JP6836048B2 - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP6836048B2
JP6836048B2 JP2014172930A JP2014172930A JP6836048B2 JP 6836048 B2 JP6836048 B2 JP 6836048B2 JP 2014172930 A JP2014172930 A JP 2014172930A JP 2014172930 A JP2014172930 A JP 2014172930A JP 6836048 B2 JP6836048 B2 JP 6836048B2
Authority
JP
Japan
Prior art keywords
optical path
measurement
optical
frequency
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014172930A
Other languages
Japanese (ja)
Other versions
JP2016048188A (en
Inventor
薫 美濃島
薫 美濃島
善晶 中嶋
善晶 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2014172930A priority Critical patent/JP6836048B2/en
Publication of JP2016048188A publication Critical patent/JP2016048188A/en
Priority to JP2020182381A priority patent/JP6895192B2/en
Application granted granted Critical
Publication of JP6836048B2 publication Critical patent/JP6836048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光周波数コムを利用した距離測定技術に関する。 The present invention relates to a distance measurement technique using an optical frequency comb.

測定対象物までの距離を非接触で測定する方法として、光学的測定が適しており、干渉計や距離計が用いられている。干渉計は、別々の光路(参照光路と測定光路)を通った光の重ね合わせたときの干渉縞から距離を求める計器である。距離計は、出力波と対象物からの反射波の時間差、位相差、周波数差変化などから距離を求める計器である。 Optical measurement is suitable as a method for measuring the distance to the object to be measured in a non-contact manner, and an interferometer or a range finder is used. The interferometer is an instrument that obtains the distance from the interference fringes when the light passing through different optical paths (reference optical path and measurement optical path) is superimposed. A range finder is an instrument that calculates the distance from the time difference, phase difference, frequency difference change, etc. between the output wave and the reflected wave from the object.

近年では、光コムあるいは光周波数コム(optical frequency comb)と呼ばれる光源を用いた測距技術が開発されている。光周波数コムは、モード同期パルスレーザ(超短パルスレーザ)から得られるスペクトルである。等間隔に並ぶ多数の周波数成分(縦モード)を有するスペクトルの形状が櫛(コム)に似ていることから、光周波数コム(光コム)と呼ばれている。 In recent years, a distance measuring technique using a light source called an optical comb or an optical frequency comb has been developed. The optical frequency comb is a spectrum obtained from a mode-locked pulsed laser (ultrashort pulsed laser). Since the shape of the spectrum having a large number of frequency components (longitudinal mode) arranged at equal intervals resembles a comb, it is called an optical frequency comb.

光コムを用いた距離計として、基準光のビート信号と測定対象物で反射された測距光のビート信号の位相差に基づいて対象物までの距離を求める方法が知られている(たとえば、特許文献1及び2参照)。これらの文献では、レーザ共振器から出力されるパルスの繰り返し周波数を変えて光コムの間隔を変え、ビート周波数を変えることで、測定可能な距離範囲を広げることが提案されている。 As a distance meter using an optical comb, a method of finding the distance to an object based on the phase difference between the beat signal of the reference light and the beat signal of the distance measuring light reflected by the object to be measured is known (for example). See Patent Documents 1 and 2). In these documents, it is proposed to widen the measurable distance range by changing the repetition frequency of the pulse output from the laser resonator, changing the interval of the optical comb, and changing the beat frequency.

また、光コムの基本波と第2高調波を用いた2色のパルス間干渉計(光コム干渉計)において、光コムの繰り返し周波数frepを変化させることで光路長を変化させる手法が提案されている(たとえば、非特許文献1参照)。 In addition, in a two-color pulse interferometer (optical comb interferometer) that uses the fundamental wave and the second harmonic of the optical comb, a method of changing the optical path length by changing the repetition frequency frep of the optical comb has been proposed. (See, for example, Non-Patent Document 1).

光コム干渉計では、異なるパルス間の干渉縞の発生位置から距離を求めるため、別々のパルス同士が重なり合うように参照光路とプローブ光路の間に光路長差を設けることが必要である。干渉次数を精度よく決定するためには、光路長差を広範囲に変える手段が必要である。 In the optical comb interferometer, since the distance is obtained from the position where the interference fringes between different pulses are generated, it is necessary to provide an optical path length difference between the reference optical path and the probe optical path so that the different pulses overlap each other. In order to accurately determine the interference order, a means for changing the optical path length difference over a wide range is required.

特開2006−184181号公報(特許第4617434号)Japanese Unexamined Patent Publication No. 2006-184181 (Patent No. 4617434) 特開2006−300753号公報(特許第4793675号)Japanese Unexamined Patent Publication No. 2006-300753 (Patent No. 4793675)

“High-accuracy self-correction of refractive index of air usingtwo-color interferometry of optical frequency combs”, K. Minoshima, et al.,Optics Express, vol. 19, 26095, 2011“High-accuracy self-correction of refractive index of air usingtwo-color interferometry of optical frequency combs”, K. Minoshima, et al., Optics Express, vol. 19, 26095, 2011

移動ステージを用いて光路長を変化させる手法では、大きな光路長を与えるために大きな移動ステージが必要となり、機械的変動や空気揺らぎによる測定信号の変動が生じる。 In the method of changing the optical path length using the moving stage, a large moving stage is required to give a large optical path length, and the measurement signal fluctuates due to mechanical fluctuation and air fluctuation.

