JP6824654B2 - Cell information acquisition method and cell information acquisition device - Google Patents

Cell information acquisition method and cell information acquisition device Download PDF

Info

Publication number
JP6824654B2
JP6824654B2 JP2016145835A JP2016145835A JP6824654B2 JP 6824654 B2 JP6824654 B2 JP 6824654B2 JP 2016145835 A JP2016145835 A JP 2016145835A JP 2016145835 A JP2016145835 A JP 2016145835A JP 6824654 B2 JP6824654 B2 JP 6824654B2
Authority
JP
Japan
Prior art keywords
fluorescence
light
cell
cells
test substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145835A
Other languages
Japanese (ja)
Other versions
JP2017083426A (en
Inventor
景子 吉川
景子 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to EP16195497.9A priority Critical patent/EP3163287B1/en
Priority to US15/335,719 priority patent/US10145794B2/en
Priority to CN201610958244.XA priority patent/CN106645713B/en
Publication of JP2017083426A publication Critical patent/JP2017083426A/en
Application granted granted Critical
Publication of JP6824654B2 publication Critical patent/JP6824654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、細胞情報取得方法および細胞情報取得装置に関する。 The present invention relates to a cell information acquisition method and a cell information acquisition device.

細胞の増殖や分化を始めとする様々な生命現象は、タンパク質、mRNA、microRNAなどの種々の分子の細胞における局在が関与している。細胞における種々の分子の局在を解析することは、分子の機能解析、タンパク質間相互作用の解析、シグナル伝達経路の解析など、多くの生命現象の解明につながることが期待される。 Various biological phenomena such as cell proliferation and differentiation involve the localization of various molecules such as proteins, mRNAs, and microRNAs in cells. Analyzing the localization of various molecules in cells is expected to lead to the elucidation of many biological phenomena such as molecular function analysis, protein-protein interaction analysis, and signal transduction pathway analysis.

以下の特許文献1には、細胞内における分子の局在について、蛍光顕微鏡およびイメージングフローサイトメータにより解析する方法が開示されている。 The following Patent Document 1 discloses a method for analyzing the localization of a molecule in a cell by a fluorescence microscope and an imaging flow cytometer.

国際公開第2005/098430号International Publication No. 2005/098430

由来を同じくする同種の細胞であっても、個々の細胞は多様であるため、たとえば、図23(a)に示すように、特定の分子が特定の部位に局在している細胞もあれば、図23(b)に示すように、特定の分子が別の部位に局在している細胞もある。また、たとえば、図23(c)に示すように、種々の要因により分子の量が細胞間において均一でないこともある。そして、発明者は、細胞における分布および量が多様な分子から情報を取得しようとすると、取得結果にばらつきが生じてしまうことを見いだした。よって、このように細胞における分布および量が多様な分子を、精度良く解析する手法が望まれる。 Even if the cells are of the same origin, the individual cells are diverse. Therefore, for example, as shown in FIG. 23 (a), some cells have a specific molecule localized at a specific site. , As shown in FIG. 23 (b), some cells have a specific molecule localized at another site. Further, for example, as shown in FIG. 23 (c), the amount of molecules may not be uniform among cells due to various factors. Then, the inventor has found that when trying to acquire information from molecules having various distributions and amounts in cells, the acquisition results vary. Therefore, a method for accurately analyzing molecules having various distributions and amounts in cells is desired.

本発明の第1の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、細胞に、第1の光および第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた各蛍光に基づいて複数の蛍光情報を取得し、複数の蛍光情報に基づいて、被検物質が核に局在しているか細胞質に局在しているかを判別するThe first aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a plurality of fluorescent substances having different fluorescence wavelengths are bound to a test substance contained in the cell, and the cell is bound to the first light and a second light having a weaker intensity than the first light. by irradiating light to cause a plurality of fluorescent wavelength and intensity are different from each other by a plurality of fluorescent materials, based on the fluorescence produced by acquiring a plurality of fluorescent information, based on a plurality of fluorescent information, test substance Determines whether is localized in the nucleus or in the cytoplasm .

本態様に係る細胞情報取得方法において、「互いに蛍光波長が異なる複数の蛍光物質」とは、光が照射されたときに、複数の蛍光物質が、それぞれ互いに異なる波長の蛍光を発することを示す。複数の蛍光物質から波長および強度が異なる蛍光を生じさせるためには、たとえば、複数の蛍光物質において励起用の光の波長が互いに異なっている場合、細胞に対して波長および強度の異なる複数の光を照射する。蛍光情報は、たとえば、蛍光に基づく画像である。なお、「被検物質に複数の蛍光物質を結合させる」とは、必ずしも細胞に含まれる同種の被検物質の各分子の全てが複数の蛍光物質と結合していなくてもよく、少なくとも一部の同種の被検物質の分子に複数の蛍光物質が特異的に結合していればよいことを示す。 In the cell information acquisition method according to this aspect, the "plurality of fluorescent substances having different fluorescence wavelengths" means that when light is irradiated, the plurality of fluorescent substances emit fluorescence having different wavelengths from each other. In order to generate fluorescence having different wavelengths and intensities from a plurality of fluorescent substances, for example, when the wavelengths of the excitation lights are different from each other in the plurality of fluorescent substances, the plurality of lights having different wavelengths and intensities with respect to the cells. Irradiate. The fluorescence information is, for example, an image based on fluorescence. In addition, "binding a plurality of fluorescent substances to a test substance" does not necessarily mean that all the molecules of the same type of test substance contained in the cell are bound to the plurality of fluorescent substances, and at least a part thereof. It is shown that a plurality of fluorescent substances need be specifically bound to the molecules of the same type of test substance.

細胞における被検物質の分布および量が多様である場合、蛍光物質から生じる蛍光の強度は強すぎる場合や弱すぎる場合があるため、1つの蛍光情報を用いて必ずしも被検物質の分布状況等を適正に判別できるとは限らない。しかしながら、本態様に係る細胞情報取得方法によれば、被検物質に結合する複数の蛍光物質から強度が異なる蛍光を生じさせ、強度が異なる蛍光に基づいて複数の蛍光情報を取得できる。これにより、一の蛍光情報においては、蛍光が強すぎるために被検物質の分布状況等を適正に判別できない場合でも、他の蛍光情報を用いれば、被検物質の分布状況等を適正に判別できるようになる。よって、いずれかの蛍光情報を用いれば被検物質の分布状況等を適正に判別できるようになるため、細胞における被検物質の分布および量が多様であっても、被検物質を精度良く解析できる。 When the distribution and amount of the test substance in the cells are diverse, the intensity of fluorescence generated from the fluorescent substance may be too strong or too weak. Therefore, one fluorescence information is not always used to determine the distribution status of the test substance. It is not always possible to determine properly. However, according to the cell information acquisition method according to this aspect, fluorescence having different intensities can be generated from a plurality of fluorescent substances bound to a test substance, and a plurality of fluorescence information can be acquired based on the fluorescence having different intensities. As a result, even if the distribution status of the test substance cannot be properly determined in one fluorescence information because the fluorescence is too strong, the distribution status of the test substance can be properly discriminated by using other fluorescence information. become able to. Therefore, if any of the fluorescence information is used, the distribution status of the test substance can be appropriately determined. Therefore, even if the distribution and amount of the test substance in the cells are diverse, the test substance can be analyzed accurately. it can.

本発明の第2の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、基質を接触させて互いに蛍光波長が異なる複数の蛍光物質を生じさせ、細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた蛍光に基づいて複数の蛍光情報を取得し、複数の蛍光情報に基づいて、被検物質が核に局在しているか細胞質に局在しているかを判別するA second aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a substrate is brought into contact with a test substance contained in a cell to generate a plurality of fluorescent substances having different fluorescence wavelengths from each other, and the cell is subjected to the first light and the first light. It was irradiated with more intensity weak second light causing a plurality of fluorescent substance from the wavelength and intensity different from each other fluorescence to obtain a plurality of fluorescent information based on the fluorescence produced, based on a plurality of fluorescent information Therefore, it is determined whether the test substance is localized in the nucleus or the cytoplasm .

本態様に係る細胞情報取得方法において、細胞に含まれる被検物質に基質を接触させて互いに蛍光波長が異なる複数の蛍光物質を生じさせることにより、被検物質を複数の蛍光物質で標識する。本態様に係る細胞情報取得方法においても、第1の態様と同様、いずれかの蛍光情報を用いれば被検物質の分布状況等を適正に判別できるようになるため、被検物質を精度良く解析できる。 In the cell information acquisition method according to this embodiment, the test substance is labeled with the plurality of fluorescent substances by bringing the substrate into contact with the test substance contained in the cell to generate a plurality of fluorescent substances having different fluorescence wavelengths from each other. In the cell information acquisition method according to this aspect as well, as in the first aspect, if any of the fluorescence information is used, the distribution status of the test substance can be appropriately determined, so that the test substance can be analyzed accurately. it can.

本発明の第3の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に蛍光物質を結合させ、細胞に光を照射して1種類の蛍光物質から所定波長幅の蛍光を生じさせ、生じた所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を取得し、取得した各蛍光に基づいて複数の蛍光情報を取得し、複数の蛍光情報に基づいて、細胞における被検物質の分布状況を判別する。 A third aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a fluorescent substance is bound to a test substance contained in the cell, the cell is irradiated with light to generate fluorescence having a predetermined wavelength width from one type of fluorescent substance, and the generated predetermined wavelength. Multiple fluorescences having different wavelengths and intensities are acquired by dividing the width fluorescence according to the wavelength band , multiple fluorescence informations are acquired based on each acquired fluorescence, and the test substance in the cell is obtained based on the plurality of fluorescence informations. To determine the distribution status of.

本態様に係る細胞情報取得方法において、被検物質には1種類の蛍光物質が結合される。生じた蛍光から波長および強度の異なる複数の蛍光を取得するためには、たとえば、蛍光物質から生じた蛍光を、透過波長帯域の異なる複数のフィルタ部材に通して分離する。なお、本態様に係る細胞情報取得方法においても、蛍光情報は、たとえば、蛍光に基づく画像である。また、必ずしも細胞に含まれる同種の被検物質の各分子の全てが蛍光物質と結合していなくてもよく、少なくとも一部の同種の被検物質の分子に蛍光物質が特異的に結合していればよい。本態様に係る細胞情報取得方法においても、第1の態様と同様、いずれかの蛍光情報を用いれば被検物質の分布状況等を適正に判別できるようになるため、被検物質を精度良く解析できる。 In the cell information acquisition method according to this aspect, one kind of fluorescent substance is bound to the test substance. In order to obtain a plurality of fluorescence having different wavelengths and intensities from the generated fluorescence, for example, the fluorescence generated from the fluorescent substance is separated by passing through a plurality of filter members having different transmission wavelength bands. Also in the cell information acquisition method according to this aspect, the fluorescence information is, for example, an image based on fluorescence. In addition, not all of the molecules of the same type of test substance contained in the cell are necessarily bound to the fluorescent substance, and the fluorescent substance is specifically bound to at least some molecules of the same type of test substance. Just do it. In the cell information acquisition method according to this aspect as well, as in the first aspect, if any of the fluorescence information is used, the distribution status of the test substance can be appropriately determined, so that the test substance can be analyzed accurately. it can.

本発明の第4の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に基質を接触させて蛍光物質を生じさせ、細胞に光を照射して1種類の蛍光物質から所定波長幅の蛍光を生じさせ、生じた所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を取得し、取得した各蛍光に基づいて複数の蛍光情報を取得し、複数の蛍光情報に基づいて、細胞における被検物質の分布状況を判別する。 A fourth aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a substrate is brought into contact with a test substance contained in a cell to generate a fluorescent substance, and the cell is irradiated with light to generate fluorescence having a predetermined wavelength width from one type of fluorescent substance. , The generated fluorescence of a predetermined wavelength width is divided by a wavelength band to acquire a plurality of fluorescence having different wavelengths and intensities, a plurality of fluorescence information is acquired based on each acquired fluorescence, and a plurality of fluorescence information is acquired based on the plurality of fluorescence information. Determine the distribution of the test substance in the cells.

本態様に係る細胞情報取得方法において、細胞に含まれる被検物質に基質を接触させて蛍光物質を生じさせることにより、被検物質を蛍光物質で標識する。本態様に係る細胞情報取得方法においても、第3の態様と同様、いずれかの蛍光情報を用いれば被検物質の分布状況等を適正に判別できるようになるため、被検物質を精度良く解析できる。 In the cell information acquisition method according to this embodiment, the test substance is labeled with the fluorescent substance by bringing the substrate into contact with the test substance contained in the cell to generate a fluorescent substance. In the cell information acquisition method according to this aspect as well, as in the third aspect, if any of the fluorescence information is used, the distribution status of the test substance can be appropriately determined, so that the test substance can be analyzed accurately. it can.

本発明の第5の態様は、細胞情報取得装置に関する。本態様に係る細胞情報取得装置は、互いに蛍光波長が異なる複数の蛍光物質が結合した被検物質を含む細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して、複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせる光照射部と、複数の蛍光物質から生じた各蛍光を受光する受光部と、強度が異なる蛍光に基づいて複数の蛍光情報を取得する取得部と、複数の蛍光情報に基づいて、被検物質が核に局在しているか細胞質に局在しているかを判別する解析部と、を備える。 A fifth aspect of the present invention relates to a cell information acquisition device. The cell information acquisition device according to this embodiment irradiates a cell containing a test substance in which a plurality of fluorescent substances having different fluorescence wavelengths are bound to each other with a first light and a second light having a weaker intensity than the first light. Then, a light irradiation unit that generates a plurality of fluorescence having different wavelengths and intensities from a plurality of fluorescent substances, a light receiving unit that receives each fluorescence generated from the plurality of fluorescent substances, and a plurality of light receiving units based on fluorescence having different intensities. It includes an acquisition unit for acquiring fluorescence information and an analysis unit for determining whether the test substance is localized in the nucleus or the cytoplasm based on a plurality of fluorescence information .

本態様に係る細胞情報取得装置によれば、第1の態様と同様の効果が奏され得る。 According to the cell information acquisition device according to this aspect, the same effect as that of the first aspect can be achieved.

本発明の第6の態様は、細胞情報取得装置に関する。本態様に係る細胞情報取得装置は、蛍光物質が結合した被検物質を含む細胞に光を照射して1種類の蛍光物質から所定波長幅の蛍光を生じさせる光照射部と、1種類の蛍光物質から生じた所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を受光する受光部と、受光した複数の蛍光に基づいて、複数の蛍光情報を取得する取得部と、複数の蛍光情報に基づいて、細胞における被検物質の分布状況を判別する解析部と、を備える。 A sixth aspect of the present invention relates to a cell information acquisition device. The cell information acquisition device according to this embodiment includes a light irradiation unit that irradiates cells containing a test substance to which a fluorescent substance is bound with light to generate fluorescence of a predetermined wavelength width from one type of fluorescent substance, and one type of fluorescence. A light receiving unit that receives a plurality of fluorescences having different wavelengths and intensities by dividing fluorescence having a predetermined wavelength width generated from a substance by a wavelength band, and an acquisition unit that acquires a plurality of fluorescence information based on the plurality of received fluorescences. , It is provided with an analysis unit for discriminating the distribution status of a test substance in cells based on a plurality of fluorescence information.

本態様に係る細胞情報取得装置によれば、第3の態様と同様の効果が奏され得る。 According to the cell information acquisition device according to this aspect, the same effect as that of the third aspect can be achieved.

本発明の第7の態様は、細胞情報取得装置に関する。本態様に係る細胞情報取得装置は、基質に接触することにより蛍光物質を生じさせた被検物質を含む細胞に光を照射して1種類の蛍光物質から所定波長幅の蛍光を生じさせる光照射部と、1種類の蛍光物質から生じた所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を受光する受光部と、受光した複数の蛍光に基づいて、複数の蛍光情報を取得する取得部と、複数の蛍光情報に基づいて、細胞における被検物質の分布状況を判別する解析部と、を備える。 A seventh aspect of the present invention relates to a cell information acquisition device. The cell information acquisition device according to this embodiment irradiates cells containing a test substance that has generated a fluorescent substance by contact with a substrate with light to generate fluorescence having a predetermined wavelength width from one type of fluorescent substance. A unit, a light receiving part that receives a plurality of fluorescences having different wavelengths and intensities by dividing fluorescence having a predetermined wavelength width generated from one kind of fluorescent substance by a wavelength band , and a plurality of fluorescences based on the received multiple fluorescences. It includes an acquisition unit for acquiring information and an analysis unit for determining the distribution status of a test substance in cells based on a plurality of fluorescence information.

本態様に係る細胞情報取得装置によれば、第4の態様と同様の効果が奏され得る。
本発明の第8の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、同一波長の光が照射されることにより生じる蛍光の波長および強度が互いに異なる複数の蛍光物質を結合させ、細胞に、第1の光および第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた前記各蛍光に基づいて複数の蛍光情報を取得する。
本発明の第9の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、細胞を含む試料をフローセルに流し、フローセルを流れる細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた各蛍光に基づいて複数の蛍光情報を取得する。
本発明の第10の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、細胞に、第1の光および第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた各蛍光に基づいて複数の蛍光情報を取得し、強度が異なる複数の蛍光から得られた蛍光情報のうち、強度が所定の範囲に含まれる蛍光から得られた蛍光情報に基づいて、細胞における被検物質の局在状況を判別する。
本発明の第11の態様は、細胞情報取得方法に関する。本態様に係る細胞情報取得方法は、細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、生じた各蛍光に基づいて複数の蛍光情報を取得し、強度が異なる複数の蛍光から得られた蛍光情報のうち、強度が所定の範囲に含まれる蛍光から得られた蛍光情報に基づいて、細胞における被検物質の局在状況を判別し、被検物質の局在状況の判別は、細胞の解析対象部位における被検物質の局在量の、細胞全体における被検物質の量に対する割合の算出を含む。
According to the cell information acquisition device according to this aspect, the same effect as that of the fourth aspect can be achieved.
An eighth aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a plurality of fluorescent substances having different wavelengths and intensities of fluorescence generated by irradiation with light of the same wavelength are bound to a test substance contained in the cell, and the cell is subjected to the first method. A plurality of fluorescences having different wavelengths and intensities are generated from a plurality of fluorescent substances by irradiating the first light and a second light having a weaker intensity than the first light, and a plurality of fluorescence informations are generated based on the generated fluorescences. To get.
A ninth aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a plurality of fluorescent substances having different fluorescence wavelengths are bound to a test substance contained in the cell, a sample containing the cell is flowed into a flow cell, and the cell flowing through the flow cell is first. By irradiating light and a second light having a weaker intensity than the first light, a plurality of fluorescence having different wavelengths and intensities are generated from a plurality of fluorescent substances, and a plurality of fluorescence information is acquired based on each of the generated fluorescence. To do.
A tenth aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a plurality of fluorescent substances having different fluorescence wavelengths are bound to a test substance contained in the cell, and the cell is bound to the first light and a second light having a weaker intensity than the first light. Is irradiated to generate multiple fluorescences having different wavelengths and intensities from a plurality of fluorescent substances, and multiple fluorescence information is acquired based on each of the generated fluorescences, and fluorescence obtained from a plurality of fluorescences having different intensities. Among the information, the localization status of the test substance in the cell is determined based on the fluorescence information obtained from the fluorescence whose intensity is within a predetermined range.
The eleventh aspect of the present invention relates to a method for acquiring cell information. In the cell information acquisition method according to this embodiment, a plurality of fluorescent substances having different fluorescence wavelengths are bound to a test substance contained in the cell, and the cell is bound to the first light and a first light having a weaker intensity than the first light. By irradiating 2 light, a plurality of fluorescences having different wavelengths and intensities were generated from a plurality of fluorescent substances, and a plurality of fluorescence informations were acquired based on each of the generated fluorescences, which were obtained from a plurality of fluorescences having different intensities. Of the fluorescence information, the localization status of the test substance in the cell is determined based on the fluorescence information obtained from the fluorescence whose intensity is within a predetermined range, and the localization status of the test substance is determined by the cell. Includes the calculation of the ratio of the localized amount of the test substance in the analysis target site to the amount of the test substance in the whole cell.

本発明によれば、細胞における分布および量が多様な分子を、精度良く解析できる。 According to the present invention, molecules having various distributions and amounts in cells can be analyzed with high accuracy.

