JP6842146B2 - How to correct machine tool machining errors - Google Patents

How to correct machine tool machining errors Download PDF

Info

Publication number
JP6842146B2
JP6842146B2 JP2016160735A JP2016160735A JP6842146B2 JP 6842146 B2 JP6842146 B2 JP 6842146B2 JP 2016160735 A JP2016160735 A JP 2016160735A JP 2016160735 A JP2016160735 A JP 2016160735A JP 6842146 B2 JP6842146 B2 JP 6842146B2
Authority
JP
Japan
Prior art keywords
tool
spindle
axis
contact
lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160735A
Other languages
Japanese (ja)
Other versions
JP2018027599A (en
Inventor
賢一 中西
賢一 中西
Original Assignee
中村留精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中村留精密工業株式会社 filed Critical 中村留精密工業株式会社
Priority to JP2016160735A priority Critical patent/JP6842146B2/en
Publication of JP2018027599A publication Critical patent/JP2018027599A/en
Application granted granted Critical
Publication of JP6842146B2 publication Critical patent/JP6842146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Description

この発明は、工作機械の熱変形によるワークの加工誤差を補正する手段に関するものである。 The present invention relates to a means for correcting a machining error of a workpiece due to thermal deformation of a machine tool.

工作機械でワークを加工すると、機械の運転に伴って生ずる発熱により、機械各部の温度が変化し、それに伴う機械各部の熱変形の変化により、加工されるワークの加工精度が変化(一般的には低下)する。 When a workpiece is machined with a machine tool, the temperature of each part of the machine changes due to the heat generated by the operation of the machine, and the machining accuracy of the workpiece to be machined changes due to the accompanying change in thermal deformation of each part of the machine (generally). Will decrease).

この機械自体の経時的な温度変化による加工精度の変化を補正するために、機械の各所に温度センサを取り付け、各センサの検出温度に実験により求めた係数を乗じた演算式により補正値を求めて、この補正値で刃物台の移動位置などを補正して加工を行うということが行われている。 In order to correct the change in machining accuracy due to the time-dependent temperature change of the machine itself, temperature sensors are attached to various parts of the machine, and the correction value is calculated by the calculation formula obtained by multiplying the detected temperature of each sensor by the coefficient obtained by the experiment. Therefore, the moving position of the tool post is corrected by this correction value and the processing is performed.

例えば、旋盤の本体にn個の温度センサをそれぞれ適切と考えられる箇所に取り付け、種々のワークを加工した際の加工精度のデータと加工中に検出された各温度センサの検出温度のデータとを用いて、
Δx=a1x1+a2x2+a3x3+・・・+anxn
Δy=a1y1+a2y2+a3y3+・・・+anyn
Δz=a1z1+a2z2+a3z3+・・・+anzn
のような計算式でX、Y、Z軸方向の補正値Δx、Δy、Δzを求め、加工プログラムで指定されるX、Y、Z軸方向の刃物台の位置をその時々に演算された補正値で補正して加工を行うのである。
For example, n temperature sensors are attached to the main body of a lathe at appropriate locations, and data on machining accuracy when machining various workpieces and data on the detected temperature of each temperature sensor detected during machining are collected. make use of,
Δx = a 1x t 1 + a 2x t 2 + a 3x t 3 + ・ ・ ・ + an nx t n
Δy = a 1y t 1 + a 2y t 2 + a 3y t 3 + ... + a ny t n
Δz = a 1z t 1 + a 2z t 2 + a 3z t 3 + ... + a nz t n
The correction values Δx, Δy, and Δz in the X, Y, and Z axis directions are obtained by a calculation formula such as, and the position of the tool post in the X, Y, and Z axis directions specified in the machining program is calculated at each time. It is corrected by the value and processed.

なお、上式中
1,t2,t3・・・tnは機械に設けたn個の温度センサの検出温度、
1x,a2x,a3x・・・anx、a1y,a2y,a3y・・・any及びa1z,a2z,a3z・・・anは、それぞれの温度センサの検出温度に乗ずるX、Y及びZ軸方向の係数で、実際にワークの加工を行って求めた値である。
In the above equation, t 1 , t 2 , t 3 ... t n are the detection temperatures of n temperature sensors installed in the machine.
a 1x, a 2x, a 3x ··· a nx, a 1y, a 2y, a 3y ··· a ny and a 1z, a 2z, a 3z ··· a n is the detected temperature of each temperature sensor It is a coefficient in the X, Y, and Z axis directions that is multiplied by, and is a value obtained by actually processing the workpiece.