他方、光コムの繰り返し周波数を変化させて光路長の可変範囲や測距範囲を広げる場合、周波数可変の範囲には限界がある。 On the other hand, when the repeating frequency of the optical comb is changed to widen the variable range of the optical path length and the ranging range, the variable frequency range is limited.

そこで、光路長の可変範囲を拡張して任意の距離で高精度かつ安定した測定を可能にする距離測定技術を提供することを課題とする。 Therefore, it is an object of the present invention to provide a distance measurement technique that enables highly accurate and stable measurement at an arbitrary distance by expanding the variable range of the optical path length.

機械的な移動手段を用いずに光路長を変化させるために、光コム光源の繰り返し周波数を変化させることで、実効的な光路長差を変化させる。 In order to change the optical path length without using mechanical transportation means, the effective optical path length difference is changed by changing the repetition frequency of the optical comb light source.

距離測定装置のひとつの構成例として、本発明をパルス間干渉計に適用することができる。パルス間干渉計で光路長の可変範囲を拡張するために、互いに干渉する基準光パルスと測定光パルスの光路長差を大きくして、個数の離れたパルス同士を干渉させる。この方法は長い距離の測定に有効だが、短い距離に適用するには制限がある。一方、短い距離の精密な測定を可能にするためには、参照光の光路長を長く設定する。参照光の光路長を長くする場合、外乱の影響を抑制するために光ファイバの参照光路を用いるのが望ましい。距離測定装置の別の構成例として、本発明を光コムを用いた距離計に適用することができる。 As one configuration example of a distance measuring device, the present invention can be applied to an inter-pulse interferometer. In order to extend the variable range of the optical path length with the inter-pulse interferometer, the optical path length difference between the reference light pulse and the measurement light pulse that interfere with each other is increased so that a number of distant pulses interfere with each other. This method is effective for measuring long distances, but has limitations in applying it for short distances. On the other hand, in order to enable precise measurement over a short distance, the optical path length of the reference light is set long. When increasing the optical path length of the reference light, it is desirable to use the reference optical path of the optical fiber in order to suppress the influence of disturbance. As another configuration example of the distance measuring device, the present invention can be applied to a distance meter using an optical comb.

具体的には、本発明の一態様である光学測定装置は、
周波数領域で一定間隔の縦モードを発生させるパルス光源と、
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを検出する光検出器と、
前記検出された光から、前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記繰り返し周波数を変化させることで、前記基準光と前記測定光の間の光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において前記測定面までの距離を算出することを特徴とする。
Specifically, the optical measuring device according to one aspect of the present invention is
A pulsed light source that generates longitudinal modes at regular intervals in the frequency domain,
A frequency control unit that changes the repetition frequency of the pulse light source,
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light,
A photodetector that detects the reference light and the measurement light reflected by the measurement surface of the object to be measured.
A signal processing unit that calculates the distance from the detected light to the measurement surface, and
Have,
The frequency control unit effectively changes the optical path length difference between the reference light and the measurement light by changing the repetition frequency.
The signal processing unit is characterized in that the distance to the measurement surface is calculated based on the effectively changed optical path length difference.

光路長の可変範囲を拡張し、任意の距離で高精度かつ安定した距離測定が可能になる。 The variable range of the optical path length is expanded to enable highly accurate and stable distance measurement at any distance.

距離測定装置の一例としてのパルス間干渉計の概略構成図である。It is a schematic block diagram of the inter-pulse interferometer as an example of a distance measuring device. フェムト秒レーザパルスと光コムの関係を示す図である。It is a figure which shows the relationship between a femtosecond laser pulse and an optical comb. 光コムの繰り返し周波数frepを変化させたときに現れる干渉縞を示す図である。It is a figure which shows the interference fringe which appears when the repetition frequency f rep of an optical comb is changed. 図1のパルス間干渉計の展開例を示す図である。It is a figure which shows the development example of the inter-pulse interferometer of FIG. 図4の構成で参照光路を安定化する構成例を示す図である。It is a figure which shows the configuration example which stabilizes a reference optical path in the configuration of FIG. 図4の構成で参照光路を安定化する別の構成例を示す図である。It is a figure which shows another configuration example which stabilizes a reference optical path in the configuration of FIG. 距離測定装置の一例としての光コム距離計の概略構成図である。It is a schematic block diagram of an optical comb range finder as an example of a distance measuring device. 光コムによる距離測定を説明する図である。It is a figure explaining the distance measurement by an optical comb. 光コムのモード間隔の変化Δfrepと位相差φの関係を示す図である。It is a figure which shows the relationship between the change Δf rep of the mode interval of an optical comb, and the phase difference φ.

<光路長可変範囲の拡張>
図1は、実施形態の距離測定装置の一例としてパルス間干渉計10の概略構成を示す。パルス間干渉計10は、光コム光源11と、光コム光源11の繰り返し周波数を変化させる周波数制御部12と、光コム光源11からのパルス列を参照光とプローブ光に分割するビームスプリッタ13と、光検出器17と、信号処理部21とを含む。
<Expansion of variable optical path length range>
FIG. 1 shows a schematic configuration of an inter-pulse interferometer 10 as an example of the distance measuring device of the embodiment. The inter-pulse interference meter 10 includes an optical comb light source 11, a frequency control unit 12 that changes the repetition frequency of the optical comb light source 11, and a beam splitter 13 that divides a pulse train from the optical comb light source 11 into reference light and probe light. It includes an optical detector 17 and a signal processing unit 21.

