sorted in ascending order (from the negative value with the largest absolute value to the positive value with the largest absolute value) and classified by 20%. Then, the patients corresponding to the index AUST in the interval of the smallest value were designated as Q1 (167 patients), and thereafter Q2, Q3, Q4, and Q5 (total of 667 patients). The group of patients satisfying Cornell Voltage was defined as CV-LVH (+) (125 patients), and the group of patients not satisfying Cornell Voltage was defined as CV-LVH (-) (709 patients).

図4は、これらの患者について、平均追跡期間6.2年の間に発生した、58の心血管イベント(心血管死亡、心筋梗塞、心不全、脳卒中など)の発症率(縦軸)と追跡日数(横軸)との関係をカプランマイヤー曲線で示したものである。 FIG. 4 shows the incidence (vertical axis) and number of days of follow-up of 58 cardiovascular events (cardiovascular death, myocardial infarction, heart failure, stroke, etc.) that occurred during an average follow-up period of 6.2 years for these patients. The relationship with (horizontal axis) is shown by the Kaplan-Meier curve.

図4(a)は、CV−LVH(+)とCV−LVH(−)との比較を示している。図4(b)は、Q1とQ2〜Q5との比較を示している。
Cornell voltage(RaVL+SV3≧2.0[mv](女性)または2.8[mv](男性))を満たす患者群(CV−LVH(+))は、条件を満たさない患者群(CV−LVH(−))よりも心血管イベントの発症率が高いことが図4(a)からわかる。また、ログランク検定によるp値は0.04であり、有意水準を5%とすれば両者に有意な差が認められる。
FIG. 4A shows a comparison between CV-LVH (+) and CV-LVH (−). FIG. 4B shows a comparison between Q1 and Q2 to Q5.
The patient group (CV-LVH (+)) that satisfies Cornell voltage (RaVL + SV3 ≧ 2.0 [mv] (female) or 2.8 [mv] (male)) is the patient group that does not meet the condition (CV-LVH (CV-LVH). It can be seen from FIG. 4 (a) that the incidence of cardiovascular events is higher than that of −)). The p-value by the log rank test is 0.04, and if the significance level is 5%, a significant difference is observed between the two.

また、指標AUSTが小さい患者群Q1は、そうでない患者群Q2〜Q5よりも心血管イベント発症率が高いことが図4(b)からわかる。ログランク検定によるp値は0.001であり、有意水準を5%とすれば両者に有意な差が認められる。そして、患者群Q1とQ2〜Q5との心血管イベント発症率の有意差は、Cornell voltageを満たす患者群と満たさない患者群との心血管イベントの発症率の有意差よりも大きい。 Further, it can be seen from FIG. 4 (b) that the patient group Q1 having a small index AUST has a higher incidence of cardiovascular events than the patient groups Q2 to Q5 that do not. The p-value by the log rank test is 0.001, and if the significance level is 5%, a significant difference is observed between the two. The significant difference in the incidence of cardiovascular events between the patient groups Q1 and Q2 to Q5 is larger than the significant difference in the incidence of cardiovascular events between the patient group satisfying the Cornell voltage and the patient group not satisfying the Cornell voltage.

これはすなわち、この患者群については、Cornell voltageに該当することよりも、指標AUSTが小さいこと(ここでは指標AUST≦0.084[msec・mV])の方が、心血管イベントの発症率により強い関連性を有することを意味する。つまり、この患者群については、指標AUSTがCornell voltageよりも、将来的に心血管イベントを発症するリスクを推定するための指標として有用であることがわかる。 This means that for this group of patients, a smaller index AUST (here, index AUST ≤ 0.084 [msec · mV]) is more dependent on the incidence of cardiovascular events than corresponding to Cornell voltage. It means having a strong relevance. In other words, for this group of patients, it can be seen that the index AUST is more useful as an index for estimating the risk of developing cardiovascular events in the future than the Cornell voltage.