図1は、実施形態1に係る細胞情報取得方法を示すフローチャートである。FIG. 1 is a flowchart showing a cell information acquisition method according to the first embodiment. 図2は、実施形態1に係る蛍光取得の概要を示す図である。FIG. 2 is a diagram showing an outline of fluorescence acquisition according to the first embodiment. 図3は、実施形態1に係る高強度の蛍光および低強度の蛍光に基づいて取得される画像を示す概念図である。FIG. 3 is a conceptual diagram showing an image acquired based on the high-intensity fluorescence and the low-intensity fluorescence according to the first embodiment. 図4(a)は、実施形態1に係る検証において取得された画像を示す図である。図4(b)は、実施形態1に係る検証において取得された数値を示す図である。FIG. 4A is a diagram showing an image acquired in the verification according to the first embodiment. FIG. 4B is a diagram showing the numerical values acquired in the verification according to the first embodiment. 図5は、実施形態1に係る装置の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of the device according to the first embodiment. 図6は、実施形態1に係る光学検出部の構成を示す図である。FIG. 6 is a diagram showing a configuration of an optical detection unit according to the first embodiment. 図7は、実施形態1の変更例に係る光学検出部の構成を示す図である。FIG. 7 is a diagram showing a configuration of an optical detection unit according to a modified example of the first embodiment. 図8は、実施形態1に係る細胞情報取得装置による処理を示すフローチャートである。FIG. 8 is a flowchart showing processing by the cell information acquisition device according to the first embodiment. 図9は、実施形態1に係る表示部に表示される画面を示す図である。FIG. 9 is a diagram showing a screen displayed on the display unit according to the first embodiment. 図10は、実施形態1の変更例に係る高強度の蛍光および低強度の蛍光に基づいて取得されるグラフを示す概念図である。FIG. 10 is a conceptual diagram showing a graph acquired based on high-intensity fluorescence and low-intensity fluorescence according to a modified example of the first embodiment. 図11は、実施形態2に係る蛍光取得の概要を示す図である。FIG. 11 is a diagram showing an outline of fluorescence acquisition according to the second embodiment. 図12は、実施形態3に係る蛍光取得の概要を示す図である。FIG. 12 is a diagram showing an outline of fluorescence acquisition according to the third embodiment. 図13は、実施形態3に係るフィルタ部材の透過波長帯域および取得される蛍光の波長帯域を説明するための図である。FIG. 13 is a diagram for explaining the transmission wavelength band and the acquired fluorescence wavelength band of the filter member according to the third embodiment. 図14は、実施形態3に係る検証において取得された画像を示す図である。FIG. 14 is a diagram showing an image acquired in the verification according to the third embodiment. 図15は、実施形態3に係る光学検出部の構成を示す図である。FIG. 15 is a diagram showing a configuration of an optical detection unit according to the third embodiment. 図16は、実施形態4に係る蛍光取得の概要を示す図である。FIG. 16 is a diagram showing an outline of fluorescence acquisition according to the fourth embodiment. 図17は、実施形態4に係る光学検出部の構成を示す図である。FIG. 17 is a diagram showing a configuration of an optical detection unit according to the fourth embodiment. 図18は、実施形態5に係る蛍光取得の概要を示す図である。FIG. 18 is a diagram showing an outline of fluorescence acquisition according to the fifth embodiment. 図19は、実施形態5に係る光学検出部の構成を示す図である。FIG. 19 is a diagram showing a configuration of an optical detection unit according to the fifth embodiment. 図20は、実施形態6に係る蛍光取得の概要を示す図である。FIG. 20 is a diagram showing an outline of fluorescence acquisition according to the sixth embodiment. 図21は、実施形態6に係る検証において取得された画像を示す図である。FIG. 21 is a diagram showing an image acquired in the verification according to the sixth embodiment. 図22は、実施形態7に係る蛍光取得の概要を示す図である。FIG. 22 is a diagram showing an outline of fluorescence acquisition according to the seventh embodiment. 図23は、発明が解決しようとする課題を説明するための模式図である。FIG. 23 is a schematic diagram for explaining the problem to be solved by the invention.

<実施形態1>
実施形態1は、細胞に含まれる被検物質に互いに蛍光波長が異なる複数の蛍光物質を結合させ、蛍光物質から生じる複数の蛍光に基づいて被検物質の局在状況を判別する細胞情報取得方法に、本発明を適用したものである。実施形態1では、被検物質はNF−κBである。転写因子であるNF−κBは、IκBと複合体を形成した状態で細胞質内に存在し、種々の刺激によるIκBの分解により核の内部に移行すると考えられている。実施形態1では、NF−κBを被検物質として蛍光物質で特異的に標識し、蛍光物質からの蛍光に基づいて、NF−κBが細胞質と核のいずれに存在するかを判定する解析が行われる。なお、被検物質は、NF−κB以外のタンパク質や分子であっても良い。たとえば、被検物質は、NF−κB以外の転写因子であっても良く、たとえば、STAT(Signal Transducer and Activator of Transcription)、NFAT(nuclear factor of activated T cells)、HIF(hypoxia-inducible factor)であっても良い。また、被検物質は、mRNAやmicroRNAであっても良い。また、「被検物質に複数の蛍光物質を結合させる」とは、必ずしも細胞に含まれる同種の被検物質の各分子の全てが複数の蛍光物質と結合していなくてもよく、少なくとも一部の同種の被検物質の分子に複数の蛍光物質が特異的に結合していればよい。また、局在状況の判別は、被検物質が核に局在しているか細胞質に局在しているかの判別に限らない。たとえば、神経細胞のように突起形状を有している場合に、被検物質が突起の先端に局在しているのか否かを判別してもよい。
<Embodiment 1>
The first embodiment is a cell information acquisition method in which a plurality of fluorescent substances having different fluorescence wavelengths are bound to a test substance contained in a cell, and the localization status of the test substance is determined based on a plurality of fluorescences generated from the fluorescent substances. This is an application of the present invention. In the first embodiment, the test substance is NF-κB. It is thought that NF-κB, which is a transcription factor, exists in the cytoplasm in a state of forming a complex with IκB, and is transferred to the inside of the nucleus by decomposition of IκB by various stimuli. In the first embodiment, NF-κB is specifically labeled with a fluorescent substance as a test substance, and an analysis is performed to determine whether NF-κB is present in the cytoplasm or the nucleus based on the fluorescence from the fluorescent substance. Be told. The test substance may be a protein or molecule other than NF-κB. For example, the test substance may be a transcription factor other than NF-κB, for example, STAT (Signal Transducer and Activator of Transcription), NFAT (nuclear factor of activated T cells), HIF (hypoxia-inducible factor). There may be. Further, the test substance may be mRNA or microRNA. Further, "binding a plurality of fluorescent substances to a test substance" does not necessarily mean that all the molecules of the same type of test substance contained in the cell are bound to the plurality of fluorescent substances, and at least a part thereof. It suffices if a plurality of fluorescent substances are specifically bound to the molecules of the same type of test substance. Further, the determination of the localization status is not limited to the determination of whether the test substance is localized in the nucleus or the cytoplasm. For example, in the case of having a protrusion shape like a nerve cell, it may be determined whether or not the test substance is localized at the tip of the protrusion.

図1に示すように、細胞情報取得方法は、ステップS1〜S4のステップを含む。以下には、オペレータが、蛍光画像を撮像可能なフローサイトメータと、撮像された画像を解析可能な処理装置を用いて、図1の細胞情報取得方法を実行する場合について説明する。図1の各ステップが、細胞情報取得装置における処理により実行されてもよい。細胞情報取得装置が図1の各ステップを行う場合の構成および処理については、追って、図5以降を参照して説明する。 As shown in FIG. 1, the cell information acquisition method includes steps S1 to S4. The case where the operator executes the cell information acquisition method of FIG. 1 by using a flow cytometer capable of capturing a fluorescent image and a processing device capable of analyzing the captured image will be described below. Each step of FIG. 1 may be executed by processing in the cell information acquisition device. The configuration and processing when the cell information acquisition device performs each step of FIG. 1 will be described later with reference to FIGS. 5 and later.

ステップS1において、オペレータは、被検者から採取した細胞に含まれるNF−κBを、互いに蛍光波長が異なる蛍光物質11、12で標識する。たとえば、図2に示すように、細胞に含まれるNF−κBに、一次抗体と二次抗体を介して蛍光物質11、12が結合される。蛍光物質11、12は、複数の一次抗体によってNF−κBに結合されても良く、抗体の一部または抗体の全部によってNF−κBに結合されても良い。また、ステップS1において、オペレータは、細胞に含まれる核を、蛍光物質11、12とは異なる蛍光波長の蛍光物質13で標識する。 In step S1, the operator labels NF-κB contained in the cells collected from the subject with fluorescent substances 11 and 12 having different fluorescence wavelengths from each other. For example, as shown in FIG. 2, fluorescent substances 11 and 12 are bound to NF-κB contained in cells via a primary antibody and a secondary antibody. Fluorescent substances 11 and 12 may be bound to NF-κB by a plurality of primary antibodies, or may be bound to NF-κB by a part of the antibody or all of the antibodies. Further, in step S1, the operator labels the nucleus contained in the cell with a fluorescent substance 13 having a fluorescent wavelength different from that of the fluorescent substances 11 and 12.

蛍光物質11、12、13は、蛍光色素である。蛍光物質11、12、13は、それぞれ、波長λ1、λ2、λ3の光が照射されると互いに異なる波長帯域の蛍光を励起するよう構成されている。すなわち、蛍光物質11〜13から蛍光を励起させるための光の波長は、互いに異なるよう設定されている。こうして、ステップS1により試料が調製される。なお、被検物質がmRNAやmicroRNAの場合、被検物質には、核酸プローブを介して蛍光物質が結合される。 Fluorescent substances 11, 12, and 13 are fluorescent dyes. The fluorescent substances 11, 12, and 13 are configured to excite fluorescence in wavelength bands different from each other when irradiated with light having wavelengths λ1, λ2, and λ3, respectively. That is, the wavelengths of light for exciting fluorescence from the fluorescent substances 11 to 13 are set to be different from each other. Thus, the sample is prepared in step S1. When the test substance is mRNA or microRNA, a fluorescent substance is bound to the test substance via a nucleic acid probe.

ステップS2において、オペレータは、フローサイトメータを駆動させて、蛍光物質11〜13で標識された細胞を含む試料をフローセルに流し、フローセルを流れる細胞に波長λ1〜λ3の光を照射して、蛍光物質11〜13から蛍光を生じさせる。 In step S2, the operator drives the flow cytometer to flow a sample containing cells labeled with fluorescent substances 11 to 13 into the flow cell, irradiates the cells flowing through the flow cell with light having wavelengths λ1 to λ3, and fluoresces. Fluorescence is generated from substances 11 to 13.

図2に示すように、波長λ1〜λ3のレーザ光が細胞に照射されると、蛍光物質11〜13から、それぞれ異なる波長帯域の蛍光が生じる。フィルタ部材21は、蛍光物質11から生じた波長帯域B1の蛍光を通し、波長帯域B1以外の光を遮断する。フィルタ部材21によって、蛍光物質11から生じた波長帯域B1の蛍光が分離される。フィルタ部材22は、蛍光物質12から生じた波長帯域B2の蛍光を通し、波長帯域B2以外の光を遮断する。フィルタ部材22によって、蛍光物質12から生じた波長帯域B2の蛍光が分離される。フィルタ部材23は、蛍光物質13から生じた波長帯域B3の蛍光を通し、波長帯域B3以外の光を遮断する。フィルタ部材23によって、蛍光物質13から生じた波長帯域B3の蛍光が分離される。 As shown in FIG. 2, when the cells are irradiated with laser light having wavelengths λ1 to λ3, fluorescence in different wavelength bands is generated from the fluorescent substances 11 to 13. The filter member 21 passes the fluorescence of the wavelength band B1 generated from the fluorescent substance 11 and blocks the light other than the wavelength band B1. The filter member 21 separates the fluorescence of the wavelength band B1 generated from the fluorescent substance 11. The filter member 22 passes the fluorescence of the wavelength band B2 generated from the fluorescent substance 12 and blocks the light other than the wavelength band B2. The filter member 22 separates the fluorescence of the wavelength band B2 generated from the fluorescent substance 12. The filter member 23 passes the fluorescence of the wavelength band B3 generated from the fluorescent substance 13 and blocks the light other than the wavelength band B3. The filter member 23 separates the fluorescence of the wavelength band B3 generated from the fluorescent substance 13.

ここで、波長λ1のレーザ光は高パワーで細胞に照射され、波長λ2のレーザ光は低パワーで細胞に照射される。波長λ1のレーザ光が高パワーで細胞に照射されることにより、フィルタ部材21を通過した波長帯域B1の蛍光は高強度となる。波長λ2のレーザ光が低パワーで細胞に照射されることにより、フィルタ部材22を通過した波長帯域B2の蛍光は低強度となる。 Here, the laser beam having a wavelength of λ1 irradiates the cells with high power, and the laser beam having a wavelength λ2 irradiates the cells with low power. By irradiating the cells with a laser beam having a wavelength of λ1 with high power, the fluorescence in the wavelength band B1 passing through the filter member 21 becomes high intensity. By irradiating the cells with a laser beam having a wavelength of λ2 with low power, the fluorescence in the wavelength band B2 passing through the filter member 22 becomes low intensity.

ステップS3において、処理装置は、蛍光物質11〜13から生じた蛍光に基づいて、細胞ごとに3つの蛍光情報を取得する。フローサイトメータは、フィルタ部材21〜23により分離された波長帯域B1〜B3の蛍光を、それぞれ、撮像素子により構成された受光部に結像させて、各蛍光に基づく画像を取得するための構成を備えている。処理装置は、フローサイトメータの受光部が出力する撮像信号に基づいて、蛍光情報として、波長帯域B1の高強度の蛍光に基づく画像と、波長帯域B2の低強度の蛍光に基づく画像と、波長帯域B3の蛍光に基づく画像とを取得する。 In step S3, the processing apparatus acquires three fluorescence information for each cell based on the fluorescence generated from the fluorescent substances 11 to 13. The flow cytometer has a configuration for acquiring an image based on each fluorescence by forming an image of fluorescence in wavelength bands B1 to B3 separated by filter members 21 to 23 on a light receiving unit configured by an image sensor. It has. Based on the imaging signal output by the light receiving unit of the flow cytometer, the processing device provides fluorescence information such as an image based on high-intensity fluorescence in wavelength band B1, an image based on low-intensity fluorescence in wavelength band B2, and wavelength. An image based on the fluorescence of band B3 is acquired.

波長帯域B1〜B3の蛍光は、3つの受光部により、それぞれ個別に撮像されても良く、1つの受光部により撮像されても良い。波長帯域B1〜B3の蛍光が1つの受光部により撮像される場合、波長帯域B1〜B3の蛍光が受光部の受光面上で異なる領域に結像するよう光学系が構成される。 The fluorescence in the wavelength bands B1 to B3 may be individually imaged by the three light receiving units, or may be imaged by one light receiving unit. When the fluorescence of the wavelength bands B1 to B3 is imaged by one light receiving unit, the optical system is configured so that the fluorescence of the wavelength bands B1 to B3 is imaged in different regions on the light receiving surface of the light receiving unit.

図3に示すように、NF−κBが核に局在する細胞の場合、ステップS3において、たとえば画像31、32が取得される。画像31は、波長帯域B1の高強度の蛍光に基づく画像であり、画像32は、波長帯域B2の低強度の蛍光に基づく画像である。画像31、32には、核が存在する領域33が設定される。領域33は、画像31、32と同時に生成された波長帯域B3の蛍光、すなわち、核から生じた蛍光に基づく画像から取得される。 As shown in FIG. 3, in the case of cells in which NF-κB is localized in the nucleus, for example, images 31 and 32 are acquired in step S3. Image 31 is an image based on high-intensity fluorescence in wavelength band B1, and image 32 is an image based on low-intensity fluorescence in wavelength band B2. In the images 31 and 32, a region 33 in which the nucleus exists is set. The region 33 is acquired from the fluorescence of the wavelength band B3 generated at the same time as the images 31 and 32, that is, the image based on the fluorescence generated from the nucleus.

NF−κBが細胞質に局在する細胞の場合、ステップS3において、たとえば画像41、42が取得される。画像41は、波長帯域B1の高強度の蛍光に基づく画像であり、画像42は、波長帯域B2の低強度の蛍光に基づく画像である。画像41、42にも、核が存在する領域43が設定される。領域43は、画像41、42と同時に生成された波長帯域B3の蛍光に基づく画像から取得される。 In the case of cells where NF-κB is localized in the cytoplasm, for example, images 41 and 42 are acquired in step S3. Image 41 is an image based on high-intensity fluorescence in wavelength band B1, and image 42 is an image based on low-intensity fluorescence in wavelength band B2. The region 43 in which the nucleus exists is also set in the images 41 and 42. The region 43 is acquired from the fluorescence-based image of the wavelength band B3 generated at the same time as the images 41 and 42.

NF−κBの発現量が少ない細胞の場合、画像31によれば、蛍光の強度が適正であり核と細胞質の間で蛍光強度に差がでているため、NF−κBが核の領域33に局在することを判別できる。他方、画像32によれば、蛍光の強度が低すぎるため、NF−κBが核の領域33に局在することを判別できない。一方、NF−κBの発現量が多い細胞の場合、画像41によれば、蛍光の強度が高すぎるため、核と細胞質の間で蛍光強度に差のでない状態となっている。このため、NF−κBが、核の領域43と、核の領域43よりも広い細胞質の領域のどちらに局在するかを判別できない。他方、画像42によれば、蛍光の強度が適正であり核と細胞質の間で強度に差が生じているため、NF−κBが核の領域43よりも広い細胞質の領域に局在することを判別できる。 In the case of cells in which the expression level of NF-κB is low, according to image 31, the fluorescence intensity is appropriate and there is a difference in fluorescence intensity between the nucleus and the cytoplasm, so that NF-κB is located in the nucleus region 33. It can be determined that it is localized. On the other hand, according to the image 32, it cannot be determined that NF-κB is localized in the nuclear region 33 because the fluorescence intensity is too low. On the other hand, in the case of cells having a high expression level of NF-κB, according to image 41, the fluorescence intensity is too high, so that there is no difference in fluorescence intensity between the nucleus and the cytoplasm. Therefore, it is not possible to determine whether NF-κB is localized in the nuclear region 43 or the cytoplasmic region wider than the nuclear region 43. On the other hand, according to image 42, since the fluorescence intensity is appropriate and there is a difference in intensity between the nucleus and the cytoplasm, NF-κB is localized in the cytoplasmic region wider than the nucleus region 43. Can be identified.

NF−κBが細胞質に局在する場合、NF−κBは、核を取り囲むように細胞内に分布する。すなわち、撮像方向に細胞を見たとき、核の手前にもNF−κBが分布する。このため、高強度の蛍光に基づく画像41では、核の手前に分布するNF−κBにより核の領域にも強い蛍光が生じている。このため、画像41では、NF−κBが核に局在しているか細胞質に局在しているかを適正に判別できなくなる傾向がある。これに対し、低強度の蛍光に基づく画像42では、核の手前に分布するNF−κBにより核の領域にも蛍光が生じるものの、この蛍光の強度は低い。このため、画像41では、NF−κBが細胞質に局在している場合であっても、局在状況を適正に判別できる。 When NF-κB is localized in the cytoplasm, NF-κB is distributed intracellularly so as to surround the nucleus. That is, when the cells are viewed in the imaging direction, NF-κB is also distributed in front of the nucleus. Therefore, in the image 41 based on high-intensity fluorescence, strong fluorescence is also generated in the nucleus region due to NF-κB distributed in front of the nucleus. Therefore, in the image 41, it tends to be difficult to properly determine whether NF-κB is localized in the nucleus or the cytoplasm. On the other hand, in the image 42 based on low-intensity fluorescence, NF-κB distributed in front of the nucleus causes fluorescence in the nucleus region as well, but the intensity of this fluorescence is low. Therefore, in the image 41, even when NF-κB is localized in the cytoplasm, the localization state can be appropriately determined.

また、NF−κBが核に局在する場合、NF−κBは、一部が細胞質に分布するものの大半は核内に分布する。このため、高強度の蛍光に基づく画像31では、核内に分布するNF−κBから強い蛍光が生じ、NF−κBが核に局在することを適正に判別できる。他方、低強度の蛍光に基づく画像32では、核内に分布するNF−κBからの蛍光が弱すぎるため、NF−κBが核に局在しているか細胞質に局在しているかを適正に判別できない傾向がある。 When NF-κB is localized in the nucleus, most of NF-κB is distributed in the cytoplasm, although part of it is distributed in the cytoplasm. Therefore, in the image 31 based on high-intensity fluorescence, strong fluorescence is generated from NF-κB distributed in the nucleus, and it can be properly determined that NF-κB is localized in the nucleus. On the other hand, in the image 32 based on low-intensity fluorescence, since the fluorescence from NF-κB distributed in the nucleus is too weak, it is properly determined whether NF-κB is localized in the nucleus or the cytoplasm. I tend not to.

このように、細胞内における被検物質であるNF−κBの量と分布によって、NF−κBの局在を判別するための適正強度が異なる。 As described above, the appropriate intensity for determining the localization of NF-κB differs depending on the amount and distribution of NF-κB, which is a test substance in cells.

したがって、波長λ1のレーザ光のパワーは、NF−κBが核に局在する細胞において、画像31に示すようにNF−κBが核に局在することを適正に判別できるよう設定される。波長λ2のレーザ光のパワーは、NF−κBが細胞質に局在する細胞において、画像42に示すようにNF−κBが細胞質に局在することを適正に判別できるよう設定される。これにより、判別対象となる細胞において、NF−κBが核と細胞質のどちらに局在していたとしても、2つの画像の少なくとも何れか一方を用いてNF−κBの局在を判別できるようになる。 Therefore, the power of the laser beam having a wavelength of λ1 is set so that in a cell in which NF-κB is localized in the nucleus, it can be appropriately determined that NF-κB is localized in the nucleus as shown in image 31. The power of the laser beam having a wavelength of λ2 is set so that in a cell in which NF-κB is localized in the cytoplasm, it can be appropriately determined that NF-κB is localized in the cytoplasm as shown in image 42. As a result, regardless of whether NF-κB is localized in the nucleus or cytoplasm in the cell to be discriminated, the localization of NF-κB can be discriminated using at least one of the two images. Become.

図1に戻り、ステップS4において、オペレータは、波長帯域B1の高強度の蛍光に基づく画像と、波長帯域B2の低強度の蛍光に基づく画像を参照して、被検物質であるNF−κBの分布状況を判別する。具体的には、オペレータは、波長帯域B1の高強度の蛍光に基づく画像と、波長帯域B2の低強度の蛍光に基づく画像のうち、NF−κBの局在位置が判別可能な画像を選択し、その画像に基づいて、当該細胞においてNF−κBが核と細胞質の何れに局在しているか、すなわち局在状況を判別する。局在状況に代えて、NF−κBがどの位置に分布するか、たとえば細胞内における分布範囲等が判別されても良い。 Returning to FIG. 1, in step S4, the operator refers to the image based on the high intensity fluorescence in the wavelength band B1 and the image based on the low intensity fluorescence in the wavelength band B2, and refers to the image of the test substance NF-κB. Determine the distribution status. Specifically, the operator selects an image based on high-intensity fluorescence in wavelength band B1 and an image based on low-intensity fluorescence in wavelength band B2, in which the localized position of NF-κB can be discriminated. Based on the image, whether NF-κB is localized in the nucleus or cytoplasm in the cell, that is, the localization status is determined. Instead of the localization status, the position where NF-κB is distributed, for example, the distribution range in the cell, etc. may be determined.

