JP6844084B2 - Inverter IGBT life prediction method for cranes and their equipment - Google Patents

Inverter IGBT life prediction method for cranes and their equipment Download PDF

Info

Publication number
JP6844084B2
JP6844084B2 JP2017155396A JP2017155396A JP6844084B2 JP 6844084 B2 JP6844084 B2 JP 6844084B2 JP 2017155396 A JP2017155396 A JP 2017155396A JP 2017155396 A JP2017155396 A JP 2017155396A JP 6844084 B2 JP6844084 B2 JP 6844084B2
Authority
JP
Japan
Prior art keywords
igbt
inverter
life
value
crane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017155396A
Other languages
Japanese (ja)
Other versions
JP2019037024A (en
Inventor
栄作 川尻
栄作 川尻
吉田 豊
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Mechanics Co Ltd
Original Assignee
Hitachi Plant Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Mechanics Co Ltd filed Critical Hitachi Plant Mechanics Co Ltd
Priority to JP2017155396A priority Critical patent/JP6844084B2/en
Publication of JP2019037024A publication Critical patent/JP2019037024A/en
Application granted granted Critical
Publication of JP6844084B2 publication Critical patent/JP6844084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Inverter Devices (AREA)

Description

本発明は、クレーンにおけるインバータの寿命予測方法及びその装置に関し、特に、クレーンにおけるインバータの絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor)(以下、本明細書において、「IGBT」という。)の寿命予測方法及びその装置に関するものである。 The present invention relates to a method for predicting the life of an inverter in a crane and its apparatus, and in particular, a method for predicting the life of an insulated gate bipolar transistor (hereinafter, referred to as “IGBT” in the present specification) of an inverter in a crane. And its equipment.

近年の省エネルギ化の機運の高まりから、クレーンにおける三相誘導電動機の可変速制御として、インバータ制御が適用されている。 Due to the increasing momentum of energy saving in recent years, inverter control has been applied as variable speed control of a three-phase induction motor in a crane.

しかしながら、インバータの問題点として、半導体の経年劣化があり、特に、インバータ駆動部に用いられるIGBTのパワーサイクル寿命による突然故障が発生し、クレーンが使用不可となり、生産設備の操業停止となることが問題となっていた。 However, a problem with inverters is the aged deterioration of semiconductors, and in particular, sudden failures occur due to the power cycle life of the IGBT used in the inverter drive unit, the crane becomes unusable, and the operation of production equipment is stopped. It was a problem.

このため、インバータの予備品を購入して不具合発生時に備えているが、インバータ回路を構成する主回路の基板に用いられている電界コンデンサは、未使用の場合でも劣化するため、予備品を備えていても、年数が経過しているといざ使用する場面では電界コンデンサの充電ができないことがあり、予備品の役目を果たすことができないという問題があった。 For this reason, spare parts for the inverter are purchased to prepare for problems, but the electric field capacitors used for the board of the main circuit that composes the inverter circuit deteriorate even when not in use, so spare parts are provided. Even so, there was a problem that the electric field capacitor could not be charged when it was used after many years, and it could not serve as a spare part.

本発明は、上記従来のインバータの有する問題点、すなわち、インバータ駆動部に用いられるIGBTのパワーサイクル寿命に鑑み、IGBTの寿命予測を可能とすることで、クレーンの安定稼働に貢献し、さらに、IGBTの傾向管理が可能となることで、IGBTが突然故障する数か月前にインバータを購入し、予備品を不要としたクレーンのライフサイクルコスト低減にも貢献する、クレーンにおけるインバータのIGBT寿命予測方法及びその装置を提供することを目的とする。 The present invention contributes to stable operation of the crane by making it possible to predict the life of the IGBT in view of the problem of the conventional inverter, that is, the power cycle life of the IGBT used in the inverter drive unit. By enabling the trend management of IGBTs, it is possible to purchase inverters several months before the sudden failure of IGBTs, which also contributes to reducing the life cycle cost of cranes that do not require spare parts. It is an object of the present invention to provide a method and its device.