以上説明したように本実施形態によれば、左心側壁の電気的活動を反映する心電図信号のS波の終了点からT波の終了点までのST−T区間について、予め定められた基線のレベルを基準とした心電図信号の値の和に基づく指標AUSTを提案した。この指標は、R波の大きさに依存しないため、従来用いられているR波の大きさに依存した指標(Cornell Voltageなど)で検出しづらい、左室肥大が進行してR波の高さが減少に転じている期間の患者についても左室肥大のリスクを精度良く検出することができる。また指標AUSTの閾値は定量化することが可能であるため、性別や年齢などの組み合わせに応じて解析を進めることにより、一層信頼性の高い評価基準として用いることが可能になる。 As described above, according to the present embodiment, the ST-T section from the end point of the S wave to the end point of the T wave of the electrocardiogram signal reflecting the electrical activity of the left central side wall has a predetermined baseline. We proposed the index AUST based on the sum of the values of the electrocardiogram signals based on the level. Since this index does not depend on the size of the R wave, it is difficult to detect it with a conventionally used index that depends on the size of the R wave (Cornell Voltage, etc.), and the left ventricular hypertrophy progresses and the height of the R wave. The risk of left ventricular hypertrophy can be accurately detected even in patients during the period when the number of patients is decreasing. Further, since the threshold value of the index AUST can be quantified, it can be used as a more reliable evaluation standard by proceeding with the analysis according to the combination of gender, age, and the like.

また、健康診断などで定期的に計測する心電図信号から左室肥大のリスクを検出することができるため、心エコーを行う前のスクリーニングにも有用である。また、心電計などにも容易に実装可能である。さらに、従前用いられている心電図信号に基づく指標との組み合わせも容易であるという利点もある。 In addition, since the risk of left ventricular hypertrophy can be detected from the electrocardiogram signal that is regularly measured in a medical examination or the like, it is also useful for screening before echocardiography. It can also be easily mounted on an electrocardiograph or the like. Furthermore, there is an advantage that it is easy to combine with an index based on an electrocardiogram signal previously used.

なお、本発明に係る心電図解析装置は、一般的に入手可能な、パーソナルコンピュータのような汎用情報処理装置に、上述した動作を実行させるプログラム(アプリケーションソフトウェア)として実現することもできる。従って、このようなプログラムおよび、プログラムを格納した記憶媒体(CD−ROM、DVD−ROM等の光学記録媒体や、磁気ディスクのような磁気記録媒体、半導体メモリカードなど)もまた本発明を構成する。 The electrocardiogram analysis device according to the present invention can also be realized as a program (application software) for causing a generally available general-purpose information processing device such as a personal computer to execute the above-mentioned operations. Therefore, such a program and a storage medium (an optical recording medium such as a CD-ROM or DVD-ROM, a magnetic recording medium such as a magnetic disk, a semiconductor memory card, etc.) in which the program is stored also constitute the present invention. ..

1…CPU、2…ROM、3…、RAM、4…メモリカード、5…カードスロット、6…表示部、8…操作部、9…A/D変換器、10…センサ用インターフェース、12…心電図電極、20…通信インターフェース、40…外部機器 1 ... CPU, 2 ... ROM, 3 ..., RAM, 4 ... memory card, 5 ... card slot, 6 ... display unit, 8 ... operation unit, 9 ... A / D converter, 10 ... sensor interface, 12 ... electrocardiogram Electrodes, 20 ... communication interface, 40 ... external device

Claims (12)