光コム光源11は、たとえばモード同期(ロック)されたフェムト秒パルスレーザで構成される。フェムト秒パルスレーザのような超短パルスレーザで構成される光コム光源11は、後述するように、周波数領域で一定の間隔で現れる複数の縦モードを発生させる。光コム光源11から出力されるパルス光(パルス列)は、ビームスプリッタ13で分割される。一方のパルス列成分は、参照光路15を通ってミラー等の基準面14で反射され、ビームスプリッタ13で反射されて光検出器17に入射する。他方のパルス列成分は、プローブ光路16を通って測定対象物20の測定面20aで反射され、ビームスプリッタ13を透過して光検出器17に入射する。基準面14と測定面20aは、ともに固定であってもよい。 The optical comb light source 11 is composed of, for example, a mode-locked femtosecond pulse laser. The optical comb light source 11 composed of an ultrashort pulse laser such as a femtosecond pulse laser generates a plurality of longitudinal modes appearing at regular intervals in the frequency domain, as will be described later. The pulsed light (pulse train) output from the optical comb light source 11 is split by the beam splitter 13. One pulse train component is reflected by the reference surface 14 such as a mirror through the reference optical path 15, reflected by the beam splitter 13, and incident on the photodetector 17. The other pulse train component is reflected by the measurement surface 20a of the measurement object 20 through the probe optical path 16, passes through the beam splitter 13, and is incident on the photodetector 17. Both the reference surface 14 and the measurement surface 20a may be fixed.

光検出器17の出力は信号処理部21に入力される。信号処理装置は、参照光路15を通るパルス列とプローブ光路16を通るパルス列との干渉縞に基づいて、測定対象物20までの距離を算出する。干渉縞はパルスとパルスの重ね合わせにより生じ、パルスの包絡線3の中にキャリア波2(電界振動)が含まれる。 The output of the photodetector 17 is input to the signal processing unit 21. The signal processing device calculates the distance to the measurement object 20 based on the interference fringes between the pulse train passing through the reference optical path 15 and the pulse train passing through the probe optical path 16. The interference fringe is generated by the superposition of the pulse, and the carrier wave 2 (electric field vibration) is included in the envelope 3 of the pulse.

光周波数コムを利用したパルス間干渉計10の場合、超短パルスの空間局在性のため、参照光路15の光路長とプローブ光路16の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。そして、干渉縞の振幅は、2つの光路を伝搬するパルスのピークが完全に重なったときに最大になる。パルスの繰り返し間隔を長さの尺度として測定対象物20までの距離L1を求めるには、基準面14の位置を干渉縞が発生する位置に調整する必要がある。 In the case of the inter-pulse interferometer 10 using the optical frequency comb, the difference between the optical path length of the reference optical path 15 and the optical path length of the probe optical path 16 is an integral multiple of the pulse repetition interval due to the spatial localization of the ultra-short pulse. Interferometric fringes occur only at the above position. The amplitude of the interference fringes is maximized when the peaks of the pulses propagating in the two optical paths completely overlap. In order to obtain the distance L1 to the object to be measured 20 using the pulse repetition interval as a measure of length, it is necessary to adjust the position of the reference surface 14 to the position where the interference fringes occur.

従来法では、基準面14の位置をモーターステージ等で機械的に変化させて基準面14までの距離L2を調整する。これに対し、実施形態のパルス間干渉計10では、周波数制御部12により光コム光源11の繰り返し周波数、すなわちパルスの繰り返し間隔を変えることで、基準面14と測定面20aの間の実効光路長差を干渉縞が観察される位置に調整する。これにより、機械的振動やサーボ機構のドリフトを抑制して光学系全体の安定性を維持し、高精度の測定が可能になる。 In the conventional method, the position of the reference surface 14 is mechanically changed by a motor stage or the like to adjust the distance L2 to the reference surface 14. On the other hand, in the inter-pulse interferometer 10 of the embodiment, the frequency control unit 12 changes the repetition frequency of the optical comb light source 11, that is, the repetition interval of the pulses, so that the effective optical path length between the reference surface 14 and the measurement surface 20a is changed. Adjust the difference to the position where the interference fringes are observed. As a result, mechanical vibration and drift of the servo mechanism are suppressed to maintain the stability of the entire optical system, and high-precision measurement becomes possible.

図2は、フェムト秒レーザパルスと光コムの関係を示す図である。光コム光源11から出力されるパルス幅はフェムト秒のオーダーであり、たとえば100フェムト秒(fs)である。この超短パルスは、時間軸上で一定の繰り返し間隔Trepで出力される。この例では、繰り返し間隔Trepは20ナノ秒(ns)である。 FIG. 2 is a diagram showing the relationship between the femtosecond laser pulse and the optical comb. The pulse width output from the optical comb light source 11 is on the order of femtoseconds, for example, 100 femtoseconds (fs). This ultrashort pulse is output at a constant repetition interval T rep on the time axis. In this example, the repeat interval T rep is 20 nanoseconds (ns).

時間軸上の超短パルス列をフーリエ変換して周波数軸上で観測すると、図2の右図のように、Trepの逆数に相当する繰り返し周波数frepで並ぶ多数の縦モードが観測される。この意味で、繰り返し周波数frepを「モード間隔」と呼んでもよい。この例では、繰り返し周波数frepは50MHzとなる。 When the ultra-short pulse train on the time axis is Fourier transformed and observed on the frequency axis, a large number of longitudinal modes arranged at the repeating frequency f rep corresponding to the reciprocal of T rep are observed as shown in the right figure of FIG. In this sense, the repetition frequency f rep may be referred to as a "mode interval". In this example, the repetition frequency f rep is 50 MHz.