特開平6−55415号公報Japanese Unexamined Patent Publication No. 6-55415

工作機械で加工されるワークの種類、その加工手順、環境温度などは多種多様で、経時的にも変化する。そのため、上述のようにして機械各部の温度から補正値を演算して加工を行っても、機械の熱変形に起因する加工誤差を完全に補正することは不可能である。一方、生産性と加工精度の向上は、工作機械に求められる一般的な要求であり、常に更なる向上が求められている。 The types of workpieces machined by machine tools, their machining procedures, environmental temperatures, etc. are diverse and change over time. Therefore, even if the correction value is calculated from the temperature of each part of the machine and the processing is performed as described above, it is impossible to completely correct the processing error caused by the thermal deformation of the machine. On the other hand, improvement of productivity and processing accuracy is a general requirement for machine tools, and further improvement is always required.

この発明は、生産性を低下させることなく、工作機械、特に旋盤における機械の熱変形に基づく加工誤差をより適切に補正することができる技術手段を提供することにより、ワークの加工精度を更に向上させることを課題としている。 The present invention further improves the machining accuracy of a workpiece by providing a technical means capable of more appropriately correcting machining errors due to thermal deformation of a machine tool, particularly a lathe, without reducing productivity. The challenge is to let them do it.

この発明は、旋盤の主軸と刃物台の工具取付位置との相対位置関係の変化を適時計測することにより、ワークの径方向の加工誤差をより的確に補正することができるようにしたものである。この発明では、主軸に取り付けられているワークチャック4の外周5と、刃物台14、24の工具取付位置7に取り付けた接触検出センサ3aないし検出棒3bとを接触させ、その接触検出時における刃物台14、24の座標から主軸と刃物台の工具取付位置との主軸直角方向の相対位置関係の変化を検出し、その検出値を含む演算に基づいて加工プログラムから指令される刃物台14、24の位置に対する補正値を求めている。 The present invention makes it possible to more accurately correct the machining error in the radial direction of the workpiece by timely measuring the change in the relative positional relationship between the spindle of the lathe and the tool mounting position of the tool post. .. In the present invention, the outer circumference 5 of the work chuck 4 mounted on the spindle is brought into contact with the contact detection sensor 3a or the detection rod 3b attached to the tool mounting positions 7 of the tool rests 14 and 24, and the blade at the time of contact detection. The change in the relative positional relationship between the spindle and the tool mounting position of the tool post in the direction perpendicular to the spindle is detected from the coordinates of the tables 14 and 24, and the tool post 14 and 24 commanded by the machining program based on the calculation including the detected value. The correction value for the position of is obtained.

接触検出センサ3aとしては、一般的にタッチセンサと呼ばれている周知のセンサを使用することができる。また、このようなセンサを用いる代わりに高精度に加工した検出棒(好ましくは高精度の加工が容易な丸棒)を用いて特許文献1などで提案されている位置偏差、すなわち刃物台送り時に刃物台送りモータに与える位置指令と刃物台送りモータから返されるフィードバック信号との差信号である位置偏差の立ち上がりを検出することで、検出棒3bとチャック外周5との接触を検出することができる。後者の手段によれば、高価な接触検出センサを用いないで、この発明を実施することができる。 As the contact detection sensor 3a, a well-known sensor generally called a touch sensor can be used. Further, instead of using such a sensor, a detection rod processed with high accuracy (preferably a round rod that can be easily processed with high accuracy) is used, and the position deviation proposed in Patent Document 1 and the like, that is, at the time of feeding the tool post By detecting the rise of the position deviation, which is the difference signal between the position command given to the tool post feed motor and the feedback signal returned from the tool post feed motor, the contact between the detection rod 3b and the chuck outer circumference 5 can be detected. .. According to the latter means, the present invention can be carried out without using an expensive contact detection sensor.