上記目的を達成するため、本発明のクレーンにおけるインバータのIGBT寿命予測方法は、インバータの1次側に電力モニタを設置し、インバータの2次側に設置した電力モニタとの差分を計測することで、IGBT正常時からの劣化に伴うVCE電圧の変化をIGBTの発熱量として計測を行うことを特徴とする。
ここで、VCE電圧とは、コレクタ−エミッタ間電圧をいう(以下、本明細書において、同じ。)。
In order to achieve the above object, the IGBT life prediction method of the inverter in the crane of the present invention installs a power monitor on the primary side of the inverter and measures the difference from the power monitor installed on the secondary side of the inverter. It is characterized in that the change in VCE voltage due to deterioration from the normal state of the IGBT is measured as the calorific value of the IGBT.
Here, the VCE voltage means a collector-emitter voltage (hereinafter, the same applies in the present specification).

この場合において、IGBTのVCE電圧の変化を発熱量として計測することで、VCE(sat)最大保証電圧と設計値を基準として、傾向管理を行うようにすることができる。
ここで、VCE(sat)電圧とは、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧をいう(以下、本明細書において、同じ。)。
In this case, by measuring the change in the VCE voltage of the IGBT as the calorific value, the tendency can be managed based on the VCE (sat) maximum guaranteed voltage and the design value.
Here, the VCE (sat) voltage refers to the collector-emitter saturation voltage described in the data sheet published by the IGBT manufacturer (hereinafter, the same applies in the present specification).

また、同じ目的を達成するため、本発明のクレーンにおけるインバータのIGBT寿命予測装置は、以下の(A)及び(B)のデータをクレーンの制御装置に取り込んで、(A)及び(B)の早く到達した方を寿命と判断して表示装置に表示させることを特徴とする。
(A)インバータの新品時の2次側のモータへの出力P3に対する1次側の電力値をP1、インバータ使用後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値をP2、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧(VCE(sat))の基準値をV1、同最大値をV2とした場合、
{(P2−P3)/(P1−P3)}<(V2/V1)×α ・・・(1)
α:補正係数
の関係を満たさなくなった場合に、IGBTモジュールの寿命と判断する。
(B)線形累積損傷則の公式から寿命回数に達した場合に、IGBTモジュールの寿命と判断する。
Further, in order to achieve the same object, the IGBT life prediction device of the inverter in the crane of the present invention incorporates the following data (A) and (B) into the control device of the crane to obtain the data of (A) and (B). The feature is that the one that arrives earlier is judged to have reached the end of its life and is displayed on the display device.
(A) The power value on the primary side with respect to the output P3 to the motor on the secondary side when the inverter is new is P1, and the power value on the primary side whose calorific value increases with the change in the VCE voltage of the IGBT after using the inverter. P2, When the reference value of the collector-emitter saturation voltage (VCE (sat)) described in the data sheet published by the IGBT manufacturer is V1 and the maximum value is V2.
{(P2-P3) / (P1-P3)} <(V2 / V1) x α ... (1)
When the relationship of α: correction coefficient is no longer satisfied, it is determined that the life of the IGBT module is reached.
(B) When the number of lifespans is reached from the formula of the linear cumulative damage rule, it is judged that the lifespan of the IGBT module is reached.

本発明のクレーンにおけるインバータのIGBT寿命予測方法及びその装置によれば、クレーンにおけるインバータのIGBTの傾向管理が可能となり、インバータ故障が突然発生することなく、インバータ予備品を持たずに交換が可能となり、いままでインバータの故障が突然発生する関係から適用できなかった製鋼所のレードルクレーン等に好適に用いることができる。 According to the method for predicting the IGBT life of the inverter in the crane of the present invention and the device thereof, it is possible to manage the tendency of the IGBT of the inverter in the crane, and it is possible to replace the inverter without holding a spare part without sudden occurrence of an inverter failure. It can be suitably used for a radle crane or the like of a steel mill, which has not been applicable until now due to the sudden occurrence of an inverter failure.

