JP6805504B2 - Distance measuring device, mobile device and distance measuring method - Google Patents

Distance measuring device, mobile device and distance measuring method Download PDF

Info

Publication number
JP6805504B2
JP6805504B2 JP2016033079A JP2016033079A JP6805504B2 JP 6805504 B2 JP6805504 B2 JP 6805504B2 JP 2016033079 A JP2016033079 A JP 2016033079A JP 2016033079 A JP2016033079 A JP 2016033079A JP 6805504 B2 JP6805504 B2 JP 6805504B2
Authority
JP
Japan
Prior art keywords
light
timing
distance
signal
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016033079A
Other languages
Japanese (ja)
Other versions
JP2017125829A (en
Inventor
二瓶 靖厚
靖厚 二瓶
増田 浩二
浩二 増田
小川 武士
武士 小川
宏昌 田中
宏昌 田中
周 高橋
周 高橋
伊藤 昌弘
昌弘 伊藤
陽一 市川
陽一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US15/403,594 priority Critical patent/US10596964B2/en
Publication of JP2017125829A publication Critical patent/JP2017125829A/en
Application granted granted Critical
Publication of JP6805504B2 publication Critical patent/JP6805504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、距離測定装置、移動体装置及び距離測定方法に関する。 The present invention relates to a distance measuring device, a moving body device, and a distance measuring method.

近年、投光系から投光され物体で反射された光を受光して該物体までの距離を測定する装置の開発が盛んに行われている。 In recent years, a device that receives light projected from a light projecting system and reflected by an object and measures the distance to the object has been actively developed.

例えば、特許文献1には、投光系が複数の光源と該複数の光源をそれぞれ駆動する複数の駆動回路を有し、複数の光源を点灯させて物体までの距離を測定する装置が開示されている。 For example, Patent Document 1 discloses a device in which a floodlight system has a plurality of light sources and a plurality of drive circuits for driving the plurality of light sources, and a plurality of light sources are turned on to measure a distance to an object. ing.

しかしながら、特許文献1に開示されている装置では、物体までの距離の測定精度の向上に関して改善の余地があった。 However, in the apparatus disclosed in Patent Document 1, there is room for improvement in improving the measurement accuracy of the distance to the object.

本発明は、複数の光源及び該複数の光源をそれぞれ駆動する複数の駆動回路を含む投光系と、前記投光系から投光され物体で反射された光を受光する受光系と、前記複数の光源の発光タイミングのずれを補正する補正系と、を備え、前記受光系は複数の受光素子を備え、各受光素子は2つの電荷蓄積部を有し、各受光素子は、前記補正系からのタイミング信号に基づき、受光した光によって発生する電荷の蓄積を行い、前記補正系は、前記発光タイミングと前記タイミング信号とのずれも補正するとともに、前記複数の光源における一の光源を点灯させたときの受光結果に基づいて第1の距離を算出し、前記複数の光源における前記一の光源とは異なる他の光源と前記一の光源とを点灯させたときの受光結果に基づいて第2の距離を算出し、前記第1の距離と前記第2の距離とに基づいて、前記複数の光源の発光タイミングのずれを補正し、前記第1の距離に基づいて前記一の光源の発光タイミングと前記タイミング信号とのずれを補正する、距離測定装置である。 The present invention includes a light projecting system including a plurality of light sources and a plurality of drive circuits for driving the plurality of light sources, a light receiving system that receives light projected from the light source system and reflected by an object, and the plurality of light sources. The light receiving system is provided with a plurality of light receiving elements, each light receiving element has two charge storage portions, and each light receiving element is provided from the correction system. Based on the timing signal of the above, the charge generated by the received light is accumulated, and the correction system also corrects the deviation between the light emission timing and the timing signal and turns on one light source in the plurality of light sources. The first distance is calculated based on the light receiving result at that time, and the second distance is calculated based on the light receiving result when the other light source different from the one light source and the one light source in the plurality of light sources are turned on. The distance is calculated, the deviation of the light emission timing of the plurality of light sources is corrected based on the first distance and the second distance, and the light emission timing of the one light source is corrected based on the first distance. It is a distance measuring device that corrects a deviation from the timing signal .

本発明によれば、物体までの距離の測定精度を向上できる。 According to the present invention, the accuracy of measuring the distance to an object can be improved.

比較例の距離測定装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the distance measuring apparatus of a comparative example. 比較例の距離測定装置の変調信号、照射光パルスLe、反射光パルスLr、タイミング信号A、タイミング信号Bを示すタイミング図である。It is a timing diagram which shows the modulation signal, the irradiation light pulse Le, the reflected light pulse Lr, the timing signal A, and the timing signal B of the distance measuring apparatus of the comparative example. 図3(a)は、変調信号に対する照射光パルスLe1、Le2の遅延が同じ場合を示すタイミング図であり、図3(b)は、変調信号に対する照射光パルスLe1、Le2の遅延が異なる場合を示すタイミング図である。FIG. 3A is a timing diagram showing the case where the delays of the irradiation light pulses Le1 and Le2 with respect to the modulated signal are the same, and FIG. 3B is a timing diagram showing the case where the delays of the irradiation light pulses Le1 and Le2 with respect to the modulated signal are different. It is a timing diagram which shows. エリアセンサの受光素子の電荷蓄積部A、Bでの電荷蓄積量の誤差について説明するための図である。It is a figure for demonstrating the error of the charge accumulation amount in the charge accumulation part A, B of the light receiving element of an area sensor. 一実施形態の距離測定装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the distance measuring apparatus of one Embodiment. 発光タイミングずれ補正処理を説明するためのフローチャートである。It is a flowchart for demonstrating the light emission timing deviation correction processing. 変形例1のタイミング制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the timing control means of the modification 1. FIG. 変形例1の変調信号1、2の生成方法を説明するための図である。It is a figure for demonstrating the generation method of the modulation signal 1 and 2 of the modification 1. FIG. 変形例2のタイミング制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the timing control means of the modification 2. FIG. 変形例2の変調信号1、2の生成方法を説明するための図である。It is a figure for demonstrating the generation method of the modulation signal 1 and 2 of the modification 2. FIG. 変形例3の距離測定装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the distance measuring apparatus of the modification 3. 変調信号X、PD信号1、2を示すタイミング図である。It is a timing diagram which shows the modulation signal X, PD signal 1 and 2. 変形例3の発光タイミングずれ補正処理を説明するためのフローチャートである。It is a flowchart for demonstrating the light emission timing deviation correction processing of the modification 3. 変形例4の距離測定装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the distance measuring apparatus of the modification 4. 変形例4の発光タイミングずれ補正処理を説明するためのフローチャートである。It is a flowchart for demonstrating the light emission timing deviation correction processing of the modification 4. 変形例5のタイミング制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the timing control means of the modification 5. 変形例5の変調信号1、2の生成方法を説明するための図である。It is a figure for demonstrating the generation method of the modulation signal 1, 2 of the modification 5. 変形例6のタイミング制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the timing control means of the modification 6. 変形例6の変調信号1、2の生成方法を説明するための図である。It is a figure for demonstrating the method of generating the modulation signal 1, 2 of the modification 6.

先ず、一実施形態の距離測定装置1の説明に先立って、比較例の距離測定装置1´について説明する。 First, prior to the description of the distance measuring device 1 of one embodiment, the distance measuring device 1'of the comparative example will be described.

《比較例》
距離測定装置1´は、一例として、移動体としての車両の前端部のナンバープレート近傍に取り付けられている。
<< Comparative example >>
As an example, the distance measuring device 1'is attached near the license plate at the front end of the vehicle as a moving body.

図1には、比較例の距離測定装置1´の構成が概略的に示されている。距離測定装置1´は、投光系10と、受光系20と、タイミング制御部31と、距離演算部32と、を備えている。 FIG. 1 schematically shows the configuration of the distance measuring device 1'of the comparative example. The distance measuring device 1'includes a light emitting system 10, a light receiving system 20, a timing control unit 31, and a distance calculation unit 32.

投光系10は、2つの光源1、2と、光源1、2をそれぞれ駆動する2つの駆動回路1、2と、各光源からの光を車両前方に向けて投射する投射光学系(不図示)と、を有する。各光源としては、例えば半導体レーザや発光ダイオードが用いられる。 The projection system 10 includes two light sources 1 and 2, two drive circuits 1 and 2 for driving the light sources 1 and 2, and a projection optical system (not shown) for projecting light from each light source toward the front of the vehicle. ) And. As each light source, for example, a semiconductor laser or a light emitting diode is used.

駆動回路1、2は、タイミング制御部31からの変調信号(パルス信号)が入力されると該変調信号に応じた変調電流をそれぞれ光源1、2に印加する。この結果、光源1、2から変調電流に応じた変調光が射出され投射光学系を介して照射光パルスLeとして投光される。このとき、投光系10の投光範囲(投射光学系の投射範囲)の射程圏内(光源1、2の光出力の和で検出可能な範囲内)に測定対象の物体(測定対象物)があれば、投光された光(照射光パルスLe)が該物体に照射される。 When the modulation signal (pulse signal) from the timing control unit 31 is input, the drive circuits 1 and 2 apply a modulation current corresponding to the modulation signal to the light sources 1 and 2, respectively. As a result, modulated light corresponding to the modulation current is emitted from the light sources 1 and 2 and is projected as an irradiation light pulse Le via the projection optical system. At this time, the object to be measured (measurement target) is within the range of the light projection range (projection range of the projection optical system) of the light projection system 10 (within the range detectable by the sum of the light outputs of the light sources 1 and 2). If there is, the projected light (irradiation light pulse Le) is applied to the object.

受光系20は、複数の画素に個別に対応する2次元配列された複数の受光素子(例えばフォトダイオード、フォトトランジスタ等)を含むエリアセンサ21と、物体からの反射光をエリアセンサ21に導く、集光素子を含む受光光学系(不図示)と、を有する。 The light receiving system 20 guides the area sensor 21 including a plurality of two-dimensionally arranged light receiving elements (for example, photodiodes, phototransistors, etc.) individually corresponding to the plurality of pixels and the reflected light from the object to the area sensor 21. It has a light receiving optical system (not shown) including a light collecting element.

エリアセンサ21の各受光素子は、2つの電荷蓄積部A、Bを有している。各受光素子は、物体に照射され該物体で反射された変調された光(反射光パルスLr)を受光し、タイミング制御部31からのタイミング信号A、Bに従って、受光した光によって発生する電荷の蓄積を行う。 Each light receiving element of the area sensor 21 has two charge storage portions A and B. Each light receiving element receives the modulated light (reflected light pulse Lr) that is applied to the object and reflected by the object, and according to the timing signals A and B from the timing control unit 31, the electric charge generated by the received light is received. Accumulate.

具体的には、各受光素子は、タイミング信号Aが“H”のときは電荷蓄積部Aに、タイミング信号Bが“H”のときは電荷蓄積部Bに蓄積を行う。 Specifically, each light receiving element stores the charge in the charge storage unit A when the timing signal A is “H” and in the charge storage unit B when the timing signal B is “H”.

タイミング制御部31は、変調信号、タイミング信号A、タイミング信号Bを繰り返し出力し、これにより電荷がどんどん蓄積されていく。そして、電荷の蓄積を所定回数繰り返した後、変調信号、タイミング信号A、タイミング信号Bの出力をストップさせ、受光データ出力指示信号をエリアセンサ21に出力する。 The timing control unit 31 repeatedly outputs the modulation signal, the timing signal A, and the timing signal B, whereby charges are accumulated more and more. Then, after repeating the accumulation of electric charges a predetermined number of times, the output of the modulation signal, the timing signal A, and the timing signal B is stopped, and the received light data output instruction signal is output to the area sensor 21.

エリアセンサ21は、各受光素子の電荷蓄積部A、Bに蓄積された電荷量を受光データA、受光データBとして順次出力する。 The area sensor 21 sequentially outputs the amount of charge accumulated in the charge storage units A and B of each light receiving element as light receiving data A and light receiving data B.

距離演算部32は、タイミング制御部31からの距離演算指示信号を受け、エリアセンサ21から送られてくる受光データA、Bを用いて各画素における距離データを算出し、距離画像を生成する。生成された距離画像は、車両のECU(エレクトロニック コントロール ユニット)に送られ、オートブレーキ等の制動制御やオートステアリング等の操舵制御に用いられる。なお、「距離画像」とは、複数の画素それぞれのデータが測定対象物までの距離を表している画像を意味する。 The distance calculation unit 32 receives the distance calculation instruction signal from the timing control unit 31, calculates the distance data in each pixel using the light receiving data A and B sent from the area sensor 21, and generates a distance image. The generated distance image is sent to the ECU (electronic control unit) of the vehicle and used for braking control such as auto braking and steering control such as auto steering. The "distance image" means an image in which the data of each of the plurality of pixels represents the distance to the measurement object.

タイミング制御部31は、変調信号、タイミング信号A、Bを所定回数繰り返し生成し、駆動回路1、2、エリアセンサ21に出力し、その後、受光データ出力指示信号をエリアセンサ21に出力し、距離演算指示信号を距離演算部32に出力する。 The timing control unit 31 repeatedly generates modulation signals, timing signals A and B a predetermined number of times, outputs them to drive circuits 1, 2 and an area sensor 21, and then outputs a light receiving data output instruction signal to the area sensor 21 to obtain a distance. The calculation instruction signal is output to the distance calculation unit 32.

図2には、変調信号、タイミング信号A、B、照射光パルスLe、反射光パルスLrのタイムチャートが示されている。 FIG. 2 shows a time chart of the modulation signal, the timing signals A and B, the irradiation light pulse Le, and the reflected light pulse Lr.

図2(a)に示される変調信号は、パルス幅Tw(パルス時間幅)のパルス信号である。 The modulated signal shown in FIG. 2A is a pulse signal having a pulse width Tw (pulse time width).

図2(b)に示される照射光パルスLeは、投光系10から投光される光であり、変調信号の入力タイミングから各駆動回路による遅延時間tdを伴って出力される。 The irradiation light pulse Le shown in FIG. 2B is light projected from the projection system 10, and is output from the input timing of the modulation signal with a delay time td by each drive circuit.

図2(c)に示される反射光パルスLrは、照射光パルスLeが物体で反射されエリアセンサ21で受光される光である。この光の波形は、照射光パルスLeの波形と略同一であり、照射光パルスLeの立ち上がりタイミング(光源の発光タイミング)から時間τ遅れてエリアセンサ21に入射される。 The reflected light pulse Lr shown in FIG. 2C is light in which the irradiation light pulse Le is reflected by an object and received by the area sensor 21. The waveform of this light is substantially the same as the waveform of the irradiation light pulse Le, and is incident on the area sensor 21 with a time τ delay from the rising timing of the irradiation light pulse Le (light emission timing of the light source).

この時間τは、投光系10から照射光パルスLeが投光されてから物体で反射されエリアセンサ21に入射するまでの時間であり、物体までの距離によって変わる。つまり、時間τが分かれば、光の速度Cを用いて、次の(1)式によって、物体までの距離Dを求めることができる。
D=τ×C/2・・・(1)
This time τ is the time from when the irradiation light pulse Le is projected from the light projecting system 10 to when it is reflected by the object and incident on the area sensor 21, and varies depending on the distance to the object. That is, if the time τ is known, the distance D to the object can be obtained by the following equation (1) using the speed of light C.
D = τ × C / 2 ... (1)

図2(d)、図2(e)には、タイミング制御部31からエリアセンサ21に出力される、電荷蓄積タイミングを示す信号であるタイミング信号A、Bがそれぞれ示されている。 2 (d) and 2 (e) show timing signals A and B, which are signals indicating the charge accumulation timing, output from the timing control unit 31 to the area sensor 21, respectively.

タイミング信号Aは、照射光パルスLeと同じタイミングで“H”とされ、パルス幅Tw後に“L”とされる。そして、タイミング信号Bは、タイミング信号Aが“L”になると同時に“H”とされ、パルス幅Tw後に“L”とされる。タイミング信号Aが“H”の期間には電荷蓄積部Aへ電荷の蓄積が行われるので、図2(d)のAの部分に相当する電荷が蓄積される。タイミング信号Bが“H”の期間には電荷蓄積部Bへ電荷の蓄積が行われるので、図2(e)のBの部分に相当する電荷が蓄積される。ここで、時間τが0≦τ≦Twの範囲であれば、次の(2)式が成立する。
τ/Tw=B/(A+B)・・・(2)
The timing signal A is set to “H” at the same timing as the irradiation light pulse Le, and is set to “L” after the pulse width Tw. Then, the timing signal B is set to "H" at the same time when the timing signal A becomes "L", and is set to "L" after the pulse width Tw. Since the charge is accumulated in the charge storage unit A during the period when the timing signal A is “H”, the charge corresponding to the portion A in FIG. 2D is accumulated. Since the charge is accumulated in the charge storage unit B during the period when the timing signal B is “H”, the charge corresponding to the portion B in FIG. 2E is accumulated. Here, if the time τ is in the range of 0 ≦ τ ≦ Tw, the following equation (2) holds.
τ / Tw = B / (A + B) ... (2)

そこで、距離Dを、上記(1)式、(2)式を用いて、次式によって求めることができる。
D=B/(A+B)×Tw×C/2
Therefore, the distance D can be obtained by the following equation using the above equations (1) and (2).
D = B / (A + B) x Tw x C / 2

図3には、光源1、2をそれぞれ光源とするパルス幅が同一(Tw)の照射光パルスLe1、Le2の少なくとも一部が重なった照射光パルスLeの波形が示されている。 FIG. 3 shows a waveform of an irradiation light pulse Le in which at least a part of the irradiation light pulses Le1 and Le2 having the same pulse width (Tw) with the light sources 1 and 2 as light sources overlaps.

図3(a)は、投光系10における駆動回路1、2において変調信号に対する遅延が同じ場合を示しており、光源1のみによる照射光パルスLe1と光源2のみによる照射光パルスLe2の立ち上がり、立ち下りのタイミングは同じであり、照射光パルスLe1、Le2の略全部が重なった照射光パルスLeは、強度(パルス振幅)が照射光パルスLe1、Le2の強度を加算した大きさであり、パルス幅がTwである。 FIG. 3A shows a case where the delays for the modulated signals are the same in the drive circuits 1 and 2 in the light projecting system 10, and the rise of the irradiation light pulse Le1 by the light source 1 only and the irradiation light pulse Le2 by the light source 2 only. The falling edge timing is the same, and the irradiation light pulse Le in which substantially all of the irradiation light pulses Le1 and Le2 overlap is the magnitude (pulse amplitude) obtained by adding the intensities of the irradiation light pulses Le1 and Le2. The width is Tw.