チャック外周の真円度の誤差に基づく検出誤差を避けるために、主軸を予め定めた所定の位相で停止して、接触検出センサ3aないし検出棒3bを接触させるのが好ましい。また、チャックの外周に切削油や切粉が付着して検出誤差が生ずるのを避けるために、2箇所以上の主軸停止位相を設定し、第1の停止位相における検出値がしきい値を超えたときに次候補として定めた停止位相で主軸を停止して検出を行うという制御も可能である。 In order to avoid a detection error based on an error in the roundness of the outer circumference of the chuck, it is preferable to stop the spindle at a predetermined phase and bring the contact detection sensor 3a to the detection rod 3b into contact with each other. Further, in order to prevent cutting oil and chips from adhering to the outer circumference of the chuck and causing a detection error, two or more spindle stop phases are set, and the detection value in the first stop phase exceeds the threshold value. It is also possible to control that the spindle is stopped at the stop phase determined as the next candidate at that time to perform detection.

この発明は、主軸に取り付けたワークチャックの外周5と刃物台の工具取付位置7との主軸直角方向の寸法の変化を検出して補正をするものであるから、機械の熱変形に基づくワークの径方向の加工誤差を補正するものである。刃物台のZ軸方向の位置によって主軸直角方向の熱変形も変化するので、一般的には、検出したチャック外周と刃物台の工具取付位置との相対位置関係の変化を含む演算式で補正値を演算すべきである。すなわち、従来公知の演算式に本発明の方法で検出したチャック外周と刃物台の工具取付位置との主軸直角方向の位置関係の変化を変数δとして含む項を含ませた演算式で補正値を演算する。 According to the present invention, a change in the dimensions of the outer circumference 5 of the work chuck mounted on the spindle and the tool mounting position 7 of the tool post in the direction perpendicular to the spindle is detected and corrected. It corrects the machining error in the radial direction. Since the thermal deformation in the direction perpendicular to the spindle also changes depending on the position of the tool post in the Z-axis direction, in general, the correction value is a correction value including the change in the relative positional relationship between the detected outer circumference of the chuck and the tool mounting position of the tool post. Should be calculated. That is, the correction value is calculated by a conventionally known calculation formula including a term including a change in the positional relationship between the outer circumference of the chuck and the tool mounting position of the tool post detected by the method of the present invention in the direction perpendicular to the spindle as a variable δ. Calculate.

ワークの加工誤差は、機械自体の熱変形による主軸中心と工具刃先との相対位置関係の変化により生ずる。旋削加工時の主軸回転に伴う主軸軸受けの温度上昇は、機械を熱変形させる主要な熱源の一つである。主軸を軸支している主軸台18、28は、ベッド11、21上面が立ち上がっており、主軸軸受けの発熱により主軸台18、28の立ち上がり方向の熱変形が大きくなる。 The machining error of the workpiece is caused by a change in the relative positional relationship between the center of the spindle and the cutting edge of the tool due to thermal deformation of the machine itself. The temperature rise of the spindle bearing due to the rotation of the spindle during turning is one of the main heat sources that thermally deform the machine. The upper surfaces of the beds 11 and 21 of the headstocks 18 and 28 that support the spindles are raised, and the heat generated by the headstocks increases the thermal deformation of the headstocks 18 and 28 in the rising direction.

主軸台18、28が工具の切り込み方向(旋盤のX軸方向)と直交する方向に立ち上がっている構造では、主軸台18、28の立ち上がり方向の変位がワークの径方向の加工誤差に与える影響は小さい。しかし、図2、図5に示すような主軸台18、28の立ち上がり方向が工具の切り込み方向Xと同方向ないし斜めに交叉する構造の旋盤においては、主軸台の立ち上がり方向の変位が加工誤差に直接影響する。 In a structure in which the headstocks 18 and 28 rise in a direction orthogonal to the cutting direction of the tool (X-axis direction of the lathe), the displacement of the headstocks 18 and 28 in the rising direction has an effect on the machining error in the radial direction of the workpiece. small. However, in a lathe having a structure in which the rising directions of the headstocks 18 and 28 intersect the cutting direction X of the tool at the same direction or diagonally as shown in FIGS. 2 and 5, the displacement in the rising direction of the headstock causes a machining error. It has a direct effect.

また、刃物台14、24がY軸方向にも移動して平面加工、溝加工、孔開け加工などを行う複合旋盤では、刃物台14、24の立ち上がり方向の変位がY軸方向の加工誤差に大きく影響する。 Further, in a compound lathe in which the tool rests 14 and 24 move in the Y-axis direction to perform flat surface machining, grooving, drilling, etc., the displacement of the tool post 14 and 24 in the rising direction causes a machining error in the Y-axis direction. It has a big influence.