本発明のクレーンにおけるインバータのIGBT寿命予測方法に用いるインバータの1次側電力と2次側電力の差分を計測するインバータブロック図である。It is an inverter block diagram which measures the difference between the primary side electric power and the secondary side electric power of the inverter used in the IGBT life prediction method of the inverter in the crane of this invention. 本発明のクレーンにおけるインバータのIGBT寿命予測方法と併用可能な線形累積損傷則法に用いるIGBTの接合部温度上昇(ジャンクション温度)と動作回数の関係を表した寿命対数グラフである。It is a life log graph showing the relationship between the junction temperature rise (junction temperature) of the IGBT used in the linear cumulative damage rule method that can be used together with the IGBT life prediction method of the inverter in the crane of the present invention and the number of operations. IGBT単体におけるVCE(sat)コレクタ−エミッタ間飽和電圧と動作回数の関係を表したグラフである。It is a graph which showed the relationship between the saturation voltage between VCE (sat) collector-emitter and the number of operations in a single IGBT. IGBTのVCE電圧をインバータに組み込んだ状態で測定した波形を表したグラフである。It is a graph which showed the waveform measured in the state which incorporated the VCE voltage of the IGBT into an inverter. IGBT寿命予測装置の実施例を示した説明図である。It is explanatory drawing which showed the Example of the IGBT life prediction apparatus. IGBT寿命予測装置の画面を示し、寿命予測設定画面と演算結果、診断結果の図である。The screen of the IGBT life prediction device is shown, and it is a figure of the life prediction setting screen, the calculation result, and the diagnosis result. IGBT基準電力の測定画面を示した説明図である。It is explanatory drawing which showed the measurement screen of the IGBT reference power.

以下、本発明のクレーンにおけるインバータのIGBT寿命予測方法の実施の形態を、図面に基づいて説明する。 Hereinafter, embodiments of the IGBT life prediction method for the inverter in the crane of the present invention will be described with reference to the drawings.

高電力を取り扱うIGBTモジュールの典型的な故障メカニズムとして、熱疲労故障が存在することが知られている。この故障は、モジュール構造部材の線膨張係数の違いから生じる熱応力が、各部材間の接合部に繰り返し加わることに起因するものある。主な故障部位及びその故障メカニズムは、次の(1)〜(3)である。
(1)アルミニウムワイヤとシリコンチップの接合部
アルミニウムワイヤとシリコンチップの線膨張係数差により、接合端面に応力が加わり、亀裂が発生して進展する。最終的には、亀裂が接合面を横断し、剥離破壊に至る。
(2)シリコンチップと絶縁基板間のはんだ接合部
シリコンチップと絶縁基板の線膨張係数差により、はんだ接合端面に応力が加わり、亀裂が発生して進展する。これにより、シリコンチップの放熱が妨げられ、さらに進展すると熱破壊に至る。
(3)絶縁基板と銅ベース間のはんだ接合部
絶縁基板と銅ベース間の線膨張係数差により、はんだ接合端面に応力が加わり、亀裂が発生して進展する。これにより、(2)と同様に、シリコンチップの放熱が妨げられ、熱破壊に至る。
It is known that thermal fatigue failure exists as a typical failure mechanism of an IGBT module that handles high power. This failure is caused by the fact that thermal stress caused by the difference in the coefficient of linear expansion of the module structural members is repeatedly applied to the joints between the members. The main failure sites and their failure mechanisms are the following (1) to (3).
(1) Joint portion between aluminum wire and silicon chip Due to the difference in linear expansion coefficient between the aluminum wire and silicon chip, stress is applied to the joint end face, and cracks are generated and propagated. Eventually, the cracks cross the joint surface, leading to exfoliation failure.
(2) Solder joint between the silicon chip and the insulating substrate Due to the difference in the coefficient of linear expansion between the silicon chip and the insulating substrate, stress is applied to the end face of the solder joint, and cracks are generated and propagated. As a result, heat dissipation of the silicon chip is hindered, and further progress leads to thermal destruction.
(3) Solder joint between the insulating substrate and the copper base Due to the difference in the coefficient of linear expansion between the insulated substrate and the copper base, stress is applied to the end face of the solder joint, causing cracks to grow. As a result, as in (2), heat dissipation of the silicon chip is hindered, leading to thermal destruction.

上記知見に鑑み、本発明のIGBTの寿命予測方法は、インバータの1次側に電力モニタを設置し、インバータの2次側に設置した電力モニタとの差分を計測することで、IGBT正常時からの劣化に伴うVCE電圧の変化をIGBTの発熱量(温度上昇)として計測を行い、負荷に対するIGBTの電力量をモニタすることで、熱疲労故障を事前に検知し、寿命を予測するものである。 In view of the above findings, the method for predicting the life of the IGBT of the present invention is to install a power monitor on the primary side of the inverter and measure the difference from the power monitor installed on the secondary side of the inverter to measure the difference from the normal state of the IGBT. By measuring the change in the VCE voltage due to the deterioration of the IGBT as the calorific value (temperature rise) of the IGBT and monitoring the power amount of the IGBT with respect to the load, thermal fatigue failure is detected in advance and the life is predicted. ..