図3(b)は、投光系10における駆動回路1、2をそれぞれ構成する回路素子や配線の性能ばらつきにより、駆動回路間で変調信号に対する遅延が異なる場合を示している。ここでは駆動回路1の遅延よりも駆動回路2の遅延の方が小さく、照射光パルスLe2が照射光パルスLe1よりもteだけ早く立ち上がり、teだけ早く立ち下がる様子が示されている。このように立ち上り、立ち下がりのタイミングがずれた照射光パルスLe1、Le2が重なってできる照射光パルスLeの波形は、図3(b)に示されるように、パルス幅Tw+teの波形となってしまい、測定対象物で反射されエリアセンサ21に入射される光も同じパルス幅Tw+teの波形となってしまう。 FIG. 3B shows a case where the delay with respect to the modulated signal differs between the drive circuits due to the performance variation of the circuit elements and wirings constituting the drive circuits 1 and 2 in the floodlight system 10. Here, the delay of the drive circuit 2 is smaller than the delay of the drive circuit 1, and it is shown that the irradiation light pulse Le2 rises te earlier than the irradiation light pulse Le1 and falls te earlier. As shown in FIG. 3B, the waveform of the irradiation light pulse Le formed by overlapping the irradiation light pulses Le1 and Le2 whose rising and falling timings are deviated becomes a waveform having a pulse width Tw + te. The light reflected by the object to be measured and incident on the area sensor 21 also has the same pulse width Tw + te waveform.

図4には、上記パルス幅Tw+teの波形がエリアセンサ21に入射されたときの電荷蓄積部A、Bにおける電荷蓄積の様子が示されている。 FIG. 4 shows the state of charge accumulation in the charge storage units A and B when the waveform of the pulse width Tw + te is incident on the area sensor 21.

図4に示されるように、電荷蓄積部Aの電荷蓄積量はA+αとなり、図2の電荷蓄積量と比較してαだけ増えてしまう。一方、電荷蓄積部Bの電荷蓄積量はB−αとなり、図2の電荷蓄積量と比較してαだけ少なくなってしまう。 As shown in FIG. 4, the charge accumulation amount of the charge storage unit A is A + α, which is increased by α as compared with the charge accumulation amount of FIG. On the other hand, the charge accumulation amount of the charge storage unit B becomes B−α, which is smaller by α than the charge accumulation amount of FIG.

このように、比較例では、電荷蓄積部Aと電荷蓄積部Bの電荷蓄積量が変わってしまうので距離測定に誤差が生じてしまう。 As described above, in the comparative example, the charge accumulation amount of the charge storage unit A and the charge storage unit B changes, so that an error occurs in the distance measurement.

そこで、発明者らは、このような誤差を低減するために、本実施形態の距離測定装置1を開発した。 Therefore, the inventors have developed the distance measuring device 1 of the present embodiment in order to reduce such an error.

《実施形態》
以下に、本実施形態の距離測定装置1について説明する。図5には、本実施形態の距離測定装置1の構成が概略的に示されている。
<< Embodiment >>
The distance measuring device 1 of the present embodiment will be described below. FIG. 5 schematically shows the configuration of the distance measuring device 1 of the present embodiment.

距離測定装置1は、一例として、移動体としての車両の前端部のナンバープレート近傍に取り付けられている。なお、距離測定装置1が搭載される移動体としては、車両の他に、航空機、船舶、ロボット等が挙げられる。 As an example, the distance measuring device 1 is attached near the license plate at the front end of the vehicle as a moving body. In addition to vehicles, examples of the moving body on which the distance measuring device 1 is mounted include aircraft, ships, robots, and the like.

距離測定装置1は、投光系10と、受光系20と、タイミング制御手段41(調整手段)及び距離演算部42(演算手段)を含む制御装置40と、を備えている。 The distance measuring device 1 includes a light emitting system 10, a light receiving system 20, and a control device 40 including a timing control means 41 (adjustment means) and a distance calculation unit 42 (calculation means).

投光系10は、2つの光源1、2と、光源1、2をそれぞれ駆動する2つの駆動回路1、2と、各光源からの光を車両前方に向けて投射する投射光学系(不図示)と、を有する。各光源としては、例えば半導体レーザ(端面発光レーザ(LD)や面発光レーザ(VCSEL))、発光ダイオード等の発光素子が好適であるが、他の発光素子を用いても良い。 The projection system 10 includes two light sources 1 and 2, two drive circuits 1 and 2 for driving the light sources 1 and 2, and a projection optical system (not shown) for projecting light from each light source toward the front of the vehicle. ) And. As each light source, for example, a light emitting element such as a semiconductor laser (end face emitting laser (LD) or surface emitting laser (VCSEL)) or a light emitting diode is suitable, but other light emitting elements may be used.

駆動回路1は、タイミング制御手段41からの駆動回路ON信号1が“H”レベルのときに変調信号1に応じた変調電流1を光源1に印加し、駆動回路ON信号1が“L”レベルのときは常に駆動電流をOFFとする。 When the drive circuit ON signal 1 from the timing control means 41 is at the "H" level, the drive circuit 1 applies a modulation current 1 corresponding to the modulation signal 1 to the light source 1, and the drive circuit ON signal 1 is at the "L" level. When, the drive current is always turned off.

駆動回路2は、タイミング制御手段41からの駆動回路ON信号2が“H”レベルのときに変調信号2に応じた変調電流2を光源2に印加し、駆動回路ON信号2が“L”レベルのときは常に駆動電流をOFFとする。 When the drive circuit ON signal 2 from the timing control means 41 is at the “H” level, the drive circuit 2 applies a modulation current 2 corresponding to the modulation signal 2 to the light source 2, and the drive circuit ON signal 2 is at the “L” level. When, the drive current is always turned off.

光源1は変調電流1に応じた変調光を射出し、該変調光は投射光学系によって照射光パルスLe1として投光される。 The light source 1 emits modulated light corresponding to the modulated current 1, and the modulated light is projected as an irradiation light pulse Le1 by the projection optical system.

光源2は変調電流2に応じた変調光を射出し、該変調光は投射光学系によって照射光パルスLe2として投光される。 The light source 2 emits modulated light corresponding to the modulated current 2, and the modulated light is projected as an irradiation light pulse Le2 by the projection optical system.

すなわち、投光系10から投光される照射光パルスLeは、照射光パルスLe1と照射光パルスLe2が重なった光である。 That is, the irradiation light pulse Le projected from the light projection system 10 is light in which the irradiation light pulse Le1 and the irradiation light pulse Le2 overlap.

この際、投光系10の投光範囲(投射光学系の投射範囲)の射程圏内(光源1、2の光出力の和で検出可能な範囲内)に測定対象の物体(測定対象物)があれば、投光された光(照射光パルスLe)が該物体に照射される。 At this time, the object to be measured (measurement target) is within the range of the light projection range (projection range of the projection optical system) of the light projection system 10 (within the range detectable by the sum of the light outputs of the light sources 1 and 2). If there is, the projected light (irradiation light pulse Le) is applied to the object.

投射光学系は、例えば光偏向器を含む走査型及び例えば拡散板を含む非走査型のいずれであっても良いが、車両前方のセンシング(物体検出)に必要な水平方向及び垂直方向の投射範囲を確保できるものが好ましい。 The projection optical system may be, for example, a scanning type including an optical deflector or a non-scanning type including, for example, a diffuser, but the horizontal and vertical projection ranges required for sensing (object detection) in front of the vehicle. Those that can secure the above are preferable.

走査型の投射光学系は、コリメートした光を投射するので、測定対象物上での照射パワー密度は比較的大きくなり、光学的SN比を大きくすることができる。一方、非走査型の投射光学系は、広がりのある光を投射するので、一度の投射で測定対象物の多点の距離を同時に測定することができ、高解像度の空間分布を高速に得ることができる。 Since the scanning type projection optical system projects collimated light, the irradiation power density on the object to be measured is relatively large, and the optical signal-to-noise ratio can be increased. On the other hand, since the non-scanning projection optical system projects a wide range of light, it is possible to measure the distances of multiple points of the measurement object at the same time with one projection, and it is possible to obtain a high-resolution spatial distribution at high speed. Can be done.

受光系20は、複数の画素に個別に対応する2次元配列された複数の受光素子(例えばフォトダイオード、フォトトランジスタ等)を含むエリアセンサ21と、物体からの反射光をエリアセンサ21に導く、集光素子を含む受光光学系(不図示)と、を有する。 The light receiving system 20 guides the area sensor 21 including a plurality of two-dimensionally arranged light receiving elements (for example, photodiodes, phototransistors, etc.) individually corresponding to the plurality of pixels and the reflected light from the object to the area sensor 21. It has a light receiving optical system (not shown) including a light collecting element.

エリアセンサ21の各受光素子は、2つの電荷蓄積部A、Bを有している。各受光素子は、物体に照射され該物体で反射された変調された光(反射光パルスLr)を受光し、タイミング制御手段41からのタイミング信号A、Bに従って、受光した光によって発生する電荷の蓄積を行う。 Each light receiving element of the area sensor 21 has two charge storage portions A and B. Each light receiving element receives the modulated light (reflected light pulse Lr) that is applied to the object and reflected by the object, and according to the timing signals A and B from the timing control means 41, the electric charge generated by the received light is received. Accumulate.

具体的には、各受光素子は、タイミング信号Aが“H”のときは電荷蓄積部Aに電荷の蓄積を行い、タイミング信号Bが“H”のときは電荷蓄積部Bに電荷の積を行う。 Specifically, each light receiving element stores charges in the charge storage unit A when the timing signal A is “H”, and charges the charge storage unit B when the timing signal B is “H”. Do.

タイミング制御手段41は、変調信号1、2、タイミング信号A、Bを繰り返し出力し、これにより電荷がどんどん蓄積されていく。そして、電荷の蓄積を所定回数繰り返した後、変調信号1、2、タイミング信号A、Bの出力をストップさせ、受光データ出力指示信号をエリアセンサ21に出力する。 The timing control means 41 repeatedly outputs the modulation signals 1 and 2, and the timing signals A and B, whereby the electric charge is accumulated steadily. Then, after repeating the accumulation of electric charges a predetermined number of times, the output of the modulation signals 1 and 2, the timing signals A and B is stopped, and the received light data output instruction signal is output to the area sensor 21.

エリアセンサ21は、各受光素子の電荷蓄積部A、Bに蓄積された電荷量を受光データA、Bとして順次出力する。 The area sensor 21 sequentially outputs the amount of charge accumulated in the charge storage units A and B of each light receiving element as light receiving data A and B.

距離演算部42は、タイミング制御手段41からの距離演算指示信号を受け、エリアセンサ21から送られてくる受光データA、Bを用いて各画素における距離データを算出し、距離画像を生成する。受光データA、Bから距離データを算出する方法は、前述した通りである。 The distance calculation unit 42 receives the distance calculation instruction signal from the timing control means 41, calculates the distance data in each pixel using the light receiving data A and B sent from the area sensor 21, and generates a distance image. The method of calculating the distance data from the received light data A and B is as described above.

タイミング制御手段41は、遅延素子1、2、調整制御部41a、信号生成部41bを含んで構成されている。 The timing control means 41 includes delay elements 1 and 2, an adjustment control unit 41a, and a signal generation unit 41b.

遅延素子1は、調整制御部41aからの遅延調整信号1のレベルに従って、信号生成部で生成された変調信号Xを遅延させて変調信号1として出力する。 The delay element 1 delays the modulation signal X generated by the signal generation unit according to the level of the delay adjustment signal 1 from the adjustment control unit 41a, and outputs the modulation signal X as the modulation signal 1.

遅延素子2は、調整制御部41aからの遅延調整信号2のレベルに従って、信号生成部で生成された変調信号Xを遅延させて変調信号2として出力する。 The delay element 2 delays the modulation signal X generated by the signal generation unit according to the level of the delay adjustment signal 2 from the adjustment control unit 41a, and outputs the modulation signal X as the modulation signal 2.

以上のように遅延調整信号1、2により、光源1、2の点灯タイミング(照射光パルスLe1、Le2の立ち上りタイミング)を変えることができる。 As described above, the lighting timings of the light sources 1 and 2 (the rising timings of the irradiation light pulses Le1 and Le2) can be changed by the delay adjustment signals 1 and 2.

信号生成部41bは、パルス状又は正弦波の変調信号Xを生成し、遅延素子1、2に所定回数繰り返し出力する。また、信号生成部41bは、変調信号Xと同じ波形のタイミング信号A、Bを、後述する調整制御部41aからの遅延情報を基に生成し、エリアセンサ21に所定回数繰り返し出力する。 The signal generation unit 41b generates a pulsed or sine wave modulated signal X, and repeatedly outputs it to the delay elements 1 and 2 a predetermined number of times. Further, the signal generation unit 41b generates timing signals A and B having the same waveform as the modulation signal X based on the delay information from the adjustment control unit 41a described later, and repeatedly outputs the timing signals A and B to the area sensor 21 a predetermined number of times.

ここで、タイミング信号Aの出力タイミングを、図2に示されるように、照射光パルスLeの立ち上がりタイミング(光源1の発光タイミング)と合わせる必要がある。上記遅延情報は変調信号Xの出力タイミングから照射光パルスLeが立ち上がるまでの遅延時間であり、これを基にタイミング信号Aの出力タイミングを光源1の発光タイミングと合わせることができる。このようにしてタイミング信号Aを照射光パルスLeと同じタイミングで“H”とし、パルス幅Tw後に“L”とする。そして、タイミング信号Bは、タイミング信号Aが“L”になると同時に“H”にし、パルス幅Tw後に“L”とする。 Here, it is necessary to match the output timing of the timing signal A with the rising timing of the irradiation light pulse Le (light emission timing of the light source 1) as shown in FIG. The delay information is the delay time from the output timing of the modulation signal X to the rise of the irradiation light pulse Le, and based on this, the output timing of the timing signal A can be matched with the light emission timing of the light source 1. In this way, the timing signal A is set to “H” at the same timing as the irradiation light pulse Le, and is set to “L” after the pulse width Tw. Then, the timing signal B is set to "H" at the same time as the timing signal A becomes "L", and is set to "L" after the pulse width Tw.

さらに、信号生成部41bは、変調信号X、タイミング信号A、Bを所定回数繰り返し生成、出力した後、受光データ出力指示信号をエリアセンサ21に出力し、距離演算指示信号を距離演算部42に出力する。 Further, the signal generation unit 41b repeatedly generates and outputs the modulation signal X and the timing signals A and B a predetermined number of times, then outputs the received light data output instruction signal to the area sensor 21 and outputs the distance calculation instruction signal to the distance calculation unit 42. Output.

調整制御部41aは、遅延素子1、2の遅延量を制御する遅延調整信号1、2を、距離演算部42からの距離データを基に生成する。また、調整制御部41aは、投光系10の駆動回路1、2のオンオフを制御する駆動回路ON信号1、駆動回路ON信号2を生成する。そして、調整制御部41aは、これらの信号を制御して光源1、2の発光タイミングのずれを補正する。 The adjustment control unit 41a generates delay adjustment signals 1 and 2 for controlling the delay amount of the delay elements 1 and 2 based on the distance data from the distance calculation unit 42. Further, the adjustment control unit 41a generates a drive circuit ON signal 1 and a drive circuit ON signal 2 for controlling the on / off of the drive circuits 1 and 2 of the projection system 10. Then, the adjustment control unit 41a controls these signals to correct the deviation of the light emission timings of the light sources 1 and 2.

以下に、本実施形態の距離測定装置1における光源1と光源2の発光タイミングのずれを補正する方法(発光タイミングずれ補正処理)について、図6を参照して説明する。図6のフローチャートは、制御装置40によって実行される処理アルゴリズムに基づいている。ここでは、発光タイミングずれ補正処理は、駆動回路1、2を構成する回路素子や配線の製造時や経時の性能ばらつきを考慮して定期的に行われるが、不定期(例えば装置起動時)に行っても良い。 Hereinafter, a method of correcting the deviation of the light emission timing between the light source 1 and the light source 2 (light emission timing deviation correction processing) in the distance measuring device 1 of the present embodiment will be described with reference to FIG. The flowchart of FIG. 6 is based on a processing algorithm executed by the control device 40. Here, the light emission timing deviation correction processing is performed periodically in consideration of performance variations over time and during manufacturing of the circuit elements and wirings constituting the drive circuits 1 and 2, but irregularly (for example, when the device is started). You may go.

ここで、発光タイミングずれ補正処理を実行するにあたって、所定の反射率を有する基準反射体を測定対象物として、投光系10の投光範囲における参照基準となる基準距離Drefの位置に配置する。「基準距離Dref」は、光源1のみを点灯して基準反射体を検出可能な距離である。基準距離Drefは、光源1の光出力(発光光量)と基準反射体の反射率によって概ね決まる。 Here, in executing the light emission timing deviation correction process, a reference reflector having a predetermined reflectance is set as a measurement target at a position of a reference distance Dref which is a reference reference in the light projection range of the projection system 10. The "reference distance Dref" is a distance at which only the light source 1 is turned on and the reference reflector can be detected. The reference distance Dref is generally determined by the light output (emission light amount) of the light source 1 and the reflectance of the reference reflector.

なお、光は距離の2乗に反比例して減衰するので、距離が離れるほど光が弱くなる。遠くの距離でも距離測定できるように光源1と光源2の2つの光源を使って遠くの場所での照射光量を確保できるが、測定対象物が近くにあれば光源1だけでも照射光量が確保でき距離測定が可能となる Since the light is attenuated in inverse proportion to the square of the distance, the light becomes weaker as the distance increases. It is possible to secure the amount of irradiation light at a distant place by using two light sources, light source 1 and light source 2, so that the distance can be measured even at a long distance, but if the object to be measured is near, the amount of irradiation light can be secured only by the light source 1. Distance measurement is possible

最初のステップS1では、光源1のみを点灯させて距離測定を行う。 In the first step S1, only the light source 1 is turned on to measure the distance.