パルス間干渉における干渉縞の発生条件は、2つの光路の光路長差Lが式(1)で表されるときである。 The condition for generating interference fringes in inter-pulse interference is when the optical path length difference L between the two optical paths is represented by the equation (1).

L=m×c/(n×frep) (1)
ここでmは干渉するパルス間を隔てるパルスの個数(以下では、「パルス数」と呼ぶ。mは整数)、nは伝搬媒体(空気)の屈折率、cは光速である。
L = m × c / (n × f rep ) (1)
Here, m is the number of pulses separating the interfering pulses (hereinafter, referred to as "the number of pulses". M is an integer), n is the refractive index of the propagation medium (air), and c is the speed of light.

ここで光コム光源11のレーザ共振器の長さなどの条件を変えて繰り返し周波数frepを変えることができる。光コム光源11の繰り返し周波数を、干渉縞が観察されるところに制御することで、基準面14の位置を機械的に動かして光路長を変化させるのと同一の効果を得ることができる。 Here, the repetition frequency f rep can be changed by changing conditions such as the length of the laser resonator of the optical comb light source 11. By controlling the repetition frequency of the optical comb light source 11 to the place where the interference fringes are observed, the same effect as changing the optical path length by mechanically moving the position of the reference surface 14 can be obtained.

ただし、繰り返し周波数frepの可変範囲には限界がある。そこで、実効光路長の可変範囲を拡張するために、パルス数mを大きくすることが考えられる。 However, there is a limit to the variable range of the repetition frequency f rep. Therefore, in order to expand the variable range of the effective optical path length, it is conceivable to increase the number of pulses m.

繰り返し周波数frepとパルスの繰り返し間隔Trepは相関するため、繰り返し周波数frepをΔfrepだけ変化させた場合、空気の屈折率を1として、m個離れたパルス同士の干渉では、その光路長差の変化量は式(2)で示すように、m倍される。 Since the repetition frequency f rep and the pulse repetition interval T rep are correlated, when the repetition frequency f rep is changed by Δf rep , the refractive index of air is set to 1, and the optical path length of the interference between pulses separated by m. The amount of change in the difference is multiplied by m as shown in the equation (2).

ΔnL=m×(c/frep)×(Δfrep/frep) (2)
したがって、mを大きくして、互いに離れた2つのパルス間の干渉を得ることで、実効光路長差の可変範囲を増大させることができる。ここで、パルス数mは、式(2)より、既知のΔfrepだけ変化させた場合に、干渉縞の位相変化を検出するか、もしくは、干渉縞の現れるピーク位置の変化を測定して、光路長差を算出することによって求められる。
ΔnL = m × (c / f rep ) × (Δf rep / f rep ) (2)
Therefore, the variable range of the effective optical path length difference can be increased by increasing m to obtain interference between two pulses separated from each other. Here, the number of pulses m is determined by detecting the phase change of the interference fringes or measuring the change of the peak position where the interference fringes appear when the known Δf rep is changed from the equation (2). It is obtained by calculating the optical path length difference.

図3は、繰り返し周波数frepを変化させたときに現れる干渉縞の包絡線強度を示す図である。パルス間干渉計10では、前述のように、参照光路の光路長とプローブ光路の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。また、距離測定のために干渉縞の包絡線のピーク位置の決定が重要である。干渉縞の包絡線が最大振幅となるときのfrepの値をfpeakとする。 FIG. 3 is a diagram showing the envelope strength of the interference fringes appearing when the repetition frequency f rep is changed. In the inter-pulse interferometer 10, as described above, interference fringes are generated only at a position where the difference between the optical path length of the reference optical path and the optical path length of the probe optical path is an integral multiple of the pulse repetition interval. In addition, it is important to determine the peak position of the envelope of the interference fringes for distance measurement. Let f peak be the value of f rep when the envelope of the interference fringe has the maximum amplitude.

反射鏡で折り返されている光学系を考えた場合、光路長変化の効果は折り返しにより2倍になるので、干渉縞信号を検出するため、および、最大振幅位置を見つけるのに必要なfrepの変化量Δfrepは、最大でfrep/4だけ必要になる(Δfrep≦frep/4)。これは配置された基準面(ミラー)14の位置に依らず、frepを変化させることで干渉縞の包絡線の最大振幅位置をスイープできるためである。この特性を利用すると、基準面(ミラー)14を任意の位置に設定し、光学系の幾何学長を変えることなく、干渉縞の最大振幅位置を見つけることができる。 Considering the optical system folded by the reflector, the effect of the optical path length change is doubled by the folding, so the f rep required to detect the interference fringe signal and to find the maximum amplitude position. The maximum amount of change Δf rep is f rep / 4 (Δf rep ≤ f rep / 4). This is because the maximum amplitude position of the envelope of the interference fringe can be swept by changing the f rep regardless of the position of the arranged reference plane (mirror) 14. By utilizing this characteristic, the reference plane (mirror) 14 can be set at an arbitrary position, and the maximum amplitude position of the interference fringe can be found without changing the geometrical length of the optical system.