図1に、本発明のクレーンにおけるインバータのIGBT寿命予測方法に用いるインバータの1次側電力と2次側電力の差分を計測するインバータブロック図の一例を示す。 FIG. 1 shows an example of an inverter block diagram for measuring the difference between the primary side power and the secondary side power of the inverter used in the IGBT life prediction method of the inverter in the crane of the present invention.

このクレーンにおけるインバータのIGBT寿命予測方法は、インバータの1次側に電力モニタ(電力変換器)を設置し、インバータの2次側に設置した電力モニタとの差分を計測することで、IGBT正常時からの劣化に伴うVCE電圧の変化をIGBTの発熱量として計測を行うようにする。
具体的には、インバータの1次側の電力値(入力値)及びインバータの2次側の電力値(出力値)をそれぞれPLC(プログラマブルコントローラ)にアナログ値として入力する。
The method of predicting the IGBT life of the inverter in this crane is to install a power monitor (power converter) on the primary side of the inverter and measure the difference from the power monitor installed on the secondary side of the inverter when the IGBT is normal. The change in the VCE voltage due to the deterioration from the inverter is measured as the calorific value of the IGBT.
Specifically, the power value (input value) on the primary side of the inverter and the power value (output value) on the secondary side of the inverter are input to the PLC (programmable controller) as analog values.

そして、インバータの新品時の2次側のモータへの出力P3に対する1次側の電力値をP1、インバータ使用後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値をP2、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧(VCE(sat))の基準値をV1、同最大値をV2とした場合、
{(P2−P3)/(P1−P3)}<(V2/V1)×α ・・・(1)
α:補正係数
の関係を満たさなくなった場合に、IGBTモジュールの寿命と判断し、交換するようにする。
ここで、補正係数は、1.0を基本とし、温度等の使用環境のほか、万一、故障が生じた場合のリスク等を勘案して、例えば、0.7〜1.5の範囲で設定するようにする。
また、VCE(sat)の基準値V1は、A社のIGBTモジュールでは、2.2V(テスト条件:I=600A、VGE=15V)、B社のIGBTモジュールでは、1.7V(テスト条件:I=4500A、VGE=15V、T=25℃)、1.8V(テスト条件:I=4500A、VGE=15V、T=125℃)、同最大値V2は、A社のIGBTモジュールでは、2.8V(テスト条件:I=600A、VGE=15V)、B社のIGBTモジュールでは、2.2V(テスト条件:I=4500A、VGE=15V、T=25℃)、2.3V(テスト条件:I=4500A、VGE=15V、T=125℃)であった。
Then, the power value on the primary side with respect to the output P3 to the motor on the secondary side when the inverter is new is P1, and the power value on the primary side whose calorific value increases with the change of the VCE voltage of the IGBT after using the inverter is P2. , When the reference value of the collector-emitter saturation voltage (VCE (sat)) described in the data sheet published by the IGBT manufacturer is V1 and the maximum value is V2.
{(P2-P3) / (P1-P3)} <(V2 / V1) x α ... (1)
When the relationship of α: correction coefficient is no longer satisfied, it is judged that the life of the IGBT module has expired, and the module is replaced.
Here, the correction coefficient is basically 1.0, and in consideration of the usage environment such as temperature and the risk in the event of a failure, for example, in the range of 0.7 to 1.5. Make sure to set it.
The reference value V1 of the VCE (sat) is the company A IGBT module, 2.2V (test condition: I c = 600A, V GE = 15V), the company B IGBT module, 1.7V (test conditions : I c = 4500A, V GE = 15V, T j = 25 ° C), 1.8V (test conditions: I c = 4500A, V GE = 15V, T j = 125 ° C), the maximum value V2 is Company A. 2.8V (test condition: I c = 600A, V GE = 15V) for the IGBT module of B company, 2.2V (test condition: I c = 4500A, V GE = 15V, T j =) for the IGBT module of company B. 25 ° C.), 2.3 V (test conditions: I c = 4500 A, V GE = 15 V, T j = 125 ° C.).