この発明においては、刃物台の工具取付位置7に装着した接触検出センサ3aないし検出棒3bとワークチャック外周5の同一箇所との間隔を直接検出するので、ワークの加工径の誤差やY軸方向の加工位置の誤差を高い精度で補正できる。 In the present invention, since the distance between the contact detection sensor 3a or the detection rod 3b mounted on the tool mounting position 7 of the tool post and the same location on the outer circumference 5 of the work chuck is directly detected, an error in the machining diameter of the work or the Y-axis direction The error of the processing position can be corrected with high accuracy.

従って、本発明の手段と従来の補正手段とを併用することで、旋盤におけるワークの加工精度をより高めることができる。 Therefore, by using the means of the present invention and the conventional correction means in combination, the machining accuracy of the work on the lathe can be further improved.

第1例の旋盤の要部の正面図Front view of the main part of the lathe of the first example 第1例の旋盤の模式的な側面図Schematic side view of the lathe of the first example 第1例の旋盤における補正値の設定手順を示すフローチャートA flowchart showing a procedure for setting a correction value in the lathe of the first example. 第2例の旋盤の要部の正面図Front view of the main part of the lathe of the second example 第2例の旋盤の模式的な側面図Schematic side view of the lathe of the second example 第2例の旋盤における補正値の設定手順を示すフローチャートFlow chart showing the procedure for setting the correction value in the lathe of the second example

以下、この発明の実施例を示す図面を参照して、この発明を具体的に説明する。図1及び図2に示す第1実施例の旋盤1は、鉛直方向をX軸方向とした旋盤である。 Hereinafter, the present invention will be specifically described with reference to the drawings showing examples of the present invention. The lathe 1 of the first embodiment shown in FIGS. 1 and 2 is a lathe whose vertical direction is the X-axis direction.

図2において、ベッド11の上面にZ軸方向(図2の紙面直角方向)に移動位置決め自在にZ軸移動台12が搭載され、当該Z軸移動台にY軸方向(図2の左右方向)に移動位置決め自在に背の高いY軸移動台13が搭載され、当該Y軸移動台の前面にX軸方向(図2の上下方向)に移動位置決め自在に刃物台14が搭載され、当該刃物台にB軸(Y軸回り)方向に旋回位置決め自在に工具モータ15が搭載されている。工具モータ15の回転子軸(工具軸)は、Y軸と直交する方向を向いている。工具(旋削工具及び回転工具)は、図示しない自動工具交換装置により、工具モータ15の回転子軸の先端に設けた工具チャック17に装着される。図1に示したタッチセンサ3aは、工具マガジンに搭載しておいて、適時、工具交換装置により工具チャック17に装着される。 In FIG. 2, a Z-axis moving table 12 is mounted on the upper surface of the bed 11 so as to be movable and positioned in the Z-axis direction (direction perpendicular to the paper surface in FIG. 2), and the Z-axis moving table is mounted in the Y-axis direction (horizontal direction in FIG. 2). A tall Y-axis moving table 13 is mounted on the front surface of the Y-axis moving table, and a tool post 14 is mounted on the front surface of the Y-axis moving table so as to move and position in the X-axis direction (vertical direction in FIG. 2). The tool motor 15 is mounted so that it can be swiveled and positioned in the B-axis (Y-axis) direction. The rotor shaft (tool shaft) of the tool motor 15 faces in a direction orthogonal to the Y-axis. The tools (turning tools and rotary tools) are mounted on the tool chuck 17 provided at the tip of the rotor shaft of the tool motor 15 by an automatic tool changer (not shown). The touch sensor 3a shown in FIG. 1 is mounted on the tool magazine and is timely mounted on the tool chuck 17 by the tool changing device.

第1実施例の旋盤の主軸を軸支する主軸台18は、下方部背面をベッド11の前面に固定されて上方に立ち上がっている。図には表れていない主軸は、主軸台18の上部に軸支されている。主軸を回転駆動する主軸モータは、加工プログラムなどから指令された任意の位置で位相(角度位置)を固定することができる。また、工具モータ15は、少なくとも原点位相で回転子軸を固定可能である。ワークの旋削加工は、原点位相で固定した回転子軸の工具チャック17に旋削工具を装着して行われる。 The headstock 18, which pivotally supports the main shaft of the lathe of the first embodiment, has a lower back surface fixed to the front surface of the bed 11 and stands up upward. The spindle not shown in the figure is pivotally supported on the upper part of the headstock 18. The spindle motor that rotationally drives the spindle can fix the phase (angle position) at an arbitrary position commanded by a machining program or the like. Further, the tool motor 15 can fix the rotor shaft at least in the origin phase. The turning of the work is performed by mounting the turning tool on the tool chuck 17 of the rotor shaft fixed at the origin phase.