具体的には、調整制御部41aが駆動回路ON信号1を“H”レベルに、駆動回路ON信号2を“L”レベルに設定する。 Specifically, the adjustment control unit 41a sets the drive circuit ON signal 1 to the “H” level and the drive circuit ON signal 2 to the “L” level.

次いで、調整制御部41aが遅延調整信号1を所定の値に設定し、遅延調整信号1の値及び駆動回路1の遅延量の代表値を考慮して、遅延情報を生成し、信号生成部41bに出力する。 Next, the adjustment control unit 41a sets the delay adjustment signal 1 to a predetermined value, considers the value of the delay adjustment signal 1 and the representative value of the delay amount of the drive circuit 1, generates delay information, and generates signal generation unit 41b. Output to.

信号生成部41bでは、変調信号Xを生成するとともに、該変調信号X及び上記遅延情報に基づいてタイミング信号A、Bを生成する。このとき、駆動回路ON信号1のみが“H”レベルなので、変調信号Xから遅延調整信号1に従った遅延を伴って出力される変調信号1に従って光源1のみが発光する。 The signal generation unit 41b generates the modulation signal X, and also generates the timing signals A and B based on the modulation signal X and the delay information. At this time, since only the drive circuit ON signal 1 is at the “H” level, only the light source 1 emits light according to the modulation signal 1 output from the modulation signal X with a delay according to the delay adjustment signal 1.

この結果、光源1のみによる照射光パルスLe1が基準反射体に照射され、該基準反射体からの反射光パルスLrがエリアセンサ21で受光され、タイミング信号A、Bに従って電荷蓄積部A、Bにそれぞれ電荷が蓄積される。 As a result, the irradiation light pulse Le1 from only the light source 1 is applied to the reference reflector, the reflected light pulse Lr from the reference reflector is received by the area sensor 21, and the charge storage units A and B are subjected to the timing signals A and B. Charges are accumulated in each.

電荷蓄積部A、Bの電荷蓄積データを受光データA、Bとして距離演算部32に出力し、距離演算を行い、測定距離1を算出する。 The charge storage data of the charge storage units A and B are output to the distance calculation unit 32 as the light reception data A and B, the distance calculation is performed, and the measurement distance 1 is calculated.

ここで、駆動回路1の遅延量は、回路素子や配線の性能ばらつきにより代表値と異なっている場合がある。この場合、光源1の発光タイミングと、該代表値に基づくタイミング信号Aの出力タイミングとにずれが生じ、測定距離1が基準距離Drefと一致しなくなる。逆に言うと、測定距離1と基準距離Drefが一致していない場合には、光源1の発光タイミング(照射光パルスLe1の立ち上りタイミング)とタイミング信号Aの出力タイミングとにずれが生じていることになる。 Here, the delay amount of the drive circuit 1 may differ from the representative value due to variations in the performance of the circuit elements and wiring. In this case, the light emission timing of the light source 1 and the output timing of the timing signal A based on the representative value are deviated, and the measurement distance 1 does not match the reference distance Dref. Conversely, when the measurement distance 1 and the reference distance Drf do not match, there is a discrepancy between the light emission timing of the light source 1 (rising timing of the irradiation light pulse Le1) and the output timing of the timing signal A. become.

そこで、次のステップS2では、測定距離と基準距離Drefが一致しているか否かを判断する。ここでの判断が否定されるとステップS3に移行し、肯定されるとステップS4に移行する。 Therefore, in the next step S2, it is determined whether or not the measurement distance and the reference distance Dref match. If the judgment here is denied, the process proceeds to step S3, and if affirmed, the process proceeds to step S4.

ステップS3では、光源1の発光タイミングを調整する。具体的には、測定距離と基準距離Drefの差に基づいて遅延調整信号1を生成し遅延素子1に出力する。そして、遅延素子1で変調信号Xを遅延調整信号1に従って遅延させた変調信号1を駆動回路1に出力する。駆動回路1から光源1に変調信号1に応じた変調電流1が印加され、光源1から変調電流1に応じた変調光である照射光パルスLe1が射出される。 In step S3, the light emission timing of the light source 1 is adjusted. Specifically, the delay adjustment signal 1 is generated based on the difference between the measurement distance and the reference distance Dref, and is output to the delay element 1. Then, the delay element 1 outputs the modulation signal 1 in which the modulation signal X is delayed according to the delay adjustment signal 1 to the drive circuit 1. A modulation current 1 corresponding to the modulation signal 1 is applied from the drive circuit 1 to the light source 1, and an irradiation light pulse Le1 which is a modulation light corresponding to the modulation current 1 is emitted from the light source 1.

ステップS3が実行されると、ステップS1に戻る。そして、ステップS1で光源1のみを点灯させて距離測定を再度行い、ステップS2で測定距離1が基準距離Drefと一致しているかを確認する。 When step S3 is executed, the process returns to step S1. Then, in step S1, only the light source 1 is turned on and the distance measurement is performed again, and in step S2, it is confirmed whether the measurement distance 1 matches the reference distance Dref.

ステップS4では、光源1、2を点灯させて距離測定を行う。 In step S4, the light sources 1 and 2 are turned on to measure the distance.

具体的には、調整制御部41aが、駆動信号ON信号1に加えて駆動回路ON信号2も“H”レベルに設定する。ここでは、遅延調整信号2の値を光源1のみを点灯させて距離測定を行ったときに(ステップS1で)用いた遅延調整信号1の値とする。 Specifically, the adjustment control unit 41a sets the drive circuit ON signal 2 to the “H” level in addition to the drive signal ON signal 1. Here, the value of the delay adjustment signal 2 is set to the value of the delay adjustment signal 1 used (in step S1) when only the light source 1 is turned on and the distance is measured.

この後、信号生成部41bから変調信号X、タイミング信号A、Bを出力し、ステップS1と同様に距離演算を行い、測定距離2を算出する。 After that, the modulation signals X and the timing signals A and B are output from the signal generation unit 41b, the distance calculation is performed in the same manner as in step S1, and the measurement distance 2 is calculated.

ここで、駆動回路2の遅延量が駆動回路1の遅延量と異なると、図3を用いて説明したように、光源1、2の発光タイミングがずれ、光源1、2からの照射光パルスLe1、Le2が重なった照射光パルスLeの波形が所望の波形(図3では矩形)と異なってしまい、測定距離に誤差が生じてしまう。 Here, if the delay amount of the drive circuit 2 is different from the delay amount of the drive circuit 1, the light emission timings of the light sources 1 and 2 are shifted, and the irradiation light pulses Le1 from the light sources 1 and 2 are shifted as described with reference to FIG. , The waveform of the irradiation light pulse Le on which Le2 overlaps is different from the desired waveform (rectangular in FIG. 3), and an error occurs in the measurement distance.

そこで、次のステップS5では、測定距離2と基準距離Drefが一致しているか否かを判断する。ここでの判断が否定されるとステップS6に移行し、肯定されるとフローは終了する。ステップS5での判断が肯定される場合は、光源1、2の発光タイミングが一致している場合である。 Therefore, in the next step S5, it is determined whether or not the measurement distance 2 and the reference distance Dref match. If the judgment here is denied, the process proceeds to step S6, and if it is affirmed, the flow ends. When the determination in step S5 is affirmed, it is the case that the light emission timings of the light sources 1 and 2 match.

ステップS6では、光源2の発光タイミングを調整する。具体的には、調整制御部41aが、測定距離2と基準距離Drefの差に基づいて遅延調整信号2を生成し遅延素子2に出力する。そして、遅延素子2で変調信号Xを遅延調整信号2に従って遅延させた変調信号2を駆動回路2に出力する。駆動回路2から光源2に変調信号2に応じた変調電流2が印加され、光源2から変調電流2に応じた変調光である照射光パルスLe2が射出される。 In step S6, the light emission timing of the light source 2 is adjusted. Specifically, the adjustment control unit 41a generates a delay adjustment signal 2 based on the difference between the measurement distance 2 and the reference distance Dref, and outputs the delay adjustment signal 2 to the delay element 2. Then, the delay element 2 outputs the modulation signal 2 in which the modulation signal X is delayed according to the delay adjustment signal 2 to the drive circuit 2. A modulation current 2 corresponding to the modulation signal 2 is applied from the drive circuit 2 to the light source 2, and an irradiation light pulse Le2 which is a modulation light corresponding to the modulation current 2 is emitted from the light source 2.

ステップS6が実行されると、ステップS4に戻る。そして、ステップS4で光源1、2を点灯させて距離測定を再度行い、ステップS5で測定距離2が基準距離Drefと一致しているかを確認する。 When step S6 is executed, the process returns to step S4. Then, in step S4, the light sources 1 and 2 are turned on and the distance measurement is performed again, and in step S5, it is confirmed whether the measurement distance 2 matches the reference distance Dref.

以上のようにして光源1、2の発光タイミングを調整することにより、光源1、2の発光タイミングのずれを補正することができ、該補正後に光源1、2を点灯させて距離測定を行うことにより、測定距離の誤差を低減でき、ひいては距離の測定精度を向上させることが可能となる。 By adjusting the light emission timings of the light sources 1 and 2 as described above, the deviation of the light emission timings of the light sources 1 and 2 can be corrected, and after the correction, the light sources 1 and 2 are turned on to measure the distance. As a result, the error in the measurement distance can be reduced, and the measurement accuracy of the distance can be improved.

以上説明した本実施形態の距離測定装置1は、複数の光源(例えば2つの光源1、2)及び該複数の光源をそれぞれ駆動する複数の駆動回路(例えば2つの駆動回路1、2)を含む投光系10と、該投光系10から投光され物体で反射された光を受光する受光系20と、複数の光源の発光タイミングのずれを補正する補正系と、を備えている。 The distance measuring device 1 of the present embodiment described above includes a plurality of light sources (for example, two light sources 1 and 2) and a plurality of drive circuits (for example, two drive circuits 1 and 2) for driving the plurality of light sources. It includes a light projecting system 10, a light receiving system 20 that receives light projected from the light projecting system 10 and reflected by an object, and a correction system that corrects a deviation in light emission timing of a plurality of light sources.

この場合、複数の光源の発光タイミングのずれが補正された状態で、投光系10から投光され物体で反射された光を受光系20で受光することにより、検出誤差を低減できる。 In this case, the detection error can be reduced by receiving the light projected from the light projecting system 10 and reflected by the object by the light receiving system 20 in a state where the deviation of the light emitting timings of the plurality of light sources is corrected.

この結果、物体までの距離の測定精度を向上できる。 As a result, the accuracy of measuring the distance to the object can be improved.

また、補正系は、受光系20での受光結果に基づいて、複数の光源の発光タイミングのずれを補正する制御装置40を含む。 Further, the correction system includes a control device 40 that corrects the deviation of the light emission timing of the plurality of light sources based on the light receiving result in the light receiving system 20.

この場合、受光系20での受光結果を用いて、物体までの距離を測定できるとともに複数の光源の発光タイミングのずれを補正することができる。 In this case, the distance to the object can be measured and the deviation of the light emission timings of the plurality of light sources can be corrected by using the light receiving result of the light receiving system 20.

また、複数の光源を一緒に点灯させて投光される光を重ね合わせることにより、投光される光の光量を大きくすることができ、物体を検出可能な最大検出距離を長くすることができる。 Further, by turning on a plurality of light sources together and superimposing the projected light, the amount of the projected light can be increased, and the maximum detection distance at which an object can be detected can be lengthened. ..

また、駆動回路1、2には、光源1、2をそれぞれ発光させるための複数の変調信号(例えば2つの変調信号1、2)がそれぞれ入力され、制御装置40は、受光系20での受光結果に基づいて、物体までの距離を算出する演算手段(距離演算部42)と、該演算手段での算出結果に基づいて、変調信号1、2の駆動回路1、2への入力タイミングを調整する調整手段(タイミング制御手段41)と、を含む。 Further, a plurality of modulation signals (for example, two modulation signals 1 and 2) for causing the light sources 1 and 2 to emit light are input to the drive circuits 1 and 2, respectively, and the control device 40 receives light from the light receiving system 20. Based on the result, the calculation means (distance calculation unit 42) that calculates the distance to the object and the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 are adjusted based on the calculation result by the calculation means. The adjusting means (timing control means 41) is included.

この場合、簡易な構成により、物体までの距離の測定精度を向上できる。 In this case, the measurement accuracy of the distance to the object can be improved by a simple configuration.

また、調整手段は、光源1を点灯させたときの距離演算部42での算出結果である第1の距離(測定距離1)と、光源1、2を点灯させたときの距離演算部42での算出結果である第2の距離(測定距離2)の差に応じて、変調信号1、2の駆動回路1、2への入力タイミングを調整することが好ましい。具体的には、第1及び第2の距離の差が小さく(0も含む)なるように変調信号1、2の駆動回路1、2への入力タイミングを調整することが好ましい。 Further, the adjusting means is a first distance (measurement distance 1) which is a calculation result by the distance calculation unit 42 when the light source 1 is turned on, and a distance calculation unit 42 when the light sources 1 and 2 are turned on. It is preferable to adjust the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 according to the difference in the second distance (measurement distance 2) which is the calculation result of. Specifically, it is preferable to adjust the input timing of the modulated signals 1 and 2 to the drive circuits 1 and 2 so that the difference between the first and second distances is small (including 0).

この場合、変調信号1、2の元となる共通の(単一の)変調信号Xを生成し、該変調信号Xの駆動回路1、2への出力タイミングを調整するだけの簡易な手法により、光源1、2の発光タイミングのずれを補正することができる。 In this case, a simple method of generating a common (single) modulation signal X that is the source of the modulation signals 1 and 2 and adjusting the output timing of the modulation signal X to the drive circuits 1 and 2 is used. It is possible to correct the deviation of the light emission timings of the light sources 1 and 2.

また、距離測定装置1が、投光系10の投光範囲に配置され、光源1の光出力で距離が測定可能な基準反射体を更に備える場合には、光源1、2の発光タイミングの補正(発光タイミング補正処理)を随時行うことができる。 Further, when the distance measuring device 1 is arranged in the light projecting range of the light projecting system 10 and further includes a reference reflector whose distance can be measured by the light output of the light source 1, the light emission timings of the light sources 1 and 2 are corrected. (Light emission timing correction processing) can be performed at any time.

また、調整手段は、第1及び第2の距離に基づいて、変調信号1、2の入力タイミングを調整するための調整信号(遅延調整信号1、2)を生成する調整制御部41aと、調整信号に応じて変調信号1、2の入力タイミングを調整する調整素子(遅延素子1、2)と、を有することが好ましい。 Further, the adjustment means is adjusted with the adjustment control unit 41a that generates adjustment signals (delay adjustment signals 1 and 2) for adjusting the input timings of the modulation signals 1 and 2 based on the first and second distances. It is preferable to have adjusting elements (delay elements 1 and 2) for adjusting the input timings of the modulated signals 1 and 2 according to the signal.

また、受光系20が、複数の画素に対応する受光部を有するエリアセンサ21を含む場合には、物体の部位毎(画素毎)の距離情報を表す距離画像を生成することができる。この場合には、物体の大きさや形状等を検出することができ、より詳細な物体情報を得ることができる。 Further, when the light receiving system 20 includes an area sensor 21 having a light receiving unit corresponding to a plurality of pixels, it is possible to generate a distance image representing distance information for each part of an object (for each pixel). In this case, the size and shape of the object can be detected, and more detailed object information can be obtained.

また、エリアセンサ21が画素毎に2つの電荷蓄積部A、Bを有する場合には、光源1、2の発光タイミングを基準とした所定の時間帯に反射光の電荷を2つの電荷蓄積部A、Bに蓄積することができる。 When the area sensor 21 has two charge storage units A and B for each pixel, the two charge storage units A charge the reflected light in a predetermined time zone based on the light emission timing of the light sources 1 and 2. , B can be accumulated.

また、本実施形態の距離測定装置1と、該距離測定装置1が搭載された移動体と、を備える移動体装置によれば、高精度な測定距離に基づいて、移動体の制御(例えば制動制御や操舵制御等)を精度良く行うことができる。 Further, according to the moving body device including the distance measuring device 1 of the present embodiment and the moving body on which the distance measuring device 1 is mounted, control of the moving body (for example, braking) is performed based on a highly accurate measurement distance. Control, steering control, etc.) can be performed with high accuracy.

また、本実施形態の距離測定方法は、物体までの距離を測定する距離測定方法であって、複数の光源(光源1、2)のうち一の光源(光源1)を点灯させて基準反射体に光を照射する第1の照射工程と、第1の照射工程で照射され基準反射体で反射された光を受光して該基準反射体までの距離を測定する第1の測定工程と、複数の光源のうち一の光源(光源1)と他の光源(光源2)を点灯させて基準反射体に光を照射する第2の照射工程と、第2の照射工程で照射され基準反射体で反射された光を受光して該基準反射体までの距離を測定する第2の測定工程と、第1及び第2の測定工程での測定結果(測定距離1、2)に基づいて、一及び他の光源の点灯タイミング(発光タイミング)のずれを補正する工程と、一及び他の光源を点灯させて投光し、物体で反射された光を受光して該物体までの距離を算出する工程と、を含む。 Further, the distance measuring method of the present embodiment is a distance measuring method for measuring the distance to an object, and is a reference reflector by turning on one of a plurality of light sources (light sources 1 and 2) (light source 1). A first irradiation step of irradiating light to the reference reflector, and a first measurement step of receiving the light irradiated in the first irradiation step and reflected by the reference reflector and measuring the distance to the reference reflector. In the second irradiation step in which one light source (light source 1) and the other light source (light source 2) are turned on to irradiate the reference reflector with light, and in the second irradiation step, the reference reflector is irradiated. Based on the second measurement step of receiving the reflected light and measuring the distance to the reference reflector and the measurement results (measurement distances 1 and 2) in the first and second measurement steps, one and A step of correcting a deviation in the lighting timing (light emission timing) of another light source, and a step of lighting one or another light source to project light, receiving the light reflected by the object, and calculating the distance to the object. And, including.