上記のように、実施形態1では、NF−κBを標識した蛍光物質11、12から生じる2つの蛍光を調整することにより、高強度の蛍光に基づく画像と低強度の蛍光に基づく画像のうち、いずれか一方が適正にNF−κBの局在を判定できる状態となっている。よって、オペレータは、2つの画像に基づいて、細胞における分布が多様なNF−κBを精度良く解析できる。具体的には、細胞におけるNF−κBの局在状況、すなわちNF−κBが核と細胞質のいずれに局在しているかを精度良く判別できる。 As described above, in the first embodiment, among the images based on high-intensity fluorescence and the images based on low-intensity fluorescence, by adjusting the two fluorescences generated from the fluorescent substances 11 and 12 labeled with NF-κB, One of them is in a state where the localization of NF-κB can be appropriately determined. Therefore, the operator can accurately analyze NF-κB having various distributions in cells based on the two images. Specifically, the localization status of NF-κB in cells, that is, whether NF-κB is localized in the nucleus or cytoplasm can be accurately determined.

また、実施形態1において、NF−κBが核に局在する場合でも、NF−κBの量が多いために、画像31の蛍光の強度が高すぎる状態となり、画像32の蛍光の強度が適正な状態となることも考えられる。この場合でも、蛍光の強度が適正な画像32を用いることにより、NF−κBが核に局在することを判別できる。また、NF−κBが細胞質に局在する場合でも、NF−κBの量が少ないために、画像41の蛍光の強度が適正な状態となり、画像42の蛍光の強度が低すぎる状態となることも考えられる。この場合でも、蛍光の強度が適正な画像41を用いることにより、NF−κBが細胞質に局在することを判別できる。このように実施形態1によれば、2つの画像に基づいて、NF−κBの量にかかわらず、細胞におけるNF−κBの局在状況を精度良く判別できる。 Further, in the first embodiment, even when NF-κB is localized in the nucleus, the fluorescence intensity of the image 31 is too high due to the large amount of NF-κB, and the fluorescence intensity of the image 32 is appropriate. It is possible that it will be in a state. Even in this case, it can be determined that NF-κB is localized in the nucleus by using the image 32 having an appropriate fluorescence intensity. Further, even when NF-κB is localized in the cytoplasm, since the amount of NF-κB is small, the fluorescence intensity of image 41 may be in an appropriate state, and the fluorescence intensity of image 42 may be too low. Conceivable. Even in this case, it can be determined that NF-κB is localized in the cytoplasm by using the image 41 having an appropriate fluorescence intensity. As described above, according to the first embodiment, the localization state of NF-κB in the cell can be accurately determined based on the two images regardless of the amount of NF-κB.

ここで、血管内皮細胞は、血管の内壁から剥離して血液中に流れ込む。血管内皮細胞の剥離は、炎症による刺激の他、圧迫等による圧力の変化によっても生じる。炎症による刺激によって剥離した血管内皮細胞では、NF−κBが核に局在する傾向にあり、炎症による刺激以外の刺激によって剥離した血管内皮細胞では、NF−κBが核に局在しない傾向にある。実施形態1によれば、上記のようにNF−κBの局在を精度良く判別できるため、これらの剥離原因のうち炎症による刺激によって生じた剥離を、シグナル分子であるNF−κBが核に局在しているか否かによって判定でき、血管内皮細胞の活性化の有無を判定できる。これにより、たとえば、血管内皮細胞の剥離が採血時の圧迫により生じたものか、疾病等を要因として生じたものか判断することができ臨床的意義がある。 Here, the vascular endothelial cells are detached from the inner wall of the blood vessel and flow into the blood. Detachment of vascular endothelial cells is caused not only by irritation due to inflammation but also by changes in pressure due to compression or the like. In vascular endothelial cells exfoliated by inflammation stimulation, NF-κB tends to be localized in the nucleus, and in vascular endothelial cells exfoliated by stimulation other than inflammation stimulation, NF-κB tends not to be localized in the nucleus. .. According to the first embodiment, since the localization of NF-κB can be accurately determined as described above, NF-κB, which is a signal molecule, is localized in the nucleus of the exfoliation caused by inflammation stimulation among these exfoliation causes. It can be determined by whether or not it is present, and the presence or absence of activation of vascular endothelial cells can be determined. This makes it possible to determine, for example, whether the detachment of vascular endothelial cells is caused by pressure at the time of blood collection or is caused by a disease or the like, and has clinical significance.

波長λ1、λ2とは異なる波長の中パワーのレーザ光により、中強度の蛍光の画像が取得されても良い。すなわち、NF−κBを互いに蛍光波長が異なる3つの蛍光物質で標識し、細胞に3つのレーザ光を照射して3つの蛍光物質から強度が異なる蛍光を生じさせて、各蛍光に基づく画像を取得しても良い。こうすると、蛍光の強度が異なる3つの画像から最も適正な画像を用いることにより、さらに精度良くNF−κBの局在を判別できる。被検物資から生じさせる蛍光の強度は、4段階以上であってもよく、1つの細胞について4つ以上の強度の蛍光に基づく4つ以上の画像を取得してもよい。 An image of medium-intensity fluorescence may be acquired by a medium-power laser beam having a wavelength different from the wavelengths λ1 and λ2. That is, NF-κB is labeled with three fluorescent substances having different fluorescence wavelengths from each other, and the cells are irradiated with three laser beams to generate fluorescence having different intensities from the three fluorescent substances, and an image based on each fluorescence is acquired. You may. By doing so, the localization of NF-κB can be determined more accurately by using the most appropriate image from the three images having different fluorescence intensities. The intensity of fluorescence generated from the test material may be four or more steps, or four or more images based on fluorescence of four or more intensities may be acquired for one cell.

さらに、ステップS4において、オペレータは、上記のように判別した細胞ごとの局在状況に基づいて、試料に含まれる細胞のうち、NF−κBが特定部位に局在する細胞の割合を取得する。具体的には、NF−κBが核に局在すると判別した細胞の数をN1とし、NF−κBが細胞質に局在すると判別した細胞の数をN2とすると、オペレータは、以下の式によって、核局在率と細胞質局在率を取得する。なお、ステップS4において、オペレータは、核局在率と細胞質局在率に代えて、核局在数と細胞質局在数を取得しても良い。 Further, in step S4, the operator acquires the proportion of cells in which NF-κB is localized in a specific site among the cells contained in the sample, based on the localization status of each cell determined as described above. Specifically, assuming that the number of cells determined to localize NF-κB to the nucleus is N1 and the number of cells determined to localize NF-κB to the cytoplasm is N2, the operator can use the following formula. Obtain the nuclear localization rate and cytoplasmic localization rate. In step S4, the operator may acquire the nuclear localization number and the cytoplasmic localization number instead of the nuclear localization rate and the cytoplasmic localization rate.

核局在率={N1/(N1+N2)}×100
細胞質局在率={N2/(N1+N2)}×100
Nuclear localization = {N1 / (N1 + N2)} x 100
Cytoplasmic localization = {N2 / (N1 + N2)} x 100

ステップS2では、上述したようにフローサイトメータを用いて各蛍光の画像が取得されたが、これに限らず、顕微鏡を用いて、各蛍光の画像が蛍光情報として取得されてもよい。すなわち、顕微鏡により、蛍光物質11から生じた高強度の蛍光画像と、蛍光物質12から生じた低強度の蛍光画像と、蛍光物質13から生じた核に対応する画像とが、取得されても良い。 In step S2, the image of each fluorescence was acquired by using the flow cytometer as described above, but the present invention is not limited to this, and the image of each fluorescence may be acquired as fluorescence information by using a microscope. That is, a high-intensity fluorescent image generated from the fluorescent substance 11, a low-intensity fluorescent image generated from the fluorescent substance 12, and an image corresponding to the nucleus generated from the fluorescent substance 13 may be acquired by a microscope. ..

<実施形態1の検証>
次に、発明者が行った実施形態1の検証について説明する。
<Verification of Embodiment 1>
Next, the verification of the first embodiment performed by the inventor will be described.

1.準備
細胞として、ヒト心臓微小血管内皮細胞(HMVEC-C)(Lonza CatNo.CC-7030, Lot No.0000296500 (P4))を用意した。一次抗体として、NF−κB p65 (D14E12) XP Rabbit mAb(Cell Signaling Technologies #8242S)を用意した。二次抗体として、Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate(Life technologies A-21245)、Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate(Life technologies A-11008)を用意した。二次抗体には、蛍光色素として、Alexa Fluor 647、Alexa Fluor 488が結合している。核染色色素として、Cellstain Hoechst 33342 solution(DOjinDO H342)を用意した。この他、EGM-2MV Medium(Lonza Cat No.CC-3202)、EGM-2MV SingleQuots Kit(Lonza Cat No. CC-3202)、PBS pH7.4(GIBCO Cat No.10010-023)、BSA(LAMPIRE Cat No. 7500805)、PFA(WAKO Cat No.160-16061)、TritonX100(ナカライテスク CatNo.35501-15)を用意した。
1. 1. Human cardiac microvascular endothelial cells (HMVEC-C) (Lonza Cat No. CC-7030, Lot No. 0000296500 (P4)) were prepared as preparatory cells. As the primary antibody, NF-κB p65 (D14E12) XP Rabbit mAb (Cell Signaling Technologies # 8242S) was prepared. As secondary antibodies, Goat anti-Rabbit IgG (H + L) Secondary Antibody, Alexa Fluor 647 conjugate (Life technologies A-21245), Goat anti-Rabbit IgG (H + L) Secondary Antibody, Alexa Fluor 488 conjugate (Life technologies) A-11008) was prepared. Alexa Fluor 647 and Alexa Fluor 488 are bound to the secondary antibody as fluorescent dyes. Cellstain Hoechst 33342 solution (DOjinDO H342) was prepared as a nuclear stain. In addition, EGM-2MV Medium (Lonza Cat No.CC-3202), EGM-2MV SingleQuots Kit (Lonza Cat No. CC-3202), PBS pH7.4 (GIBCO Cat No.10010-023), BSA (LAMPIRE Cat) No. 7500805), PFA (WAKO Cat No.160-16061), TritonX100 (Nakarai Tesk Cat No.35501-15) were prepared.

2.試薬調製
500mLのEGM-2MV MediumにEGM-2MV SingleQuots KitのFBS以外の試薬を添加し、100mLを滅菌ボトルへ移し、無血清培地を作製した。無血清培地作製の残量(400mL)に、SingleQuots KitのFBSを20mL添加して、培養培地を作製した。パラホルムアルデヒドを終濃度8% w/vとなるようにpH12のPBSにて溶解した後に、pH7.4に調整した。PBSに1.5gのBSAを加えて溶解させ50mLにメスアップし、3% BSA/PBSを調製した。PBSに0.5gのBSAを加えて溶解させ50mLにメスアップし、1% BSA/PBSを調製した。TritonX100を終濃度0.1% w/vとなるようにPBSにて調製した。
2. 2. Reagent Preparation Reagents other than FBS of EGM-2MV Single Quots Kit were added to 500 mL of EGM-2MV Medium, and 100 mL was transferred to a sterile bottle to prepare a serum-free medium. A culture medium was prepared by adding 20 mL of FBS of Single Quots Kit to the remaining amount (400 mL) of the serum-free medium. Paraformaldehyde was dissolved in PBS at pH 12 to a final concentration of 8% w / v, and then adjusted to pH 7.4. 1.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 3% BSA / PBS. 0.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 1% BSA / PBS. Triton X100 was prepared with PBS to a final concentration of 0.1% w / v.

3.手順
HMVEC-Cは、メーカー推奨プロトコルに準じてEGM-2MV培地にて培養した。購入後から継代回数6回以内の細胞を本検証に用いた。培養培地は開封後の使用期限を3週間とした。TNF-α刺激培養は、約70%コンフルエントのHMVEC-C細胞の培養上清を除き、終濃度25ng/mLとなるようRecombinant Human TNF-alphaを添加したEGM-2MV培地を加え、37℃ COインキュベーター内で1時間静置した。3mL程度残して電動ピペッターで培地を除去し、スクレーパーにて細胞を剥離した。回収した懸濁液と等量の8% PFA/PBSを加え、室温で15分反応させた。室温下、1000rpmで3分間遠心分離した。細胞ペレットを1mLのPBSで2回洗浄した。上清を除去し、0.1% Triton X-100/PBSを1mL加えて、室温15分反応させた。室温下、1000rpmで3分間遠心分離した。1mLの1% BSA/PBSで2回洗浄した。上清を除去し、3% BSA/PBSを1mL加えて、室温で30分静置した。3% BSA/PBSで1/1600とした400μLの一次抗体を添加した。室温で1時間反応させた。室温下、1000rpmで3分間遠心分離した。1mLの1% BSA/PBSで洗浄した。3% BSA/PBSで1/1000とした400μLの二次抗体を添加した。室温で30分反応させた。1mLの1% BSA/PBSで2回洗浄した。上清を除去し、1% BSA/PBSを50μL添加した。
3. 3. procedure
HMVEC-C was cultured in EGM-2MV medium according to the manufacturer's recommended protocol. Cells within 6 passages after purchase were used for this verification. The culture medium had an expiration date of 3 weeks after opening. For TNF-α stimulation culture, remove the culture supernatant of HMV EC-C cells with approximately 70% confluence, add EGM-2MV medium supplemented with Recombinant Human TNF-alpha to a final concentration of 25 ng / mL, and add 37 ° C. CO 2 It was allowed to stand in the incubator for 1 hour. The medium was removed with an electric pipettor leaving about 3 mL, and the cells were detached with a scraper. Equivalent 8% PFA / PBS was added to the recovered suspension and reacted at room temperature for 15 minutes. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. The cell pellet was washed twice with 1 mL PBS. The supernatant was removed, 1 mL of 0.1% Triton X-100 / PBS was added, and the mixture was reacted at room temperature for 15 minutes. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. Washed twice with 1 mL of 1% BSA / PBS. The supernatant was removed, 1 mL of 3% BSA / PBS was added, and the mixture was allowed to stand at room temperature for 30 minutes. 400 μL of primary antibody to 1/1600 with 3% BSA / PBS was added. The reaction was carried out at room temperature for 1 hour. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. Washed with 1 mL of 1% BSA / PBS. 400 μL of secondary antibody reduced to 1/1000 with 3% BSA / PBS was added. The reaction was carried out at room temperature for 30 minutes. Washed twice with 1 mL of 1% BSA / PBS. The supernatant was removed and 50 μL of 1% BSA / PBS was added.

4.フローサイトメータによる検出
蛍光画像を取得可能なフローサイトメータとして、ImageStreamX Mark II Imaging Flow Cytometer(Merck Millipore)を用いた。このフローサイトメータのフローセルに上記3に沿って調製した試料を流し、フローセルを流れる試料に、波長488nm、647nm、405nmのレーザ光を照射した。波長488nm、647nm、405nmのレーザ光は、上記波長λ1、λ2、λ3のレーザ光に対応する。波長488nm、647nm、405nmのレーザ光の出射パワーは、それぞれ、55mW、10mW、120mWとした。波長488nm、647nmのレーザ光がNF−κBを標識する2種類の蛍光色素に照射されることにより、それぞれ、高強度の蛍光と低強度の蛍光が生じた。波長405nmのレーザ光が核染色色素に照射されることにより蛍光が生じた。
4. Detection by flow cytometer ImageStreamX Mark II Imaging Flow Cytometer (Merck Millipore) was used as a flow cytometer capable of acquiring fluorescence images. A sample prepared according to 3 above was flowed through the flow cell of this flow cytometer, and the sample flowing through the flow cell was irradiated with laser light having wavelengths of 488 nm, 647 nm, and 405 nm. The laser beams having wavelengths of 488 nm, 647 nm, and 405 nm correspond to the laser beams having the wavelengths λ1, λ2, and λ3. The emission powers of the laser beams having wavelengths of 488 nm, 647 nm, and 405 nm were 55 mW, 10 mW, and 120 mW, respectively. By irradiating the two types of fluorescent dyes labeling NF-κB with laser light having wavelengths of 488 nm and 647 nm, high-intensity fluorescence and low-intensity fluorescence were generated, respectively. Fluorescence was generated by irradiating the nuclear dye with a laser beam having a wavelength of 405 nm.

上記フローサイトメータにおいて、波長488nmのレーザ光により生じた蛍光は、透過波長帯域505nm〜560nmのフィルタ部材を介して撮像され、高強度の蛍光画像が取得された。波長647nmのレーザ光により生じた蛍光は、透過波長帯域642nm〜740nmのフィルタ部材を介して撮像され、低強度の蛍光画像が取得された。波長405nmのレーザ光により生じた蛍光は、透過波長帯域430nm〜505nmのフィルタ部材を介して撮像され、核に対応する蛍光画像が取得された。また、フローセルを流れる試料に、波長が430nm〜480nmの間に設定されたレーザ光を照射した。このレーザ光が細胞を透過した光は、透過波長帯域430nm〜480nmのフィルタ部材を介して撮像され、明視野画像が取得された。なお、上記フローサイトメータでは、対象となる波長帯域の光が適正に受光部に入射するよう、フィルタ部材等により不要な波長帯域の光が除去されている。なお、本検証においては明視野画像を取得したがこれに限られず、暗視野画像を取得してもよい。 In the flow cytometer, the fluorescence generated by the laser beam having a wavelength of 488 nm was imaged through a filter member having a transmission wavelength band of 505 nm to 560 nm, and a high-intensity fluorescence image was acquired. The fluorescence generated by the laser beam having a wavelength of 647 nm was imaged through a filter member having a transmission wavelength band of 642 nm to 740 nm, and a low-intensity fluorescence image was obtained. The fluorescence generated by the laser beam having a wavelength of 405 nm was imaged through a filter member having a transmission wavelength band of 430 nm to 505 nm, and a fluorescence image corresponding to the nucleus was acquired. Further, the sample flowing through the flow cell was irradiated with a laser beam having a wavelength set between 430 nm and 480 nm. The light transmitted through the cells by the laser light was imaged through a filter member having a transmission wavelength band of 430 nm to 480 nm, and a bright field image was acquired. In the flow cytometer, unnecessary wavelength band light is removed by a filter member or the like so that light in the target wavelength band is properly incident on the light receiving portion. In this verification, a bright-field image was acquired, but the present invention is not limited to this, and a dark-field image may be acquired.

図4(a)を参照して、上記検出により取得された画像について説明する。 The image acquired by the above detection will be described with reference to FIG. 4A.

「明視野」は、細胞の明視野画像を示す。「高強度の蛍光」と「低強度の蛍光」は、それぞれ、NF−κBを標識した蛍光色素から生じた高強度の蛍光に基づく画像と、NF−κBを標識した蛍光色素から生じた低強度の蛍光に基づく画像である。「核からの蛍光」は、核を染色した核染色用色素から生じた蛍光に基づく画像である。「合成」は、左側の4つの画像を合成した画像である。横に並ぶ5つの画像は、1つの細胞から取得された画像である。「高強度の蛍光」、「核からの蛍光」、「低強度の蛍光」、および「合成」が示す画像は、便宜上、取得されたカラー画像をグレースケール化したものである。「高強度の蛍光」、「核からの蛍光」、および「低強度の蛍光」が示す画像において、白い部分は蛍光の強度が強いことを示す。 "Bright field" refers to a bright field image of a cell. "High-intensity fluorescence" and "low-intensity fluorescence" are images based on high-intensity fluorescence generated from a fluorescent dye labeled with NF-κB and low-intensity generated from a fluorescent dye labeled with NF-κB, respectively. It is an image based on the fluorescence of. "Fluorescence from the nucleus" is an image based on the fluorescence generated from the dye for nuclear staining that stained the nucleus. "Composite" is an image obtained by synthesizing the four images on the left side. The five images arranged side by side are images obtained from one cell. The images indicated by "high intensity fluorescence", "fluorescence from nucleus", "low intensity fluorescence", and "synthesis" are grayscaled versions of the acquired color image for convenience. In the images indicated by "high intensity fluorescence", "fluorescence from the nucleus", and "low intensity fluorescence", the white part indicates that the fluorescence intensity is strong.

上段に示す細胞の場合、低強度の蛍光に基づく画像は強度が低すぎるため、NF−κBの局在を判別するのは困難である。他方、高強度の蛍光に基づく画像は強度が適正であるため、NF−κBが核に局在していると判別できる。下段に示す細胞の場合、高強度の蛍光に基づく画像は強度が高すぎるため、NF−κBの局在を判別するのは困難である。他方、低強度の蛍光に基づく画像は強度が適正であるため、NF−κBが細胞質に局在していると判別できる。 In the case of the cells shown in the upper row, it is difficult to determine the localization of NF-κB because the image based on low-intensity fluorescence is too low in intensity. On the other hand, since the intensity of the image based on high-intensity fluorescence is appropriate, it can be determined that NF-κB is localized in the nucleus. In the case of the cells shown in the lower row, it is difficult to determine the localization of NF-κB because the image based on high intensity fluorescence is too intense. On the other hand, since the intensity of the image based on low-intensity fluorescence is appropriate, it can be determined that NF-κB is localized in the cytoplasm.