主軸を高速回転する旋削加工時の主軸軸受は、ワーク加工時における大きな発熱源の一つである。主軸軸受で発生した熱は、主軸台18を熱膨張させる。図2に示した構造の旋盤では、主軸台18の熱膨張による主軸軸心cの偏倚方向は、概ね図2に矢印dで示した方向になると考えられる。主軸軸心cの矢印d方向への変位は、ワークと工具とのX軸方向及びY軸方向の相対位置関係を変化させる。 The spindle bearing during turning, which rotates the spindle at high speed, is one of the major heat sources during workpiece machining. The heat generated in the spindle bearing causes the spindle base 18 to thermally expand. In the lathe having the structure shown in FIG. 2, it is considered that the deviation direction of the spindle axis c due to the thermal expansion of the headstock 18 is substantially the direction indicated by the arrow d in FIG. The displacement of the spindle center c in the arrow d direction changes the relative positional relationship between the work and the tool in the X-axis direction and the Y-axis direction.

旋盤を制御するNC装置には、図3に示す補正値更新手順と刃物台の接触時基準座標、すなわち、基準状態において工具チャック17に装着したタッチセンサ3aをワークチャック4の外周5に接触したときの刃物台14の座標とが登録されている。ワークの加工開始時及び連続自動加工を行う場合の所定のワーク加工数ごとに、図3の補正値の更新手順が呼び出される。 In the NC device that controls the lathe, the correction value updating procedure shown in FIG. 3 and the reference coordinates at the time of contact of the tool post, that is, the touch sensor 3a mounted on the tool chuck 17 in the reference state are brought into contact with the outer circumference 5 of the work chuck 4. The coordinates of the tool post 14 at the time are registered. The procedure for updating the correction value shown in FIG. 3 is called at the start of machining of the workpiece and for each predetermined number of workpieces to be machined when continuous automatic machining is performed.

呼び出された補正値更新手順は、自動工具交換装置により、工具チャック17にタッチセンサ3aを装着し、主軸を設定された位相で停止し、刃物台を接触検出開始位置に急速接近させる。接触検出開始位置は、タッチセンサ3aの先端6とワークチャック4の外周5との間に僅かな間隙を隔てた位置として設定された位置である(図1参照)。次にZ軸及びY軸方向の送りモータを停止し、刃物台14をX軸マイナス方向(刃物台が主軸軸心cに接近する方向)に低速移動させる。この移動中にタッチセンサ3aから接触検出信号が出力されたら、そのときの刃物台14のX軸座標を記憶して刃物台14を停止する。 In the called correction value update procedure, the touch sensor 3a is attached to the tool chuck 17 by the automatic tool changer, the spindle is stopped at the set phase, and the tool post is rapidly brought close to the contact detection start position. The contact detection start position is a position set as a position with a slight gap between the tip 6 of the touch sensor 3a and the outer circumference 5 of the work chuck 4 (see FIG. 1). Next, the feed motors in the Z-axis and Y-axis directions are stopped, and the tool post 14 is moved at a low speed in the X-axis minus direction (the direction in which the tool post approaches the spindle axis c). If a contact detection signal is output from the touch sensor 3a during this movement, the X-axis coordinates of the tool post 14 at that time are memorized and the tool post 14 is stopped.

検出された刃物台14の座標と記憶している接触時基準座標との差δが予め定めたしきい値以内であれば、その後、刃物台は、工具交換位置に移動し、次の加工のための工具を工具チャック17に装着する。 If the difference δ between the detected coordinates of the tool post 14 and the stored reference coordinates at the time of contact is within a predetermined threshold value, the tool post then moves to the tool change position and performs the next machining. The tool for this purpose is attached to the tool chuck 17.

検出した座標と接触時基準座標との差δがしきい値を超えているときは、ワークチャック外周の検出対象となる位置に切削液や切粉が付着していると推定して、主軸位相を次候補の主軸位相に変換して再度タッチセンサ3aとワークチャック外周5との接触検出動作を行う。 When the difference δ between the detected coordinates and the reference coordinates at the time of contact exceeds the threshold value, it is estimated that cutting fluid or chips have adhered to the position to be detected on the outer circumference of the work chuck, and the spindle phase Is converted to the next candidate spindle phase, and the contact detection operation between the touch sensor 3a and the work chuck outer circumference 5 is performed again.