左室側壁の電気的活動を反映する心電図信号を取得する取得手段と、
前記心電図信号において、S波の終了点からT波の終了点までのST−T区間を検出する検出手段と、
前記ST−T区間について、予め定められた基線のレベルを基準とした前記心電図信号の値の和に基づく指標を、左室肥大に関する指標として算出する算出手段と、
を有し、
前記算出手段は、前記ST−T区間について、前記基線と、前記心電図信号が表す波形との間に形成される領域の符号付きの大きさの和を前記指標として算出することを特徴とする心電図解析装置。
An acquisition means for acquiring an electrocardiogram signal that reflects the electrical activity of the left ventricular side wall,
In the electrocardiogram signal, a detection means for detecting the ST-T section from the end point of the S wave to the end point of the T wave, and
With respect to the ST-T section, a calculation means for calculating an index based on the sum of the values of the electrocardiogram signals based on a predetermined baseline level as an index related to left ventricular hypertrophy, and
Have,
The calculation means is characterized in that the calculation means calculates the sum of the signed sizes of the regions formed between the baseline and the waveform represented by the electrocardiogram signal as the index for the ST-T section. Analyst.
前記算出手段は、前記領域のうち、前記基線の上側に形成される領域の大きさを正の大きさ、前記基線の下側に形成される領域の大きさを負の大きさとして前記領域の符号付きの大きさの和を算出することを特徴とする請求項1に記載の心電図解析装置。 In the calculation means, the size of the region formed above the baseline is a positive size, and the size of the region formed below the baseline is a negative size of the region. The electrocardiogram analysis apparatus according to claim 1, wherein the sum of the signed sizes is calculated. 前記基線が、前記心電図信号のQRS区間の開始点と、前記T波の終了点とを通る直線であることを特徴とする請求項1または請求項2に記載の心電図解析装置。 The electrocardiogram analysis apparatus according to claim 1 or 2, wherein the baseline is a straight line passing through the start point of the QRS section of the electrocardiogram signal and the end point of the T wave. 前記基線が、前記心電図信号のQRS区間の開始点、P波の開始点、もしくは前記T波の終了点を通る水平な直線であることを特徴とする請求項1または請求項2に記載の心電図解析装置。 The electrocardiogram according to claim 1 or 2, wherein the baseline is a horizontal straight line passing through the start point of the QRS section of the electrocardiogram signal, the start point of the P wave, or the end point of the T wave. Analytical device. 前記基線が、前記心電図信号の自拍および次拍のP波の開始点を結ぶ直線であることを特徴とする請求項1または請求項2に記載の心電図解析装置。 The electrocardiogram analysis apparatus according to claim 1 or 2, wherein the baseline is a straight line connecting the start points of the P wave of the self-beat and the next beat of the electrocardiogram signal. 前記指標が予め定められた閾値未満である場合に、予め定められた報知および記録の少なくとも一方を行う出力手段をさらに有することを特徴とする請求項1から請求項5のいずれか1項に記載の心電図解析装置。 If the index is less than the predetermined threshold value, from claim 1, characterized by further have the output means for performing at least one of the predetermined broadcast and recorded to any one of claims 5 The electrocardiogram analyzer described. 前記出力手段は、前記指標が予め定められた閾値未満であり、かつ、前記心電図信号のR波の大きさおよびQRS区間の幅の少なくとも一方に基づく左室肥大診断基準が満たされる場合に、前記予め定められた報知および記録の少なくとも一方を行うことを特徴とする請求項6に記載の心電図解析装置。 The output means said when the index is less than a predetermined threshold and the left ventricular hypertrophy diagnostic criteria based on at least one of the magnitude of the R wave and the width of the QRS complex of the electrocardiogram signal are satisfied. The electrocardiogram analyzer according to claim 6, wherein at least one of predetermined notification and recording is performed. 前記左室肥大診断基準が、Sokolow-Lyon基準、Cornell Voltage、およびCornell voltage-duration productのいずれかであることを特徴とする請求項7に記載の心電図解析装置。 The electrocardiogram analyzer according to claim 7, wherein the left ventricular hypertrophy diagnostic criterion is any one of a Sokolow-Lyon criterion, a Cornell Voltage, and a Cornell voltage-duration product. 前記取得手段が、被検者に装着された電極から前記心電図信号を取得することを特徴とする請求項1から請求項8のいずれか1項に記載の心電図解析装置。 The electrocardiogram analysis apparatus according to any one of claims 1 to 8, wherein the acquisition means acquires the electrocardiogram signal from an electrode mounted on the subject. 請求項1から請求項9のいずれか1項に記載の心電図解析装置を有することを特徴とする生体情報計測装置。 A biological information measuring device comprising the electrocardiogram analysis device according to any one of claims 1 to 9. 装置が実行する心電図解析方法であって、
左室側壁の電気的活動を反映する心電図信号を取得する取得工程と、
前記心電図信号において、S波の終了点からT波の終了点までのST−T区間を検出する検出工程と、
前記ST−T区間について、予め定められた基線のレベルを基準とした前記心電図信号の値の和に基づく指標を、左室肥大に関する指標として算出する算出工程と、を有し、
前記算出工程では、前記ST−T区間について、前記基線と、前記心電図信号が表す波形との間に形成される領域の符号付きの大きさの和を前記指標として算出することを特徴とする心電図解析方法。
An electrocardiogram analysis method performed by the device,
The acquisition process to acquire ECG signals that reflect the electrical activity of the left ventricular side wall,
In the electrocardiogram signal, a detection step of detecting the ST-T section from the end point of the S wave to the end point of the T wave, and
The ST-T section has a calculation step of calculating an index based on the sum of the values of the electrocardiogram signals based on a predetermined baseline level as an index related to left ventricular hypertrophy.
The calculation step is characterized in that, for the ST-T section, the sum of the signed sizes of the regions formed between the baseline and the waveform represented by the electrocardiogram signal is calculated as the index. analysis method.
コンピュータを、請求項1から請求項9のいずれか1項に記載の心電図解析装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each means of the electrocardiogram analyzer according to any one of claims 1 to 9.
JP2016220845A 2016-11-11 2016-11-11 Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device Active JP6845525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220845A JP6845525B2 (en) 2016-11-11 2016-11-11 Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220845A JP6845525B2 (en) 2016-11-11 2016-11-11 Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device