5.核局在率の算出
取得された画像を目視することにより、細胞ごとにNF−κBの局在を判別した。この判別は、上記ステップS4と同様に行われた。すなわち、核からの蛍光画像に基づいて核の領域を設定し、核の領域以外の領域を細胞質の領域とした。そして、核の蛍光強度が細胞質の蛍光強度の約2倍以上と考えられる場合、この細胞においてNF−κBが核に局在していると判別し、核の蛍光強度が細胞質の蛍光強度の約2倍未満と考えられる場合、この細胞においてNF−κBが細胞質に局在していると判別した。
5. Calculation of nuclear localization rate The localization of NF-κB was determined for each cell by visually observing the acquired image. This determination was performed in the same manner as in step S4. That is, the nuclear region was set based on the fluorescence image from the nucleus, and the region other than the nuclear region was defined as the cytoplasmic region. When the fluorescence intensity of the nucleus is considered to be about twice or more the fluorescence intensity of the cytoplasm, it is determined that NF-κB is localized in the nucleus in this cell, and the fluorescence intensity of the nucleus is about about the fluorescence intensity of the cytoplasm. If it was considered to be less than twice, it was determined that NF-κB was localized in the cytoplasm in this cell.

図4(b)を参照して、上記フローサイトメータで識別された131個の細胞について、NF−κBの局在を判別した結果について説明する。 The result of discriminating the localization of NF-κB in 131 cells identified by the flow cytometer will be described with reference to FIG. 4 (b).

核に局在していると判別できた細胞の数は44であり、細胞質に局在していると判別できた細胞の数は87であった。局在を判別できなかった細胞の数は0であった。このときの核局在率は、44/131=34%であった。 The number of cells that could be determined to be localized in the nucleus was 44, and the number of cells that could be determined to be localized in the cytoplasm was 87. The number of cells whose localization could not be determined was 0. The nuclear localization rate at this time was 44/131 = 34%.

ここで、高強度の蛍光画像のみに基づいて局在を判別した比較例1と、低強度の蛍光画像のみに基づいて局在を判別した比較例2について説明する。比較例1の場合、核に局在していると判別できた細胞の数は42であり、細胞質に局在していると判別できた細胞の数は10であった。蛍光の強度が高すぎたために局在を判別できなかった細胞の数は79であった。比較例1の核局在率は81%であった。比較例2の場合、核に局在していると判別できた細胞の数は16であり、細胞質に局在していると判別できた細胞の数は84であった。蛍光強度が低すぎたために局在を判別できなかった細胞の数は31であった。比較例2の核局在率は16%であった。 Here, Comparative Example 1 in which localization is determined based only on a high-intensity fluorescence image and Comparative Example 2 in which localization is determined based only on a low-intensity fluorescence image will be described. In the case of Comparative Example 1, the number of cells that could be determined to be localized in the nucleus was 42, and the number of cells that could be determined to be localized in the cytoplasm was 10. The number of cells whose localization could not be determined because the fluorescence intensity was too high was 79. The nuclear localization rate of Comparative Example 1 was 81%. In the case of Comparative Example 2, the number of cells that could be determined to be localized in the nucleus was 16, and the number of cells that could be determined to be localized in the cytoplasm was 84. The number of cells whose localization could not be determined because the fluorescence intensity was too low was 31. The nuclear localization rate of Comparative Example 2 was 16%.

以上のように、本検証によれば、実施形態1のように強度の異なる2つの蛍光画像に基づいて局在を判別する場合、比較例1、2の場合に判別不可となった細胞についてもNF−κBの局在を判別できることが分かる。また、実施形態1のように局在を判別する場合、判別不可の細胞が少ないことから、細胞におけるNF−κBの局在を精度良く判別できることが分かる。したがって、実施形態1によれば、判別不可の細胞の数を低く抑えて、NF−κBの局在を精度良く判別できる。これにより、たとえば、被検者から採取した細胞が少ない場合でも、判別できる細胞を確保しながら、精度良くNF−κBの局在を判別できる。 As described above, according to this verification, when the localization is discriminated based on two fluorescent images having different intensities as in the first embodiment, the cells that cannot be discriminated in the cases of Comparative Examples 1 and 2 are also discriminated. It can be seen that the localization of NF-κB can be discriminated. Further, when the localization is discriminated as in the first embodiment, it can be seen that the localization of NF-κB in the cells can be accurately discriminated because there are few cells that cannot be discriminated. Therefore, according to the first embodiment, the number of indistinguishable cells can be suppressed to a low level, and the localization of NF-κB can be accurately discriminated. Thereby, for example, even when the number of cells collected from the subject is small, the localization of NF-κB can be accurately determined while securing the cells that can be identified.

実施形態1では、被検物質の分布状況の判別として、NF−κBの局在状況を判別する例を示したが、被検物質の分子の量が変化する場合には、この分子の量を判別しても良い。この場合、オペレータは、分子を蛍光物質11、12で標識し、処理装置は、蛍光物質11、12から生じた強度の異なる2つの蛍光に基づいて画像を取得する。オペレータは、分子の量が多い場合、低強度の蛍光画像を用いて量を判別し、分子の量が少ない場合、高強度の蛍光画像を用いて量を判別する。これにより、精度良く分子の量を判別できる。 In the first embodiment, as an example of discriminating the distribution status of the test substance, an example of discriminating the localization status of NF-κB has been shown, but when the amount of the molecule of the test substance changes, the amount of this molecule is used. You may discriminate. In this case, the operator labels the molecules with fluorescent substances 11 and 12, and the processing apparatus acquires an image based on the two fluorescences of different intensities generated from the fluorescent substances 11 and 12. When the amount of molecules is large, the amount is determined by using a low-intensity fluorescence image, and when the amount of molecules is small, the amount is determined by using a high-intensity fluorescence image. This makes it possible to accurately determine the amount of molecules.

<実施形態1の装置構成>
実施形態1の細胞情報取得方法に基づいて、細胞画像を撮像し、細胞における被検物質の局在を判別するための細胞情報取得装置の構成について説明する。
<Device configuration of the first embodiment>
A configuration of a cell information acquisition device for capturing a cell image and determining the localization of a test substance in cells will be described based on the cell information acquisition method of the first embodiment.

図5に示すように、細胞情報取得装置100は、処理部110と、試料調製部120と、光学検出部130と、駆動部140と、表示部150と、入力部160と、記憶部170と、を備える。 As shown in FIG. 5, the cell information acquisition device 100 includes a processing unit 110, a sample preparation unit 120, an optical detection unit 130, a drive unit 140, a display unit 150, an input unit 160, and a storage unit 170. , Equipped with.

処理部110は、マイクロコンピュータおよびCPU等により構成される。記憶部170は、RAM、ROM、ハードディスク等により構成される。記憶部170は、処理部110によって実行される処理プログラムや、画像などの各種データを記憶する。処理部110は、細胞情報取得装置100の各部との間で信号の送受信を行い、各部を制御する。処理部110には、記憶部170に記憶されたプログラムにより、取得部111と解析部112の機能が付与される。 The processing unit 110 is composed of a microcomputer, a CPU, and the like. The storage unit 170 is composed of a RAM, a ROM, a hard disk, and the like. The storage unit 170 stores various data such as a processing program executed by the processing unit 110 and an image. The processing unit 110 transmits and receives signals to and from each unit of the cell information acquisition device 100, and controls each unit. The processing unit 110 is provided with the functions of the acquisition unit 111 and the analysis unit 112 by the program stored in the storage unit 170.

試料調製部120は、図1のステップS1に従って、細胞と試薬を混合することにより、試料を調製する。試料の調製はオペレータによって行われても良い。この場合、試料調製部120は細胞情報取得装置100から省略される。光学検出部130は、フローサイトメータである。光学検出部130は、試料に含まれる細胞に光を照射して、生じた蛍光を撮像する。光学検出部130の構成については、追って図6を参照して説明する。駆動部140は、後述する光学検出部130の光源301〜304を駆動する。 The sample preparation unit 120 prepares a sample by mixing the cells and the reagent according to step S1 of FIG. Sample preparation may be done by the operator. In this case, the sample preparation unit 120 is omitted from the cell information acquisition device 100. The optical detection unit 130 is a flow cytometer. The optical detection unit 130 irradiates the cells contained in the sample with light and images the generated fluorescence. The configuration of the optical detection unit 130 will be described later with reference to FIG. The drive unit 140 drives the light sources 301 to 304 of the optical detection unit 130, which will be described later.

表示部150は、ディスプレイにより構成される。表示部150は、細胞ごとに取得された画像と、細胞ごとに判別されたNF−κBの局在と、NF−κBが核に局在する細胞数と、NF−κBが細胞質に局在する細胞数と、核局在率と、細胞質局在率などを表示する。入力部160は、マウスおよびキーボードにより構成される。オペレータは、入力部160を介して細胞情報取得装置100に対して指示を入力する。 The display unit 150 is composed of a display. The display unit 150 shows the image acquired for each cell, the localization of NF-κB determined for each cell, the number of cells in which NF-κB is localized in the nucleus, and the localization of NF-κB in the cytoplasm. The number of cells, nuclear localization rate, cytoplasmic localization rate, etc. are displayed. The input unit 160 includes a mouse and a keyboard. The operator inputs an instruction to the cell information acquisition device 100 via the input unit 160.

図6に示すように、光学検出部130は、フローセル200と、光照射部300と、集光部400と、受光部501〜504と、を備える。フローセル200には流路210が形成されており、流路210には、試料調製部120により調製された試料が流される。図6には、便宜上、互いに直交するXYZ軸が図示されている。 As shown in FIG. 6, the optical detection unit 130 includes a flow cell 200, a light irradiation unit 300, a light collection unit 400, and light receiving units 501 to 504. A flow path 210 is formed in the flow cell 200, and a sample prepared by the sample preparation unit 120 is flowed through the flow path 210. For convenience, FIG. 6 shows XYZ axes that are orthogonal to each other.

光照射部300は、フローセル200を流れる試料に含まれる細胞に光を照射して、図2に示す蛍光物質11、12から強度が異なる蛍光を生じさせる。また、光照射部300は、細胞に光を照射して図2に示す蛍光物質13から蛍光を生じさせ、さらに、明視野用の光を細胞に照射する。光照射部300は、光源301〜304と、集光レンズ311〜314と、ダイクロイックミラー321、322と、を備える。 The light irradiation unit 300 irradiates the cells contained in the sample flowing through the flow cell 200 with light to generate fluorescence having different intensities from the fluorescent substances 11 and 12 shown in FIG. Further, the light irradiation unit 300 irradiates the cells with light to generate fluorescence from the fluorescent substance 13 shown in FIG. 2, and further irradiates the cells with light for a bright field. The light irradiation unit 300 includes light sources 301 to 304, condenser lenses 31 to 314, and dichroic mirrors 321 and 322.

光源301〜304は、半導体レーザ光源により構成される。光源301〜304から出射される光は、それぞれ、波長λ1〜λ4のレーザ光である。波長λ1〜λ4は、それぞれ、たとえば488nm、647nm、405nm、785nmである。波長λ1〜λ3は、図2に示したように、蛍光物質11〜13から蛍光を励起させるための光である。集光レンズ311〜314は、それぞれ、光源301〜304から出射された光を集光する。ダイクロイックミラー321は、波長λ1の光を透過し、波長λ2の光を反射する。ダイクロイックミラー322は、波長λ1、λ2の光を透過し、波長λ3の光を反射する。 The light sources 301 to 304 are composed of a semiconductor laser light source. The light emitted from the light sources 301 to 304 is laser light having wavelengths λ1 to λ4, respectively. The wavelengths λ1 to λ4 are, for example, 488 nm, 647 nm, 405 nm, and 785 nm, respectively. Wavelengths λ1 to λ3 are light for exciting fluorescence from fluorescent substances 11 to 13, as shown in FIG. The condensing lenses 31 to 314 respectively condense the light emitted from the light sources 301 to 304. The dichroic mirror 321 transmits light having a wavelength of λ1 and reflects light having a wavelength of λ2. The dichroic mirror 322 transmits light having wavelengths λ1 and λ2 and reflects light having wavelengths λ3.

こうして、光照射部300は、光源301〜303から出射された波長λ1〜λ3の光を互いに重ねた状態で、流路210を流れる試料に含まれる細胞に照射する。また、光照射部300は、波長λ1〜λ3が照射される流路210の位置に、波長λ4の光を照射する。フローセル200を流れる試料に波長λ1〜λ3の光が照射されると、図2を参照して説明したように、蛍光物質11〜13から異なる波長帯域の蛍光が生じる。フローセル200を流れる試料に波長λ4の光が照射されると、この光は細胞を透過する。細胞を透過した波長λ4の光は、明視野画像の取得に用いられる。 In this way, the light irradiating unit 300 irradiates the cells contained in the sample flowing through the flow path 210 with the lights of wavelengths λ1 to λ3 emitted from the light sources 301 to 303 superposed on each other. Further, the light irradiation unit 300 irradiates the position of the flow path 210 to which the wavelengths λ1 to λ3 are irradiated with the light having the wavelength λ4. When the sample flowing through the flow cell 200 is irradiated with light having wavelengths λ1 to λ3, fluorescence in different wavelength bands is generated from the fluorescent substances 11 to 13 as described with reference to FIG. When the sample flowing through the flow cell 200 is irradiated with light having a wavelength of λ4, this light passes through the cells. The light of wavelength λ4 transmitted through the cells is used to acquire a bright-field image.

ここで、光源301は、波長λ1の光を高パワーで出射し、光源302は、波長λ2の光を低パワーで出射する。光源301、302の出射パワーは、図5に示す駆動部140により制御される。これにより、図2を参照して説明したように、蛍光物質11から生じる蛍光は高強度となり、蛍光物質12から生じる蛍光は低強度となる。なお、この実施形態1および後述する実施形態2、3では、光源301および302の出射パワーを調整しなくても良い。同一出射パワーであっても得られる蛍光強度に差がある蛍光標識を選択することにより、蛍光物質11から生じる蛍光は高強度となり、蛍光物質12から生じる蛍光は低強度となる。 Here, the light source 301 emits light having a wavelength λ1 with high power, and the light source 302 emits light having a wavelength λ2 with low power. The emission power of the light sources 301 and 302 is controlled by the drive unit 140 shown in FIG. As a result, as described with reference to FIG. 2, the fluorescence generated from the fluorescent substance 11 becomes high intensity, and the fluorescence generated from the fluorescent substance 12 becomes low intensity. In the first embodiment and the second and third embodiments described later, it is not necessary to adjust the emission powers of the light sources 301 and 302. By selecting fluorescent labels having different fluorescence intensities even with the same emission power, the fluorescence generated from the fluorescent substance 11 becomes high intensity, and the fluorescence generated from the fluorescent substance 12 becomes low intensity.

集光部400は、波長λ1〜λ3の光の照射によりフローセル200から生じた蛍光を集光する。集光部400は、蛍光物質11〜13から生じた蛍光を、それぞれ、受光部501〜503に集光させる。また、集光部400は、フローセル200から生じた波長λ4の光を受光部504に集光させる。集光部400は、集光レンズ401と、フィルタ部材411〜413、421〜424と、集光レンズ431〜434と、を備える。 The light collecting unit 400 collects the fluorescence generated from the flow cell 200 by irradiation with light having wavelengths λ1 to λ3. The light collecting unit 400 collects the fluorescence generated from the fluorescent substances 11 to 13 on the light receiving units 501 to 503, respectively. Further, the light collecting unit 400 collects the light having a wavelength λ4 generated from the flow cell 200 on the light receiving unit 504. The condensing unit 400 includes a condensing lens 401, filter members 411 to 413, 421 to 424, and condensing lenses 431 to 434.

集光レンズ401は、フローセル200を流れる試料から生じた蛍光と、フローセル200を流れる試料を透過した波長λ4の光とを集光する。フィルタ部材411〜413は、ダイクロイックミラーにより構成される。 The condenser lens 401 collects the fluorescence generated from the sample flowing through the flow cell 200 and the light having a wavelength λ4 transmitted through the sample flowing through the flow cell 200. The filter members 411 to 413 are composed of a dichroic mirror.

フィルタ部材411は、集光レンズ401によって集光された光のうち、波長帯域B1の光を反射し、波長帯域B1以外の光を透過する。フィルタ部材421は、フィルタ部材411によって反射された光のうち、波長帯域B1の光のみを透過して、波長帯域B1以外の光を遮断する。このように、フィルタ部材411、421は、フローセル200から生じた光のうち、波長帯域B1の蛍光のみを分離可能に構成される。同様に、フィルタ部材412、422は、フローセル200から生じた光のうち、波長帯域B2の蛍光のみを分離可能に構成され、フィルタ部材413、423は、フローセル200から生じた光のうち、波長帯域B3の蛍光のみを分離可能に構成される。フィルタ部材424は、フィルタ部材411〜413を透過した光のうち、波長λ4の光を透過し、波長λ4以外の光を遮断する。 The filter member 411 reflects the light in the wavelength band B1 among the light collected by the condenser lens 401, and transmits the light other than the wavelength band B1. Of the light reflected by the filter member 411, the filter member 421 transmits only the light in the wavelength band B1 and blocks the light other than the wavelength band B1. In this way, the filter members 411 and 421 are configured to be able to separate only the fluorescence of the wavelength band B1 from the light generated from the flow cell 200. Similarly, the filter members 412 and 422 are configured so that only the fluorescence of the wavelength band B2 can be separated from the light generated from the flow cell 200, and the filter members 413 and 423 have the wavelength band of the light generated from the flow cell 200. Only the fluorescence of B3 can be separated. The filter member 424 transmits light having a wavelength of λ4 among the light transmitted through the filter members 411 to 413, and blocks light other than the wavelength λ4.

受光部501は、集光レンズ431によって集光された波長帯域B1の光を受光して、受光した光に基づく画像情報を撮像信号として出力する。受光部502は、集光レンズ432によって集光された波長帯域B2の光を受光して、受光した光に基づく画像情報を撮像信号として出力する。受光部503は、集光レンズ433によって集光された波長帯域B3の光を受光して、受光した光に基づく画像情報を撮像信号として出力する。受光部504は、集光レンズ434によって集光された波長λ4の光を受光して、受光した光に基づく画像情報を撮像信号として出力する。受光部501〜504は、たとえばカラーCCDなどの撮像素子により構成される。 The light receiving unit 501 receives the light of the wavelength band B1 condensed by the condensing lens 431 and outputs the image information based on the received light as an imaging signal. The light receiving unit 502 receives the light in the wavelength band B2 condensed by the condenser lens 432 and outputs the image information based on the received light as an imaging signal. The light receiving unit 503 receives light in the wavelength band B3 focused by the condenser lens 433, and outputs image information based on the received light as an imaging signal. The light receiving unit 504 receives light having a wavelength λ4 collected by the condenser lens 434 and outputs image information based on the received light as an imaging signal. The light receiving units 501 to 504 are composed of an image pickup element such as a color CCD.

集光部400は、波長帯域B1〜B3の光と波長λ4の光を、それぞれ受光部501〜504に集光させたが、1つの受光部に結像しても良い。この場合、波長帯域B1〜B3の光と波長λ4の光が、受光部の受光面上で異なる領域に結像するよう光学検出部130が構成される。 The light condensing unit 400 condenses the light of the wavelength bands B1 to B3 and the light of the wavelength λ4 on the light receiving units 501 to 504, respectively, but an image may be formed on one light receiving unit. In this case, the optical detection unit 130 is configured so that the light in the wavelength bands B1 to B3 and the light in the wavelength λ4 are imaged in different regions on the light receiving surface of the light receiving unit.

図6に示す構成では、波長帯域B1の光を分離するために複数のフィルタ部材が用いられたが、図7に示すように、フローセル200から生じた光が、1つのフィルタ部材によって分離されても良い。図7に示すように、集光部400は、集光レンズ441〜444と、フィルタ部材451〜454と、集光レンズ461〜464と、を備える。波長帯域B1〜B3の光は、それぞれ、フィルタ部材451〜453により分離され、波長λ4の光はフィルタ部材454により分離される。 In the configuration shown in FIG. 6, a plurality of filter members were used to separate the light in the wavelength band B1, but as shown in FIG. 7, the light generated from the flow cell 200 is separated by one filter member. Is also good. As shown in FIG. 7, the condensing unit 400 includes condensing lenses 441 to 444, filter members 451 to 454, and condensing lenses 461 to 464. The light in the wavelength bands B1 to B3 is separated by the filter members 451 to 453, respectively, and the light in the wavelength λ4 is separated by the filter member 454.

次に、図8のフローチャートを参照して、図1のステップS4の処理が細胞情報取得装置100により行われる場合について説明する。 Next, a case where the process of step S4 of FIG. 1 is performed by the cell information acquisition device 100 will be described with reference to the flowchart of FIG.

図8に示すように、ステップS11において、処理部110は、試料調製部120を駆動して、図1のステップS1と同様、細胞に含まれるNF−κBを蛍光物質11、12で標識し、細胞に含まれる核を蛍光物質13で標識して、試料を調製する。ステップS12において、処理部110は、フローセル200に試料を流し、光源301〜304を駆動部140により駆動させ、フローセル200を流れる細胞に光を照射する。ステップS13において、処理部110は、受光部501〜503により波長帯域B1〜B3の蛍光を撮像し、受光部504により波長λ4の光を撮像する。そして、処理部110の取得部111は、受光部501〜504が出力する撮像信号に基づいて画像を取得する。 As shown in FIG. 8, in step S11, the processing unit 110 drives the sample preparation unit 120 to label NF-κB contained in the cells with fluorescent substances 11 and 12 as in step S1 of FIG. A sample is prepared by labeling the nucleus contained in the cell with the fluorescent substance 13. In step S12, the processing unit 110 causes the sample to flow through the flow cell 200, drives the light sources 301 to 304 by the driving unit 140, and irradiates the cells flowing through the flow cell 200 with light. In step S13, the processing unit 110 images the fluorescence of the wavelength bands B1 to B3 by the light receiving units 501 to 503, and the light of the wavelength λ4 by the light receiving unit 504. Then, the acquisition unit 111 of the processing unit 110 acquires an image based on the image pickup signal output by the light receiving units 501 to 504.