この場合、複数の光源の点灯タイミングのずれが補正された状態で、投光され物体で反射された光を受光系20で受光することにより、検出誤差を低減できる。 In this case, the detection error can be reduced by receiving the light projected by the light source and reflected by the object by the light receiving system 20 in a state where the deviation of the lighting timings of the plurality of light sources is corrected.

この結果、物体までの距離の測定精度を向上できる。 As a result, the accuracy of measuring the distance to the object can be improved.

なお、他の光源が複数ある場合、第2の照射工程と第2の測定工程と補正する工程を含むサイクルを他の光源毎に行うことが好ましい。この場合、一の光源と全ての他の光源との間での点灯タイミングのずれを補正することができる。 When there are a plurality of other light sources, it is preferable to perform a cycle including a second irradiation step, a second measurement step, and a correction step for each other light source. In this case, it is possible to correct the difference in lighting timing between one light source and all other light sources.

《変形例1》
図7には、変形例1の距離測定装置の制御装置が有するタイミング制御手段51のブロック図が示されている。
<< Modification 1 >>
FIG. 7 shows a block diagram of the timing control means 51 included in the control device of the distance measuring device of the first modification.

変形例1のタイミング制御手段51では、図7に示されるように、駆動回路1、2にそれぞれ入力される変調信号1、2をクロック信号(「クロック」とも呼ぶ)に基づいて生成し、変調信号1、変調信号2の遅延制御を、調整データ1、調整データ2に基づいて、クロック単位で制御している。 As shown in FIG. 7, the timing control means 51 of the first modification 1 generates and modulates the modulation signals 1 and 2 input to the drive circuits 1 and 2, respectively, based on the clock signal (also referred to as “clock”). The delay control of the signal 1 and the modulated signal 2 is controlled in clock units based on the adjustment data 1 and the adjustment data 2.

詳述すると、タイミング制御手段51は、基準クロックを生成するクロック生成部51aと、駆動回路1、2のオンオフ制御を行うための駆動回路ON信号1、2及び距離画像(距離データ)に基づいて調整データ1、2及び遅延情報を生成する調整制御部51bと、クロック信号、調整データ1、2、スタート信号、遅延情報に基づいて変調信号1、2を生成し、さらにクロック信号、スタート信号、遅延情報に基づいてタイミング信号A、B、受光データ出力指示信号、距離演算指示信号を生成する信号生成部51cと、を含んで構成されている。 More specifically, the timing control means 51 is based on a clock generation unit 51a that generates a reference clock, drive circuits ON signals 1 and 2 for performing on / off control of drive circuits 1 and 2, and a distance image (distance data). The adjustment control unit 51b that generates the adjustment data 1 and 2 and the delay information, and the clock signal, the adjustment data 1 and 2, the start signal, and the modulation signals 1 and 2 based on the delay information are generated, and further, the clock signal, the start signal, It is configured to include timing signals A and B, a light receiving data output instruction signal, and a signal generation unit 51c that generates a distance calculation instruction signal based on delay information.

図8には、変形例1において、クロック信号に基づいて変調信号1、2を生成する様子がタイムチャートで示されている。 FIG. 8 shows in a time chart how the modulation signals 1 and 2 are generated based on the clock signal in the modification 1.

ここでは、調整データ1が“8”、調整データ2が“10”の場合を、各変調信号のパルス幅が“8”の場合を示している。 Here, the case where the adjustment data 1 is “8” and the adjustment data 2 is “10” is shown, and the case where the pulse width of each modulation signal is “8” is shown.

信号生成部51cは、スタート信号が入力されると内蔵するスタートカウンタがクロック生成部51aからのクロックのカウントを始める。信号生成部51cは、スタートカウンタの値が調整データ1の値と同じ“8”になった時点で変調信号1を“H”レベルに変化させる。その後、信号生成部51cは、パルス幅カウンタ1でカウントを始め、パルス幅の”8“になった時点で変調信号1を”L“レベルに変化させる。パルス幅カウンタ1は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号1を“H”レベルに変化をさせる。これを繰り返して変調信号1を生成する。 When the start signal is input to the signal generation unit 51c, the built-in start counter starts counting the clock from the clock generation unit 51a. The signal generation unit 51c changes the modulated signal 1 to the “H” level when the value of the start counter becomes “8”, which is the same as the value of the adjustment data 1. After that, the signal generation unit 51c starts counting with the pulse width counter 1, and changes the modulated signal 1 to the “L” level when the pulse width reaches “8”. The pulse width counter 1 is reset to "1" and starts counting again, and when it reaches "8", the modulation signal 1 is changed to the "H" level. This is repeated to generate the modulated signal 1.

一方、信号生成部51cは、スタートカウンタのカウント値が調整データ2の値と同じ“10”になった時点で変調信号2を“H”レベルに変化させる。その後、信号生成部51cは、パルス幅カウンタ2でカウントを始め、パルス幅の”8“になった時点で変調信号2を”L”レベルに変化させる。パルス幅カウンタ2は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号2を“H”レベルに変化をさせる。これを繰り返して変調信号2を生成する。 On the other hand, the signal generation unit 51c changes the modulation signal 2 to the “H” level when the count value of the start counter becomes “10”, which is the same as the value of the adjustment data 2. After that, the signal generation unit 51c starts counting with the pulse width counter 2, and changes the modulated signal 2 to the “L” level when the pulse width reaches “8”. The pulse width counter 2 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 2 is changed to the "H" level. This is repeated to generate the modulated signal 2.

このように調整データ1、2の値に従って、変調信号1、2が出力されるので、調整データ1、2を調整することで変調信号1、2の出力タイミングを調整することができ、光源1、2の発光タイミングを合わせることが可能となる。 Since the modulation signals 1 and 2 are output according to the values of the adjustment data 1 and 2 in this way, the output timing of the modulation signals 1 and 2 can be adjusted by adjusting the adjustment data 1 and 2, and the light source 1 It is possible to match the light emission timings of 2.

以上のように変形例1では、変調信号1、2を、クロック信号を用いてロジック回路で生成しているので、小規模な回路構成で変調信号1、2を生成することができる。 As described above, in the modification 1, since the modulation signals 1 and 2 are generated by the logic circuit using the clock signal, the modulation signals 1 and 2 can be generated with a small-scale circuit configuration.

変形例1の距離測定装置でも、タイミング制御手段51(調整手段)は、複数の光源(例えば2つの光源1、2)のうち一の光源(光源1)を点灯させたときの距離演算部での算出結果である第1の距離と、一の光源と複数の光源のうち他の光源(光源2)を点灯させたときの距離演算部での算出結果である第2の距離の差に応じて、変調信号1、2の駆動回路1、2への入力タイミングを調整する。 Even in the distance measuring device of the first modification, the timing control means 51 (adjusting means) is a distance calculation unit when one of a plurality of light sources (for example, two light sources 1 and 2) is turned on (light source 1). According to the difference between the first distance, which is the calculation result of, and the second distance, which is the calculation result by the distance calculation unit when the other light source (light source 2) of one light source and the plurality of light sources is turned on. Then, the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 is adjusted.

そして、タイミング制御手段51及び距離演算部を含む制御装置は、クロック信号を生成するクロック生成部51aと、該クロック信号をカウントするカウンタと、を更に含み、タイミング制御手段51は、カウンタのカウント値と、第1及び第2の距離に基づいて、変調信号1、2を生成する(変調信号1、2の駆動回路1、2への入力タイミングを調整する)。 The control device including the timing control means 51 and the distance calculation unit further includes a clock generation unit 51a for generating a clock signal and a counter for counting the clock signal, and the timing control means 51 further includes a counter count value. Then, the modulation signals 1 and 2 are generated based on the first and second distances (the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 is adjusted).

《変形例2》
図9には、変形例2の距離測定装置の制御装置が有するタイミング制御手段61のブロック図が示されている。
<< Modification 2 >>
FIG. 9 shows a block diagram of the timing control means 61 included in the control device of the distance measuring device of the second modification.

変形例2では、図9に示されるように、調整制御部61bで生成された調整データ1、2がクロック生成部61aに入力され、クロック生成部61aでクロック信号1、2が生成され、信号生成部61cに出力される構成となっている。クロック信号1、2は、調整データ1、2に従って、位相が変化され、信号生成部61cに出力される。 In the second modification, as shown in FIG. 9, the adjustment data 1 and 2 generated by the adjustment control unit 61b are input to the clock generation unit 61a, and the clock signals 1 and 2 are generated by the clock generation unit 61a. It is configured to be output to the generation unit 61c. The phases of the clock signals 1 and 2 are changed according to the adjustment data 1 and 2, and the clock signals 1 and 2 are output to the signal generation unit 61c.

図10には、変形例2におけるクロック信号1、2及び調整データ1、調整データ2に基づいて変調信号1、2を生成する様子がタイムチャートで示されている。 FIG. 10 shows a time chart showing how the modulation signals 1 and 2 are generated based on the clock signals 1 and 2 and the adjustment data 1 and the adjustment data 2 in the modification 2.

ここでは、調整データ1が“8”、調整データ2が”10.5”の場合を、各変調信号のパルス幅が“8”の場合を示している。 Here, the case where the adjustment data 1 is “8” and the adjustment data 2 is “10.5” is shown, and the case where the pulse width of each modulation signal is “8” is shown.

信号生成部61cでは、スタート信号が入力されると内蔵するスタートカウンタ1がクロック信号1でカウントを始め、スタートカウンタ1の値が調整データ1の値と同じ“8”になった時点で変調信号1を“H”レベルに変化させる。その後、信号生成部61cでは、パルス幅カウンタ1でカウントを始めパルス幅の”8“になった時点で変調信号1を”L“レベルに変化させる。パルス幅カウンタ1は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号1を“H”レベルに変化をさせる。これを繰り返して変調信号1を生成する。 In the signal generation unit 61c, when the start signal is input, the built-in start counter 1 starts counting with the clock signal 1, and when the value of the start counter 1 becomes “8”, which is the same as the value of the adjustment data 1, the modulation signal is signaled. Change 1 to "H" level. After that, the signal generation unit 61c starts counting with the pulse width counter 1 and changes the modulated signal 1 to the “L” level when the pulse width reaches “8”. The pulse width counter 1 is reset to "1" and starts counting again, and when it reaches "8", the modulation signal 1 is changed to the "H" level. This is repeated to generate the modulated signal 1.

一方、信号生成部61cは、変調信号2をクロック信号2に基づいて生成するが、“10.5”という調整データ2がクロック生成部61aに入力されると小数部の“0.5”、つまり1/2クロック分位相が遅れてクロック信号2が生成されて出力される。すなわち、図10に示されるようにクロック信号2はクロック信号1に対して1/2クロック分位相が遅れている。変調信号2は、このクロック信号2を用いて生成される。 On the other hand, the signal generation unit 61c generates the modulation signal 2 based on the clock signal 2, but when the adjustment data 2 of "10.5" is input to the clock generation unit 61a, the fractional part "0.5", That is, the clock signal 2 is generated and output with the phase delayed by 1/2 clock. That is, as shown in FIG. 10, the clock signal 2 is lagging in phase by 1/2 clock with respect to the clock signal 1. The modulation signal 2 is generated using this clock signal 2.

詳述すると、信号生成部61cでは、スタート信号が入力されるとスタートカウンタ2がクロック信号2でカウントを始め、スタートカウンタ2のカウント値が調整データ2の整数値“10”になった時点で変調信号2を“H”レベルに変化させる。その後、信号生成部61cでは、パルス幅カウンタ2でカウントを始め、パルス幅の”8“になった時点で変調信号2を”L“レベルに変化させる。パルス幅カウンタ2は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号2を“H”レベルに変化をさせる。これを繰り返して変調信号2を生成する。 More specifically, in the signal generation unit 61c, when the start signal is input, the start counter 2 starts counting with the clock signal 2, and when the count value of the start counter 2 becomes the integer value “10” of the adjustment data 2. The modulated signal 2 is changed to the "H" level. After that, the signal generation unit 61c starts counting with the pulse width counter 2, and changes the modulated signal 2 to the “L” level when the pulse width reaches “8”. The pulse width counter 2 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 2 is changed to the "H" level. This is repeated to generate the modulated signal 2.

以上のように、変形例2では、クロック生成部61aから位相が調整されたクロック信号1、クロック信号2を生成し、クロック信号1で変調信号1を生成し、クロック信号2で変調信号2を生成することにより、クロック信号1のクロック幅よりも短い時間の精度で制御(調整)することができ、光源1、2の発光タイミングをより精度よく合わせることができ、ひいては測定距離の誤差をより小さくすることができる。 As described above, in the modification 2, the clock signal 1 and the clock signal 2 whose phases are adjusted are generated from the clock generation unit 61a, the clock signal 1 generates the modulated signal 1, and the clock signal 2 generates the modulated signal 2. By generating it, it is possible to control (adjust) with an accuracy of a time shorter than the clock width of the clock signal 1, the light emission timings of the light sources 1 and 2 can be adjusted more accurately, and the error of the measurement distance is further increased. It can be made smaller.

変形例2の距離測定装置でも、タイミング制御手段61(調整手段)は、複数の光源(例えば2つの光源1、2)のうち一の光源(光源1)を点灯させたときの距離演算部での算出結果である第1の距離と、一の光源と複数の光源のうち他の光源(光源2)を点灯させたときの距離演算部での算出結果である第2の距離の差に応じて、変調信号1、2の駆動回路1、2への入力タイミングを調整する。 Even in the distance measuring device of the second modification, the timing control means 61 (adjusting means) is a distance calculation unit when one of a plurality of light sources (for example, two light sources 1 and 2) is turned on (light source 1). According to the difference between the first distance, which is the calculation result of, and the second distance, which is the calculation result by the distance calculation unit when the other light source (light source 2) of one light source and the plurality of light sources is turned on. Then, the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 is adjusted.

タイミング制御手段61及び距離演算部含む制御装置は、第1及び第2の距離に基づいて、位相が異なる複数のクロック信号を生成するクロック生成部61aと、複数のクロック信号をそれぞれカウントする複数のカウンタと、を更に含み、複数のカウンタのカウント値と、第1及び第2の距離に基づいて、変調信号1、2の駆動回路1、2への入力タイミングを調整する。 The control device including the timing control means 61 and the distance calculation unit includes a clock generation unit 61a that generates a plurality of clock signals having different phases based on the first and second distances, and a plurality of clock signals that count the plurality of clock signals. A counter is further included, and the input timing of the modulation signals 1 and 2 to the drive circuits 1 and 2 is adjusted based on the count values of the plurality of counters and the first and second distances.

変形例2では、クロック信号2は、クロック信号1に比べて1/2クロック分位相が遅れているが、これに代えて、例えばNを3以上の整数として1/Nクロック分位相が遅れていても良い。 In the second modification, the clock signal 2 is delayed by 1/2 clock in phase with the clock signal 1, but instead, for example, N is an integer of 3 or more and the phase is delayed by 1 / N clock. You may.

《変形例3》
図11には、変形例3の距離測定装置1Aの構成が概略的に示されている。
<< Modification 3 >>
FIG. 11 schematically shows the configuration of the distance measuring device 1A of the modified example 3.

距離測定装置1Aは、投光系10と、受光系20と、検出手段30と、タイミング制御手段41A(調整手段)及び距離演算部42(演算手段)を含む制御装置40Aと、を備えている。 The distance measuring device 1A includes a light emitting system 10, a light receiving system 20, a detecting means 30, and a control device 40A including a timing control means 41A (adjusting means) and a distance calculating unit 42 (calculating means). ..

投光系10は、2つの光源1、2と、光源1、2をそれぞれ駆動する2つの駆動回路1、2と、各光源からの光を車両前方に向けて投射する投射光学系(不図示)と、を有する。各光源としては、例えば半導体レーザ、発光ダイオード等の発光素子が好適であるが、他の発光素子を用いても良い。 The projection system 10 includes two light sources 1 and 2, two drive circuits 1 and 2 for driving the light sources 1 and 2, and a projection optical system (not shown) for projecting light from each light source toward the front of the vehicle. ) And. As each light source, for example, a light emitting element such as a semiconductor laser or a light emitting diode is suitable, but other light emitting elements may be used.

駆動回路1は、タイミング制御手段41Aからの駆動回路ON信号1が“H”レベルのときに変調信号1に応じた変調電流1を光源1に印加し、駆動回路ON信号1が“L”レベルのときは常に駆動電流をOFFとする。 When the drive circuit ON signal 1 from the timing control means 41A is at the “H” level, the drive circuit 1 applies a modulation current 1 corresponding to the modulation signal 1 to the light source 1, and the drive circuit ON signal 1 is at the “L” level. When, the drive current is always turned off.

駆動回路2は、タイミング制御手段41Aからの駆動回路ON信号2が“H”レベルのときに変調信号2に応じた変調電流2を光源2に印加し、駆動回路ON信号2が“L”レベルのときは常に駆動電流をOFFとする。 When the drive circuit ON signal 2 from the timing control means 41A is at the “H” level, the drive circuit 2 applies a modulation current 2 corresponding to the modulation signal 2 to the light source 2, and the drive circuit ON signal 2 is at the “L” level. When, the drive current is always turned off.

光源1は変調電流1に応じた変調光を射出し、該変調光は投射光学系によって照射光パルスLe1として投光される。 The light source 1 emits modulated light corresponding to the modulated current 1, and the modulated light is projected as an irradiation light pulse Le1 by the projection optical system.

光源2は変調電流2に応じた変調光を射出し、該変調光は投射光学系によって照射光パルスLe2として投光される。 The light source 2 emits modulated light corresponding to the modulated current 2, and the modulated light is projected as an irradiation light pulse Le2 by the projection optical system.

すなわち、投光系10から投光される照射光パルスLeは、照射光パルスLe1と照射光パルスLe2が重なった光である。 That is, the irradiation light pulse Le projected from the light projection system 10 is light in which the irradiation light pulse Le1 and the irradiation light pulse Le2 overlap.

この際、投光系10の投光範囲(投射光学系の投射範囲)の射程圏内(光源1、2の光出力の和で検出可能な範囲内)に測定対象の物体(測定対象物)があれば、投光された光(照射光パルスLe)が該物体に照射される。 At this time, the object to be measured (measurement target) is within the range of the light projection range (projection range of the projection optical system) of the light projection system 10 (within the range detectable by the sum of the light outputs of the light sources 1 and 2). If there is, the projected light (irradiation light pulse Le) is applied to the object.