ここで、例えば、インバータの新品時の2次側のモータへの出力P3を45kW、出力P3に対する1次側の電力値P1を45.5kW、インバータ使用後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値P2を45.6kW、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧(VCE(sat))の基準値V1を2.2V、同最大値V2を2.8V、補正係数αを1.0として、式(1)に代入すると、
{(45.6−45)/(45.5−45)}<(2.8/2.2)×1.0
(0.6/0.5)=1.2<1.27
となり、正常範囲内であるが、インバータを長期間使用した後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値P2が45.7kWとなると、
{(45.7−45)/(45.5−45)}<(2.8/2.2)×1.0
(0.7/0.5)=1.4>1.27
となり、正常範囲外であるため交換が必要と判断する。
Here, for example, the output P3 to the motor on the secondary side when the inverter is new is 45 kW, the power value P1 on the primary side with respect to the output P3 is 45.5 kW, and heat is generated due to a change in the VCE voltage of the IGBT after using the inverter. The increased primary power value P2 is 45.6 kW, and the reference value V1 of the collector-inverter saturation voltage (VCE (sat)) described in the data sheet published by the IGBT manufacturer is 2.2 V, which is the maximum value. Substituting into equation (1) with V2 set to 2.8V and the correction coefficient α set to 1.0,
{(45.6-45) / (45.5-45)} <(2.8 / 2.2) x 1.0
(0.6 / 0.5) = 1.2 <1.27
However, when the primary power value P2, which is within the normal range but the calorific value increases due to the change in the VCE voltage of the IGBT after using the inverter for a long period of time, becomes 45.7 kW.
{(45.7-45) / (45.5-45)} <(2.8 / 2.2) x 1.0
(0.7 / 0.5) = 1.4> 1.27
It is judged that it is necessary to replace it because it is out of the normal range.

なお、上記方法に代えて、IGBTのVCE電圧を直接測定することも考えられるが、IGBTモジュールをインバータに組み込んでしまうと、VCE電圧の出力波形が、図4に示すようにPWM(Pulse Width Modulation)制御の波形として出力されるため、IGBTのVCE電圧を直接測定できないため、本発明をなしたものである。 Instead of the above method, it is conceivable to directly measure the VCE voltage of the IGBT, but when the IGBT module is incorporated in the inverter, the output waveform of the VCE voltage becomes PWM (Pulse Width Modulation) as shown in FIG. ) Since it is output as a control waveform, the VCE voltage of the IGBT cannot be directly measured, and thus the present invention is made.

さらに、式(1)と、IGBTの故障に至るまでのIGBTに流す一定電流に対するIGBTの接合部温度上昇と動作回数の関係を示す対数グラフを用い、巻上の場合、ブレーキ開放時に重量によって下向きに引っ張られることを考慮して巻上と巻下でインバータのブレーキ解放トルクが異なり、巻上は高く巻下は低く設定している。このため、巻上と巻下で電流値が異なる関係から、IGBTの電流値を線形累積損傷則法により算出した寿命回数とを併用することができる。
具体的には、図2に示すように、IGBTメーカより設計値として提供される、IGBTの故障に至るまでのIGBTに流す一定電流に対するIGBTの接合部温度上昇(ジャンクション温度)と動作回数の関係を表す対数グラフから、巻上、巻下の起動時の電流に対する温度上昇値を入手し、寿命回数を求める。
例えば、巻上:3×10回、巻下:7×10回であった場合、線形累積損傷則の公式から寿命回数Pは、
P={1/(3×10)+1/(7×10)}−1
≒2,105,263回 ・・・(2)
として求められる。
Furthermore, using equation (1) and a semi-log graph showing the relationship between the temperature rise of the junction of the IGBT and the number of operations with respect to the constant current flowing through the IGBT until the failure of the IGBT, in the case of hoisting, the downward direction is due to the weight when the brake is released. The brake release torque of the inverter is different between the hoisting and the hoisting in consideration of being pulled by, and the hoisting is set high and the unwinding is set low. Therefore, since the current values are different between the hoisting and the unwinding, the current value of the IGBT can be used together with the number of times of life calculated by the linear cumulative damage rule.
Specifically, as shown in FIG. 2, the relationship between the temperature rise at the junction of the IGBT (junction temperature) and the number of operations with respect to the constant current flowing through the IGBT until the failure of the IGBT, which is provided as a design value by the IGBT manufacturer. From the logarithmic graph showing the above, obtain the temperature rise value with respect to the current at the start of hoisting and unwinding, and obtain the number of lifespans.
For example, when winding up: 3 × 10 6 times and winding down: 7 × 10 6 times, the number of life times P is calculated from the formula of the linear cumulative damage rule.
P = {1 / (3 × 10 6 ) + 1 / (7 × 10 6 )} -1
≒ 2,105,263 times ・ ・ ・ (2)
Is required as.