ステップS14において、処理部110の解析部112は、高強度と低強度の蛍光画像から、局在の判別ができる画像を選択する。具体的には、解析部112は、高強度の蛍光画像と低強度の蛍光画像のうち、画像から取得される蛍光の強度、たとえば画像全体の輝度が、所定の範囲内にある画像を選択する。これにより、蛍光の強度が極端に大きい画像や、蛍光の強度が極端に小さい画像は、図3の画像32や画像41と同様、NF−κBの局在を判別できないため、判別に用いる画像から除かれる。 In step S14, the analysis unit 112 of the processing unit 110 selects an image whose localization can be discriminated from the high-intensity and low-intensity fluorescence images. Specifically, the analysis unit 112 selects an image in which the fluorescence intensity obtained from the image, for example, the brightness of the entire image is within a predetermined range, from the high-intensity fluorescence image and the low-intensity fluorescence image. .. As a result, the image with extremely high fluorescence intensity and the image with extremely low fluorescence intensity cannot discriminate the localization of NF-κB as in the image 32 and image 41 of FIG. Be excluded.

また、解析部112は、高強度と低強度の蛍光画像のうち、細胞の解析対象部位における蛍光強度と、解析対象部位以外の細胞における蛍光強度との差が、所定の閾値より大きい画像を選択する。実施形態1において、解析対象部位は核である。すなわち、核内の蛍光強度と核外の細胞の蛍光強度との差が、所定の閾値より大きい画像が選択される。これにより、核内と核外の蛍光強度の差が小さい画像は、図3の画像32や画像41と同様、NF−κBの局在を判別できないため、判別に用いる画像から除かれる。 Further, the analysis unit 112 selects an image in which the difference between the fluorescence intensity at the cell analysis target site and the fluorescence intensity at the cells other than the analysis target site is larger than a predetermined threshold value among the high-intensity and low-intensity fluorescence images. To do. In the first embodiment, the analysis target site is the nucleus. That is, an image in which the difference between the fluorescence intensity in the nucleus and the fluorescence intensity of the cells outside the nucleus is larger than a predetermined threshold value is selected. As a result, an image in which the difference in fluorescence intensity between the inside and outside the nucleus is small cannot be discriminated from the localization of NF-κB as in the images 32 and 41 of FIG. 3, and is therefore excluded from the images used for discrimination.

次に、ステップS15において、解析部112は、ステップS14で選択した画像を用いて、細胞ごとに、細胞におけるNF−κBの局在を判別する。すなわち、解析部112は、細胞の解析対象部位におけるNF−κBの局在量の、細胞全体におけるNF−κBの量に対する割合を算出する。たとえば、解析部112は、ステップS14で選択された画像において、核の領域における蛍光の強度を、細胞全体の領域における蛍光強度で除算する。解析部112は、除算結果が2以上である場合に、NF−κBが核に局在していると判別し、除算結果が2より小さい場合に、NF−κBが細胞質に局在していると判別する。除算結果を判定する値は2に限らず、他の値でも良い。
Next, in step S15, the analysis unit 112 determines the localization of NF-κB in the cells for each cell using the image selected in step S14. That is, the analysis unit 112 calculates the ratio of the localized amount of NF-κB in the analysis target site of the cell to the amount of NF-κB in the whole cell. For example, in the image selected in step S14, the analyzer 112 divides the fluorescence intensity in the nuclear region by the fluorescence intensity in the entire cell region. The analysis unit 112 determines that NF-κB is localized in the nucleus when the division result is 2 or more, and NF-κB is localized in the cytoplasm when the division result is smaller than 2. To determine. The value for determining the division result is not limited to 2, and other values may be used.

なお、ステップS14で2つの画像が選択された場合、ステップS15では、両方の画像について、上記のように除算結果が取得され局在が判別される。また、ステップS14で画像が選択されなかった場合、ステップS15において、この細胞の局在は「判別不可能」とされる。 When two images are selected in step S14, in step S15, the division results are acquired and the localization is determined for both images as described above. Further, when the image is not selected in step S14, the localization of this cell is regarded as "indistinguishable" in step S15.

ステップS16において、解析部112は、処理を行った全ての細胞の判別結果に基づいて、上述した核局在数、細胞質局在数、核局在率、および細胞質局在率を算出する。ステップS17において、処理部110は、ステップS16で算出した数値と、細胞ごとに取得した画像と、細胞ごとの判別結果などを表示部150に表示する。具体的には、処理部110は、上記内容を含む画面161を表示部150に表示する。 In step S16, the analysis unit 112 calculates the above-mentioned nuclear localization number, cytoplasmic localization number, nuclear localization rate, and cytoplasmic localization rate based on the discrimination results of all the treated cells. In step S17, the processing unit 110 displays the numerical value calculated in step S16, the image acquired for each cell, the discrimination result for each cell, and the like on the display unit 150. Specifically, the processing unit 110 displays the screen 161 including the above contents on the display unit 150.

図9に示すように、画面161は、領域161a、161bを備える。領域161aは、核局在数、細胞質局在数、核局在率、および細胞質局在率を表示する。領域161bは、画像と、NF−κBの局在の判別結果とを表示する。領域161bにおいて、ステップS15で局在の判別に用いられた画像は、局在判別に用いられたことが分かるように実線で囲まれている。 As shown in FIG. 9, the screen 161 includes regions 161a and 161b. Region 161a displays the number of nuclear localizations, the number of cytoplasmic localizations, the nuclear localization rate, and the cytoplasmic localization rate. The region 161b displays an image and a determination result of localization of NF-κB. In region 161b, the image used for localization determination in step S15 is surrounded by a solid line so that it can be seen that it was used for localization determination.

ステップS13で取得される蛍光情報は、時間とともに変化する蛍光強度を示す波形信号であっても良い。この場合、光学検出部130において、受光部501〜503として、それぞれ、フォトマルチプライヤなどの光検出器が配置される。3つの光検出器は、波長帯域B1の高強度の蛍光と、波長帯域B2の低強度の蛍光と、波長帯域B3の蛍光を受光し、それぞれ、各蛍光の強度を示す波形信号を出力する。 The fluorescence information acquired in step S13 may be a waveform signal indicating the fluorescence intensity that changes with time. In this case, in the optical detection unit 130, photodetectors such as photomultipliers are arranged as light receiving units 501 to 503, respectively. The three photodetectors receive high-intensity fluorescence in wavelength band B1, low-intensity fluorescence in wavelength band B2, and fluorescence in wavelength band B3, and output waveform signals indicating the intensity of each fluorescence, respectively.

図10に示すように、解析部112は、光検出器が出力する波形信号に基づいて、NF−κBの発現量が少ない細胞の場合、たとえばグラフ51、52を取得し、NF−κBの発現量が多い細胞の場合、たとえばグラフ61、62を取得する。また、解析部112は、光検出器が出力する波形信号に基づいて、核に応じたグラフを取得する。解析部112は、グラフ51、52と同時に取得された核のグラフから、グラフ51、52において核に対応する波形の幅W1を設定し、グラフ61、62と同時に取得された核のグラフから、グラフ61、62において核に対応する波形の幅W2を設定する。 As shown in FIG. 10, the analysis unit 112 acquires graphs 51 and 52, for example, in the case of cells having a low expression level of NF-κB based on the waveform signal output by the photodetector, and expresses NF-κB. For cells with a large amount, for example, graphs 61 and 62 are obtained. Further, the analysis unit 112 acquires a graph corresponding to the nucleus based on the waveform signal output by the photodetector. The analysis unit 112 sets the width W1 of the waveform corresponding to the nucleus in the graphs 51 and 52 from the graph of the nucleus acquired at the same time as the graphs 51 and 52, and from the graph of the nucleus acquired at the same time as the graphs 61 and 62, In the graphs 61 and 62, the width W2 of the waveform corresponding to the nucleus is set.

グラフ51によれば、蛍光のピーク値が閾値Sh1、Sh2の間にあり、核に対応する幅W1に波形のピークが存在するため、解析部112は、NF−κBが核に局在すると判別できる。他方、グラフ52によれば、蛍光のピーク値が閾値Sh1より小さいため、解析部112は、NF−κBの局在を判別できない。グラフ61によれば、蛍光のピーク値が閾値Sh2より大きいため、解析部112は、NF−κBの局在を判別できない。他方、グラフ62によれば、蛍光のピーク値が閾値Sh1、Sh2の間にあり、核に対応する幅W2に波形の窪みが存在するため、解析部112は、NF−κBが細胞質に局在すると判別できる。したがって、この場合も、図3に示すように画像を用いる場合と同様、強度の異なる2つの蛍光により、NF−κBの局在を精度良く判別できる。 According to the graph 51, the peak value of fluorescence is between the threshold values Sh1 and Sh2, and the peak of the waveform exists in the width W1 corresponding to the nucleus. Therefore, the analysis unit 112 determines that NF-κB is localized in the nucleus. it can. On the other hand, according to the graph 52, since the peak value of fluorescence is smaller than the threshold value Sh1, the analysis unit 112 cannot determine the localization of NF-κB. According to the graph 61, since the peak value of fluorescence is larger than the threshold value Sh2, the analysis unit 112 cannot determine the localization of NF-κB. On the other hand, according to the graph 62, since the peak value of fluorescence is between the threshold values Sh1 and Sh2 and the corrugated depression exists in the width W2 corresponding to the nucleus, the analysis unit 112 indicates that NF-κB is localized in the cytoplasm. Then it can be determined. Therefore, also in this case, as in the case of using an image as shown in FIG. 3, the localization of NF-κB can be accurately discriminated by the two fluorescences having different intensities.

<実施形態2>
実施形態2では、2つの光を用いるのではなく、波長λ1の光のみを用いて互いに異なる強度の蛍光を取得する。実施形態2では、実施形態1と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS1、S2における一部の手順のみが異なる。以下、実施形態1とは異なる手順について説明する。
<Embodiment 2>
In the second embodiment, instead of using two lights, only light having a wavelength of λ1 is used to obtain fluorescence of different intensities. In the second embodiment, only a part of the steps of the cell information acquisition method shown in FIG. 1 in steps S1 and S2 is different from that in the first embodiment. Hereinafter, a procedure different from that of the first embodiment will be described.

ステップS1において、図11に示すように、細胞に含まれるNF−κBが、互いに蛍光波長が異なる蛍光物質14、15で標識される。蛍光物質14、15は、蛍光色素である。蛍光物質14は、波長λ1の光が照射されると、実施形態1の蛍光物質11と同様の波長帯域の蛍光を励起する。蛍光物質15は、波長λ1の光が照射されると、図2の蛍光物質12と同様の波長帯域の蛍光を励起する。すなわち、蛍光物質14、15は、励起用の光の波長が実質的に同じである。 In step S1, as shown in FIG. 11, NF-κB contained in the cell is labeled with fluorescent substances 14 and 15 having different fluorescence wavelengths from each other. Fluorescent substances 14 and 15 are fluorescent dyes. When the fluorescent substance 14 is irradiated with light having a wavelength of λ1, it excites fluorescence in the same wavelength band as that of the fluorescent substance 11 of the first embodiment. When the fluorescent substance 15 is irradiated with light having a wavelength of λ1, it excites fluorescence in the same wavelength band as that of the fluorescent substance 12 in FIG. That is, the fluorescent substances 14 and 15 have substantially the same wavelength of light for excitation.

ステップS2において、蛍光物質14、15、13で標識された細胞を含む試料がフローセルに流され、フローセルを流れる細胞に波長λ1、λ3の光が照射され、蛍光物質14、15、13から蛍光が生じさせられる。蛍光物質14、15から生じた蛍光は、それぞれフィルタ部材21、22に通されることにより、波長帯域B1、B2の蛍光となる。このとき、波長帯域B1の蛍光が高強度となり、波長帯域B2の蛍光が低強度となるよう、蛍光物質14、15が構成されている。 In step S2, a sample containing cells labeled with fluorescent substances 14, 15 and 13 is flowed into the flow cell, the cells flowing through the flow cell are irradiated with light having wavelengths λ1 and λ3, and fluorescence is emitted from the fluorescent substances 14, 15 and 13. It is caused. The fluorescence generated from the fluorescent substances 14 and 15 is passed through the filter members 21 and 22, respectively, to become fluorescence in the wavelength bands B1 and B2. At this time, the fluorescent substances 14 and 15 are configured so that the fluorescence in the wavelength band B1 becomes high intensity and the fluorescence in the wavelength band B2 becomes low intensity.

実施形態2の装置構成では、実施形態1と比較して、図6に示す光学検出部130のうち、光源302と、集光レンズ312と、ダイクロイックミラー321が省略される。 In the apparatus configuration of the second embodiment, the light source 302, the condenser lens 312, and the dichroic mirror 321 are omitted from the optical detection unit 130 shown in FIG. 6 as compared with the first embodiment.

実施形態2においても、実施形態1と同様、波長帯域B1の高強度の蛍光と、波長帯域B2の低強度の蛍光とを生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、実施形態1と同様、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞における分布および量が多様なNF−κBを、精度良く解析できる。 Also in the second embodiment, as in the first embodiment, high-intensity fluorescence in the wavelength band B1 and low-intensity fluorescence in the wavelength band B2 are generated, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, as in the first embodiment, NF-κB having various distributions and amounts in cells can be accurately analyzed based on a high-intensity fluorescence image and a low-intensity fluorescence image.

<実施形態3>
実施形態3では、2つの光と2つの蛍光物質を用いるのではなく、1つの波長λ1の光と1つの蛍光物質11を用いて、互いに異なる強度の蛍光を取得する。実施形態3では、実施形態1と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS1、S2における一部の手順のみが異なる。以下、実施形態1とは異なる手順について説明する。
<Embodiment 3>
In the third embodiment, instead of using two lights and two fluorescent substances, light having one wavelength λ1 and one fluorescent substance 11 are used to obtain fluorescence having different intensities from each other. In the third embodiment, only a part of the steps of the cell information acquisition method shown in FIG. 1 in steps S1 and S2 is different from that in the first embodiment. Hereinafter, a procedure different from that of the first embodiment will be described.

ステップS1において、図12に示すように、細胞に含まれるNF−κBが、実施形態1と同様の蛍光物質11のみで標識される。このとき、蛍光物質11は、1つの抗体を介してNF−κBに結合されても良い。ステップS2において、蛍光物質11、13で標識された細胞を含む試料がフローセルに流され、フローセルを流れる細胞に波長λ1、λ3の光が照射され、蛍光物質11、13から蛍光が生じさせられる。 In step S1, as shown in FIG. 12, NF-κB contained in the cells is labeled only with the same fluorescent substance 11 as in the first embodiment. At this time, the fluorescent substance 11 may be bound to NF-κB via one antibody. In step S2, a sample containing cells labeled with fluorescent substances 11 and 13 is flowed into a flow cell, the cells flowing through the flow cell are irradiated with light having wavelengths λ1 and λ3, and fluorescence is generated from the fluorescent substances 11 and 13.

図12に示すように、蛍光物質11から生じた蛍光を2つに分割し、一方を実施形態1と同様のフィルタ部材21に通し、他方を実施形態1と同様のフィルタ部材22に通す。フィルタ部材21は、波長帯域B1の光のみを透過させ、フィルタ部材21は、波長帯域B4の光のみを透過させる。図13に示すように、波長帯域B1は、たとえば、蛍光物質11から生じる蛍光の強度がピークとなる波長を含む。波長帯域B4は、たとえば、波長帯域B1よりも大きい波長帯域に設定され、かつ、波長帯域B1に重ならない波長帯域に設定される。これにより、図12に示すように、フィルタ部材21を通過した波長帯域B1の蛍光は高強度となり、フィルタ部材22を通過した波長帯域B4の蛍光は低強度となる。 As shown in FIG. 12, the fluorescence generated from the fluorescent substance 11 is divided into two, one is passed through the same filter member 21 as in the first embodiment, and the other is passed through the same filter member 22 as in the first embodiment. The filter member 21 transmits only the light in the wavelength band B1, and the filter member 21 transmits only the light in the wavelength band B4. As shown in FIG. 13, the wavelength band B1 includes, for example, a wavelength at which the intensity of fluorescence generated from the fluorescent substance 11 peaks. The wavelength band B4 is set to, for example, a wavelength band larger than the wavelength band B1 and not overlapping the wavelength band B1. As a result, as shown in FIG. 12, the fluorescence of the wavelength band B1 passing through the filter member 21 becomes high intensity, and the fluorescence of the wavelength band B4 passing through the filter member 22 becomes low intensity.

なお、波長帯域B1は、必ずしも蛍光物質11から生じる蛍光の強度がピークとなる波長を含まなくても良い。波長帯域B4は、波長帯域B1よりも小さい波長帯域に設定されても良く、波長帯域B1と一部が重なっても良い。 The wavelength band B1 does not necessarily have to include a wavelength at which the intensity of fluorescence generated from the fluorescent substance 11 peaks. The wavelength band B4 may be set to a wavelength band smaller than the wavelength band B1, or may partially overlap with the wavelength band B1.

<実施形態3の検証>
次に、発明者が行った実施形態3の検証について説明する。
<Verification of Embodiment 3>
Next, the verification of the third embodiment performed by the inventor will be described.

1.準備
細胞として、ヒト心臓微小血管内皮細胞(HMVEC-C)(Lonza CatNo.CC-7030, Lot No.0000296500 (P4))を用意した。一次抗体として、NF−κB p65 (D14E12) XP Rabbit mAb(Cell Signaling Technologies #8242S)を用意した。二次抗体として、Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate(Life technologies A-21245)を用意した。二次抗体には、蛍光色素として、Alexa Fluor 647が結合している。この他、EGM-2MV Medium(Lonza Cat No.CC-3202)、EGM-2MV SingleQuots Kit(Lonza Cat No. CC-3202)、PBS pH7.4(GIBCO Cat No.10010-023)、BSA(LAMPIRE Cat No. 7500805)、PFA(WAKO Cat No.160-16061)、TritonX100(ナカライテスク CatNo.35501-15)を用意した。
1. 1. Human cardiac microvascular endothelial cells (HMVEC-C) (Lonza Cat No. CC-7030, Lot No. 0000296500 (P4)) were prepared as preparatory cells. As the primary antibody, NF-κB p65 (D14E12) XP Rabbit mAb (Cell Signaling Technologies # 8242S) was prepared. As a secondary antibody, Goat anti-Rabbit IgG (H + L) Secondary Antibody, Alexa Fluor 647 conjugate (Life technologies A-21245) was prepared. Alexa Fluor 647 is bound to the secondary antibody as a fluorescent dye. In addition, EGM-2MV Medium (Lonza Cat No.CC-3202), EGM-2MV SingleQuots Kit (Lonza Cat No. CC-3202), PBS pH7.4 (GIBCO Cat No.10010-023), BSA (LAMPIRE Cat) No. 7500805), PFA (WAKO Cat No.160-16061), TritonX100 (Nakarai Tesk Cat No.35501-15) were prepared.

2.試薬調製
500mLのEGM-2MV MediumにEGM-2MV SingleQuots Kitを添加し、培養培地を作製した。パラホルムアルデヒドを終濃度8% w/vとなるようにpH12のPBSにて溶解した後に、pH7.4に調整した。PBSに1.5gのBSAを加えて溶解させ50mLにメスアップし、3% BSA/PBSを調製した。PBSに0.5gのBSAを加えて溶解させ50mLにメスアップし、1% BSA/PBSを調製した。TritonX100を終濃度0.1% w/vとなるようにPBSにて調製した。
2. 2. Reagent Preparation EGM-2MV Single Quots Kit was added to 500 mL of EGM-2MV Medium to prepare a culture medium. Paraformaldehyde was dissolved in PBS at pH 12 to a final concentration of 8% w / v, and then adjusted to pH 7.4. 1.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 3% BSA / PBS. 0.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 1% BSA / PBS. Triton X100 was prepared with PBS to a final concentration of 0.1% w / v.

3.手順
HMVEC-Cは、メーカー推奨プロトコルに準じてEGM-2MV培地にて培養した。購入後から継代回数6回以内の細胞を本検証に用いた。培養培地は開封後の使用期限を3週間とした。TNF-α刺激培養は、約70%コンフルエントのHMVEC-C細胞の培養上清を除き、終濃度25ng/mLとなるようRecombinant Human TNF-alphaを添加したEGM-2MV培地を加え、37℃ COインキュベーター内で1時間静置した。3mL程度残して電動ピペッターで培地を除去し、スクレーパーにて細胞を剥離した。回収した懸濁液と等量の8% PFA/PBSを加え、室温で15分反応させた。室温下、1000rpmで3分間遠心分離した。細胞ペレットを1mLのPBSで2回洗浄した。上清を除去し、0.1% Triton X-100/PBSを1mL加えて、室温15分反応させた。室温下、1000rpmで3分間遠心分離した。1mLの1% BSA/PBSで2回洗浄した。上清を除去し、3% BSA/PBSを1mL加えて、室温で30分静置した。3% BSA/PBSで1/1600とした400μLの一次抗体を添加した。室温で1時間反応させた。室温下、1000rpmで3分間遠心分離した。1mLの1% BSA/PBSで洗浄した。3% BSA/PBSで1/1000とした400μLの二次抗体を添加した。室温で30分反応させた。1mLの1% BSA/PBSで2回洗浄した。上清を除去し、1% BSA/PBSを50μL添加した。
3. 3. procedure
HMVEC-C was cultured in EGM-2MV medium according to the manufacturer's recommended protocol. Cells within 6 passages after purchase were used for this verification. The culture medium had an expiration date of 3 weeks after opening. For TNF-α stimulation culture, remove the culture supernatant of HMV EC-C cells with approximately 70% confluence, add EGM-2MV medium supplemented with Recombinant Human TNF-alpha to a final concentration of 25 ng / mL, and add 37 ° C. CO 2 It was allowed to stand in the incubator for 1 hour. The medium was removed with an electric pipettor leaving about 3 mL, and the cells were detached with a scraper. Equivalent 8% PFA / PBS was added to the recovered suspension and reacted at room temperature for 15 minutes. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. The cell pellet was washed twice with 1 mL PBS. The supernatant was removed, 1 mL of 0.1% Triton X-100 / PBS was added, and the mixture was reacted at room temperature for 15 minutes. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. Washed twice with 1 mL of 1% BSA / PBS. The supernatant was removed, 1 mL of 3% BSA / PBS was added, and the mixture was allowed to stand at room temperature for 30 minutes. 400 μL of primary antibody to 1/1600 with 3% BSA / PBS was added. The reaction was carried out at room temperature for 1 hour. Centrifugation was performed at 1000 rpm for 3 minutes at room temperature. Washed with 1 mL of 1% BSA / PBS. 400 μL of secondary antibody reduced to 1/1000 with 3% BSA / PBS was added. The reaction was carried out at room temperature for 30 minutes. Washed twice with 1 mL of 1% BSA / PBS. The supernatant was removed and 50 μL of 1% BSA / PBS was added.