投射光学系は、例えば光偏向器を含む走査型及び例えば拡散板を含む非走査型のいずれであっても良いが、車両前方のセンシング(物体検出)に必要な水平方向及び垂直方向の投射範囲を確保できるものが好ましい。 The projection optical system may be, for example, a scanning type including an optical deflector or a non-scanning type including, for example, a diffuser, but the horizontal and vertical projection ranges required for sensing (object detection) in front of the vehicle. Those that can secure the above are preferable.

受光系20は、複数の画素に個別に対応する2次元配列された複数の受光素子(例えばフォトダイオード、フォトトランジスタ等)を含むエリアセンサ21と、物体からの反射光をエリアセンサ21に導く、集光素子を含む受光光学系(不図示)と、を有する。 The light receiving system 20 guides the area sensor 21 including a plurality of two-dimensionally arranged light receiving elements (for example, photodiodes, phototransistors, etc.) individually corresponding to the plurality of pixels and the reflected light from the object to the area sensor 21. It has a light receiving optical system (not shown) including a light collecting element.

エリアセンサ21の各受光素子は、2つの電荷蓄積部A、Bを有している。各受光素子は、物体に照射され該物体で反射された変調された光(反射光パルスLr)を受光し、タイミング制御手段41からのタイミング信号A、Bに従って、受光した光によって発生する電荷の蓄積を行う。 Each light receiving element of the area sensor 21 has two charge storage portions A and B. Each light receiving element receives the modulated light (reflected light pulse Lr) that is applied to the object and reflected by the object, and according to the timing signals A and B from the timing control means 41, the electric charge generated by the received light is received. Accumulate.

具体的には、各受光素子は、タイミング信号Aが“H”のときは電荷蓄積部Aに電荷の蓄積を行い、タイミング信号Bが“H”のときは電荷蓄積部Bに電荷の積を行う。 Specifically, each light receiving element stores charges in the charge storage unit A when the timing signal A is “H”, and charges the charge storage unit B when the timing signal B is “H”. Do.

タイミング制御手段41Aは、変調信号1、2、タイミング信号A、Bを繰り返し出力し、これにより電荷がどんどん蓄積されていく。そして、電荷の蓄積を所定回数繰り返した後、変調信号1、2、タイミング信号A、Bの出力をストップさせ、受光データ出力指示信号をエリアセンサ21に出力する。 The timing control means 41A repeatedly outputs the modulation signals 1 and 2, and the timing signals A and B, whereby the electric charge is accumulated steadily. Then, after repeating the accumulation of electric charges a predetermined number of times, the output of the modulation signals 1 and 2, the timing signals A and B is stopped, and the received light data output instruction signal is output to the area sensor 21.

エリアセンサ21は、各受光素子の電荷蓄積部A、Bに蓄積された電荷量を受光データA、Bとして順次出力する。 The area sensor 21 sequentially outputs the amount of charge accumulated in the charge storage units A and B of each light receiving element as light receiving data A and B.

距離演算部42は、タイミング制御手段41Aからの距離演算指示信号を受け、エリアセンサ21から送られてくる受光データA、Bを用いて各画素における距離データを算出し、距離画像を生成する。受光データA、Bから距離データを算出する方法は、前述した通りである。 The distance calculation unit 42 receives the distance calculation instruction signal from the timing control means 41A, calculates the distance data in each pixel using the light receiving data A and B sent from the area sensor 21, and generates a distance image. The method of calculating the distance data from the received light data A and B is as described above.

タイミング制御手段41Aは、遅延素子1、2、調整制御部41Aa、信号生成部41Ab、時間計測部1、2を含んで構成されている。 The timing control means 41A includes delay elements 1 and 2, adjustment control units 41Aa, signal generation units 41Ab, and time measurement units 1 and 2.

遅延素子1は、調整制御部41Aaからの遅延調整信号1のレベルに従って、信号生成部で生成された変調信号Xを遅延させて変調信号1として出力する。 The delay element 1 delays the modulation signal X generated by the signal generation unit according to the level of the delay adjustment signal 1 from the adjustment control unit 41Aa, and outputs the modulation signal X as the modulation signal 1.

遅延素子2は、調整制御部41Aaからの遅延調整信号2のレベルに従って、信号生成部で生成された変調信号Xを遅延させて変調信号2として出力する。 The delay element 2 delays the modulation signal X generated by the signal generation unit according to the level of the delay adjustment signal 2 from the adjustment control unit 41Aa, and outputs the modulation signal X as the modulation signal 2.

以上のように遅延調整信号1、2により、光源1、2の点灯タイミング(照射光パルスLe1、Le2の立ち上りタイミング)を変えることができる。 As described above, the lighting timings of the light sources 1 and 2 (the rising timings of the irradiation light pulses Le1 and Le2) can be changed by the delay adjustment signals 1 and 2.

信号生成部41Abは、パルス状又は正弦波の変調信号Xを生成し、遅延素子1、2に所定回数繰り返し出力する。また、信号生成部41Abは、変調信号Xと同じ波形のタイミング信号A、Bを、後述する調整制御部41Aaからの遅延情報を基に生成し、エリアセンサ21に所定回数繰り返し出力する。 The signal generation unit 41Ab generates a pulsed or sine wave modulated signal X, and repeatedly outputs it to the delay elements 1 and 2 a predetermined number of times. Further, the signal generation unit 41Ab generates timing signals A and B having the same waveform as the modulation signal X based on the delay information from the adjustment control unit 41Aa described later, and repeatedly outputs the timing signals A and B to the area sensor 21 a predetermined number of times.

ここで、タイミング信号Aの出力タイミングを、図2に示されるように、照射光パルスLeの立ち上がりタイミング(光源1の発光タイミング)と合わせる必要がある。上記遅延情報は変調信号Xの出力タイミングから照射光パルスLeが立ち上がるまでの遅延時間であり、これを基にタイミング信号Aの出力タイミングを光源1の発光タイミングと合わせることができる。このようにしてタイミング信号Aを照射光パルスLeと同じタイミングで“H”とし、パルス幅Tw後に“L”とする。そして、タイミング信号Bは、タイミング信号Aが“L”になると同時に“H”にし、パルス幅Tw後に“L”とする。 Here, it is necessary to match the output timing of the timing signal A with the rising timing of the irradiation light pulse Le (light emission timing of the light source 1) as shown in FIG. The delay information is the delay time from the output timing of the modulation signal X to the rise of the irradiation light pulse Le, and based on this, the output timing of the timing signal A can be matched with the light emission timing of the light source 1. In this way, the timing signal A is set to “H” at the same timing as the irradiation light pulse Le, and is set to “L” after the pulse width Tw. Then, the timing signal B is set to "H" at the same time as the timing signal A becomes "L", and is set to "L" after the pulse width Tw.

さらに、信号生成部41Abは、変調信号X、タイミング信号A、Bを所定回数繰り返し生成、出力した後、受光データ出力指示信号をエリアセンサ21に出力し、距離演算指示信号を距離演算部42に出力する。 Further, the signal generation unit 41Ab repeatedly generates and outputs the modulation signal X and the timing signals A and B a predetermined number of times, then outputs the received light data output instruction signal to the area sensor 21 and outputs the distance calculation instruction signal to the distance calculation unit 42. Output.

調整制御部41Aaは、遅延素子1、2の遅延量を制御する遅延調整信号1、2を、時間計測部1、2からの遅延値1、2を基に生成する。 The adjustment control unit 41Aa generates delay adjustment signals 1 and 2 for controlling the delay amount of the delay elements 1 and 2 based on the delay values 1 and 2 from the time measurement units 1 and 2.

具体的には、遅延値1と遅延値2を比較し、遅延値2が遅延値1と同じになるように遅延調整信号2を生成、または遅延値1が遅延値2と同じになるように遅延調整信号1を生成する。あるいは、予め設定した所定の遅延値になるように遅延調整信号1、遅延調整信号2を生成しても良い。なお、遅延調整信号は、必ずしも遅延値1と遅延値2が一致するように生成される必要はなく、要は、遅延値1と遅延値2の差が小さくなるように生成されれば良い。 Specifically, the delay value 1 and the delay value 2 are compared, and the delay adjustment signal 2 is generated so that the delay value 2 becomes the same as the delay value 1, or the delay value 1 becomes the same as the delay value 2. The delay adjustment signal 1 is generated. Alternatively, the delay adjustment signal 1 and the delay adjustment signal 2 may be generated so as to have a predetermined delay value set in advance. The delay adjustment signal does not necessarily have to be generated so that the delay value 1 and the delay value 2 match, and in short, the delay adjustment signal may be generated so that the difference between the delay value 1 and the delay value 2 becomes small.

また、調整制御部41Aaは、投光系10の駆動回路1、駆動回路2のオンオフ制御する駆動回路ON信号1、駆動回路ON信号2を生成する。そして、調整制御部41Aaは、これらの信号を制御して光源1、2の発光タイミングのずれを補正する。 Further, the adjustment control unit 41Aa generates a drive circuit 1 of the projection system 10, a drive circuit ON signal 1 for on / off control of the drive circuit 2, and a drive circuit ON signal 2. Then, the adjustment control unit 41Aa controls these signals to correct the deviation of the light emission timings of the light sources 1 and 2.

検出手段30は、光源1から射出された光の一部が入射されるミラー1と、光源2から射出された光の一部が入射されるミラー2と、ミラー1で反射された光を受光するPD1(フォトダイオード)、ミラー2で反射された光を受光するPD2(フォトダイオード)と、を有している。 The detection means 30 receives the mirror 1 in which a part of the light emitted from the light source 1 is incident, the mirror 2 in which a part of the light emitted from the light source 2 is incident, and the light reflected by the mirror 1. It has a PD1 (photodiode) and a PD2 (photodiode) that receives the light reflected by the mirror 2.

すなわち、ミラー1は、光源1からの光の一部をPD1に向けて反射させるように配置されている。ミラー2は、光源2からの光の一部をPD2に向けて反射させるように配置されている。なお、光源1から射出された光の残部(大半)及び光源2から射出された光の残部(大半)は、それぞれ投射光学系(不図示)を介して照射光パルスLe1、Le2として投光される。 That is, the mirror 1 is arranged so as to reflect a part of the light from the light source 1 toward the PD1. The mirror 2 is arranged so as to reflect a part of the light from the light source 2 toward the PD 2. The remaining portion (most) of the light emitted from the light source 1 and the remaining portion (most) of the light emitted from the light source 2 are projected as irradiation light pulses Le1 and Le2, respectively, via the projection optical system (not shown). To.

PD1は、ミラー1で反射された光を受光し電気信号に変換しPD信号1として時間計測部1に出力する。PD2は、ミラー2で反射された光を受光し電気信号に変換しPD信号2として時間計測部2に出力する。 The PD1 receives the light reflected by the mirror 1, converts it into an electric signal, and outputs the PD signal 1 to the time measuring unit 1. The PD2 receives the light reflected by the mirror 2, converts it into an electric signal, and outputs the PD signal 2 to the time measuring unit 2.

時間計測部1は、変調信号XとPD信号1の立ち上がりタイミングの時間差を測定し、該時間差を遅延値1として出力する。時間計測部2は、変調信号XとPD信号2との立ち上がりタイミングの時間差を測定し、該時間差を遅延値2として出力する。各時間計測部は、TDC(Time to Digital Converter)回路と言われる回路で実現することができる。 The time measurement unit 1 measures the time difference between the rising timings of the modulation signal X and the PD signal 1, and outputs the time difference as the delay value 1. The time measuring unit 2 measures the time difference between the rising timings of the modulated signal X and the PD signal 2, and outputs the time difference as the delay value 2. Each time measurement unit can be realized by a circuit called a TDC (Time to Digital Converter) circuit.

ここで、変調信号Xが信号生成部41Abから出力されると、遅延素子、駆動回路の遅延を伴って光源が点灯し、該光源からの光がPDで受光され、該PDからPD信号が変調信号Xから遅延して出力される。 Here, when the modulation signal X is output from the signal generation unit 41Ab, the light source is turned on with the delay of the delay element and the drive circuit, the light from the light source is received by the PD, and the PD signal is modulated from the PD. It is output with a delay from the signal X.

図12には、変調信号XとPD信号1、PD信号2と測定される遅延値1、遅延値2が示されている。図12では、光源1が変調信号Xに対してtd1の遅延を伴って点灯しPD1信号がtd1の遅延を伴って時間計測部1に出力され、光源2が変調信号Xに対してtd2の遅延を伴って点灯しPD2信号がtd2の遅延を伴って時間計測部2に出力される。時間計測部1はtd1を計測し遅延値1として調整制御部41Aaに出力し、時間計測部2はtd2を計測し遅延値2として調整制御部41Aaに出力する。 FIG. 12 shows the modulation signal X, the PD signal 1, the PD signal 2, the delay value 1 measured, and the delay value 2. In FIG. 12, the light source 1 lights up with a delay of td1 with respect to the modulation signal X, the PD1 signal is output to the time measurement unit 1 with a delay of td1, and the light source 2 delays td2 with respect to the modulation signal X. The PD2 signal is output to the time measuring unit 2 with a delay of td2. The time measurement unit 1 measures td1 and outputs it as a delay value 1 to the adjustment control unit 41Aa, and the time measurement unit 2 measures td2 and outputs it as a delay value 2 to the adjustment control unit 41Aa.

以下に、変形例3の距離測定装置1Aにおける光源1と光源2の発光タイミングのずれを補正する方法(発光タイミングずれ補正処理)について、図13を参照して説明する。図13のフローチャートは、制御装置40Aによって実行される処理アルゴリズムに基づいている。ここでは、発光タイミングずれ補正処理は、駆動回路1、2を構成する回路素子や配線の製造時や経時の性能ばらつきを考慮して定期的に行われるが、不定期(例えば装置起動時)に行っても良い。 Hereinafter, a method of correcting the deviation of the light emission timing between the light source 1 and the light source 2 (light emission timing deviation correction processing) in the distance measuring device 1A of the modification 3 will be described with reference to FIG. The flowchart of FIG. 13 is based on a processing algorithm executed by the control device 40A. Here, the light emission timing deviation correction processing is performed periodically in consideration of performance variations over time and during manufacturing of the circuit elements and wirings constituting the drive circuits 1 and 2, but irregularly (for example, when the device is started). You may go.

最初のステップS11では、調整制御部41Aaが、最小遅延となるように、遅延調整信号1、遅延調整信号2を出力する。 In the first step S11, the adjustment control unit 41Aa outputs the delay adjustment signal 1 and the delay adjustment signal 2 so as to have the minimum delay.

次のステップS12では、光源1、2をパルス点灯する。具体的には、信号生成部41Abが、図12に示されるようなパルス波形の変調信号Xを生成し出力する。変調信号Xは遅延素子1、2に入力され、遅延調整信号1、2に基づいた遅延を伴って変調信号1、2として駆動回路1、2へ出力される。また、変調信号Xは時間計測部1、2へも出力され、時間計測部1、2は時間計測を開始する。 In the next step S12, the light sources 1 and 2 are pulse-lit. Specifically, the signal generation unit 41Ab generates and outputs a modulated signal X having a pulse waveform as shown in FIG. The modulation signal X is input to the delay elements 1 and 2, and is output to the drive circuits 1 and 2 as the modulation signals 1 and 2 with a delay based on the delay adjustment signals 1 and 2. The modulated signal X is also output to the time measurement units 1 and 2, and the time measurement units 1 and 2 start time measurement.

そして駆動回路1、2は、変調信号1、2に基づいて光源1、2を点灯させるための駆動電流1、2を生成し、各光源からの光の一部が投射光学系を介して照射光パルスとして投光される。この際、光源1からの光の残部がミラー1で反射され、PD1に入射される。同様に光源2からの光の残部がミラー2で反射され、PD2に入射される。 Then, the drive circuits 1 and 2 generate drive currents 1 and 2 for lighting the light sources 1 and 2 based on the modulation signals 1 and 2, and a part of the light from each light source is irradiated through the projection optical system. It is projected as an optical pulse. At this time, the rest of the light from the light source 1 is reflected by the mirror 1 and incident on the PD1. Similarly, the rest of the light from the light source 2 is reflected by the mirror 2 and incident on the PD 2.

このとき、PD1、2は、入射された光に基づいて図12に示されるPD信号1、2を時間計測部1、2へ出力する。 At this time, PDs 1 and 2 output PD signals 1 and 2 shown in FIG. 12 to the time measuring units 1 and 2 based on the incident light.

ここで、駆動回路1、2において駆動電流1、2を生成する際に回路遅延を伴うが、回路素子のばらつきにより駆動回路1、2の回路遅延は異なることがある。そのためPD信号1、2は、図12に示されるように、互いに異なるタイミングで時間計測部1、2に入力される。 Here, the drive circuits 1 and 2 are accompanied by a circuit delay when the drive currents 1 and 2 are generated, but the circuit delays of the drive circuits 1 and 2 may differ due to variations in the circuit elements. Therefore, the PD signals 1 and 2 are input to the time measurement units 1 and 2 at different timings as shown in FIG.

次のステップS13では、遅延値1、2を計測する。具体的には、時間計測部1では、PD信号1が入力されると時間計測をストップし、変調信号Xの入力からPD信号1の入力までの時間を遅延値1として調整制御部41Aaへ出力する。遅延値1は図12のtd1となる。時間計測部2では、PD信号2が入力されると時間計測をストップし、変調信号Xの入力からPD信号2の入力までの時間を遅延値2として調整制御部41Aaへ出力する。遅延値2は図12のtd2となる。 In the next step S13, the delay values 1 and 2 are measured. Specifically, the time measurement unit 1 stops the time measurement when the PD signal 1 is input, and outputs the time from the input of the modulation signal X to the input of the PD signal 1 as the delay value 1 to the adjustment control unit 41Aa. To do. The delay value 1 is td1 in FIG. When the PD signal 2 is input, the time measurement unit 2 stops the time measurement, and outputs the time from the input of the modulation signal X to the input of the PD signal 2 as the delay value 2 to the adjustment control unit 41Aa. The delay value 2 is td2 in FIG.