NC装置が内蔵するコンピュータは、検出された刃物台の座標と接触時基準座標との差δと検出手順実行時に検出した機械各部の温度センサの検出温度t1,t2,t3・・・tnを用いて新しい補正値Δx,Δyを例えば次式で計算する。
Δx=a1x1+a2x2+a3x3+・・・+anxn+bxδ
Δy=a1y1+a2y2+a3y3+・・・+anyn+byδ
The computer built into the NC device has the difference δ between the detected coordinates of the tool post and the reference coordinates at the time of contact, and the detection temperatures of the temperature sensors of each part of the machine detected during the execution of the detection procedure t 1 , t 2 , t 3 ... Using t n , the new correction values Δx and Δy are calculated by, for example, the following equation.
Δx = a 1x t 1 + a 2x t 2 + a 3x t 3 + ... + anx t n + b x δ
Δy = a 1y t 1 + a 2y t 2 + a 3y t 3 + ··· + a ny t n + b y δ

ここで、t1,t2,t3・・・tn、a1x,a2x,a3x・・・anx及びa1y,a2y,a3y・・・anyは、背景技術の欄で説明した機械各部に設置した温度センサの検出温度と補正値を演算する際にそれらの温度に乗ずる係数であり、bx及びbyは、補正値更新手順で検出された刃物台の座標と接触時基準座標との差δに乗ずるX軸方向及びY軸方向の係数である。なお、Z軸方向の補正値Δzは、従来と同じ演算式で求めてやれば良い。 Here, t 1, t 2, t 3 ··· t n, a 1x, a 2x, a 3x ··· a nx and a 1y, a 2y, a 3y ··· a ny is the background section in a coefficient multiplied to their temperature when calculating the detected temperature and the correction value of the temperature sensor installed in the machine each unit described, b x and b y are the detected tool rest coordinate correction value updating step It is a coefficient in the X-axis direction and the Y-axis direction that is multiplied by the difference δ from the reference coordinates at the time of contact. The correction value Δz in the Z-axis direction may be obtained by the same calculation formula as in the conventional case.

上記のようにして新たな補正値が演算されたら、NC装置に設定されている補正値を更新して、刃物台14のX軸送りモータ及びY軸送りモータ及びZ軸送りモータに与える指令値を更新後の補正値で補正して、その後の加工を行う。 When the new correction value is calculated as described above, the correction value set in the NC device is updated, and the command value given to the X-axis feed motor, the Y-axis feed motor, and the Z-axis feed motor of the tool post 14. Is corrected with the corrected correction value after the update, and the subsequent processing is performed.

図4及び図5に示す第2実施例の旋盤2は、いわゆるスラント型のベッド21とタレット刃物台24とを備えた旋盤である。図示には表れていない主軸は、鉛直方向に立ち上がる主軸台28の上部に軸支されている。この第2実施例の旋盤2では、主軸軸受の発熱による主軸台の熱変形は、主軸軸心cを図の矢印d方向、すなわち上方向に変位させると考えられる。 The lathe 2 of the second embodiment shown in FIGS. 4 and 5 is a lathe provided with a so-called slant type bed 21 and a turret tool post 24. The spindle not shown in the figure is pivotally supported on the upper part of the spindle 28 that rises in the vertical direction. In the lathe 2 of the second embodiment, it is considered that the thermal deformation of the spindle base due to the heat generation of the spindle bearing displaces the spindle axis c in the direction of arrow d in the figure, that is, in the upward direction.

第2実施例の旋盤2における刃物台24は、ベッド21の上面と平行なX軸方向と、図5の紙面直角方向であるZ軸方向にのみ移動位置決め可能で、Y軸方向の移動手段は備えていない。刃物台のタレット26の工具取付位置の一箇所7にアングルホルダ27を介して精密に加工した円形断面の棒材からなる検出棒3bが装着されている。 The tool post 24 in the lathe 2 of the second embodiment can be moved and positioned only in the X-axis direction parallel to the upper surface of the bed 21 and in the Z-axis direction which is the direction perpendicular to the paper surface in FIG. Not prepared. A detection rod 3b made of a rod material having a circular cross section, which is precisely machined via an angle holder 27, is mounted at one location 7 of the tool mounting position of the turret 26 of the tool post.