4.フローサイトメータによる検出
蛍光画像を取得可能なフローサイトメータとして、ImageStreamX Mark II Imaging Flow Cytometer(Merck Millipore)を用いた。このフローサイトメータのフローセルに上記3に沿って調製した試料を流し、フローセルを流れる試料に、波長647nmのレーザ光を照射した。波長647nmのレーザ光は、図12に示す波長λ1のレーザ光に対応する。波長647nmのレーザ光の出射パワーは、10mWとした。波長647nmのレーザ光がNF−κBを標識する蛍光色素に照射されることにより蛍光が生じた。
4. Detection by flow cytometer ImageStreamX Mark II Imaging Flow Cytometer (Merck Millipore) was used as a flow cytometer capable of acquiring fluorescence images. A sample prepared according to 3 above was flowed through the flow cell of this flow cytometer, and the sample flowing through the flow cell was irradiated with a laser beam having a wavelength of 647 nm. The laser beam having a wavelength of 647 nm corresponds to the laser beam having a wavelength λ1 shown in FIG. The emission power of the laser beam having a wavelength of 647 nm was set to 10 mW. Fluorescence was generated by irradiating the fluorescent dye labeling NF-κB with a laser beam having a wavelength of 647 nm.

上記フローサイトメータにおいて、波長647nmのレーザ光により生じた蛍光は、透過波長帯域642nm〜740nmのフィルタ部材を介して撮像され、高強度の蛍光画像が取得された。また、波長647nmのレーザ光により生じた蛍光は、透過波長帯域740nm〜800nmのフィルタ部材を介して撮像され、低強度の蛍光画像が取得された。なお、上記フローサイトメータでは、対象となる波長帯域の光が適正に受光部に入射するよう、フィルタ部材等により不要な波長帯域の光が除去されている。 In the flow cytometer, the fluorescence generated by the laser beam having a wavelength of 647 nm was imaged through a filter member having a transmission wavelength band of 642 nm to 740 nm, and a high-intensity fluorescence image was obtained. Further, the fluorescence generated by the laser beam having a wavelength of 647 nm was imaged through a filter member having a transmission wavelength band of 740 nm to 800 nm, and a low-intensity fluorescence image was obtained. In the flow cytometer, unnecessary wavelength band light is removed by a filter member or the like so that light in the target wavelength band is properly incident on the light receiving portion.

図14(a)、(b)を参照して、上記検出により取得された画像について説明する。 The image acquired by the above detection will be described with reference to FIGS. 14 (a) and 14 (b).

「高強度の蛍光」と「低強度の蛍光」は、それぞれ、NF−κBを標識した蛍光色素から生じた高強度の蛍光に基づく画像と、NF−κBを標識した蛍光色素から生じた低強度の蛍光に基づく画像である。図14(a)、(b)において、横に並ぶ2つの画像は、1つの細胞から取得された画像である。各画像は、便宜上、取得されたカラー画像をグレースケール化したものである。各画像において、白い部分は蛍光の強度が強いことを示す。 "High-intensity fluorescence" and "low-intensity fluorescence" are images based on high-intensity fluorescence generated from a fluorescent dye labeled with NF-κB and low-intensity generated from a fluorescent dye labeled with NF-κB, respectively. It is an image based on the fluorescence of. In FIGS. 14A and 14B, the two images arranged side by side are images obtained from one cell. Each image is a grayscale version of the acquired color image for convenience. In each image, the white part indicates that the fluorescence intensity is strong.

図14(a)に示す3つの細胞の場合、低強度の蛍光に基づく画像は強度が低すぎるため、NF−κBの局在を判別するのは困難である。他方、高強度の蛍光に基づく画像は強度が適正であるため、NF−κBが細胞質に局在していると判別できる。図14(b)に示す3つの細胞の場合、高強度の蛍光に基づく画像は強度が高すぎるため、NF−κBの局在を判別するのは困難である。他方、低強度の蛍光に基づく画像は強度が適正であるため、NF−κBが細胞質に局在していると判別できる。 In the case of the three cells shown in FIG. 14 (a), it is difficult to determine the localization of NF-κB because the image based on low intensity fluorescence is too low in intensity. On the other hand, since the intensity of the image based on high-intensity fluorescence is appropriate, it can be determined that NF-κB is localized in the cytoplasm. In the case of the three cells shown in FIG. 14 (b), it is difficult to determine the localization of NF-κB because the image based on high intensity fluorescence is too intense. On the other hand, since the intensity of the image based on low-intensity fluorescence is appropriate, it can be determined that NF-κB is localized in the cytoplasm.

以上のように、本検証によれば、実施形態3のように強度の異なる2つの蛍光画像に基づいて局在を判別する場合においても、NF−κBの局在を判別できることが分かる。このように、実施形態3によれば、1種類の蛍光色素から生じた蛍光を、異なる波長帯域の蛍光を通すフィルタ部材21、22に通して2つの蛍光画像を取得することにより、1つの細胞に対して一度の測定でNF−κBの局在を正しく取得できる。 As described above, according to this verification, it can be seen that the localization of NF-κB can be discriminated even when the localization is discriminated based on two fluorescent images having different intensities as in the third embodiment. As described above, according to the third embodiment, one cell is obtained by passing the fluorescence generated from one kind of fluorescent dye through the filter members 21 and 22 that pass the fluorescence of different wavelength bands and acquiring two fluorescence images. The localization of NF-κB can be correctly obtained with a single measurement.

<実施形態3の装置構成>
図15に示すように、実施形態3の装置構成では、実施形態1と比較して、図6に示す光学検出部130のうち、光源302と、集光レンズ312と、ダイクロイックミラー321が省略され、フィルタ部材412、422に代えて、それぞれフィルタ部材414、425が追加される。フィルタ部材414は、フィルタ部材411を透過した光のうち、波長帯域B4の光を反射し、波長帯域B4以外の光を透過する。フィルタ部材425は、フィルタ部材414によって反射された光のうち、波長帯域B4の光のみを透過し、波長帯域B4以外の光を遮断する。このように、フィルタ部材414、425は、フローセル200から生じた光のうち、波長帯域B4の蛍光のみを分離可能に構成される。受光部502は、波長帯域B4の低強度の蛍光を撮像する。
<Device configuration of the third embodiment>
As shown in FIG. 15, in the apparatus configuration of the third embodiment, the light source 302, the condenser lens 312, and the dichroic mirror 321 are omitted from the optical detection unit 130 shown in FIG. 6 as compared with the first embodiment. , Filter members 414 and 425 are added in place of the filter members 412 and 422, respectively. The filter member 414 reflects the light in the wavelength band B4 among the light transmitted through the filter member 411, and transmits the light other than the wavelength band B4. Of the light reflected by the filter member 414, the filter member 425 transmits only the light in the wavelength band B4 and blocks the light other than the wavelength band B4. In this way, the filter members 414 and 425 are configured to be able to separate only the fluorescence of the wavelength band B4 from the light generated from the flow cell 200. The light receiving unit 502 images low-intensity fluorescence in the wavelength band B4.

実施形態3においても、実施形態1と同様、高強度の蛍光と低強度の蛍光とを別々に生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、実施形態1と同様、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞における分布および量が多様なNF−κBを、精度良く解析できる。 Also in the third embodiment, as in the first embodiment, high-intensity fluorescence and low-intensity fluorescence can be generated separately, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, as in the first embodiment, NF-κB having various distributions and amounts in cells can be accurately analyzed based on a high-intensity fluorescence image and a low-intensity fluorescence image.

<実施形態4>
実施形態4では、実施形態1と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS1、S2における一部の手順のみが異なる。以下、実施形態1とは異なる手順について説明する。
<Embodiment 4>
In the fourth embodiment, only a part of the steps of the cell information acquisition method shown in FIG. 1 in steps S1 and S2 is different from that in the first embodiment. Hereinafter, a procedure different from that of the first embodiment will be described.

ステップS1において、図16に示すように、細胞に含まれるNF−κBが、実施形態1と同様の蛍光物質11のみで標識される。ステップS2において、蛍光物質11、13で標識された細胞を含む試料がフローセルに流され、フローセルを流れる細胞に波長λ1、λ3の光が照射され、蛍光物質11、13から蛍光が生じさせられる。このとき、波長λ1の光は、細胞に対して高パワーで照射されるため、フィルタ部材21を透過する波長帯域B1の蛍光は、実施形態1と同様に高強度となる。さらに、この細胞をフローセル内で移動させ、移動した細胞に波長λ1の光を照射して、蛍光物質11から蛍光を生じさせる。このとき、波長λ1の光は、細胞に対して低パワーで照射される。したがって、フィルタ部材21を透過する波長帯域B1の蛍光は、低強度となる。 In step S1, as shown in FIG. 16, NF-κB contained in the cells is labeled only with the same fluorescent substance 11 as in the first embodiment. In step S2, a sample containing cells labeled with fluorescent substances 11 and 13 is flowed into a flow cell, the cells flowing through the flow cell are irradiated with light having wavelengths λ1 and λ3, and fluorescence is generated from the fluorescent substances 11 and 13. At this time, since the light having the wavelength λ1 is irradiated to the cells with high power, the fluorescence in the wavelength band B1 transmitted through the filter member 21 has high intensity as in the first embodiment. Further, the cells are moved in the flow cell, and the moved cells are irradiated with light having a wavelength of λ1 to generate fluorescence from the fluorescent substance 11. At this time, the light having a wavelength of λ1 is irradiated to the cells with low power. Therefore, the fluorescence of the wavelength band B1 transmitted through the filter member 21 has low intensity.

実施形態4の装置構成では、実施形態1と比較して、図6に示す光学検出部130のうち、光源302と、集光レンズ312と、ダイクロイックミラー321と、フィルタ部材412、422と、集光レンズ432と、受光部502が省略される。また、図17に示すように、実施形態3の装置構成では、実施形態1と比較して、光照射部300に、光源305と集光レンズ315が追加され、集光部400に、集光レンズ471と、フィルタ部材472と、集光レンズ473が追加される。また、実施形態3の装置構成では、実施形態1と比較して、受光部505が追加される。 In the apparatus configuration of the fourth embodiment, as compared with the first embodiment, among the optical detection units 130 shown in FIG. 6, the light source 302, the condenser lens 312, the dichroic mirror 321 and the filter members 412 and 422 are collected. The optical lens 432 and the light receiving unit 502 are omitted. Further, as shown in FIG. 17, in the apparatus configuration of the third embodiment, the light source 305 and the condensing lens 315 are added to the light irradiation unit 300, and the condensing unit 400 collects light as compared with the first embodiment. A lens 471, a filter member 472, and a condensing lens 473 are added. Further, in the device configuration of the third embodiment, the light receiving unit 505 is added as compared with the first embodiment.

なお、図17は、光学検出部130をXY平面に平行な方向に見た図となっている。図17では、便宜上、光照射部300は、Y軸正方向に見た状態が図示されており、集光部400と受光部505は、X軸負方向に見た状態が図示されている。 Note that FIG. 17 is a view of the optical detection unit 130 viewed in a direction parallel to the XY plane. In FIG. 17, for convenience, the light irradiation unit 300 is shown in a positive direction on the Y axis, and the light condensing unit 400 and the light receiving unit 505 are shown in a negative direction on the X axis.

光源301から出射された波長λ1の光は、フローセル200の流路210において、位置211に照射される。光源305は、光源301と同様に構成され、光源301よりも低パワーで光を出射する。集光レンズ315は、光源305から出射された光を、流路210において位置211のZ軸正側に位置する位置212に集光する。集光レンズ471は、位置212から生じた蛍光を集光する。フィルタ部材472は、集光レンズ471によって集光された光のうち、波長帯域B1の光のみを透過する。受光部505は、集光レンズ473によって集光された波長帯域B1の低強度の光を受光して、受光した光に基づく画像情報を撮像信号として出力する。 The light of wavelength λ1 emitted from the light source 301 is applied to the position 211 in the flow path 210 of the flow cell 200. The light source 305 is configured in the same manner as the light source 301, and emits light with a lower power than the light source 301. The condensing lens 315 condenses the light emitted from the light source 305 at the position 212 located on the positive side of the Z axis of the position 211 in the flow path 210. The condenser lens 471 collects the fluorescence generated from the position 212. The filter member 472 transmits only the light in the wavelength band B1 out of the light collected by the condenser lens 471. The light receiving unit 505 receives low-intensity light in the wavelength band B1 focused by the condenser lens 473, and outputs image information based on the received light as an imaging signal.

細胞が位置211から位置212に位置付けられるまでの時間Tは、あらかじめ取得される。これにより、ある細胞に基づく光が受光部501によって受光された後、時間Tが経過すると、同一の細胞に基づく光が受光部505によって受光されることになる。したがって、受光部501に基づいて取得される画像と、受光部505に基づいて取得される画像とを、同一の細胞から取得されたものとして対応付けることができる。 The time T from position 211 to position 212 of the cell is obtained in advance. As a result, after the time T elapses after the light based on a certain cell is received by the light receiving unit 501, the light based on the same cell is received by the light receiving unit 505. Therefore, the image acquired based on the light receiving unit 501 and the image acquired based on the light receiving unit 505 can be associated with each other as if they were acquired from the same cell.

実施形態4においても、実施形態1と同様、高強度の蛍光と低強度の蛍光とを別々に生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、実施形態1と同様、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞における分布および量が多様なNF−κBを、精度良く解析できる。 Also in the fourth embodiment, similarly to the first embodiment, high-intensity fluorescence and low-intensity fluorescence can be generated separately, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, as in the first embodiment, NF-κB having various distributions and amounts in cells can be accurately analyzed based on a high-intensity fluorescence image and a low-intensity fluorescence image.

<実施形態5>
実施形態5では、実施形態1と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS2における一部の手順のみが異なる。以下、実施形態1とは異なる手順について説明する。
<Embodiment 5>
In the fifth embodiment, only a part of the steps of the cell information acquisition method shown in FIG. 1 is different from that in the first embodiment as compared with the first embodiment. Hereinafter, a procedure different from that of the first embodiment will be described.

ステップS2において、図18に示すように、蛍光物質11〜13で標識された細胞を含む試料がフローセルに流され、フローセルを流れる細胞に波長λ1〜λ3の光が照射され、蛍光物質11〜13から蛍光を生じさせられる。蛍光物質11、12から生じた蛍光は、合わせてフィルタ部材24に入射する。フィルタ部材24は、プリズムにより構成される。蛍光物質11、12から生じた蛍光は、波長帯域の違いからフィルタ部材24によって、波長帯域B1の蛍光と波長帯域B2の蛍光に分けられる。ここで、実施形態1と同様、波長λ1の光は、細胞に対して高パワーで照射され、波長λの光は、細胞に対して低パワーで照射される。これにより、実施形態1と同様、フィルタ部材21を透過する波長帯域B1の蛍光は、高強度となり、フィルタ部材22を透過する波長帯域B2の蛍光は、低強度となる。 In step S2, as shown in FIG. 18, a sample containing cells labeled with fluorescent substances 11 to 13 is flowed into a flow cell, and the cells flowing through the flow cell are irradiated with light having wavelengths λ1 to λ3, and fluorescent substances 11 to 13 are irradiated. Fluorescence can be generated from. The fluorescence generated from the fluorescent substances 11 and 12 is incident on the filter member 24 together. The filter member 24 is composed of a prism. The fluorescence generated from the fluorescent substances 11 and 12 is divided into the fluorescence of the wavelength band B1 and the fluorescence of the wavelength band B2 by the filter member 24 due to the difference in the wavelength band. Here, as in the first embodiment, the light having a wavelength λ1 is irradiated to the cells with high power, and the light having a wavelength λ is irradiated to the cells with low power. As a result, as in the first embodiment, the fluorescence of the wavelength band B1 transmitted through the filter member 21 becomes high intensity, and the fluorescence of the wavelength band B2 transmitted through the filter member 22 becomes low intensity.

なお、蛍光物質11〜13から生じた蛍光が、合わせてフィルタ部材24に入射し、波長帯域の違いからフィルタ部材24によって、それぞれ波長帯域B1〜B3の蛍光に分けられても良い。ここでは、実施形態1の構成に対して用いる例を示したが、フィルタ部材24は、実施形態2〜4の構成において用いられても良い。 In addition, the fluorescence generated from the fluorescent substances 11 to 13 may be incidentally incident on the filter member 24, and may be divided into the fluorescence of the wavelength bands B1 to B3 by the filter member 24 due to the difference in the wavelength band. Although an example used for the configuration of the first embodiment is shown here, the filter member 24 may be used in the configurations of the second to fourth embodiments.

図19に示すように、実施形態5の装置構成では、実施形態1と比較して、図6に示す光学検出部130のうち、フィルタ部材411、412、421、422が省略され、集光部400に、フィルタ部材481が追加される。フィルタ部材481は、プリズムにより構成される。 As shown in FIG. 19, in the apparatus configuration of the fifth embodiment, the filter members 411, 421, 421, and 422 are omitted from the optical detection unit 130 shown in FIG. 6, as compared with the first embodiment, and the light condensing unit is used. A filter member 481 is added to the 400. The filter member 481 is composed of a prism.

フローセル200を流れる試料から生じた蛍光は、フィルタ部材481に入射する。フィルタ部材481に入射した蛍光は、蛍光の波長に応じてフィルタ部材481から異なる角度で出射する。集光レンズ431と受光部501は、フィルタ部材481から出射する蛍光のうち、波長帯域B1の蛍光に対応した方向に配置されている。これにより、受光部501は、波長帯域B1の高強度の蛍光を撮像できる。集光レンズ432と受光部502は、フィルタ部材481から出射する蛍光のうち、波長帯域B2の蛍光に対応した方向に配置されている。これにより、受光部502は、波長帯域B2の低強度の蛍光を撮像できる。 The fluorescence generated from the sample flowing through the flow cell 200 is incident on the filter member 481. The fluorescence incident on the filter member 481 is emitted from the filter member 481 at different angles depending on the wavelength of the fluorescence. The condenser lens 431 and the light receiving unit 501 are arranged in a direction corresponding to the fluorescence of the wavelength band B1 among the fluorescence emitted from the filter member 481. As a result, the light receiving unit 501 can image high-intensity fluorescence in the wavelength band B1. The condenser lens 432 and the light receiving unit 502 are arranged in a direction corresponding to the fluorescence in the wavelength band B2 among the fluorescence emitted from the filter member 481. As a result, the light receiving unit 502 can image low-intensity fluorescence in the wavelength band B2.

実施形態5においても、実施形態1と同様、高強度の蛍光と低強度の蛍光とを別々に生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、実施形態1と同様、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞における分布および量が多様なNF−κBを、精度良く解析できる。 Also in the fifth embodiment, similarly to the first embodiment, high-intensity fluorescence and low-intensity fluorescence can be generated separately, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, as in the first embodiment, NF-κB having various distributions and amounts in cells can be accurately analyzed based on a high-intensity fluorescence image and a low-intensity fluorescence image.

<実施形態6>
実施形態6では、細胞に含まれる被検物質に基質を接触させて蛍光物質を生じさせ、生じた蛍光物質に光を照射し、光の照射により蛍光物質から生じた蛍光に基づいて被検物質の局在状況を判別する。実施形態6では、被検物質は細胞質である。基質は、被検物質に触れると切断される切断部位を含み、切断部位が切断されると蛍光物質を生じる。より具体的には、基質は被検物質である細胞質に触れることで、細胞質中に存在する酵素により切断される。実施形態6では、細胞質を標識する蛍光物質からの蛍光に基づいて、細胞質の局在を判定する。なお、被検物質は、たとえば、細胞質中のタンパク質、細胞小器官、細胞膜等、細胞に含まれる細胞質以外の物質であってもよい。
<Embodiment 6>
In the sixth embodiment, the substrate is brought into contact with the test substance contained in the cell to generate a fluorescent substance, the generated fluorescent substance is irradiated with light, and the test substance is based on the fluorescence generated from the fluorescent substance by the irradiation of light. Determine the localization status of. In the sixth embodiment, the test substance is cytoplasm. The substrate contains a cleavage site that is cleaved upon contact with the test substance and produces a fluorescent substance when the cleavage site is cleaved. More specifically, the substrate is cleaved by an enzyme present in the cytoplasm upon contact with the cytoplasm, which is the test substance. In the sixth embodiment, the localization of the cytoplasm is determined based on the fluorescence from the fluorescent substance that labels the cytoplasm. The test substance may be, for example, a substance other than the cytoplasm contained in the cell, such as a protein in the cytoplasm, an organelle, or a cell membrane.

実施形態6では、実施形態3と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS1における一部の手順が異なる。以下、実施形態3とは異なる手順について説明する。 In the sixth embodiment, some of the steps in the cell information acquisition method shown in FIG. 1 are different from those in the third embodiment. Hereinafter, a procedure different from that of the third embodiment will be described.