そして、寿命予測の信頼性を高めるために上記式(1)及び式(2)を併用して、例えば、早く到達した方を寿命として適用するようにする。本発明を制御装置に適用する場合、公式やグラフを取り込めるようにして演算した結果を出力する。 Then, in order to improve the reliability of the life prediction, the above equations (1) and (2) are used in combination, and for example, the one that arrives earlier is applied as the life. When the present invention is applied to a control device, the result of calculation is output so that formulas and graphs can be taken in.

図5にIGBT寿命予測装置の構成図を示す。タッチパネルから寿命診断の基準データとなるパラメータ情報を設定することで、PLCから寿命予測結果を出力し、表示することができる。例えば、図6に示すようにIGBTの基準電圧、最大電圧を設定し、補正係数を入力することで、VCE電圧の最大電圧に対する基準電圧の比を表示することができる。また、インバータの1次電力と2次電力に対する電力比を表示し、図7に示すインバータが新品時の無負荷時の荷重に対する電力値と定格負荷に対する基準電力値から新品時の電力比の線形性を求め、劣化後の1次電力と2次電力の電力比との比較を行い寿命計算を行うことができる。また、巻上と巻下それぞれの設計寿命回数を入力することで、線形累積損傷則法により寿命回数換算値を表示し、実際に稼働した巻上回数と巻下回数の換算結果との比較から寿命計算を行うことができる。 FIG. 5 shows a configuration diagram of the IGBT life prediction device. By setting the parameter information that serves as the reference data for the life diagnosis from the touch panel, the life prediction result can be output and displayed from the PLC. For example, as shown in FIG. 6, by setting the reference voltage and the maximum voltage of the IGBT and inputting the correction coefficient, the ratio of the reference voltage to the maximum voltage of the VCE voltage can be displayed. In addition, the power ratio to the primary power and the secondary power of the inverter is displayed, and the power value of the inverter shown in FIG. 7 with respect to the load when there is no load and the reference power value with respect to the rated load are linear to the power ratio when the inverter is new. It is possible to obtain the property, compare the power ratio of the primary power and the secondary power after deterioration, and calculate the life. In addition, by inputting the design life count of each of the hoisting and unwinding, the life count conversion value is displayed by the linear cumulative damage rule, and from the comparison between the actual operating hoisting count and the hoisting count conversion result. Life can be calculated.

式(1)及び式(2)に関するデータをクレーンの制御装置に取り込んで、式(1)及び式(2)の早く到達した方を寿命と判断して上記タッチパネル等の表示装置に表示させることができる。
この場合、式(1)及び式(2)の診断結果を寿命に対する到達率を%で表し、到達率50%までを判定A、70%までの到達率を判定B、90%までの到達率を判定Cとして予想寿命の表示を行うようにすることができる。
The data related to the formulas (1) and (2) are taken into the control device of the crane, and the one that arrives earlier in the formulas (1) and (2) is judged to be the life and displayed on the display device such as the touch panel. Can be done.
In this case, the diagnosis results of the formulas (1) and (2) are expressed in% as the arrival rate for the life, the arrival rate up to 50% is judged A, the arrival rate up to 70% is judged B, and the arrival rate up to 90%. Can be set as the determination C to display the expected life.

以上、本発明のクレーンにおけるインバータのIGBT寿命予測方法及びその装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 The method for predicting the IGBT life of the inverter in the crane of the present invention and its device have been described above based on the examples thereof, but the present invention is not limited to the configuration described in the above examples and deviates from the gist thereof. The configuration can be changed as appropriate to the extent that it does not.