次のステップS14では、調整制御部41Aaが、遅延値1、2が等しいか否かを判断する。具体的には、遅延値1、2が等しいときには計測された遅延値を遅延情報として信号生成部41Abへ出力し、発光タイミングずれ補正処理を終了する。一方、遅延値1、2が異なる場合はS15に移行する。 In the next step S14, the adjustment control unit 41Aa determines whether or not the delay values 1 and 2 are equal. Specifically, when the delay values 1 and 2 are equal, the measured delay value is output as delay information to the signal generation unit 41Ab, and the light emission timing deviation correction process is completed. On the other hand, if the delay values 1 and 2 are different, the process proceeds to S15.

次のステップS15では、光源の発光タイミングを調整する。具体的には、調整制御部41Aaが、遅延値1、2の差に基づいて、遅延調整信号1、2の少なくとも一方の調整を行う。 In the next step S15, the light emission timing of the light source is adjusted. Specifically, the adjustment control unit 41Aa adjusts at least one of the delay adjustment signals 1 and 2 based on the difference between the delay values 1 and 2.

例えば遅延値1が遅延値2よりも大きい場合は遅延調整信号2を大きくし、変調信号2の出力遅延が大きくなるように調整し、遅延値2が遅延値1より大きい場合は遅延調整信号1を大きくし、変調信号1の出力遅延が大きくなるように調整する。また、予め設定された遅延値に遅延値1、2が近づくように(好ましくは一致するように)遅延調整信号1、2を調整しても良い。要は、遅延値1、2の差が小さくなるように遅延調整信号1、2の少なくとも一方を調整すれば良い。 For example, when the delay value 1 is larger than the delay value 2, the delay adjustment signal 2 is increased, and the output delay of the modulated signal 2 is adjusted to be large. When the delay value 2 is larger than the delay value 1, the delay adjustment signal 1 is increased. Is increased so that the output delay of the modulated signal 1 is increased. Further, the delay adjustment signals 1 and 2 may be adjusted so that the delay values 1 and 2 approach (preferably match) the preset delay values. In short, at least one of the delay adjustment signals 1 and 2 may be adjusted so that the difference between the delay values 1 and 2 becomes small.

このようにして、光源1、2の発光タイミングのずれを補正する(抑制する)ことができる。ステップS15が実行されると、ステップS12に戻る。 In this way, the deviation of the light emission timings of the light sources 1 and 2 can be corrected (suppressed). When step S15 is executed, the process returns to step S12.

すなわち、光源1、2の発光タイミングのずれが抑制されるため、光源1、2からの光を重ねて投光する変形例3の距離測定装置1Aにおいても、距離誤差を低減し正確な距離測定を行うことが可能となる。 That is, since the deviation of the light emission timings of the light sources 1 and 2 is suppressed, the distance error is reduced and accurate distance measurement is performed even in the distance measuring device 1A of the modification 3 in which the light from the light sources 1 and 2 is superimposed and projected. It becomes possible to do.

《変形例4》
図14には、実施例4の距離測定装置1Bの構成が概略的に示されている。距離測定装置1Bでは、図14に示されるように、検出手段30Aは単一のPD(フォトダイオード)を有し、タイミング制御手段41Bは単一の時間計測部を有し、調整制御部41Baは遅延値保持部を有している。
<< Modification 4 >>
FIG. 14 schematically shows the configuration of the distance measuring device 1B of the fourth embodiment. In the distance measuring device 1B, as shown in FIG. 14, the detecting means 30A has a single PD (photodiode), the timing control means 41B has a single time measuring unit, and the adjusting control unit 41Ba has a single time measuring unit. It has a delay value holding unit.

また、ここでは、ミラー1は光源1からの光の一部をPDに導き、ミラー2は光源2からの光の一部をPDに導く構成となっている。つまり、光源1からの一部の光も光源2からの一部の光も同一のPDに入射されるようになっている。なお、図14では、2つのミラー1、2が設けられているが、これに代えて、ミラー1、2の機能を兼備する単一のミラーを設けても良い。 Further, here, the mirror 1 guides a part of the light from the light source 1 to the PD, and the mirror 2 guides a part of the light from the light source 2 to the PD. That is, a part of the light from the light source 1 and a part of the light from the light source 2 are incident on the same PD. Although the two mirrors 1 and 2 are provided in FIG. 14, a single mirror having the functions of the mirrors 1 and 2 may be provided instead.

以下に、変形例4の距離測定装置1Bにおける光源1と光源2の発光タイミングのずれを補正する方法(発光タイミングずれ補正処理)について、図15を参照して説明する。図15のフローチャートは、制御装置40Bによって実行される処理アルゴリズムに基づいている。ここでは、発光タイミングずれ補正処理は、駆動回路1、2を構成する回路素子や配線の製造時や経時の性能ばらつきを考慮して定期的に行われるが、不定期(例えば装置起動時)に行っても良い。 Hereinafter, a method of correcting the deviation of the light emission timing between the light source 1 and the light source 2 (light emission timing deviation correction processing) in the distance measuring device 1B of the modified example 4 will be described with reference to FIG. The flowchart of FIG. 15 is based on a processing algorithm executed by the control device 40B. Here, the light emission timing deviation correction processing is performed periodically in consideration of performance variations over time and during manufacturing of the circuit elements and wirings constituting the drive circuits 1 and 2, but irregularly (for example, when the device is started). You may go.

最初のステップS21では、制御装置40Bの調整制御部41Baが、最小遅延となるように遅延調整信号1、遅延調整信号2を出力する。 In the first step S21, the adjustment control unit 41Ba of the control device 40B outputs the delay adjustment signal 1 and the delay adjustment signal 2 so as to have the minimum delay.

次のステップS22では、光源1をパルス点灯する。具体的には、調整制御部41Baが、駆動回路ON信号1を“H”、駆動回路ON信号2を“L”にして光源1のみを点灯可能に設定する。 In the next step S22, the light source 1 is pulse-lit. Specifically, the adjustment control unit 41Ba sets the drive circuit ON signal 1 to “H” and the drive circuit ON signal 2 to “L” so that only the light source 1 can be turned on.

信号生成部41Bbにおいて、図12に示されるようなパルス波形の変調信号Xを生成し出力する。変調信号Xは遅延素子1、2に入力されて遅延調整信号1、2に基づいた遅延を伴って変調信号1、2として駆動回路1、2へ出力される。また、変調信号Xは、時間計測部へも出力され、時間計測部は時間計測を開始する。 The signal generation unit 41Bb generates and outputs a modulated signal X having a pulse waveform as shown in FIG. The modulation signal X is input to the delay elements 1 and 2 and is output to the drive circuits 1 and 2 as the modulation signals 1 and 2 with a delay based on the delay adjustment signals 1 and 2. The modulated signal X is also output to the time measurement unit, and the time measurement unit starts time measurement.

そして、駆動回路1は駆動回路ON信号1が“H”になっていることから変調信号1に基づいて光源1を点灯させるための駆動電流1を生成し、光源1から照射光パルスLe1が射出される。一方、駆動回路2は駆動回路ON信号2が“L”になっていることから駆動電流2の生成を行わず光源2は消灯したままである。光源1からの光は、一部が投射光学系(不図示)を介して投光され、残部がミラー1で反射されPDに入射される。このとき、PDから、入射された光に基づいてPD信号が時間計測部へ出力される。 Then, since the drive circuit ON signal 1 is "H", the drive circuit 1 generates a drive current 1 for lighting the light source 1 based on the modulation signal 1, and the irradiation light pulse Le1 is emitted from the light source 1. Will be done. On the other hand, in the drive circuit 2, since the drive circuit ON signal 2 is “L”, the drive current 2 is not generated and the light source 2 remains off. A part of the light from the light source 1 is projected through the projection optical system (not shown), and the rest is reflected by the mirror 1 and incident on the PD. At this time, the PD signal is output from the PD to the time measuring unit based on the incident light.

次のステップS23では、遅延値1を計測する。具体的には、時間計測部は、PD信号が入力されると時間計測をストップし、変調信号Xの入力からPD信号の入力までの時間を遅延値として調整制御部41Baに出力する。調整制御部41Baは、この遅延値を遅延値保持部で保持する。ここで、遅延値保持部で保持されている遅延値を遅延値1とする。 In the next step S23, the delay value 1 is measured. Specifically, the time measurement unit stops the time measurement when the PD signal is input, and outputs the time from the input of the modulation signal X to the input of the PD signal as a delay value to the adjustment control unit 41Ba. The adjustment control unit 41Ba holds this delay value in the delay value holding unit. Here, the delay value held by the delay value holding unit is set to the delay value 1.

次のステップS24では、光源2をパルス点灯する。具体的には、調整制御部41Baが、駆動回路ON信号1を“L”、駆動回路ON信号2を“H”にして光源2のみを点灯可能に設定する。信号生成部41Bbは、図12に示されるパルス波形の変調信号Xを生成し出力する。変調信号Xは、遅延素子1、2に入力されて遅延調整信号1、2に基づいた遅延を伴って変調信号1、2として駆動回路1、2へ出力される。また、変調信号Xは時間計測部へも出力され、時間計測部は時間計測を開始する。 In the next step S24, the light source 2 is pulse-lit. Specifically, the adjustment control unit 41Ba sets the drive circuit ON signal 1 to “L” and the drive circuit ON signal 2 to “H” so that only the light source 2 can be turned on. The signal generation unit 41Bb generates and outputs a modulated signal X of the pulse waveform shown in FIG. The modulation signal X is input to the delay elements 1 and 2 and is output to the drive circuits 1 and 2 as the modulation signals 1 and 2 with a delay based on the delay adjustment signals 1 and 2. The modulated signal X is also output to the time measurement unit, and the time measurement unit starts time measurement.

そして、駆動回路2は駆動回路ON信号2が“H”になっていることから変調信号2に基づいて光源2を点灯させるための駆動電流2を生成し、光源2から照射光パルスLe2が射出される。一方、駆動回路1は駆動回路ON信号1が“L”になっていることから駆動電流1の生成を行わず光源1は消灯したままである。光源2からの光は、一部が投射光学系を介して投光され、残部がミラー2で反射されPDに入射される。このとき、PDから、入射された光に基づいてPD信号が時間計測部に出力される。 Then, since the drive circuit ON signal 2 is “H”, the drive circuit 2 generates a drive current 2 for lighting the light source 2 based on the modulation signal 2, and the irradiation light pulse Le2 is emitted from the light source 2. Will be done. On the other hand, in the drive circuit 1, since the drive circuit ON signal 1 is “L”, the drive current 1 is not generated and the light source 1 remains off. Part of the light from the light source 2 is projected through the projection optical system, and the rest is reflected by the mirror 2 and incident on the PD. At this time, the PD signal is output from the PD to the time measuring unit based on the incident light.

次のステップS25では、遅延値2を計測する。具体的には、時間計測部は、PD信号が入力されると時間計測をストップし、変調信号Xの入力からPD信号の入力までの時間を遅延値として調整制御部41Baに出力する。ここでの遅延値を遅延値2とする。 In the next step S25, the delay value 2 is measured. Specifically, the time measurement unit stops the time measurement when the PD signal is input, and outputs the time from the input of the modulation signal X to the input of the PD signal as a delay value to the adjustment control unit 41Ba. The delay value here is a delay value 2.

次のステップS26では、遅延値1、2が等しいか否かを判断する。具体的には、調整制御部41Baは、遅延値保持部に保持されている遅延値1とステップS25で計測された遅延値2の比較を行う。比較の結果、遅延値1、2が等しいときには計測された遅延値を遅延情報として信号生成部41Bbへ出力し、発光タイミングずれ補正処理を終了する。一方、比較の結果、遅延値1、2が異なる場合はステップS27に移行する。 In the next step S26, it is determined whether or not the delay values 1 and 2 are equal. Specifically, the adjustment control unit 41Ba compares the delay value 1 held in the delay value holding unit with the delay value 2 measured in step S25. As a result of the comparison, when the delay values 1 and 2 are equal, the measured delay value is output as delay information to the signal generation unit 41Bb, and the light emission timing deviation correction process is completed. On the other hand, if the delay values 1 and 2 are different as a result of the comparison, the process proceeds to step S27.

ステップS27では、光源の発光タイミングを調整する。具体的には、調整制御部41Baが、遅延値1、2の差に基づいて、遅延調整信号1、2の少なくとも一方の調整を行う。 In step S27, the light emission timing of the light source is adjusted. Specifically, the adjustment control unit 41Ba adjusts at least one of the delay adjustment signals 1 and 2 based on the difference between the delay values 1 and 2.

例えば遅延値1が遅延値2よりも大きい場合は遅延調整信号2を大きくし、変調信号2の出力遅延が大きくなるように調整し、遅延値2が遅延値1より大きい場合は遅延調整信号1を大きくし、変調信号1の出力遅延が大きくなるように調整する。また、予め設定された遅延値に遅延値1、2が近づくように(好ましくは一致するように)遅延調整信号1、2を調整しても良い。要は、遅延値1、2の差が小さくなるように遅延調整信号1、2の少なくとも一方を調整すれば良い。 For example, when the delay value 1 is larger than the delay value 2, the delay adjustment signal 2 is increased, and the output delay of the modulated signal 2 is adjusted to be large. When the delay value 2 is larger than the delay value 1, the delay adjustment signal 1 is increased. Is increased so that the output delay of the modulated signal 1 is increased. Further, the delay adjustment signals 1 and 2 may be adjusted so that the delay values 1 and 2 approach (preferably match) the preset delay values. In short, at least one of the delay adjustment signals 1 and 2 may be adjusted so that the difference between the delay values 1 and 2 becomes small.

このようにして、光源1、2の発光タイミングのずれを補正する(抑制する)ことができる。ステップS27が実行されると、ステップS22に戻る。 In this way, the deviation of the light emission timings of the light sources 1 and 2 can be corrected (suppressed). When step S27 is executed, the process returns to step S22.

すなわち、光源1、2の発光タイミングのずれが抑制されるため、光源1、2からの光を重ねて投光する距離測定装置1Bにおいて、距離誤差を低減し正確な距離測定を行うことが可能となる。 That is, since the deviation of the light emission timings of the light sources 1 and 2 is suppressed, it is possible to reduce the distance error and perform accurate distance measurement in the distance measuring device 1B that superimposes and projects the light from the light sources 1 and 2. It becomes.

以上のように、変形例4の距離測定装置1Bでは、光源数より少ない数のPD、時間計測部の構成により、すなわち低コストで高精度の距離測定を実現することができる。 As described above, in the distance measuring device 1B of the modified example 4, it is possible to realize a highly accurate distance measurement at low cost by configuring a number of PDs and a time measuring unit smaller than the number of light sources.

以上説明した変形例3、4の距離測定装置1A、1Bは、複数の光源(例えば2つの光源1、2)及び該複数の光源をそれぞれ駆動する複数の駆動回路(例えば2つの駆動回路1、2)を含む投光系10と、該投光系10から投光され物体で反射された光を受光する受光系20と、複数の光源の発光タイミング(点灯タイミング)のずれを補正する補正系と、を備えている。 The distance measuring devices 1A and 1B of the modified examples 3 and 4 described above include a plurality of light sources (for example, two light sources 1 and 2) and a plurality of drive circuits (for example, two drive circuits 1) for driving the plurality of light sources. A correction system that corrects the deviation between the light emitting system 10 including 2), the light receiving system 20 that receives the light projected from the light projecting system 10 and reflected by the object, and the light emitting timing (lighting timing) of a plurality of light sources. And have.

この場合、複数の光源の発光タイミングのずれが補正された状態で、投光系10から投光され物体で反射された光を受光系20で受光することにより、検出誤差を低減できる。 In this case, the detection error can be reduced by receiving the light projected from the light projecting system 10 and reflected by the object by the light receiving system 20 in a state where the deviation of the light emitting timings of the plurality of light sources is corrected.

この結果、物体までの距離の測定精度を向上できる。 As a result, the accuracy of measuring the distance to the object can be improved.

また、補正系は、複数の光源それぞれからの光の一部を検出する検出手段と、該検出手段での検出結果に基づいてずれを補正する制御装置と、を含む。 Further, the correction system includes a detection means for detecting a part of light from each of the plurality of light sources, and a control device for correcting the deviation based on the detection result by the detection means.

この場合、各光源からの光の一部を検出する検出手段を用いて、複数の光源の発光タイミングのずれを直接的に精度良く補正できる。 In this case, the deviation of the light emission timings of the plurality of light sources can be directly and accurately corrected by using the detection means for detecting a part of the light from each light source.

また、複数の駆動回路には、複数の光源をそれぞれ駆動するための複数の変調信号(例えば変調信号1、2)がそれぞれ入力され、制御装置は、複数の光源それぞれの点灯タイミングと、該光源が点灯されたときの検出手段での検出タイミングに基づいて、変調信号の駆動回路への入力タイミングを調整する調整手段(タイミング制御手段)を含む。 Further, a plurality of modulation signals (for example, modulation signals 1 and 2) for driving the plurality of light sources are input to the plurality of drive circuits, respectively, and the control device controls the lighting timing of each of the plurality of light sources and the light sources. Includes an adjusting means (timing control means) for adjusting the input timing of the modulated signal to the drive circuit based on the detection timing by the detecting means when is lit.

この場合、簡易な構成により、物体までの距離の測定精度を向上できる。 In this case, the measurement accuracy of the distance to the object can be improved by a simple configuration.

また、調整手段は、点灯タイミングと検出タイミングの時間差が光源間で小さくなるように、変調信号の駆動回路への入力タイミングを調整する。 Further, the adjusting means adjusts the input timing of the modulated signal to the drive circuit so that the time difference between the lighting timing and the detection timing becomes small between the light sources.

この場合、変調信号1、2の元となる共通の(単一の)変調信号Xを生成し、該変調信号Xの駆動回路1、2への出力タイミングを調整するだけの簡易な手法により、光源1、2の発光タイミングのずれを補正することができる。 In this case, a simple method of generating a common (single) modulation signal X that is the source of the modulation signals 1 and 2 and adjusting the output timing of the modulation signal X to the drive circuits 1 and 2 is used. It is possible to correct the deviation of the light emission timings of the light sources 1 and 2.