たとえば、図2の例でfrep=50MHzである。frepを最大900kHzまで変化させることができ(Δfrep=900kHz)、また、パルス数mが10であるとする(10個離れたパルス同士の干渉)。この場合、式(2)から、光路長を10.8m変化させたのと等価になる。
<短い測定距離への適用>
図4は、図1のパルス間干渉計10の展開例としてのパルス間干渉計30を示す。図1のように、測定対象物20までの距離L1が、基準面14までの距離L2よりもずっと大きい場合(L1>>L2)は、光コム光源11の繰り返し周波数を変え、かつ、離れたパルス間を干渉させる(パルス数mを大きくする)ことで光路長の可変範囲を増大できる。
For example, in the example of FIG. 2, f rep = 50 MHz. f rep the can be changed up to 900 kHz (Delta] f rep = 900 kHz), also the number of pulses m is 10 (ten away interference pulses between). In this case, it is equivalent to changing the optical path length by 10.8 m from the equation (2).
<Application to short measurement distances>
FIG. 4 shows an inter-pulse interferometer 30 as a deployment example of the inter-pulse interferometer 10 of FIG. As shown in FIG. 1, when the distance L1 to the measurement object 20 is much larger than the distance L2 to the reference plane 14 (L1 >> L2), the repetition frequency of the optical comb light source 11 is changed and separated. The variable range of the optical path length can be increased by interfering between the pulses (increasing the number of pulses m).

これに対し、測定対象物20までの距離L1が小さい場合、離れたパルス間の干渉を得ることが困難になる。パルス数mが小さいと、frepを変化させることによる光路長差の拡張の効果を十分に得ることができない。 On the other hand, when the distance L1 to the object to be measured 20 is small, it becomes difficult to obtain interference between distant pulses. If the number of pulses m is small, the effect of expanding the optical path length difference by changing f rep cannot be sufficiently obtained.

そこで、図4では、参照光の光路15の長さをプローブ光の光路16の長さに比較して大きく設定することで、パルス数mを大きくする。基準面14までの距離L2を測定面20aまでの距離L1よりもずっと大きくすることで(L2>>L1)、近くに位置する測定対象物20の距離L1を正確に測定することができる。 Therefore, in FIG. 4, the number of pulses m is increased by setting the length of the optical path 15 of the reference light to be larger than the length of the optical path 16 of the probe light. By making the distance L2 to the reference surface 14 much larger than the distance L1 to the measurement surface 20a (L2 >> L1), the distance L1 of the measurement object 20 located nearby can be accurately measured.

基準面14までの距離L2を大きくすると、外乱の影響が大きくなり、高精度測定の妨げとなる場合もある。そこで、図4の例では参照光の光路を光ファイバ31で構成する。これにより、光路長差を安定化制御することができる。また、光ファイバ31を用いることで、参照光の光路長を長くしつつ、パルス間干渉計30をコンパクトに構成することができる。また、光ファイバ31の屈折率は空気の屈折率よりも大きいことから、プローブ光路が空気中の光路であった場合には、空気中を伝搬するプローブ光のパルスよりも参照光パルスを遅延させることができ、frepの変化による光路長差の変化を実効的に大きくすることができる。 If the distance L2 to the reference surface 14 is increased, the influence of disturbance becomes large, which may hinder high-precision measurement. Therefore, in the example of FIG. 4, the optical path of the reference light is configured by the optical fiber 31. Thereby, the optical path length difference can be stabilized and controlled. Further, by using the optical fiber 31, the inter-pulse interferometer 30 can be compactly configured while increasing the optical path length of the reference light. Further, since the refractive index of the optical fiber 31 is larger than the refractive index of air, when the probe optical path is an optical path in the air, the reference light pulse is delayed more than the pulse of the probe light propagating in the air. This makes it possible to effectively increase the change in the optical path length difference due to the change in f rep.

図5及び図6は、伸長された参照光の光路15を安定化するための構成例を示す。光ファイバ31の長さを長くすることで、温度変化による光路長の変動や位相雑音等により干渉縞信号の強度が変動するおそれがある場合は、たとえば光ファイバ伝送に用いられているファイバノイズキャンセルの手法を適用することで、参照光路を安定化することができる。図5のパルス間干渉計30Aでは、参照光の光路15に、光分離器41と42、位相比較素子43、信号処理部44、及び光路長変化補償素子45を挿入する。光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光分離器42で、光ファイバ31を出射した参照光の一部を分岐して、位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と出射側の光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。これにより、伸長された参照光路を安定化して、検出される干渉縞の強度の変動を抑制することができる。 5 and 6 show a configuration example for stabilizing the optical path 15 of the extended reference light. If there is a risk that the strength of the interference fringe signal will fluctuate due to fluctuations in the optical path length due to temperature changes, phase noise, etc. by increasing the length of the optical fiber 31, for example, fiber noise cancellation used for optical fiber transmission. By applying the method of, the reference optical path can be stabilized. In the inter-pulse interferometer 30A of FIG. 5, the optical separators 41 and 42, the phase comparison element 43, the signal processing unit 44, and the optical path length change compensation element 45 are inserted into the optical path 15 of the reference light. The optical separator 41 branches a part of the reference light emitted from the beam splitter 13 and connects it to one input of the phase comparison element 43. The optical separator 42 branches a part of the reference light emitted from the optical fiber 31 and connects it to the other input of the phase comparison element 43. The phase comparison element 43 compares the phase of the light on the incident side of the optical fiber 31 with the phase of the light on the exit side, and outputs the comparison result to the signal processing unit 44. The signal processing unit 44 converts the phase difference into an electric signal representing the compensation amount of the optical path length change, and outputs the electric signal to the optical path length change compensating element 45. The optical path length change compensating element 45 compensates for a change in the optical path length based on the signal from the signal processing unit 44. As a result, the extended reference optical path can be stabilized and fluctuations in the intensity of the detected interference fringes can be suppressed.