Publications (2)

Publication Number Publication Date
JP2018075310A JP2018075310A (en) 2018-05-17
JP6845525B2 true JP6845525B2 (en) 2021-03-17

Family

ID=62149465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220845A Active JP6845525B2 (en) 2016-11-11 2016-11-11 Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device

Country Status (1)

Country Link
JP (1) JP6845525B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507753B1 (en) * 2000-08-09 2003-01-14 Ge Marquette Medical Systems, Inc. Method and apparatus to detect acute cardiac syndromes in specified groups of patients using ECG
US6983183B2 (en) * 2001-07-13 2006-01-03 Cardiac Science, Inc. Method and apparatus for monitoring cardiac patients for T-wave alternans
JP2003260035A (en) * 2002-03-12 2003-09-16 Kiyoshi Takizawa Method and apparatus for diagnosis and diagnostic program
US7027857B2 (en) * 2003-02-14 2006-04-11 The General Electric Company Method and system for improved measurement of T-wave alternans
WO2010077305A1 (en) * 2008-12-15 2010-07-08 Heartscape Technologies, Inc. Measurement of extent of cardiac muscle injury
JP6353208B2 (en) * 2013-10-18 2018-07-04 学校法人自治医科大学 Biological information management apparatus, biological information management method, and biological information management program

Also Published As

Publication number Publication date
JP2018075310A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5384026B2 (en) False positive alarm reduction of SPO2 atrial fibrillation detection using average heart rate and NIBP
CN108882872A (en) Biont information analytical equipment, Biont information analysis system, program and Biont information analysis method
US8060193B2 (en) Systems and methods for graphic display of ST-segment deviation
US11000235B2 (en) Monitoring procedure for early warning of cardiac episodes
US8868168B2 (en) System for cardiac condition characterization using electrophysiological signal data
US20130211271A1 (en) Method and apparatus for eliminating motion artifacts of bio signal using personalized bio signal pattern
JP2014171660A (en) Atrial fibrillation analyzation equipment, atrial fibrillation analysis system, atrial fibrillation analysis method and program
EP3643227B1 (en) Minimum heart rate value approximation
JP2014171589A (en) Atrial fibrillation analyzation equipment and program
EP3188655B1 (en) User feedback to control ischemia monitoring ecg algorithm
JP6766710B2 (en) Blood pressure measuring device, method and program
JP6060563B2 (en) Atrial fibrillation determination device, atrial fibrillation determination method and program
US9198594B2 (en) TWA measuring apparatus and TWA measuring method
JP6088273B2 (en) ECG analyzer
JP6669455B2 (en) Electrocardiogram analysis method, electrocardiogram analyzer, electrocardiogram analysis program, and computer-readable storage medium storing electrocardiogram analysis program
JP6845525B2 (en) Electrocardiogram analyzer, electrocardiogram analysis method, and biometric information measurement device
JP7038521B2 (en) Biological information measuring device and method for detecting subject misunderstanding in biometric information measuring device
EP3349646B1 (en) Non-invasive determination of risk for sudden cardiac death
JP7152268B2 (en) BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF
JP7245921B2 (en) Apparatus and method for QT correction
JP2004350952A (en) Autonomic nerve activity evaluation device, its method, and autonomic nerve activity evaluation program
JP7087267B2 (en) Blood pressure data processor, blood pressure data processing method, and program
JP6537744B2 (en) Mental stress detection device and mental stress detection program
JP2021016702A (en) Biological information processing apparatus and control method of the same
CN112438731A (en) Electrocardiosignal analysis method, electrocardiosignal analysis device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6845525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250