本発明のクレーンにおけるインバータのIGBT寿命予測方法及びその装置は、IGBTの寿命予測を可能とすることで、クレーンの安定稼働に貢献し、さらに、IGBTの傾向管理が可能となることで、IGBTが突然故障する数か月前にインバータを購入し、予備品を不要としたクレーンのライフサイクルコスト低減にも貢献するものであることから、インバータ制御を行うクレーンの用途に広く用いることができ、例えば、いままでインバータの故障が突然発生する関係から適用できなかった製鋼所のレードルクレーン等の用途にもインバータ制御を行うクレーンを用いることが可能となる。 The method for predicting the life of the inverter in the crane of the present invention and its device can predict the life of the IGBT, thereby contributing to the stable operation of the crane, and further, the tendency of the IGBT can be managed, so that the IGBT can be used. Since the inverter is purchased several months before the sudden failure and contributes to the reduction of the life cycle cost of the crane that does not require spare parts, it can be widely used for the purpose of the crane that controls the inverter, for example. It is now possible to use a crane that controls the inverter for applications such as radle cranes in steelworks, which could not be applied due to the sudden occurrence of inverter failure.

Claims (3)

インバータの1次側に電力モニタを設置し、前記電力モニタの計測値と、インバータの2次側に設置した電力モニタの計測値との差分を計測することで、IGBT正常時からの劣化に伴うVCE電圧の変化をIGBTの発熱量として計測を行うことを特徴とするクレーンにおけるインバータのIGBT寿命予測方法。 By installing a power monitor on the primary side of the inverter and measuring the difference between the measured value of the power monitor and the measured value of the power monitor installed on the secondary side of the inverter, it accompanies deterioration from the normal state of the IGBT. A method for predicting the IGBT life of an inverter in a crane, which measures a change in VCE voltage as an amount of heat generated by the IGBT. 以下の(A)及び(B)のデータをクレーンの制御装置に取り込んで、(A)及び(B)の早く到達した方を寿命と判断して表示装置に表示することを特徴とする請求項1に記載のクレーンにおけるインバータのIGBT寿命予測方法。
(A)インバータの新品時の2次側のモータへの出力P3に対する1次側の電力値をP1、インバータ使用後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値をP2、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧(VCE(sat))の基準値をV1、同最大値をV2とした場合、
{(P2−P3)/(P1−P3)}<(V2/V1)×α ・・・(1)
α:補正係数
の関係を満たさなくなった場合に、IGBTモジュールの寿命と判断する。
(B)線形累積損傷則の公式から寿命回数に達した場合に、IGBTモジュールの寿命と判断する。
The claim is characterized in that the following data (A) and (B) are taken into the control device of the crane, and the one that arrives earlier in (A) and (B) is judged to be the life and displayed on the display device. The method for predicting the IGBT life of an inverter in the crane according to 1.
(A) The power value on the primary side with respect to the output P3 to the motor on the secondary side when the inverter is new is P1, and the power value on the primary side whose calorific value increases with the change in the VCE voltage of the IGBT after using the inverter. P2, When the reference value of the collector-emitter saturation voltage (VCE (sat)) described in the data sheet published by the IGBT manufacturer is V1 and the maximum value is V2.
{(P2-P3) / (P1-P3)} <(V2 / V1) x α ... (1)
α: Correction coefficient
When the relationship between the above is not satisfied, it is determined that the life of the IGBT module has expired.
(B) When the number of lifespans is reached from the formula of the linear cumulative damage rule, it is judged that the lifespan of the IGBT module is reached.
以下の(A)及び(B)のデータをクレーンの制御装置に取り込んで、(A)及び(B)の早く到達した方を寿命と判断して表示装置に表示させることを特徴とするクレーンにおけるインバータのIGBT寿命予測装置。
(A)インバータの新品時の2次側のモータへの出力P3に対する1次側の電力値をP1、インバータ使用後のIGBTのVCE電圧の変化に伴い発熱量が増加した1次側電力値をP2、IGBTメーカが公表しているデータシート記載のコレクタ−エミッタ間飽和電圧(VCE(sat))の基準値をV1、同最大値をV2とした場合、
{(P2−P3)/(P1−P3)}<(V2/V1)×α ・・・(1)
α:補正係数
の関係を満たさなくなった場合に、IGBTモジュールの寿命と判断する。
(B)線形累積損傷則の公式から寿命回数に達した場合に、IGBTモジュールの寿命と判断する。
The crane is characterized in that the following data (A) and (B) are taken into the control device of the crane, and the one that arrives earlier in (A) and (B) is judged to be the life and displayed on the display device. Inverter IGBT life prediction device.
(A) The power value on the primary side with respect to the output P3 to the motor on the secondary side when the inverter is new is P1, and the power value on the primary side whose calorific value increases with the change in the VCE voltage of the IGBT after using the inverter. P2, When the reference value of the collector-emitter saturation voltage (VCE (sat)) described in the data sheet published by the IGBT manufacturer is V1 and the maximum value is V2.
{(P2-P3) / (P1-P3)} <(V2 / V1) x α ... (1)
When the relationship of α: correction coefficient is no longer satisfied, it is determined that the life of the IGBT module is reached.
(B) When the number of lifespans is reached from the formula of the linear cumulative damage rule, it is judged that the lifespan of the IGBT module is reached.
JP2017155396A 2017-08-10 2017-08-10 Inverter IGBT life prediction method for cranes and their equipment Active JP6844084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155396A JP6844084B2 (en) 2017-08-10 2017-08-10 Inverter IGBT life prediction method for cranes and their equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155396A JP6844084B2 (en) 2017-08-10 2017-08-10 Inverter IGBT life prediction method for cranes and their equipment