図6は参照光の光路15の安定化の別の例を示す。図6のパルス間干渉計30Bでは、光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光ファイバ31を伝搬して出射した光の一部を折り返しミラー47で折り返し、光ファイバ31を伝搬した戻り光の一部を光分離器46で分岐して位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と光ファイバ31を往復した光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。この構成でも参照光路を安定化して検出される干渉縞の強度の変動を抑制することができる。
<光コム距離計への適用>
図7は、距離測定装置の別の例として、光コム距離計40の概略構成を示す。光コム光源11から出力される出力光は、ビームスプリッタ13により基準光と測距光に分割される。基準光は光検出器42(図7では不図示)で検出されて、そのまま信号処理部41に入力される。測距光は測定対象物20に導かれ、測定対象物からの反射光が光検出器(図7では不図示)で検出されて信号処理部41に入力される。信号処理部41では、多数のビート信号が生成され、そのうち測定に利用される周波数成分が選別され、そのビート周波数成分における基準光と反射光の位相差に基づいて、測定対象物20までの距離Dを算出する。
FIG. 6 shows another example of stabilizing the optical path 15 of the reference light. In the inter-pulse interferometer 30B of FIG. 6, a part of the reference light emitted from the beam splitter 13 is branched by the optical separator 41 and connected to one input of the phase comparison element 43. A part of the light propagating through the optical fiber 31 and emitted is folded back by the folding mirror 47, and a part of the returning light propagating through the optical fiber 31 is branched by the optical separator 46 and connected to the other input of the phase comparison element 43. To do. The phase comparison element 43 compares the phase of the light on the incident side of the optical fiber 31 with the phase of the light reciprocating in the optical fiber 31, and outputs the comparison result to the signal processing unit 44. The signal processing unit 44 converts the phase difference into an electric signal representing the compensation amount of the optical path length change, and outputs the electric signal to the optical path length change compensating element 45. The optical path length change compensating element 45 compensates for a change in the optical path length based on the signal from the signal processing unit 44. Even with this configuration, it is possible to stabilize the reference optical path and suppress fluctuations in the intensity of the detected interference fringes.
<Application to optical frequency comb rangefinder>
FIG. 7 shows a schematic configuration of the optical comb distance meter 40 as another example of the distance measuring device. The output light output from the optical comb light source 11 is split into reference light and ranging light by the beam splitter 13. The reference light is detected by the photodetector 42 (not shown in FIG. 7) and is directly input to the signal processing unit 41. The ranging light is guided to the measurement object 20, and the reflected light from the measurement object is detected by a photodetector (not shown in FIG. 7) and input to the signal processing unit 41. In the signal processing unit 41, a large number of beat signals are generated, frequency components used for measurement are selected, and the distance to the measurement object 20 is based on the phase difference between the reference light and the reflected light in the beat frequency components. Calculate D.

図8は、光コム距離計40による距離算出を説明する図である。光コム光源11から出力される出力光が、測定対象物20で反射されて光検出器42で受光されるときに、光コムの繰り返し周波数frepの整数倍に相当する多数のビート信号が生成される。そのうち、測定に用いるビート周波数fをフィルタ等で選別する。基準光についても同様に検出し、両者の位相差を電気的に測定する。このとき、両者の光路長差は、ビート周波数fに相当する変調波N個分の波長と端数(位相差φ)に相当する。そのため、測距光と基準光の位相差測定から光路長差を算出することができる。周波数制御部12で光コム光源11の繰り返し周波数を変えることで、位相差φが変化する。これは、測定対象物20までの光路長を変化させているのと同様の効果を奏し、光路長を実効的に可変にできることを意味する。 FIG. 8 is a diagram illustrating distance calculation by the optical comb distance meter 40. When the output light output from the optical comb light source 11 is reflected by the measurement object 20 and received by the photodetector 42, a large number of beat signals corresponding to an integral multiple of the repetition frequency f rep of the optical comb are generated. Will be done. Among them, the beat frequency f used for the measurement is selected by a filter or the like. The reference light is also detected in the same manner, and the phase difference between the two is electrically measured. At this time, the optical path length difference between the two corresponds to the wavelength and fraction (phase difference φ) of N modulated waves corresponding to the beat frequency f. Therefore, the optical path length difference can be calculated from the phase difference measurement between the distance measuring light and the reference light. By changing the repetition frequency of the optical comb light source 11 in the frequency control unit 12, the phase difference φ changes. This means that the same effect as changing the optical path length up to the measurement object 20 can be obtained, and the optical path length can be effectively changed.

ビート周波数をf=Mfrep(Mは既知の整数)、空気群屈折率をng、光速をcとすると、変調波の波長はc/(ng×Mfrep)となる。 Assuming that the beat frequency is f = Mf rep (M is a known integer), the air group refractive index is ng , and the speed of light is c, the wavelength of the modulated wave is c / ( ng × Mf rep ).

往復でN個のパルスと位相差φがある場合、測定対象物20までの距離Dは、
D=(c/2ngMfrep)×(N+φ/2π) (3)
と表される。整数Nと位相差φを特定することで、絶対距離を測定することができる。
When there are N pulses and phase difference φ in the round trip, the distance D to the object to be measured 20 is
D = (c / 2n g Mf rep) × (N + φ / 2π) (3)
It is expressed as. The absolute distance can be measured by specifying the integer N and the phase difference φ.