図6は、第2実施例の旋盤における補正値更新手続のフローチャートである。図6の手続が図3の手続と相違は、タッチセンサに代えて円形断面の金属棒材からなる検出棒3bを用いていること、検出棒3bとワークチャック4の外周5との接触を刃物台24をX軸方向に送る送りモータのサーボ装置の位置偏差を監視することによって検出していること、タレットの割出回転によって検出棒3bを選択できること、及びB軸及びY軸を備えていないことによる相違である。 FIG. 6 is a flowchart of the correction value updating procedure in the lathe of the second embodiment. The procedure of FIG. 6 is different from the procedure of FIG. 3 in that a detection rod 3b made of a metal rod having a circular cross section is used instead of the touch sensor, and the contact between the detection rod 3b and the outer circumference 5 of the work chuck 4 is a blade. It is detected by monitoring the position deviation of the servo device of the feed motor that sends the base 24 in the X-axis direction, the detection rod 3b can be selected by the indexing rotation of the turret, and it does not have the B-axis and the Y-axis. It is a difference due to the fact.

呼び出された図6の補正値更新手順は、タレット26を回動して検出棒3bを割出し、主軸を設定された位相で停止し、刃物台を接触検出開始位置に急速接近させ、Z軸方向の送りモータを停止し、X軸送りモータにトルク制限をかけ、当該送りモータに与える位置指令と当該送りモータから返されるフィードバック信号との差信号である位置偏差を監視しながら刃物台24をX軸マイナス方向に低速移動させる。 In the called correction value update procedure of FIG. 6, the turret 26 is rotated to index the detection rod 3b, the spindle is stopped at the set phase, the tool post is rapidly brought close to the contact detection start position, and the Z axis is used. The tool post 24 is operated while stopping the feed motor in the direction, limiting the torque of the X-axis feed motor, and monitoring the position deviation which is the difference signal between the position command given to the feed motor and the feedback signal returned from the feed motor. Move at low speed in the minus direction of the X axis.

そして、この低速移動中に位置偏差の立ち上がり(急上昇)が検出されたら、直ちに刃物台を停止し、そのときの刃物台のX座標を読み取る。刃物台の座標を読み取った後の手順は、Y軸方向の補正値の演算を行わない点を除き、図3の手順と同じである。そして、新たの補正値を設定した後、タレット26の回動によって続く工程で使用される工具を割り出してその後の加工を開始する。 Then, when the rise (rapid rise) of the position deviation is detected during this low-speed movement, the turret is immediately stopped, and the X coordinate of the turret at that time is read. The procedure after reading the coordinates of the tool post is the same as the procedure of FIG. 3 except that the correction value in the Y-axis direction is not calculated. Then, after setting a new correction value, the tool used in the subsequent process is determined by the rotation of the turret 26, and the subsequent machining is started.

この発明を実施する工作機械の例として、2種類の構造の旋盤を例示したが、もちろんこの2種類の構造の旋盤に限られる訳ではなく、ワークを把持して回転するチャックと工具を装着する刃物台とを備えた工作機械であれば、必要に応じてこの発明を採用して加工精度の向上を図ることができる。 As an example of a machine tool for carrying out the present invention, a lathe having two types of structures has been illustrated, but of course, the lathe is not limited to these two types of structures, and a chuck and a tool that grip and rotate the work are mounted. If the machine tool is equipped with a tool post, the present invention can be adopted as necessary to improve the machining accuracy.

3a 接触検出センサ
3b 検出棒
4 ワークチャック
5 ワークチャックの外周
7 工具取付位置
14、24 刃物台
3a Contact detection sensor 3b Detection rod 4 Work chuck 5 Work chuck outer circumference 7 Tool mounting position 14, 24 Tool post

Claims (2)