Publications (2)

Publication Number Publication Date
JP2019037024A JP2019037024A (en) 2019-03-07
JP6844084B2 true JP6844084B2 (en) 2021-03-17

Family

ID=65655709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155396A Active JP6844084B2 (en) 2017-08-10 2017-08-10 Inverter IGBT life prediction method for cranes and their equipment

Country Status (1)

Country Link
JP (1) JP6844084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856229B (en) * 2019-04-12 2023-08-15 华北电力大学 Crimping type insulated gate bipolar transistor high-temperature reverse bias test method
EP4296105A1 (en) * 2021-02-22 2023-12-27 Panasonic Intellectual Property Management Co., Ltd. Failure prediction system, failure prediction method, and failure prediction program
EP4380033A1 (en) 2021-07-26 2024-06-05 Panasonic Intellectual Property Management Co., Ltd. Failure prediction system, failure prediction method, and failure prediction program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719729B2 (en) * 1994-12-27 2005-11-24 シャープ株式会社 Aging prediction method for interconnection inverter
JP3302575B2 (en) * 1996-09-25 2002-07-15 株式会社神戸製鋼所 Evaluation method for remaining fatigue life of metallic materials
JP2000134954A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Inverter
JP2002119043A (en) * 2000-10-03 2002-04-19 Hitachi Ltd Semiconductor device and its inspecting method
JP2003009541A (en) * 2001-06-22 2003-01-10 Nissan Motor Co Ltd Inverter
JP5456527B2 (en) * 2010-03-19 2014-04-02 東芝エレベータ株式会社 Elevator control device
JP2015089145A (en) * 2013-10-28 2015-05-07 株式会社ノーリツ Power conditioner
JP2017017822A (en) * 2015-06-30 2017-01-19 ルネサスエレクトロニクス株式会社 Semiconductor device and failure detection method
JP6286515B2 (en) * 2016-12-01 2018-02-28 株式会社日立産機システム Winding machine life calculator

Also Published As

Publication number Publication date
JP2019037024A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP5456527B2 (en) Elevator control device
JP6844084B2 (en) Inverter IGBT life prediction method for cranes and their equipment
JP5196370B2 (en) Lifetime diagnosis device for power converter
CN101738261B (en) Inverter device and cooling capacity measurement method for inverter device
KR101668174B1 (en) Electric motor control device
US8952642B2 (en) Power conversion device and temperature rise calculation method thereof
CN107112941B (en) Power inverter and the electric power steering apparatus for using the power inverter
JP4855806B2 (en) Power supply
JP2010220449A (en) Power conversion apparatus and elevator device using the same
JP2012135119A (en) Inverter device
JP6164995B2 (en) Heating element lifetime estimation device and module
KR101777695B1 (en) Method for preventing the over-heating of Transformer
JP2013023357A (en) Elevator control device
JP5976873B1 (en) Elevator control device
JP5182243B2 (en) Power module
WO2016170584A1 (en) Power conversion device
JP6576846B2 (en) Power converter
JP2012120251A (en) Power conditioner
JP4799572B2 (en) Inverter device
JP2013143830A (en) Elevator controller
JP6927840B2 (en) Power converter
JP5697713B2 (en) Power converter and control method thereof
JP5887854B2 (en) Anomaly detection device
JP6656501B1 (en) Power converter, semiconductor chip life diagnosis device, and semiconductor chip life diagnosis method
JP2016158341A (en) Cooling fan driver in power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6844084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250