ステップS1において、図20に示すように、細胞と基質16aとが混合される。基質16aは、細胞質に含まれるエステラーゼで加水分解されると、蛍光物質16bを生じる物質である。細胞と基質16aとが混合されると、細胞膜を透過した基質16aは、細胞質と接触することにより、細胞質に含まれるエステラーゼで加水分解され、蛍光物質16bを生じる。こうして、細胞質が蛍光物質16bにより標識される。 In step S1, the cells and substrate 16a are mixed, as shown in FIG. Substrate 16a is a substance that produces fluorescent substance 16b when hydrolyzed by esterase contained in the cytoplasm. When the cell and the substrate 16a are mixed, the substrate 16a that has permeated the cell membrane is hydrolyzed by the esterase contained in the cytoplasm by contacting with the cytoplasm to produce a fluorescent substance 16b. Thus, the cytoplasm is labeled with the fluorescent material 16b.

続いて、実施形態3と同様、ステップS2以降の処理が行われる。すなわち、ステップS2において、蛍光物質16bで標識された細胞を含む試料がフローセルに流され、図20に示すように、フローセルを流れる細胞に波長λ1、λ3の光が照射され、それぞれ、蛍光物質16b、13から蛍光が生じさせられる。そして、図20に示すように、蛍光物質16bから生じた蛍光を2つに分割し、一方をフィルタ部材21に通し、他方をフィルタ部材22に通す。これにより、実施形態3と同様、フィルタ部材21を透過した波長帯域B1の蛍光は高強度となり、フィルタ部材22を透過した波長帯域B4の蛍光は低強度となる。なお、実施形態6に基づく装置は、実施形態3と同様に構成される。 Subsequently, as in the third embodiment, the processes after step S2 are performed. That is, in step S2, a sample containing cells labeled with the fluorescent substance 16b was flowed into the flow cell, and as shown in FIG. 20, the cells flowing through the flow cell were irradiated with light having wavelengths λ1 and λ3, respectively. , 13 gives rise to fluorescence. Then, as shown in FIG. 20, the fluorescence generated from the fluorescent substance 16b is divided into two, one is passed through the filter member 21, and the other is passed through the filter member 22. As a result, as in the third embodiment, the fluorescence of the wavelength band B1 transmitted through the filter member 21 becomes high intensity, and the fluorescence of the wavelength band B4 transmitted through the filter member 22 becomes low intensity. The device based on the sixth embodiment is configured in the same manner as the third embodiment.

実施形態6においても、実施形態3と同様、強度の異なる2つの蛍光を生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞質の局在を精度良く判別できる。このように、細胞質の局在を精度良く判別できると、細胞質の範囲を高精度に定義できるようになる。これにより、たとえば、細胞質の範囲を他の解析と組み合わせて、さらに詳細な解析を行うことができるようになる。また、たとえば、細胞質の範囲を、細胞等の研究に役立てることができるようになる。 Also in the sixth embodiment, as in the third embodiment, two fluorescences having different intensities are generated, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, the localization of the cytoplasm can be accurately discriminated based on the high-intensity fluorescence image and the low-intensity fluorescence image. If the localization of the cytoplasm can be determined accurately in this way, the range of the cytoplasm can be defined with high accuracy. This allows, for example, to combine the cytoplasmic range with other analyses for more detailed analysis. Further, for example, the range of cytoplasm can be used for research on cells and the like.

<実施形態6の検証>
次に、発明者が行った実施形態6の検証について説明する。
<Verification of Embodiment 6>
Next, the verification of the sixth embodiment performed by the inventor will be described.

1.準備
細胞として、ヒト心臓微小血管内皮細胞(HMVEC-C)(Lonza CatNo.CC-7030, Lot No.0000296500 (P4))を用意した。細胞質標識試薬として、Cell Explorer Fixable Live Cell Tracking Kit *Green Fluorescence*(コスモバイオ 22621)を用意した。細胞質標識試薬は、図20に示す基質16aに対応する物質を含む。細胞質標識試薬は、疎水性を有している。細胞質標識試薬は、細胞膜を通過し、細胞内エステラーゼで加水分解されることで蛍光物質を生じる。ここで生じる蛍光物質は、図20に示す蛍光物質16bに対応する。核染色色素として、Cellstain Hoechst 33342 solution(DOjinDO H342)を用意した。この他、EGM-2MV Medium(Lonza Cat No.CC-3202)、EGM-2MV SingleQuots Kit(Lonza Cat No. CC-3202)、PBS pH7.4(GIBCO Cat No.10010-023)、BSA(LAMPIRE Cat No. 7500805)、PFA(WAKO Cat No.160-16061)、TritonX100(ナカライテスク CatNo.35501-15)を用意した。
1. 1. Human cardiac microvascular endothelial cells (HMVEC-C) (Lonza Cat No. CC-7030, Lot No. 0000296500 (P4)) were prepared as preparatory cells. Cell Explorer Fixable Live Cell Tracking Kit * Green Fluorescence * (Cosmo Bio 22621) was prepared as a cytoplasmic labeling reagent. The cytoplasmic labeling reagent contains a substance corresponding to the substrate 16a shown in FIG. The cytoplasmic labeling reagent has hydrophobicity. The cytoplasmic labeling reagent passes through the cell membrane and is hydrolyzed by intracellular esterase to produce a fluorescent substance. The fluorescent substance generated here corresponds to the fluorescent substance 16b shown in FIG. Cellstain Hoechst 33342 solution (DOjinDO H342) was prepared as a nuclear stain. In addition, EGM-2MV Medium (Lonza Cat No.CC-3202), EGM-2MV SingleQuots Kit (Lonza Cat No. CC-3202), PBS pH7.4 (GIBCO Cat No.10010-023), BSA (LAMPIRE Cat) No. 7500805), PFA (WAKO Cat No.160-16061), TritonX100 (Nakarai Tesk Cat No.35501-15) were prepared.

2.試薬調製
500mLのEGM-2MV MediumにEGM-2MV SingleQuots Kitを添加し、培養培地を作製した。パラホルムアルデヒドを終濃度8% w/vとなるようにpH12のPBSにて溶解した後に、pH7.4に調整した。PBSに1.5gのBSAを加えて溶解させ50mLにメスアップし、3% BSA/PBSを調製した。PBSに0.5gのBSAを加えて溶解させ50mLにメスアップし、1% BSA/PBSを調製した。TritonX100を終濃度0.1% w/vとなるようにPBSにて調製した。Track kit Greenのバイアルに100μLのDMSOを添加し、1000× Track kit Green stock solutionを作製し、Kit付属のAssay bufferに1/1000量添加することで、Track kit working solutionを調整した。
2. 2. Reagent Preparation EGM-2MV Single Quots Kit was added to 500 mL of EGM-2MV Medium to prepare a culture medium. Paraformaldehyde was dissolved in PBS at pH 12 to a final concentration of 8% w / v, and then adjusted to pH 7.4. 1.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 3% BSA / PBS. 0.5 g of BSA was added to PBS to dissolve it, and the mixture was scalpel-up to 50 mL to prepare 1% BSA / PBS. Triton X100 was prepared with PBS to a final concentration of 0.1% w / v. The Track kit working solution was adjusted by adding 100 μL of DMSO to the Vial of Track kit Green to prepare 1000 × Track kit Green stock solution, and adding 1/1000 amount to the Assay buffer attached to the Kit.

3.手順
HMVEC-Cは、メーカー推奨プロトコルに準じてEGM-2MV培地にて培養した。購入後から継代回数6回以内の細胞を本検証に用いた。培養培地は開封後の使用期限を3週間とした。細胞が70%コンフルエントに培養された後に、3mL程度の培地を残して電動ピペッターで培地を除去し、スクレーパーにて細胞を剥離した。回収した3mLの懸濁液に3μLのTrack kit working solutionを加え、37℃ COインキュベーター内で30分静置した。30分静置後、室温下、1000rpmで3分間遠心分離した。細胞ペレットを5mLのPBSで3回洗浄した。上清を除去し、1% BSA/PBSを50μL添加した。
3. 3. procedure
HMVEC-C was cultured in EGM-2MV medium according to the manufacturer's recommended protocol. Cells within 6 passages after purchase were used for this verification. The culture medium had an expiration date of 3 weeks after opening. After the cells were cultured to 70% confluent, the medium was removed with an electric pipettor leaving about 3 mL of the medium, and the cells were detached with a scraper. 3 μL of Track kit working solution was added to the recovered 3 mL suspension, and the mixture was allowed to stand in a 37 ° C. CO 2 incubator for 30 minutes. After allowing to stand for 30 minutes, the mixture was centrifuged at 1000 rpm for 3 minutes at room temperature. The cell pellet was washed 3 times with 5 mL PBS. The supernatant was removed and 50 μL of 1% BSA / PBS was added.

4.フローサイトメータによる検出
蛍光画像を取得可能なフローサイトメータとして、ImageStreamX Mark II Imaging Flow Cytometer(Merck Millipore)を用いた。このフローサイトメータのフローセルに上記3に沿って調製した試料を流し、フローセルを流れる試料に、波長488nm、405nmのレーザ光を照射した。波長488nm、405nmのレーザ光は、図20に示す波長λ1、λ3のレーザ光に対応する。波長488nm、405nmのレーザ光の出射パワーは、それぞれ、50mW、20mWとした。波長488nmのレーザ光が細胞質を標識する蛍光色素に照射されることにより蛍光が生じた。波長405nmのレーザ光が核染色色素に照射されることにより蛍光が生じた。
4. Detection by flow cytometer ImageStreamX Mark II Imaging Flow Cytometer (Merck Millipore) was used as a flow cytometer capable of acquiring fluorescence images. A sample prepared according to 3 above was flowed through the flow cell of this flow cytometer, and the sample flowing through the flow cell was irradiated with laser light having a wavelength of 488 nm and 405 nm. The laser beams having wavelengths of 488 nm and 405 nm correspond to the laser beams having wavelengths λ1 and λ3 shown in FIG. The emission powers of the laser beams having wavelengths of 488 nm and 405 nm were set to 50 mW and 20 mW, respectively. Fluorescence was generated by irradiating the fluorescent dye that labels the cytoplasm with a laser beam having a wavelength of 488 nm. Fluorescence was generated by irradiating the nuclear dye with a laser beam having a wavelength of 405 nm.

上記フローサイトメータにおいて、波長488nmのレーザ光により生じた蛍光は、透過波長帯域480nm〜560nmのフィルタ部材を介して撮像され、高強度の蛍光画像が取得された。また、波長488nmのレーザ光により生じた蛍光は、透過波長帯域560nm〜595nmのフィルタ部材を介して撮像され、低強度の蛍光画像が取得された。波長405nmのレーザ光により生じた蛍光は、透過波長帯域420nm〜505nmのフィルタ部材を介して撮像され、核に対応する蛍光画像が取得された。また、フローセルを流れる試料に、波長が420nm〜480nmの間に設定されたレーザ光を照射した。このレーザ光が細胞を透過した光は、透過波長帯域420nm〜480nmのフィルタ部材を介して撮像され、明視野画像が取得された。なお、上記フローサイトメータでは、対象となる波長帯域の光が適正に受光部に入射するよう、フィルタ部材等により不要な波長帯域の光が除去されている。 In the flow cytometer, the fluorescence generated by the laser beam having a wavelength of 488 nm was imaged through a filter member having a transmission wavelength band of 480 nm to 560 nm, and a high-intensity fluorescence image was acquired. Further, the fluorescence generated by the laser beam having a wavelength of 488 nm was imaged through a filter member having a transmission wavelength band of 560 nm to 595 nm, and a low-intensity fluorescence image was acquired. The fluorescence generated by the laser beam having a wavelength of 405 nm was imaged through a filter member having a transmission wavelength band of 420 nm to 505 nm, and a fluorescence image corresponding to the nucleus was acquired. Further, the sample flowing through the flow cell was irradiated with a laser beam having a wavelength set between 420 nm and 480 nm. The light transmitted through the cells by the laser light was imaged through a filter member having a transmission wavelength band of 420 nm to 480 nm, and a bright field image was acquired. In the flow cytometer, unnecessary wavelength band light is removed by a filter member or the like so that light in the target wavelength band is properly incident on the light receiving portion.

図21を参照して、上記検出により取得された画像について説明する。 The image acquired by the above detection will be described with reference to FIG.

「明視野」は、細胞の明視野画像を示す。「高強度の蛍光」と「低強度の蛍光」は、それぞれ、細胞質を標識した蛍光色素から生じた高強度の蛍光に基づく画像と、細胞質を標識した蛍光色素から生じた低強度の蛍光に基づく画像である。「核からの蛍光」は、核を染色した核染色用色素から生じた蛍光に基づく画像である。横に並ぶ4つの画像は、1つの細胞から取得された画像である。明視野画像以外の画像は、便宜上、取得されたカラー画像をグレースケール化したものである。明視野画像以外の画像において、白い部分は蛍光の強度が強いことを示す。 "Bright field" refers to a bright field image of a cell. "High intensity fluorescence" and "low intensity fluorescence" are based on an image based on high intensity fluorescence generated from a fluorescent dye labeled with a cytoplasm and a low intensity fluorescence generated from a fluorescent dye labeled with a cytoplasm, respectively. It is an image. "Fluorescence from the nucleus" is an image based on the fluorescence generated from the dye for nuclear staining that stained the nucleus. The four images arranged side by side are images obtained from one cell. For convenience, the images other than the bright-field image are grayscale images of the acquired color image. In images other than the bright field image, the white part indicates that the fluorescence intensity is strong.

最上段に示す細胞および最上段から1つ下に示す細胞の場合、低強度の蛍光に基づく画像は強度が低すぎるため、細胞質の局在は不明瞭である。他方、高強度の蛍光に基づく画像は強度が適正であるため、細胞質の局在を精度よく判別できる。最下段に示す細胞および最下段から1つ上に示す細胞の場合、高強度の蛍光に基づく画像は強度が高すぎるため、細胞質の局在を判別するのは困難である。他方、低強度の蛍光に基づく画像は強度が適正であるため、細胞質の局在を精度よく判別できる。 In the case of the cells shown at the top and the cells one below the top, the cytoplasmic localization is unclear because the low-intensity fluorescence-based images are too low-intensity. On the other hand, since the intensity of the image based on high-intensity fluorescence is appropriate, the localization of the cytoplasm can be accurately discriminated. In the case of the cells shown at the bottom and the cells shown one above the bottom, it is difficult to determine the localization of the cytoplasm because the image based on high intensity fluorescence is too strong. On the other hand, since the intensity of the image based on low-intensity fluorescence is appropriate, the localization of the cytoplasm can be accurately determined.

以上のように、本検証によれば、実施形態6のように強度の異なる2つの蛍光画像に基づけば、細胞質の局在を判別できることが分かる。このように、実施形態6によれば、細胞質を標識する1種類の蛍光色素から生じた蛍光を、異なる波長帯域の蛍光を通すフィルタ部材21、22に通して2つの蛍光画像を取得することにより、1つの細胞に対して一度の測定で細胞質の局在を正しく取得できることが分かる。 As described above, according to this verification, it can be seen that the localization of the cytoplasm can be discriminated based on two fluorescence images having different intensities as in the sixth embodiment. As described above, according to the sixth embodiment, the fluorescence generated from one kind of fluorescent dye that labels the cytoplasm is passed through the filter members 21 and 22 that pass the fluorescence in different wavelength bands to acquire two fluorescence images. It can be seen that the localization of the cytoplasm can be correctly obtained by one measurement for one cell.

<実施形態7>
実施形態7では、細胞に含まれる被検物質に2種類の基質を接触させて2種類の蛍光物質を生じさせ、生じた2種類の蛍光物質に光を照射し、光の照射により2種類の蛍光物質から生じた蛍光に基づいて被検物質の局在状況を判別する。すなわち、実施形態7では、実施形態6のように1つの光を用いるのではなく、互いに異なる波長の光を用いて互いに異なる強度の蛍光を取得する。なお、被検物質に1種類の基質を接触させて2種類の蛍光物質を生じさせてもよい。
<Embodiment 7>
In the seventh embodiment, two kinds of substrates are brought into contact with a test substance contained in a cell to generate two kinds of fluorescent substances, and the two kinds of fluorescent substances generated are irradiated with light, and two kinds of fluorescent substances are irradiated with light. The localization status of the test substance is determined based on the fluorescence generated from the fluorescent substance. That is, in the seventh embodiment, instead of using one light as in the sixth embodiment, different wavelengths of light are used to obtain fluorescence of different intensities. In addition, one kind of substrate may be brought into contact with a test substance to generate two kinds of fluorescent substances.

実施形態7では、実施形態6と比較して、図1に示す細胞情報取得方法のステップのうち、ステップS1、S2における一部の手順のみが異なる。以下、実施形態6とは異なる手順について説明する。 In the seventh embodiment, only a part of the steps of the cell information acquisition method shown in FIG. 1 in steps S1 and S2 is different from that in the sixth embodiment. Hereinafter, a procedure different from that of the sixth embodiment will be described.

ステップS1において、図22に示すように、細胞と基質17a、18aとが混合される。基質17a、18aは、細胞質に含まれるエステラーゼで加水分解されると、それぞれ蛍光物質17b、18bを生じる物質である。蛍光物質17b、18bは、それぞれ、波長λ1、λ2の光が照射されると互いに異なる波長帯域の蛍光を励起するよう構成されている。細胞と基質17a、18aとが混合されると、細胞膜を透過した基質17a、18aは、細胞質と接触することにより、細胞質に含まれるエステラーゼで加水分解され、蛍光物質17b、18bを生じる。こうして、細胞質が蛍光物質17b、18bにより標識される。 In step S1, as shown in FIG. 22, the cells and the substrates 17a and 18a are mixed. Substrate 17a and 18a are substances that produce fluorescent substances 17b and 18b, respectively, when hydrolyzed by esterase contained in the cytoplasm. The fluorescent substances 17b and 18b are configured to excite fluorescence in wavelength bands different from each other when irradiated with light having wavelengths λ1 and λ2, respectively. When the cells and the substrates 17a and 18a are mixed, the substrates 17a and 18a that have permeated the cell membrane are hydrolyzed by the esterase contained in the cytoplasm by contact with the cytoplasm to produce fluorescent substances 17b and 18b. Thus, the cytoplasm is labeled with fluorescent substances 17b, 18b.

ステップS2において、蛍光物質17b、18bで標識された細胞を含む試料がフローセルに流され、図22に示すように、フローセルを流れる細胞に波長λ1、λ2、λ3の光が照射され、それぞれ、蛍光物質17b、18b、13から蛍光が生じさせられる。このとき、波長λ1のレーザ光は高パワーで細胞に照射され、波長λ2のレーザ光は低パワーで細胞に照射される。蛍光物質17bから生じた蛍光は、フィルタ部材21に通されることにより、波長帯域B1の蛍光となる。蛍光物質18bから生じた蛍光は、フィルタ部材22に通されることにより、波長帯域B2の蛍光となる。こうして、フィルタ部材21を通過した波長帯域B1の蛍光は高強度となり、フィルタ部材22を通過した波長帯域B2の蛍光は低強度となる。なお、実施形態7に基づく装置は、実施形態1と同様に構成される。 In step S2, a sample containing cells labeled with fluorescent substances 17b and 18b is flowed into the flow cell, and as shown in FIG. 22, the cells flowing through the flow cell are irradiated with light having wavelengths λ1, λ2, and λ3, and fluorescent. Fluorescence is generated from the substances 17b, 18b, 13. At this time, the laser beam having a wavelength of λ1 irradiates the cells with high power, and the laser beam having a wavelength λ2 irradiates the cells with low power. The fluorescence generated from the fluorescent substance 17b becomes fluorescence in the wavelength band B1 by being passed through the filter member 21. The fluorescence generated from the fluorescent substance 18b becomes fluorescence in the wavelength band B2 by being passed through the filter member 22. In this way, the fluorescence of the wavelength band B1 that has passed through the filter member 21 becomes high intensity, and the fluorescence of the wavelength band B2 that has passed through the filter member 22 becomes low intensity. The device based on the seventh embodiment is configured in the same manner as the first embodiment.

実施形態7においても、実施形態6と同様、強度の異なる2つの蛍光を生じさせ、高強度の蛍光画像と低強度の蛍光画像を取得できる。したがって、実施形態6と同様、高強度の蛍光画像と低強度の蛍光画像に基づいて、細胞質の局在を精度良く判別できる。 Also in the seventh embodiment, as in the sixth embodiment, two fluorescences having different intensities are generated, and a high-intensity fluorescence image and a low-intensity fluorescence image can be obtained. Therefore, as in the sixth embodiment, the localization of the cytoplasm can be accurately discriminated based on the high-intensity fluorescence image and the low-intensity fluorescence image.