また、調整手段は、点灯タイミングと検出タイミングの時間差に基づいて、変調信号の駆動回路への入力タイミングを調整するための調整信号を生成する調整制御部と、調整信号に応じて変調信号の駆動回路への入力タイミングを調整する調整素子(遅延素子1、2)と、を有することが好ましい。 Further, the adjusting means includes an adjustment control unit that generates an adjustment signal for adjusting the input timing of the modulation signal to the drive circuit based on the time difference between the lighting timing and the detection timing, and drives the modulation signal according to the adjustment signal. It is preferable to have adjusting elements (delay elements 1 and 2) for adjusting the input timing to the circuit.

また、検出手段は、複数の光源(例えば光源1、2)それぞれからの光を導光する、光源の数以下の光学部材(例えばミラー1、2)を有する導光部と、該導光部によって導光された光を受光する、光源の数以下の受光素子(例えばフォトダイオードやフォトトランジスタ)を有する受光部と、を含むことが好ましい。 Further, the detection means includes a light guide unit having an optical member (for example, mirrors 1 and 2) equal to or less than the number of light sources that guides light from each of a plurality of light sources (for example, light sources 1 and 2), and the light guide unit. It is preferable to include a light receiving portion having a light receiving element (for example, a photodiode or a phototransistor) which is equal to or less than the number of light sources for receiving the light guided by the light source.

なお、受光部が光源よりも少ない数の受光素子を有する場合には、制御装置は、光源への変調信号の入力/非入力を光源毎に切り換え可能であることが好ましい。 When the light receiving unit has a smaller number of light receiving elements than the light source, it is preferable that the control device can switch the input / non-input of the modulated signal to the light source for each light source.

また、導光部の光学部材として、ミラーに代えて、光源からの光を透過光と反射光に分岐する分岐素子を用いても良い。この場合、例えば、分岐素子からの透過光を投光し、反射光をPDに入射させることができる。 Further, as the optical member of the light guide unit, a branching element that branches the light from the light source into transmitted light and reflected light may be used instead of the mirror. In this case, for example, the transmitted light from the branching element can be projected and the reflected light can be incident on the PD.

また、導光部は、光学部材(例えばミラーや分岐素子)と受光素子との間の光路上に集光素子(例えば集光レンズや集光ミラー)を有していても良い。 Further, the light guide unit may have a condensing element (for example, a condensing lens or a condensing mirror) on the optical path between the optical member (for example, a mirror or a branch element) and the light receiving element.

また、導光部を設けずに、光源からの光を直接受光素子に入射させても良い。 Further, the light from the light source may be directly incident on the light receiving element without providing the light guide portion.

また、変形例3、4の距離測定方法は、物体までの距離を測定する距離測定方法であって、複数の光源(例えば光源1、2)のうち一の光源(光源1)を点灯させて該一の光源からの光を検出する第1の検出工程と、一の光源の点灯タイミングと第1の検出工程での検出タイミングの時間差である第1の時間差を算出する第1の算出工程と、複数の光源のうち他の光源(光源2)を点灯させて該他の光源からの光を検出する第2の検出工程と、他の光源の点灯タイミングと第2の検出工程での検出タイミングの時間差である第2の時間差を算出する第2の算出工程と、第1及び第2の時間差に基づいて、一及び他の光源の点灯タイミングのずれを補正する工程と、一及び他の光源を点灯させて投光し、物体で反射された光を受光して該物体までの距離を算出する工程と、を含む。 Further, the distance measuring methods of the modifications 3 and 4 are distance measuring methods for measuring the distance to an object, in which one of a plurality of light sources (for example, light sources 1 and 2) is turned on (light source 1). A first detection step of detecting light from the one light source, and a first calculation step of calculating a first time difference which is a time difference between the lighting timing of one light source and the detection timing in the first detection step. , A second detection step of lighting the other light source (light source 2) among the plurality of light sources to detect the light from the other light source, and the lighting timing of the other light source and the detection timing in the second detection step. A second calculation step of calculating the second time difference, which is the time difference of the above, a step of correcting the difference in lighting timing of the first and other light sources based on the first and second time differences, and the first and other light sources. Includes a step of turning on a light source, projecting light, receiving light reflected by an object, and calculating the distance to the object.

この場合、複数の光源の点灯タイミング(発光タイミング)のずれが補正された状態で、投光系10から投光され物体で反射された光を受光系20で受光することにより、検出誤差を低減できる。 In this case, the detection error is reduced by receiving the light projected from the light projecting system 10 and reflected by the object by the light receiving system 20 in a state where the deviation of the lighting timing (light emission timing) of the plurality of light sources is corrected. it can.

この結果、物体までの距離の測定精度を向上できる。 As a result, the accuracy of measuring the distance to the object can be improved.

また、他の光源が複数ある場合、第2の検出工程と第2の算出工程と補正する工程を含むサイクルを他の光源毎に行うことが好ましい。この場合、一の光源と全ての他の光源との間での発光タイミングのずれを補正することができる。 When there are a plurality of other light sources, it is preferable to perform a cycle including a second detection step, a second calculation step, and a correction step for each other light source. In this case, it is possible to correct the deviation of the light emission timing between one light source and all the other light sources.

《変形例5》
図16には、変形例5の距離測定装置の制御装置が有するタイミング制御手段51Aのブロック図が示されている。
<< Modification 5 >>
FIG. 16 shows a block diagram of the timing control means 51A included in the control device of the distance measuring device of the modified example 5.

変形例5のタイミング制御手段51Aでは、図16に示されるように、変調信号1、2をクロック信号に基づいて生成し、変調信号1、2の遅延制御を調整データ1、2に基づいて、クロック単位で制御している。 In the timing control means 51A of the modification 5, as shown in FIG. 16, modulation signals 1 and 2 are generated based on the clock signal, and delay control of the modulation signals 1 and 2 is performed based on the adjustment data 1 and 2. It is controlled in clock units.

詳述すると、タイミング制御手段51Aは、基準クロック信号を生成するクロック生成部51Aaと、駆動回路1、2のオンオフ制御をする駆動回路ON信号1、2と、遅延値1、2に基づいて調整データ1、2を生成する調整制御部51Abと、クロック信号、調整データ1、2、スタート信号に基づいて変調信号1、2を生成し、さらにクロック信号、スタート信号に基づいてタイミング信号A、B、受光データ出力指示信号、距離演算指示信号を生成する信号生成部51Acを含んで構成されている。 More specifically, the timing control means 51A adjusts based on the clock generation unit 51Aa that generates the reference clock signal, the drive circuits ON signals 1 and 2 that control the on / off of the drive circuits 1 and 2, and the delay values 1 and 2. The adjustment control unit 51Ab that generates data 1 and 2 and the modulation signals 1 and 2 are generated based on the clock signal, the adjustment data 1 and 2, and the start signal, and the timing signals A and B are further generated based on the clock signal and the start signal. , A signal generation unit 51Ac that generates a light receiving data output instruction signal and a distance calculation instruction signal.

図17には、信号生成部51Acが、クロック信号、調整データ1、2に基づいて変調信号1、2を生成する方法が示されている。 FIG. 17 shows a method in which the signal generation unit 51Ac generates modulation signals 1 and 2 based on the clock signal and adjustment data 1 and 2.

ここでは、調整データ1が“8”、調整データ2が”10”の場合を、パルス幅が“8”の場合を示している。信号生成部51Acでは、例えばECUからスタート信号が入力されると内臓するスタートカウンタがカウントを始める。カウンタの値が調整データ1の値と同じ“8”になった時点で変調信号1を“H”レベルに変化させる。その後は別のパルス幅カウンタ1でカウントを始めパルス幅の”8“になった時点で”L”レベルに変化させる。パルス幅カウンタ1は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号1を“H”レベルに変化をさせる。これを繰り返して変調信号1を生成する。 Here, the case where the adjustment data 1 is “8” and the adjustment data 2 is “10” is shown, and the case where the pulse width is “8” is shown. In the signal generation unit 51Ac, for example, when a start signal is input from the ECU, the built-in start counter starts counting. When the value of the counter becomes "8", which is the same as the value of the adjustment data 1, the modulation signal 1 is changed to the "H" level. After that, counting is started by another pulse width counter 1, and when the pulse width reaches "8", the level is changed to "L". The pulse width counter 1 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 1 is changed to the "H" level. This is repeated to generate the modulated signal 1.

一方、変調信号2はスタートカウンタのカウント値が調整データ2の値と同じ“10”になった時点で変調信号2を“H”レベルに変化させる。その後は別のパルス幅カウンタ2でカウントを始めパルス幅の”8“になった時点で”L”レベルに変化させる。パルス幅カウンタ2は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号2を“H”レベルに変化をさせる。これを繰り返して変調信号2を生成する。 On the other hand, the modulated signal 2 changes the modulated signal 2 to the “H” level when the count value of the start counter becomes “10”, which is the same as the value of the adjustment data 2. After that, counting is started by another pulse width counter 2, and when the pulse width reaches "8", the level is changed to "L". The pulse width counter 2 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 2 is changed to the "H" level. This is repeated to generate the modulated signal 2.

このように調整データ1、2の値に従って、変調信号1、2が出力されるので、調整データ1、2を調整することで変調信号1、2の出力タイミングを調整することができ、光源1、2の発光タイミングのずれを補正することが可能となる。 Since the modulation signals 1 and 2 are output according to the values of the adjustment data 1 and 2 in this way, the output timing of the modulation signals 1 and 2 can be adjusted by adjusting the adjustment data 1 and 2, and the light source 1 It is possible to correct the deviation of the light emission timing of 2.

以上のように、変調信号1、2をクロック信号を用いてロジック回路で生成しているので、小規模な回路構成で変調信号1、2を生成することができる。 As described above, since the modulation signals 1 and 2 are generated by the logic circuit using the clock signal, the modulation signals 1 and 2 can be generated with a small-scale circuit configuration.

以上説明した変形例5の距離測定装置では、制御装置は、クロックを生成するクロック生成部51Aaと、クロックをカウントするカウンタと、を更に含み、調整手段(タイミング制御手段51A)は、カウンタのカウント値と、複数の光源それぞれの発光タイミングと、該光源が点灯されたときの検出手段での検出タイミングの時間差(各遅延値)に基づいて、変調信号の駆動回路への入力タイミングを調整する。 In the distance measuring device of the modified example 5 described above, the control device further includes a clock generation unit 51Aa for generating a clock and a counter for counting the clock, and the adjusting means (timing control means 51A) counts the counter. The input timing of the modulated signal to the drive circuit is adjusted based on the value, the light emission timing of each of the plurality of light sources, and the time difference (each delay value) of the detection timing by the detection means when the light source is turned on.

《変形例6》
図18は、変形例6の距離測定装置の制御装置が有するタイミング制御手段61Aのブロック図が示されている。変形例6では、図18に示されるように、クロック生成部61Aaに調整データ1、2が入力され、クロック生成部61Aaでクロック1、2が生成され出力されるようになっている。クロック1、2は、調整データ1、2に従って、位相が変化して出力される。
<< Modification 6 >>
FIG. 18 shows a block diagram of the timing control means 61A included in the control device of the distance measuring device of the modified example 6. In the modification 6, as shown in FIG. 18, adjustment data 1 and 2 are input to the clock generation unit 61Aa, and clocks 1 and 2 are generated and output by the clock generation unit 61Aa. The clocks 1 and 2 are output with their phases changed according to the adjustment data 1 and 2.

図19には、信号生成部61Acが、クロック信号1、2、調整データ1、2に基づいて変調信号1、変調信号2を生成する方法が示されている。 FIG. 19 shows a method in which the signal generation unit 61Ac generates the modulation signal 1 and the modulation signal 2 based on the clock signals 1 and 2 and the adjustment data 1 and 2.

ここでは調整データ1が“8”、調整データ2が”10.5”の場合を、パルス幅が“8”の場合を示している。信号生成部61Acでは、例えばECUからスタート信号が入力されると内臓するスタートカウンタ1がクロック1(クロック信号1)でカウントを始める。スタートカウンタ1の値が調整データ1の値と同じ“8”になった時点で変調信号1を“H”レベルに変化させる。その後は別のパルス幅カウンタ1でカウントを始めパルス幅の”8“になった時点で”L”レベルに変化させる。パルス幅カウンタ1は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号1を“H”レベルに変化をさせる。これを繰り返して変調信号1を生成する。 Here, the case where the adjustment data 1 is “8” and the adjustment data 2 is “10.5” is shown, and the case where the pulse width is “8” is shown. In the signal generation unit 61Ac, for example, when a start signal is input from the ECU, the built-in start counter 1 starts counting with the clock 1 (clock signal 1). When the value of the start counter 1 becomes “8”, which is the same as the value of the adjustment data 1, the modulation signal 1 is changed to the “H” level. After that, counting is started by another pulse width counter 1, and when the pulse width reaches "8", the level is changed to "L". The pulse width counter 1 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 1 is changed to the "H" level. This is repeated to generate the modulated signal 1.

一方、変調信号2はクロック2(クロック信号2)に基づいて生成されるが、“10.5”という調整データ2がクロック生成部61Aaに入力されると小数部の“0.5”、つまり1/2クロック分位相が遅れてクロック2が生成されて出力される。これにより図19に示されるようにクロック1とは1/2クロック位相が遅れている。変調信号2はこのクロック2を用いて生成する。信号生成部61Acでは、例えばECUからスタート信号が入力されると内臓するスタートカウンタ2がクロック2でカウントを始める。スタートカウンタ2のカウント値が調整データ2の整数値“10”になった時点で変調信号2を“H”レベルに変化させる。その後は別のパルス幅カウンタ2でカウントを始めパルス幅の”8“になった時点で”L”レベルに変化させる。パルス幅カウンタ2は“1”にリセットされ再びカウントを始めて、“8”になった時点で変調信号2を“H”レベルに変化をさせる。これを繰り返して変調信号2を生成する。 On the other hand, the modulation signal 2 is generated based on the clock 2 (clock signal 2), but when the adjustment data 2 of "10.5" is input to the clock generation unit 61Aa, the fractional part "0.5", that is, Clock 2 is generated and output with a phase delay of 1/2 clock. As a result, as shown in FIG. 19, the clock phase is delayed by 1/2 from the clock 1. The modulation signal 2 is generated by using this clock 2. In the signal generation unit 61Ac, for example, when a start signal is input from the ECU, the built-in start counter 2 starts counting at the clock 2. When the count value of the start counter 2 reaches the integer value “10” of the adjustment data 2, the modulation signal 2 is changed to the “H” level. After that, counting is started by another pulse width counter 2, and when the pulse width reaches "8", the level is changed to "L". The pulse width counter 2 is reset to "1" and starts counting again, and when it reaches "8", the modulated signal 2 is changed to the "H" level. This is repeated to generate the modulated signal 2.

以上のように、クロック生成部61Aaで位相が調整されたクロック1、2を生成し、クロック1で変調信号1を生成し、クロック2で変調信号2を生成することにより、変調信号1、2の出力タイミングをクロック幅の時間より短い精度で合わせることができ、光源1、2の発光タイミングをより精度よく合わせることができるので、ひいては距離測定誤差をより小さくすることができる。 As described above, the clock generation unit 61Aa generates the phase-adjusted clocks 1 and 2, the clock 1 generates the modulation signal 1, and the clock 2 generates the modulation signal 2, thereby generating the modulation signals 1 and 2. The output timing of the above can be adjusted with an accuracy shorter than the time of the clock width, and the emission timings of the light sources 1 and 2 can be adjusted more accurately, so that the distance measurement error can be further reduced.

以上説明した変形例6の距離測定装置では、制御装置は、複数の光源それぞれの発光タイミングと、該光源が点灯されたときの検出手段での検出タイミングの時間差(各遅延値)に基づいて、位相が異なる複数のクロックを生成するクロック生成部61Acと、複数のクロックをそれぞれカウントする複数のカウンタと、を更に含み、調整手段(タイミング制御手段61A)は、複数のカウンタのカウント値と、上記時間差に基づいて、変調信号の駆動回路への入力タイミングを調整する。 In the distance measuring device of the modified example 6 described above, the control device is based on the light emission timing of each of the plurality of light sources and the time difference (each delay value) of the detection timing by the detection means when the light source is turned on. A clock generation unit 61Ac that generates a plurality of clocks having different phases and a plurality of counters that count the plurality of clocks are further included, and the adjusting means (timing control means 61A) includes the count values of the plurality of counters and the above. The input timing of the modulated signal to the drive circuit is adjusted based on the time difference.

なお、上記実施形態及び各変形例では、受光系の光検出器として、エリアセンサを用いているが、これに限られず、例えば1次元配列された複数の受光素子(例えばフォトダイオードやフォトトランジスタ)を含むラインセンサや、単一の受光素子を用いても良い。この場合には、例えば、走査型の投射光学系を用いて、発光タイミングのずれが補正された複数の光源を同時に発光させたときの受光素子の出力信号(波形が略一致)を閾値を基準に二値化して、出力信号が閾値に一致するタイミングに基づいて受光素子での受光タイミングを求め、該受光タイミングと光源の発光タイミングとから物体までの距離を求めても良い。この場合も、検出誤差を低減でき、ひいては物体までの距離の測定精度を向上できる。 In the above embodiment and each modification, an area sensor is used as the photodetector of the light receiving system, but the present invention is not limited to this, and for example, a plurality of light receiving elements (for example, a photodiode or a phototransistor) arranged one-dimensionally are used. A line sensor including the above or a single light receiving element may be used. In this case, for example, using a scanning projection optical system, the output signal (waveforms are substantially the same) of the light receiving element when a plurality of light sources corrected for the deviation of the light emission timing are simultaneously emitted as a reference value. The light receiving timing at the light receiving element may be obtained based on the timing at which the output signal matches the threshold value, and the distance from the light receiving timing and the light emitting timing of the light source to the object may be obtained. In this case as well, the detection error can be reduced, and the measurement accuracy of the distance to the object can be improved.

また、上記実施形態及び各変形例において、投光系は投射光学系を有さなくても良い。すなわち、光源からの光を直接投光しても良い。 Further, in the above-described embodiment and each modification, the projection system does not have to have a projection optical system. That is, the light from the light source may be directly projected.