刃物台の工具取り付け位置に装着した接触検出センサないし検出棒とワークを把持するワークチャックの外周の定位置とを、当該ワークチャックを装着した主軸を予め定めた位相で停止させた状態で接触させ、当該接触を検出したときの前記刃物台の座標の基準座標からの差を変数として含む演算式により演算した補正値で当該刃物台に与える位置指令を補正することを特徴とする、工作機械の加工誤差の補正方法。 The contact detection sensor or detection rod mounted at the tool mounting position of the tool post and the fixed position on the outer circumference of the work chuck that grips the work are brought into contact with each other with the spindle on which the work chuck is mounted stopped at a predetermined phase. , and correcting a position command to be given to the tool rest with the correction value calculated by the arithmetic expression including a difference from the reference coordinates of the tool rest of coordinates when it detects the contact as a variable, of the machine tool How to correct machining errors. 前記演算式が、前記接触検出センサないし検出棒とワークチャックの外周との接触検出を行う際の機械の各部に装着した温度センサの検出温度とを含む演算式である、請求項1記載の工作機械の加工誤差の補正方法。 The operation according to claim 1, wherein the calculation formula is a calculation formula including the detection temperature of the temperature sensor attached to each part of the machine when the contact detection sensor or the detection rod and the outer periphery of the work chuck are detected. How to correct machine tool machining errors.
JP2016160735A 2016-08-18 2016-08-18 How to correct machine tool machining errors Active JP6842146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160735A JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160735A JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Publications (2)

Publication Number Publication Date
JP2018027599A JP2018027599A (en) 2018-02-22
JP6842146B2 true JP6842146B2 (en) 2021-03-17

Family

ID=61248242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160735A Active JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Country Status (1)

Country Link
JP (1) JP6842146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283890B (en) * 2018-11-20 2023-11-03 东莞市义信精密模具科技有限公司 Automatic thermal error compensation device for numerical control machine tool supporting plate
CN109623493B (en) * 2019-01-31 2020-09-29 大连理工大学 Method for judging real-time thermal deformation posture of main shaft
WO2023203632A1 (en) * 2022-04-19 2023-10-26 株式会社Fuji Position correction device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922510B1 (en) * 1969-12-30 1974-06-08
JPH04102760U (en) * 1991-02-06 1992-09-04 三菱重工業株式会社 Thermal displacement measurement correction device
JPH0783976B2 (en) * 1991-09-11 1995-09-13 村田機械株式会社 Lathe thermal displacement compensation method
JP3405744B2 (en) * 1992-08-11 2003-05-12 中村留精密工業株式会社 Measuring method of workpiece and time-dependent change in machine tool
JP4253054B2 (en) * 1998-01-23 2009-04-08 中村留精密工業株式会社 NC lathe work machining method
JP4719345B2 (en) * 2000-10-11 2011-07-06 富士精工株式会社 Tool position control method and apparatus for machine tools
JP4516807B2 (en) * 2004-08-26 2010-08-04 中村留精密工業株式会社 Turret lathe with rotating tool turret
JP4549150B2 (en) * 2004-10-08 2010-09-22 中村留精密工業株式会社 Interference area setting method for machine tools
JP4914379B2 (en) * 2008-01-24 2012-04-11 中村留精密工業株式会社 2-spindle facing NC lathe
JP6538503B2 (en) * 2015-09-24 2019-07-03 オークマ株式会社 Geometrical error identification method for machine tool and geometric error identification program

Also Published As

Publication number Publication date
JP2018027599A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6982291B2 (en) Machine tool work processing method
JP4291382B2 (en) Machine tool with automatic correction function of mounting error by contact detection
JP5171444B2 (en) Cutting method and cutting apparatus
JP5698798B2 (en) Machine tool with thermal displacement compensation function
US7850406B2 (en) Method for setting working origin and machine tool for implementing the same
JP5673855B2 (en) Machine Tools
JP2015097085A5 (en)
WO2015098126A1 (en) Low-rigidity workpiece machining assistance system
JP5545025B2 (en) Machine Tools
JP5373675B2 (en) Machine Tools
JP6842146B2 (en) How to correct machine tool machining errors
JP2007257606A (en) Method for correcting tool alignment error
JP2001030141A (en) Thin pipe machining method and its device
JP2013255982A (en) Machine tool, and correction method of thermal deformation thereof
JP6913920B2 (en) Machine tool work processing method
JP6576758B2 (en) Cutting apparatus and control method thereof
JP2018079526A (en) Machine tool and working method
JP2020019126A (en) Automatic deburring and/or edge finishing device, and automation method of deburring and/or edge finishing
JP6623061B2 (en) Machine tool and control method of machine tool
JP7103136B2 (en) Machine tools and processing methods
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP2011093065A (en) Machine tool
JP6946104B2 (en) Control device and control method for tool cutting direction in machine tools
JP2021111026A (en) Machine tool machining control method
JP5266020B2 (en) Machine tool and error correction method in machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6842146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250