11、12 蛍光物質
16a、17a、18a 基質
16b、17b、18b 蛍光物質
21、22、24 フィルタ部材
100 細胞情報取得装置
111 取得部
112 解析部
200 フローセル
300 光照射部
301、302 光源
411、412、414、421、422、425、451、452、481 フィルタ部材
501、502、505 受光部
11,12 Fluorescent substance 16a, 17a, 18a Substrate 16b, 17b, 18b Fluorescent substance 21, 22, 24 Filter member 100 Cell information acquisition device 111 Acquisition unit 112 Analysis unit 200 Flow cell 300 Light irradiation unit 301, 302 Light source 411, 412, 414, 421, 422, 425, 451, 452, 481 Filter members 501, 502, 505 Light receiving part

Claims (28)

細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、
前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、
生じた前記各蛍光に基づいて複数の蛍光情報を取得し、
前記複数の蛍光情報に基づいて、前記被検物質が核に局在しているか細胞質に局在しているかを判別する、細胞情報取得方法。
Multiple fluorescent substances having different fluorescence wavelengths are bound to the test substance contained in the cell,
The cells are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescence having different wavelengths and intensities from the plurality of fluorescent substances.
A plurality of fluorescence information is acquired based on each of the generated fluorescence, and the fluorescence information is acquired .
A cell information acquisition method for determining whether the test substance is localized in the nucleus or the cytoplasm based on the plurality of fluorescence information .
細胞に含まれる被検物質に、基質を接触させて互いに蛍光波長が異なる複数の蛍光物質を生じさせ、
前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、
生じた前記各蛍光に基づいて複数の蛍光情報を取得し、
前記複数の蛍光情報に基づいて、前記被検物質が核に局在しているか細胞質に局在しているかを判別する、細胞情報取得方法。
The substrate is brought into contact with the test substance contained in the cell to generate a plurality of fluorescent substances having different fluorescence wavelengths from each other.
The cells are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescence having different wavelengths and intensities from the plurality of fluorescent substances.
A plurality of fluorescence information is acquired based on each of the generated fluorescence, and the fluorescence information is acquired .
A cell information acquisition method for determining whether the test substance is localized in the nucleus or the cytoplasm based on the plurality of fluorescence information .
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の分布状況を判別する、請求項1または2に記載の細胞情報取得方法。 The cell information acquisition method according to claim 1 or 2, wherein the distribution status of the test substance in the cells is determined based on the plurality of fluorescence information. 前記複数の蛍光物質は、励起用の光の波長が互いに異なっている、請求項1ないしの何れか一項に記載の細胞情報取得方法。 The cell information acquisition method according to any one of claims 1 to 3 , wherein the plurality of fluorescent substances have different wavelengths of light for excitation. 前記複数の蛍光物質は、同一波長の光が照射されることにより生じる蛍光の波長および強度が互いに異なっている、請求項1ないしの何れか一項に記載の細胞情報取得方法。 The cell information acquisition method according to any one of claims 1 to 3 , wherein the plurality of fluorescent substances have different wavelengths and intensities of fluorescence generated by irradiation with light of the same wavelength. 前記複数の蛍光物質から生じた各蛍光を、第1の蛍光と、前記第1の蛍光より強度の弱い第2の蛍光と、に分離する、請求項1ないしの何れか一項に記載の細胞情報取得方法。 The invention according to any one of claims 1 to 5 , wherein each fluorescence generated from the plurality of fluorescent substances is separated into a first fluorescence and a second fluorescence having a weaker intensity than the first fluorescence. Cell information acquisition method. 細胞に含まれる被検物質に蛍光物質を結合させ、
前記細胞に光を照射して1種類の前記蛍光物質から所定波長幅の蛍光を生じさせ、
生じた前記所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を取得し、
取得した前記各蛍光に基づいて複数の蛍光情報を取得し、
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の分布状況を判別する、細胞情報取得方法。
Fluorescent substance is bound to the test substance contained in the cell,
The cells are irradiated with light to generate fluorescence having a predetermined wavelength width from one type of the fluorescent substance.
The generated fluorescence of the predetermined wavelength width is divided by the wavelength band to obtain a plurality of fluorescence having different wavelengths and intensities.
A plurality of fluorescence information is acquired based on each of the acquired fluorescence, and
A cell information acquisition method for determining the distribution status of the test substance in the cells based on the plurality of fluorescence information.
細胞に含まれる被検物質に基質を接触させて蛍光物質を生じさせ、
前記細胞に光を照射して1種類の前記蛍光物質から所定波長幅の蛍光を生じさせ、
生じた前記所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を取得し、
取得した前記各蛍光に基づいて複数の蛍光情報を取得し、
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の分布状況を判別する、細胞情報取得方法。
The substrate is brought into contact with the test substance contained in the cell to generate a fluorescent substance.
The cells are irradiated with light to generate fluorescence having a predetermined wavelength width from one type of the fluorescent substance.
The generated fluorescence of the predetermined wavelength width is divided by the wavelength band to obtain a plurality of fluorescence having different wavelengths and intensities.
A plurality of fluorescence information is acquired based on each of the acquired fluorescence, and
A cell information acquisition method for determining the distribution status of the test substance in the cells based on the plurality of fluorescence information.
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の局在状況を判別する、請求項またはに記載の細胞情報取得方法。 The cell information acquisition method according to claim 7 or 8 , wherein the localization status of the test substance in the cells is determined based on the plurality of fluorescence information. 前記蛍光物質から生じた前記蛍光を、第1の蛍光と、前記第1の蛍光より強度の弱い第2の蛍光と、に分離する、請求項ないしの何れか一項に記載の細胞情報取得方法。 The cell information according to any one of claims 7 to 9 , wherein the fluorescence generated from the fluorescent substance is separated into a first fluorescence and a second fluorescence having a weaker intensity than the first fluorescence. Acquisition method. 第1の光が照射された前記細胞から生じた第1の蛍光波長の第1の蛍光画像を取得し、
前記第1の光より強度の弱い第2の光が照射された前記細胞から生じた第2の蛍光波長の第2の蛍光画像を取得する、請求項1ないし10の何れか一項に記載の細胞情報取得方法。
A first fluorescence image of a first fluorescence wavelength generated from the cell irradiated with the first light was acquired.
The invention according to any one of claims 1 to 10, wherein a second fluorescence image having a second fluorescence wavelength generated from the cell irradiated with a second light having a weaker intensity than the first light is acquired. Cell information acquisition method.
前記細胞を含む試料をフローセルに流し、
前記フローセルを流れる前記細胞に光を照射して、前記蛍光を生じさせる、請求項1ないし11の何れか一項に記載の細胞情報取得方法。
A sample containing the cells was poured into a flow cell and
The cell information acquisition method according to any one of claims 1 to 11 , wherein the cells flowing through the flow cell are irradiated with light to generate the fluorescence.
前記被検物質の前記局在状況の判別は、前記細胞の解析対象部位における前記被検物質の局在量の、前記細胞全体における前記被検物質の量に対する割合の算出を含む、請求項に記載の細胞情報取得方法。 Determination of the localization conditions of the test substance, the localization of the analyte in the analyzed region of the cell, including calculating the percentage of relative amount of the analyte in the whole cells, claim 9 The cell information acquisition method described in. 前記被検物質の前記局在状況の判別は、強度が異なる複数の前記蛍光から得られた前記蛍光情報のうち、前記強度が所定の範囲に含まれる前記蛍光から得られた前記蛍光情報に基づいて行われる、請求項または13に記載の細胞情報取得方法。 The determination of the localization state of the test substance is based on the fluorescence information obtained from the fluorescence whose intensity is within a predetermined range among the fluorescence information obtained from the plurality of fluorescences having different intensities. The cell information acquisition method according to claim 9 or 13 . 前記被検物質の前記局在状況の判別は、強度が異なる複数の前記蛍光から得られた前記蛍光情報のうち、前記細胞の解析対象部位における蛍光強度と、前記解析対象部位以外の前記細胞部分における蛍光強度との差が、所定の閾値より大きい前記蛍光情報に基づいて行われる、請求項13、または14の何れか一項に記載の細胞情報取得方法。 The determination of the localization state of the test substance is performed by determining the fluorescence intensity at the analysis target site of the cell and the cell portion other than the analysis target site among the fluorescence information obtained from the plurality of fluorescences having different intensities. The cell information acquisition method according to any one of claims 9 , 13 , or 14 , which is performed based on the fluorescence information whose difference from the fluorescence intensity in the above is larger than a predetermined threshold value. 前記被検物質は、タンパク質、mRNA、microRNA、細胞質、細胞小器官、または細胞膜である、請求項1ないし15の何れか一項に記載の細胞情報取得方法。 The cell information acquisition method according to any one of claims 1 to 15 , wherein the test substance is a protein, mRNA, microRNA, cytoplasm, organelle, or cell membrane. 試料に含まれる前記細胞のうち前記被検物質が特定の部位に局在する細胞の割合または数を、前記複数の蛍光情報に基づいて算出する、請求項1ないし16の何れか一項に記載の細胞情報取得方法。 The invention according to any one of claims 1 to 16 , wherein the ratio or number of cells in which the test substance is localized in a specific site among the cells contained in the sample is calculated based on the plurality of fluorescence information. Cell information acquisition method. 互いに蛍光波長が異なる複数の蛍光物質が結合した被検物質を含む細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して、前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせる光照射部と、
前記複数の蛍光物質から生じた前記各蛍光を受光する受光部と、
強度が異なる前記蛍光に基づいて複数の蛍光情報を取得する取得部と、
前記複数の蛍光情報に基づいて、前記被検物質が核に局在しているか細胞質に局在しているかを判別する解析部と、を備える、細胞情報取得装置。
A cell containing a test substance to which a plurality of fluorescent substances having different fluorescence wavelengths are bound to each other is irradiated with a first light and a second light having a weaker intensity than the first light, and wavelengths from the plurality of fluorescent substances are obtained. And a light-irradiating section that produces multiple fluorescences of different intensities,
A light receiving unit that receives each of the fluorescence generated from the plurality of fluorescent substances,
An acquisition unit that acquires a plurality of fluorescence information based on the fluorescence having different intensities, and
A cell information acquisition device including an analysis unit for determining whether the test substance is localized in the nucleus or the cytoplasm based on the plurality of fluorescence information .
前記複数の蛍光物質から生じた各蛍光を分離するためのフィルタ部材を備える、請求項18に記載の細胞情報取得装置。 The cell information acquisition device according to claim 18 , further comprising a filter member for separating each fluorescence generated from the plurality of fluorescent substances. 第1の蛍光を受光する第1の受光部と、前記第1の蛍光より強度の弱い第2の蛍光を受光する第2の蛍光を受光する第2の受光部と、を備える、請求項18または19の何れか一項に記載の細胞情報取得装置。 18. The claim 18 includes a first light receiving unit that receives the first fluorescence and a second light receiving unit that receives the second fluorescence that receives the second fluorescence that is weaker than the first fluorescence. Alternatively, the cell information acquisition device according to any one of 19 . 前記取得部は、第1の光が照射された前記細胞から生じた第1の蛍光波長の第1の蛍光画像と、前記第1の光より強度の弱い第2の光が照射された前記細胞から生じた第2の蛍光波長の第2の蛍光画像を取得する、請求項18ないし20の何れか一項に記載の細胞情報取得装置。 The acquisition unit includes a first fluorescence image having a first fluorescence wavelength generated from the cell irradiated with the first light, and the cell irradiated with a second light having a weaker intensity than the first light. The cell information acquisition device according to any one of claims 18 to 20 , which acquires a second fluorescence image having a second fluorescence wavelength generated from the above. 蛍光物質が結合した被検物質を含む細胞に光を照射して1種類の前記蛍光物質から所定波長幅の蛍光を生じさせる光照射部と、
前記1種類の蛍光物質から生じた前記所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を受光する受光部と、
受光した前記複数の蛍光に基づいて、複数の蛍光情報を取得する取得部と、
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の分布状況を判別する解析部と、を備える、細胞情報取得装置。
A light irradiation unit that irradiates cells containing a test substance to which a fluorescent substance is bound with light to generate fluorescence having a predetermined wavelength width from one type of the fluorescent substance.
A light receiving unit that receives a plurality of fluorescence having different wavelengths and intensities by dividing the fluorescence having the predetermined wavelength width generated from the one type of fluorescent substance by a wavelength band.
An acquisition unit that acquires a plurality of fluorescence information based on the plurality of received fluorescence.
A cell information acquisition device including an analysis unit that determines the distribution status of the test substance in the cells based on the plurality of fluorescence information.
基質に接触することにより蛍光物質を生じさせた被検物質を含む細胞に光を照射して1種類の前記蛍光物質から所定波長幅の蛍光を生じさせる光照射部と、
前記1種類の蛍光物質から生じた前記所定波長幅の蛍光を波長帯域により分割して波長および強度の異なる複数の蛍光を受光する受光部と、
受光した前記複数の蛍光に基づいて、複数の蛍光情報を取得する取得部と、
前記複数の蛍光情報に基づいて、前記細胞における前記被検物質の分布状況を判別する解析部と、を備える、細胞情報取得装置。
A light irradiation unit that irradiates cells containing a test substance that has generated a fluorescent substance by contact with a substrate with light to generate fluorescence having a predetermined wavelength width from one type of the fluorescent substance.
A light receiving unit that receives a plurality of fluorescence having different wavelengths and intensities by dividing the fluorescence having the predetermined wavelength width generated from the one type of fluorescent substance by a wavelength band.
An acquisition unit that acquires a plurality of fluorescence information based on the plurality of received fluorescence.
A cell information acquisition device including an analysis unit that determines the distribution status of the test substance in the cells based on the plurality of fluorescence information.
前記蛍光物質から生じた前記蛍光を、第1の蛍光と、強度の弱い第2の蛍光と、に分離するためのフィルタ部材を備える、請求項22または23に記載の細胞情報取得装置。 The cell information acquisition device according to claim 22 or 23 , comprising a filter member for separating the fluorescence generated from the fluorescent substance into a first fluorescence and a second fluorescence having a weak intensity. 細胞に含まれる被検物質に、同一波長の光が照射されることにより生じる蛍光の波長および強度が互いに異なる複数の蛍光物質を結合させ、A plurality of fluorescent substances having different wavelengths and intensities of fluorescence generated by irradiation with light of the same wavelength are bound to a test substance contained in a cell.
前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、The cells are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescence having different wavelengths and intensities from the plurality of fluorescent substances.
生じた前記各蛍光に基づいて複数の蛍光情報を取得する、細胞情報取得方法。A cell information acquisition method for acquiring a plurality of fluorescence information based on each of the generated fluorescence.
細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、Multiple fluorescent substances having different fluorescence wavelengths are bound to the test substance contained in the cell,
前記細胞を含む試料をフローセルに流し、A sample containing the cells was poured into a flow cell and
前記フローセルを流れる前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、The cells flowing through the flow cell are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescences having different wavelengths and intensities from the plurality of fluorescent substances.
生じた前記各蛍光に基づいて複数の蛍光情報を取得する、細胞情報取得方法。A cell information acquisition method for acquiring a plurality of fluorescence information based on each of the generated fluorescence.
細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、Multiple fluorescent substances having different fluorescence wavelengths are bound to the test substance contained in the cell,
前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、The cells are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescence having different wavelengths and intensities from the plurality of fluorescent substances.
生じた前記各蛍光に基づいて複数の蛍光情報を取得し、 A plurality of fluorescence information is acquired based on each of the generated fluorescence, and the fluorescence information is acquired.
強度が異なる複数の前記蛍光から得られた前記蛍光情報のうち、前記強度が所定の範囲に含まれる前記蛍光から得られた前記蛍光情報に基づいて、前記細胞における前記被検物質の局在状況を判別する、細胞情報取得方法。Of the fluorescence information obtained from the plurality of fluorescences having different intensities, the localization status of the test substance in the cells based on the fluorescence information obtained from the fluorescences having the intensity within a predetermined range. Cell information acquisition method to determine.
細胞に含まれる被検物質に、互いに蛍光波長が異なる複数の蛍光物質を結合させ、Multiple fluorescent substances having different fluorescence wavelengths are bound to the test substance contained in the cell,
前記細胞に、第1の光および前記第1の光より強度の弱い第2の光を照射して前記複数の蛍光物質から波長および強度が互いに異なる複数の蛍光を生じさせ、The cells are irradiated with a first light and a second light having a weaker intensity than the first light to generate a plurality of fluorescence having different wavelengths and intensities from the plurality of fluorescent substances.
生じた前記各蛍光に基づいて複数の蛍光情報を取得し、A plurality of fluorescence information is acquired based on each of the generated fluorescence, and the fluorescence information is acquired.
強度が異なる複数の前記蛍光から得られた前記蛍光情報のうち、前記強度が所定の範囲に含まれる前記蛍光から得られた前記蛍光情報に基づいて、前記細胞における前記被検物質の局在状況を判別し、Of the fluorescence information obtained from the plurality of fluorescences having different intensities, the localization status of the test substance in the cells based on the fluorescence information obtained from the fluorescences having the intensity within a predetermined range. To determine
前記被検物質の前記局在状況の判別は、前記細胞の解析対象部位における前記被検物質の局在量の、前記細胞全体における前記被検物質の量に対する割合の算出を含む、細胞情報取得方法。 The determination of the localization status of the test substance includes the calculation of the ratio of the localized amount of the test substance in the analysis target site of the cell to the amount of the test substance in the whole cell, and obtains cell information. Method.
JP2016145835A 2015-10-30 2016-07-25 Cell information acquisition method and cell information acquisition device Active JP6824654B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16195497.9A EP3163287B1 (en) 2015-10-30 2016-10-25 Cell information obtaining method and cell information obtaining apparatus
US15/335,719 US10145794B2 (en) 2015-10-30 2016-10-27 Cell information obtaining method and cell information obtaining apparatus
CN201610958244.XA CN106645713B (en) 2015-10-30 2016-10-28 Cellular informatics acquisition methods and cellular informatics acquisition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015215201 2015-10-30
JP2015215201 2015-10-30

Publications (2)

Publication Number Publication Date
JP2017083426A JP2017083426A (en) 2017-05-18
JP6824654B2 true JP6824654B2 (en) 2021-02-03

Family

ID=58714098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145835A Active JP6824654B2 (en) 2015-10-30 2016-07-25 Cell information acquisition method and cell information acquisition device

Country Status (2)

Country Link
JP (1) JP6824654B2 (en)
CN (1) CN106645713B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029903B2 (en) 2017-08-09 2022-03-04 シスメックス株式会社 Sample processing equipment, sample processing system, and measurement time calculation method
JP6834907B2 (en) * 2017-10-25 2021-02-24 トヨタ自動車株式会社 Imaging method
JP7054619B2 (en) 2017-11-30 2022-04-14 シスメックス株式会社 Image analyzer and image analysis method
JP2020094925A (en) * 2018-12-13 2020-06-18 住友電気工業株式会社 Method for evaluating quality
US20200200671A1 (en) * 2018-12-20 2020-06-25 Sony Corporation Information processing apparatus, information processing method, and program

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0983498B1 (en) * 1997-02-27 2004-05-26 Cellomics, Inc. A system for cell-based screening
JP4387201B2 (en) * 2002-03-13 2009-12-16 キュー3ディーエム エルエルシー System and method for automated color segmentation and minimal significant response for measurement of fractional localized intensity of intracellular compartments
FI112504B (en) * 2002-08-07 2003-12-15 Cyflo Oy Procedure for identifying bacteria
CN100480382C (en) * 2002-08-16 2009-04-22 抗癌公司 Real time measurement of cellular responses
JP4174003B2 (en) * 2003-03-28 2008-10-29 三井造船株式会社 Spectroscopic identification and quantification system
JP4634304B2 (en) * 2003-10-10 2011-02-16 浜松ホトニクス株式会社 Method and system for quantifying fluorescent dye concentration
EP1624071B1 (en) * 2004-08-06 2008-10-22 Fuji Electric Holdings Co., Ltd. Method of detecting viable cells
JP2007225381A (en) * 2006-02-22 2007-09-06 Osaka Prefecture Univ Fluorescence measuring method and fluorescence microscope
US8244021B2 (en) * 2006-12-20 2012-08-14 Ventana Medical Systems, Inc. Quantitative, multispectral image analysis of tissue specimens stained with quantum dots
US8860938B2 (en) * 2008-10-21 2014-10-14 Chemometec A/S Apparatus and methods for analysing fluorescent particles
US20110278471A1 (en) * 2009-01-23 2011-11-17 Mitsui Engineering & Shipbuilding Co., Ltd Fluorescence detecting device and fluorescence detecting method
US8639012B2 (en) * 2009-03-20 2014-01-28 Bio-Rad Laboratories, Inc. Serial-line-scan-encoded multi-color fluorescence microscopy and imaging flow cytometry
JP2012032183A (en) * 2010-07-28 2012-02-16 Olympus Corp Sample observation device and sample observation method
US20150132766A1 (en) * 2012-03-30 2015-05-14 On-Chip Cellomics Consortium Imaging cell sorter
JP2015096846A (en) * 2013-10-10 2015-05-21 シスメックス株式会社 Test substance detection method, fluorescence detection method, and test substance detector and fluorescence detector used for the detection methods

Also Published As

Publication number Publication date
CN106645713A (en) 2017-05-10
CN106645713B (en) 2018-09-18
JP2017083426A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6824654B2 (en) Cell information acquisition method and cell information acquisition device
EP3163287B1 (en) Cell information obtaining method and cell information obtaining apparatus
Wu et al. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells
JP6013328B2 (en) Target particle quantification method
EP3273242B1 (en) Cell analysis device and method to analyze cells
CN108139408A (en) Protein keeps extension microscopy
Raphael et al. Quantitative imaging of protein secretions from single cells in real time
EP2390655A1 (en) Fluorescence detecting device and fluorescence detecting method
Baird et al. Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm
Halstead et al. TRICK: a single-molecule method for imaging the first round of translation in living cells and animals
JP2016185075A (en) Sample analysis method and sample analyzer
WO2009098624A1 (en) Analysis system and method
CN114929888A (en) Methods, kits and devices for preparing samples for multiplex polypeptide sequencing
EP2725356A2 (en) Microscope apparatus for detecting or imaging protein using ifret probe, and method for detecting or imaging protein using same
Ha et al. Fluorescence resonance energy transfer at the single-molecule level
US20120295278A1 (en) Fluorescence detecting method, method for producing fluorescent beads, and fluorescent beads
JP2005207823A (en) Spectrofluorometric analyzing method
JP6948778B2 (en) Cell information acquisition method and cell information acquisition device
WO2013031141A1 (en) Molecule detecting apparatus, molecule detecting method, and cartridge for detecting molecules
JP2003275000A (en) Method of detecting binding between nucleic acid and nucleic acid-binding protein by single-molecule fluorescence analysis
Aurousseau et al. A Step-by-Step Guide to Single-Subunit Counting of Membrane-Bound Proteins in Mammalian Cells
Kierzek et al. Simultaneous recording of multiple cellular signaling events by frequency-and spectrally-tuned multiplexing of fluorescent probes
Driouchi et al. Oblique Line Scan Illumination Enables Expansive, Accurate and Sensitive Single Protein Measurements in Solution and in Living Cells
JPWO2007032266A1 (en) Rapid detection of antigens using fluorescence correlation spectroscopy or fluorescence cross-correlation spectroscopy
Horvath et al. Toll-like receptor interactions imaged by FRET microscopy and GFP fragment reconstitution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6824654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250