光コム光源11の繰り返し周波数frepを少しずつ変化させると、その整数倍に相当するビート信号の周波数fも変化し、位相差φも変化し、式(3)について多数の連立方程式が立つ。これを解くことで、整数Nと位相差φ、すなわち距離Dを求めることができる。 When the repetition frequency f rep of the optical comb light source 11 is changed little by little, the frequency f of the beat signal corresponding to an integral multiple of the frequency f also changes, the phase difference φ also changes, and a large number of simultaneous equations are established for the equation (3). By solving this, the integer N and the phase difference φ, that is, the distance D can be obtained.

図9は、繰り返し周波数の変化Δfrepと、位相差φの変化の関係を示すグラフである。式(3)から、位相差φを繰り返し周波数frepの関数として表すことができる。 FIG. 9 is a graph showing the relationship between the change in the repetition frequency Δf rep and the change in the phase difference φ. From equation (3), the phase difference φ can be expressed as a function of the repeating frequency f rep.

φ=(4πngD/c)×Mfrep−2πN (4)
繰り返し周波数frepを変えて多数のデータ点をとることで、傾き(4πngDM/c)をより正確に求めることができる。これは、絶対距離の概算値を求めることに相当するので、整数Nを決定することができる。その際、図9の測定例に見られるように位相測定データのばらつきなどによって位相差φの測定精度には限界があり、測定分解能以下の微小な位相変化量は正しく測定できない。そのため、位相変化の範囲を大きく取れるようにすることが重要である。そのための解決法として、前述のパルス間干渉計のときと同様に、基準光路と測距光路の間の光路長差を大きくすることが挙げられる。すなわち、式(4)において実効的な距離Dを大きくして変化の傾きを大きくすることに相当し、同じfrepの変化に対する位相差の変化を大きくとることができる。言い換えれば、測定する光路長差を大きく取ることにより、変調波の数Nを実効的に増やすことができるため、繰り返し周波数の変化Δfrepによる変調波長変化の効果が増倍され、結果的に位相差φの変化も増倍される。すなわち、パルス間干渉計においてパルス数mを大きくするのと同様の効果が得られる。このときも、パルス間干渉計の場合と同様に、基準光路を長くすることで、短い距離の測定においても大きな光路差を得ることができる。
φ = (4πn g D / c ) × Mf rep -2πN (4)
By taking a large number of data points by changing the repetition frequency f rep, it can be obtained gradient (4πn g DM / c) more accurately. Since this corresponds to finding an approximate value of the absolute distance, the integer N can be determined. At that time, as seen in the measurement example of FIG. 9, the measurement accuracy of the phase difference φ is limited due to variations in the phase measurement data and the like, and a minute phase change amount equal to or less than the measurement resolution cannot be measured correctly. Therefore, it is important to have a large range of phase change. As a solution for that, as in the case of the above-mentioned inter-pulse interferometer, there is a method of increasing the optical path length difference between the reference optical path and the distance measuring optical path. That is, it corresponds to increasing the effective distance D in the equation (4) to increase the slope of the change, and the change in the phase difference with respect to the same change in f rep can be made large. In other words, by taking a large difference in the optical path length to be measured, the number N of the modulated waves can be effectively increased, so that the effect of the modulation wavelength change due to the repetition frequency change Δf rep is multiplied, and as a result, the position is increased. The change in phase difference φ is also multiplied. That is, the same effect as increasing the number of pulses m in the inter-pulse interferometer can be obtained. Also at this time, by lengthening the reference optical path as in the case of the inter-pulse interferometer, a large optical path difference can be obtained even in a short distance measurement.

上述のように、実施形態の構成、手法によれば、光コム光源の繰り返し周波数を変化させることで、光路長を可変にするのと同様の効果を得ることができる。 As described above, according to the configuration and method of the embodiment, the same effect as changing the optical path length can be obtained by changing the repetition frequency of the optical comb light source.

また、パルス数mを高くして離れたパルス同士を干渉させる、もしくは、測定光路差を大きく取り変調波の数Nを大きくすることにより光路長差の可変範囲を拡張することができる。 Further, the variable range of the optical path length difference can be expanded by increasing the pulse number m to cause interference between distant pulses, or by increasing the measured optical path difference and increasing the number N of the modulated waves.

さらに、参照光路もしくは基準光路を長くすることで、短い距離の測定においても大きな光路長差からパルス数mもしくは変調波の数Nを正確に決定することができる。 Further, by lengthening the reference optical path or the reference optical path, the number of pulses m or the number N of modulated waves can be accurately determined from a large optical path length difference even in a short distance measurement.

参照光路を光ファイバで構成することで、計測装置をコンパクトに構成し光路の安定化を図ることができる。 By configuring the reference optical path with an optical fiber, the measuring device can be compactly configured and the optical path can be stabilized.

10,30、30A、30B パルス間干渉計(距離測定装置)
11 光コム光源
12 周波数制御部12
13 ビームスプリッタ
14 基準面
17 光検出器
20 測定対象物
20a 測定面
21、41 信号処理部
31 光ファイバ
40 光コム距離計(距離測定装置)
10, 30, 30A, 30B Interferometer between pulses (distance measuring device)
11 Optical comb light source 12 Frequency control unit 12
13 Beam splitter 14 Reference surface 17 Photodetector 20 Measurement target 20a Measurement surface 21, 41 Signal processing unit 31 Optical fiber 40 Optical comb range finder (distance measuring device)

Claims (1)

周波数領域で一定間隔の縦モードを発生させるパルス光源と、
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを各々検出して複数のビート信号を生成する光検出器と、
前記ビート信号から、測定に利用されるビート周波数成分における前記基準光と前記測定光の位相差に基づいて前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記パルス光源の前記繰り返し周波数を変化させて前記位相差を変化させ、
前記信号処理部は、前記繰り返し周波数を変えたときの前記位相差のデータを取得して、前記位相差を前記繰り返し周波数の変化量の関数で表したときの係数を最適化し、前記繰り返し周波数の変化量と前記位相差の変化量の相関関係に基づいて前記測定面までの距離を算出することを特徴とする距離測定装置。
A pulsed light source that generates longitudinal modes at regular intervals in the frequency domain,
A frequency control unit that changes the repetition frequency of the pulse light source,
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light,
A photodetector that detects the reference light and the measurement light reflected on the measurement surface of the measurement object and generates a plurality of beat signals.
A signal processing unit that calculates the distance from the beat signal to the measurement surface based on the phase difference between the reference light and the measurement light in the beat frequency component used for measurement.
Have,
Wherein the frequency control unit, by changing the repetition frequency of the previous SL pulsed light source by changing the phase difference,
The signal processing unit acquires the data of the phase difference when the repetition frequency is changed, optimizes the coefficient when the phase difference is expressed by a function of the amount of change of the repetition frequency, and of the repetition frequency. A distance measuring device characterized in that the distance to the measuring surface is calculated based on the correlation between the amount of change and the amount of change in the phase difference.
JP2014172930A 2014-08-27 2014-08-27 Distance measuring device Active JP6836048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014172930A JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device
JP2020182381A JP6895192B2 (en) 2014-08-27 2020-10-30 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172930A JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020182381A Division JP6895192B2 (en) 2014-08-27 2020-10-30 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2016048188A JP2016048188A (en) 2016-04-07
JP6836048B2 true JP6836048B2 (en) 2021-02-24

Family

ID=55649179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172930A Active JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device

Country Status (1)

Country Link
JP (1) JP6836048B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169265A (en) * 2017-03-29 2018-11-01 株式会社東京精密 Distance measuring device and distance measuring method
JP7416069B2 (en) * 2019-08-08 2024-01-17 株式会社ニコン processing equipment
WO2021038821A1 (en) * 2019-08-30 2021-03-04 株式会社ニコン Processing system and robot system
CN110865382A (en) * 2019-11-12 2020-03-06 天津大学 Absolute distance measuring device and method of dynamic optical frequency comb
CN115031630B (en) * 2022-06-10 2023-05-26 天津大学 Plane pose measuring device and measuring method for optical frequency comb dispersion interference
CN116047535B (en) * 2022-12-30 2024-03-22 电子科技大学 Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062879B4 (en) * 2008-10-10 2010-10-28 Universität Stuttgart Method and arrangement for scalable interferometry
JP5724133B2 (en) * 2011-01-25 2015-05-27 国立大学法人東京農工大学 Structure measuring method and structure measuring apparatus

Also Published As

Publication number Publication date
JP2016048188A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
JP6836048B2 (en) Distance measuring device
US11098997B2 (en) Interferometric distance measurement based on compression of chirped interferogram from cross-chirped interference
KR101645274B1 (en) Interferometric distance measuring method for measuring surfaces, and such a measuring arrangement
US20170146335A1 (en) Dual Laser Frequency Sweep Interferometry System and Method
WO2018230474A1 (en) Optical distance measurement device and measurement method
EP2182319A1 (en) Interferometric distance measuring apparatus
CN108873007B (en) Frequency modulation continuous wave laser ranging device for inhibiting vibration effect
JP2019045200A (en) Optical distance measuring device and method
JP6448236B2 (en) Laser frequency measuring method and apparatus using optical frequency comb
CN108534986B (en) Multi-longitudinal-mode laser resonant cavity FSR measuring device and measuring method
JP7152748B2 (en) Rangefinder, distance measuring method, and optical three-dimensional shape measuring machine
JP6895192B2 (en) Distance measuring device
GB2509105A (en) Mechanical resonator sensor
JP6264547B2 (en) Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method
JP2013083581A (en) Measuring device
JP6628030B2 (en) Distance measuring device and method
JP5421013B2 (en) Positioning device and positioning method
JP5511162B2 (en) Multi-wavelength interference displacement measuring method and apparatus
JP6635758B2 (en) Refractive index correction method, distance measuring method and distance measuring device
US7768699B2 (en) Laser phase difference detecting device and laser phase control device
CN109031341B (en) Object movement speed measuring method using continuous frequency modulation laser radar device
JP2012184967A (en) Wavelength scanning interferometer
Wei et al. Simultaneous observation of high temporal coherence between two pairs of pulse trains using a femtosecond-optical-frequency-comb-based interferometer
Weichert et al. Stability of a fully fibre-coupled interferometer
KR101792632B1 (en) Spectral-domain Interferometric System For Measurement Of Absolute Distances Free From Non-measurable Range and Directional Ambiguity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191126

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200110

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200623

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C30 Protocol of an oral hearing

Free format text: JAPANESE INTERMEDIATE CODE: C30

Effective date: 20200924

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6836048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150