すなわち、本発明の距離測定装置及び距離測定方法は、TOF(タイム オブ フライト)を利用した距離測定技術全般に広く適用することが可能である。 That is, the distance measuring device and the distance measuring method of the present invention can be widely applied to all distance measuring techniques using TOF (Time of Flight).

また、本発明の距離測定装置及び距離測定方法は、物体の2次元形状や3次元形状を認識する物体認識や、物体の有無を検出する物体検出にも用いることができる。 Further, the distance measuring device and the distance measuring method of the present invention can also be used for object recognition for recognizing a two-dimensional shape or a three-dimensional shape of an object, and object detection for detecting the presence or absence of an object.

また、本発明の距離測定装置は、移動体に搭載される用途に限らず、静止物体に搭載される用途や、装置単独でも用いることができる。 Further, the distance measuring device of the present invention is not limited to the use mounted on a moving body, but can also be used for a purpose mounted on a stationary object or a device alone.

また、上記実施形態の説明で用いた数値、形状等は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 In addition, the numerical values, shapes, and the like used in the description of the above-described embodiment can be appropriately changed without departing from the spirit of the present invention.

以下に、発明者らが上記実施形態及び各変形例を発案するに至った思考プロセスを説明する。 The thinking process that led to the invention of the above-described embodiment and each modified example will be described below.

従来、変調光を対象空間に照射し、該対象空間に存在する対象物から反射してくる光と照射光との位相差から対象物までの距離を求め、各画素の値が距離を表す2次元の距離画像を生成するための距離画像センサ(エリアセンサ)を用いた距離測定装置が知られている。 Conventionally, the target space is irradiated with modulated light, the distance to the target is obtained from the phase difference between the light reflected from the target and the irradiation light existing in the target space, and the value of each pixel represents the distance. A distance measuring device using a distance image sensor (area sensor) for generating a dimensional distance image is known.

この距離測定装置では対象空間に照射する光が強いほど、反射してくる光も強いので距離画像センサの受光信号のSN比が上がり測定精度が良くなる。そのため、対象空間への照射手段として複数の光源を用い、光を重ね合わせることで光強度を強くする方法が知られている。 In this distance measuring device, the stronger the light irradiating the target space, the stronger the reflected light, so that the SN ratio of the received signal of the distance image sensor increases and the measurement accuracy improves. Therefore, a method is known in which a plurality of light sources are used as an irradiation means for the target space and the light intensity is increased by superimposing the light.

例えば、特許文献1(特開2015‐108629号公報)には、複数の光源(レーザダイオード)と複数の駆動回路を用いて、パルス光を照射するレーザレンジファインダを有する光学式測距装置が開示されている。 For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2015-108629) discloses an optical range finder having a laser range finder that irradiates pulsed light using a plurality of light sources (laser diodes) and a plurality of drive circuits. Has been done.

この光学式測距装置では、複数の光源は対応する複数の駆動回路に接続されており、複数の駆動回路に共通の点灯信号(変調信号)をあたえることにより、複数の光源に電流が流れて点灯する。 In this optical ranging device, a plurality of light sources are connected to a plurality of corresponding drive circuits, and by applying a common lighting signal (modulation signal) to the plurality of drive circuits, a current flows through the plurality of light sources. Light.

しかしながら、各駆動回路を構成する回路素子や配線の性能ばらつきにより各駆動回路がスイッチングする(電流を流す)タイミングが異なると、各光源の点灯タイミングが異なってしまう。その結果、重ね合った複数の光の発光時間幅が所望の時間幅より長くなってしまい測定誤差が生じるという課題を発見した。 However, if the switching timing (current flow) of each drive circuit is different due to the performance variation of the circuit elements and wirings constituting each drive circuit, the lighting timing of each light source will be different. As a result, we have found a problem that the emission time width of a plurality of superposed lights becomes longer than the desired time width and a measurement error occurs.

そこで、発明者らは、この課題を解決するために、上記実施形態及び各変形例を発案するに至った。 Therefore, in order to solve this problem, the inventors have come up with the above-described embodiment and each modification.

1、1A、1B…距離測定装置、10…投光系、20…受光系、21…エリアセンサ、30、30A…検出手段、40、40A、40B…制御装置、41…タイミング制御手段(調整手段、制御装置の一部)、42…距離演算部(演算手段、制御装置の一部)、51a、51Aa、61a、61Aa…クロック生成部。 1, 1A, 1B ... Distance measuring device, 10 ... Flooding system, 20 ... Light receiving system, 21 ... Area sensor, 30, 30A ... Detection means, 40, 40A, 40B ... Control device, 41 ... Timing control means (adjustment means) , Part of the control device), 42 ... Distance calculation unit (calculation means, part of the control device), 51a, 51Aa, 61a, 61Aa ... Clock generation unit.

特開2015‐108629号公報JP-A-2015-108629

Claims (19)

複数の光源及び該複数の光源をそれぞれ駆動する複数の駆動回路を含む投光系と、
前記投光系から投光され物体で反射された光を受光する受光系と、
前記複数の光源の発光タイミングのずれを補正する補正系と、を備え、
前記受光系は複数の受光素子を備え、各受光素子は2つの電荷蓄積部を有し、各受光素子は、前記補正系からのタイミング信号に基づき、受光した光によって発生する電荷の蓄積を行い、
前記補正系は、前記発光タイミングと前記タイミング信号とのずれも補正するとともに、前記複数の光源における一の光源を点灯させたときの受光結果に基づいて第1の距離を算出し、前記複数の光源における前記一の光源とは異なる他の光源と前記一の光源とを点灯させたときの受光結果に基づいて第2の距離を算出し、前記第1の距離と前記第2の距離とに基づいて、前記複数の光源の発光タイミングのずれを補正し、前記第1の距離に基づいて前記一の光源の発光タイミングと前記タイミング信号とのずれを補正する、距離測定装置。
A floodlight system including a plurality of light sources and a plurality of drive circuits for driving the plurality of light sources, respectively.
A light receiving system that receives light that is projected from the light projecting system and reflected by an object,
A correction system for correcting the deviation of the light emission timing of the plurality of light sources is provided.
The light receiving system includes a plurality of light receiving elements, each light receiving element has two charge storage units, and each light receiving element accumulates charges generated by the received light based on a timing signal from the correction system. ,
The correction system also corrects the deviation between the light emission timing and the timing signal, and calculates the first distance based on the light receiving result when one light source of the plurality of light sources is turned on, and the plurality of light sources. The second distance is calculated based on the light receiving result when the other light source different from the one light source and the one light source are turned on in the light source, and the first distance and the second distance are set. A distance measuring device that corrects the deviation of the light emission timings of the plurality of light sources based on the above, and corrects the deviation between the light emission timings of the one light source and the timing signal based on the first distance.
前記補正系は、前記受光系での前記受光結果に基づいて前記ずれを補正する制御装置を含むことを特徴とする請求項1に記載の距離測定装置。 The correction system, the distance measuring apparatus according to claim 1, characterized in that it comprises a control device for correcting the deviation based on the light receiving result of the light receiving system. 前記複数の駆動回路には、前記複数の光源をそれぞれ駆動するための複数の変調信号がそれぞれ入力され、
前記制御装置は、
前記受光結果に基づいて、前記物体までの距離を算出する演算手段と、
前記演算手段での算出結果に基づいて、前記変調信号の前記駆動回路への入力タイミングを調整する調整手段と、を含むことを特徴とする請求項2に記載の距離測定装置。
A plurality of modulated signals for driving the plurality of light sources are input to the plurality of drive circuits, respectively.
The control device is
A calculation means for calculating the distance to the object based on the light reception result, and
The distance measuring device according to claim 2, further comprising an adjusting means for adjusting the input timing of the modulated signal to the drive circuit based on the calculation result by the calculation means.
前記調整手段は、前記第1の距離と前記第2の距離に基づいて、前記入力タイミングを調整することを特徴とする請求項3に記載の距離測定装置。 Said adjusting means based on the first distance and the second distance, the distance measuring apparatus according to claim 3, characterized in that for adjusting the input timing. 前記投光系の投光範囲に配置され、前記一の光源の光出力で距離が測定可能な基準反射体を更に備えることを特徴とする請求項4に記載の距離測定装置。 The distance measuring device according to claim 4, further comprising a reference reflector which is arranged in the light projecting range of the light projecting system and whose distance can be measured by the light output of the one light source. 前記調整手段は、
前記第1及び第2の距離に基づいて、前記入力タイミングを調整するための調整信号を生成する調整制御部と、
前記調整信号に応じて前記入力タイミングを調整する調整素子と、を有することを特徴とする請求項4又は5に記載の距離測定装置。
The adjusting means
An adjustment control unit that generates an adjustment signal for adjusting the input timing based on the first and second distances.
The distance measuring device according to claim 4 or 5, further comprising an adjusting element that adjusts the input timing in response to the adjusting signal.
前記制御装置は、
クロックを生成するクロック生成部と、
前記クロックをカウントするカウンタと、を更に含み、
前記調整手段は、前記カウンタのカウント値と、前記第1及び第2の距離に基づいて、前記入力タイミングを調整することを特徴とする請求項4〜6のいずれか一項に記載の距離測定装置。
The control device is
A clock generator that generates a clock and
Further including a counter for counting the clock,
The distance measurement according to any one of claims 4 to 6, wherein the adjusting means adjusts the input timing based on the count value of the counter and the first and second distances. apparatus.
前記制御装置は、
前記第1及び第2の距離に基づいて、位相が異なる複数のクロックを生成するクロック生成部と、
前記複数のクロックをそれぞれカウントする複数のカウンタと、を更に含み、
前記調整手段は、前記複数のカウンタのカウント値と、前記第1及び第2の距離に基づいて、前記入力タイミングを調整することを特徴とする請求項4〜6のいずれか一項に記載の距離測定装置。
The control device is
A clock generator that generates a plurality of clocks having different phases based on the first and second distances,
Further including a plurality of counters for counting the plurality of clocks, respectively.
The adjustment means according to any one of claims 4 to 6, wherein the adjustment means adjusts the input timing based on the count values of the plurality of counters and the first and second distances. Distance measuring device.
前記補正系は、
前記複数の光源それぞれからの光を検出する検出手段と、
前記検出手段での検出結果に基づいて前記ずれを補正する制御装置と、を含むことを特徴とする請求項1に記載の距離測定装置。
The correction system is
A detection means for detecting light from each of the plurality of light sources, and
The distance measuring device according to claim 1, further comprising a control device for correcting the deviation based on the detection result of the detecting means.
前記複数の駆動回路には、前記複数の光源をそれぞれ駆動するための複数の変調信号がそれぞれ入力され、
前記制御装置は、
前記複数の光源それぞれの発光タイミングと、該光源が発光したときの前記検出手段での検出タイミングに基づいて、前記変調信号の前記駆動回路への入力タイミングを調整する調整手段を含むことを特徴とする請求項9に記載の距離測定装置。
A plurality of modulated signals for driving the plurality of light sources are input to the plurality of drive circuits, respectively.
The control device is
It is characterized by including an adjusting means for adjusting the input timing of the modulated signal to the drive circuit based on the light emission timing of each of the plurality of light sources and the detection timing of the detection means when the light source emits light. 9. The distance measuring device according to claim 9.
前記調整手段は、前記発光タイミングと前記検出タイミングの時間差が前記光源間で小さくなるように、前記入力タイミングを調整することを特徴とする請求項10に記載の距離測定装置。 The distance measuring device according to claim 10, wherein the adjusting means adjusts the input timing so that the time difference between the light emitting timing and the detection timing becomes small between the light sources. 前記調整手段は、
前記時間差に基づいて、前記入力タイミングを調整するための調整信号を生成する調整制御部と、
前記調整信号に応じて前記入力タイミングを調整する調整素子と、を有することを特徴とする請求項11に記載の距離測定装置。
The adjusting means
An adjustment control unit that generates an adjustment signal for adjusting the input timing based on the time difference.
The distance measuring device according to claim 11, further comprising an adjusting element that adjusts the input timing in response to the adjusting signal.
前記制御装置は、
クロックを生成するクロック生成部と、
前記クロックをカウントするカウンタと、を更に含み、
前記調整手段は、前記カウンタのカウント値と、前記時間差に基づいて、前記入力タイミングを調整することを特徴とする請求項11又は12に記載の距離測定装置。
The control device is
A clock generator that generates a clock and
Further including a counter for counting the clock,
The distance measuring device according to claim 11, wherein the adjusting means adjusts the input timing based on the count value of the counter and the time difference.
前記制御装置は、
前記時間差に基づいて、位相が異なる複数のクロックを生成するクロック生成部と、
前記複数のクロックをそれぞれカウントする複数のカウンタと、を更に含み、
前記調整手段は、前記複数のカウンタのカウント値と、前記時間差に基づいて、前記入力タイミングを調整することを特徴とする請求項11又は12に記載の距離測定装置。
The control device is
A clock generator that generates a plurality of clocks having different phases based on the time difference,
Further including a plurality of counters for counting the plurality of clocks, respectively.
The distance measuring device according to claim 11 or 12, wherein the adjusting means adjusts the input timing based on the count values of the plurality of counters and the time difference.
前記検出手段は、
前記複数の光源それぞれからの光の一部を導光する、前記光源の数以下の光学部材を有する導光部と、
前記導光部によって導光された光を受光する、前記光源の数以下の検出用受光素子を有する受光部と、を含むことを特徴とする請求項9〜14のいずれか一項に記載の距離測定装置。
The detection means
A light guide unit having an optical member equal to or less than the number of the light sources, which guides a part of the light from each of the plurality of light sources.
The invention according to any one of claims 9 to 14, further comprising a light receiving unit having a detection light receiving element equal to or less than the number of the light sources, which receives the light guided by the light guide unit. Distance measuring device.
前記受光系は、複数の画素に対応する複数の前記受光素子を有するエリアセンサを含むことを特徴とする請求項1〜15のいずれか一項に記載の距離測定装置。 The distance measuring device according to any one of claims 1 to 15, wherein the light receiving system includes an area sensor having a plurality of the light receiving elements corresponding to a plurality of pixels. 請求項1〜16のいずれか一項に記載の距離測定装置と、
前記距離測定装置が搭載された移動体と、を備える移動体装置。
The distance measuring device according to any one of claims 1 to 16 .
A mobile device including a mobile body on which the distance measuring device is mounted.
請求項1に記載の距離測定装置を用いて物体までの距離を測定する距離測定方法であって、
複数の光源のうち一の光源を点灯させて基準反射体に光を照射する第1の照射工程と、
前記第1の照射工程で照射され前記基準反射体で反射された光を受光して該基準反射体までの距離を測定する第1の測定工程と、
前記複数の光源のうち前記一の光源と他の光源を点灯させて前記基準反射体に光を照射する第2の照射工程と、
前記第2の照射工程で照射され前記基準反射体で反射された光を受光して該基準反射体までの距離を測定する第2の測定工程と、
前記第1及び第2の測定工程での測定結果に基づいて、前記一及び他の光源の点灯タイミングのずれを補正する工程と、
前記一及び他の光源を点灯させて投光し、前記物体で反射された光を受光して該物体までの距離を算出する工程と、を含む距離測定方法。
A distance measuring method for measuring a distance to an object using the distance measuring device according to claim 1.
The first irradiation step of illuminating the reference reflector by turning on one of the plurality of light sources, and
The first measuring step of receiving the light irradiated in the first irradiation step and reflected by the reference reflector and measuring the distance to the reference reflector.
A second irradiation step of lighting the one light source and the other light source among the plurality of light sources to irradiate the reference reflector with light, and
A second measuring step of receiving the light irradiated in the second irradiation step and reflected by the reference reflector and measuring the distance to the reference reflector.
Based on the measurement results in the first and second measurement steps, the step of correcting the deviation of the lighting timing of the first and other light sources and the step of correcting the deviation of the lighting timing of the first and other light sources.
A distance measuring method including a step of turning on the one and other light sources, projecting light, receiving light reflected by the object, and calculating the distance to the object.
請求項1に記載の距離測定装置を用いて物体までの距離を測定する距離測定方法であって、
複数の光源のうち一の光源を点灯させて該一の光源からの光を検出する第1の検出工程と、
前記一の光源の発光タイミングと前記第1の検出工程での検出タイミングの時間差である第1の時間差を算出する第1の算出工程と、
前記複数の光源のうち他の光源を点灯させて該他の光源からの光を検出する第2の検出工程と、
前記他の光源の発光タイミングと前記第2の検出工程での検出タイミングの時間差である第2の時間差を算出する第2の算出工程と、
前記第1及び第2の時間差に基づいて、前記一及び他の光源の発光タイミングのずれを補正する工程と、
前記一及び他の光源を点灯させて投光し、前記物体で反射された光を受光して該物体までの距離を算出する工程と、を含む距離測定方法。
A distance measuring method for measuring a distance to an object using the distance measuring device according to claim 1.
A first detection step of turning on one of a plurality of light sources to detect light from the one light source, and
A first calculation step for calculating a first time difference, which is a time difference between the light emission timing of the one light source and the detection timing in the first detection step, and
A second detection step of turning on another light source among the plurality of light sources to detect light from the other light source, and
A second calculation step of calculating a second time difference, which is a time difference between the light emission timing of the other light source and the detection timing in the second detection step, and
A step of correcting the deviation of the light emission timing of the first and other light sources based on the first and second time differences, and
A distance measuring method including a step of turning on the one and other light sources, projecting light, receiving light reflected by the object, and calculating the distance to the object.
JP2016033079A 2016-01-13 2016-02-24 Distance measuring device, mobile device and distance measuring method Active JP6805504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/403,594 US10596964B2 (en) 2016-01-13 2017-01-11 Distance measurement device, moveable device, and distance measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004192 2016-01-13
JP2016004192 2016-01-13

Publications (2)

Publication Number Publication Date
JP2017125829A JP2017125829A (en) 2017-07-20
JP6805504B2 true JP6805504B2 (en) 2020-12-23

Family

ID=59364789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033079A Active JP6805504B2 (en) 2016-01-13 2016-02-24 Distance measuring device, mobile device and distance measuring method

Country Status (1)

Country Link
JP (1) JP6805504B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6855746B2 (en) 2016-10-18 2021-04-07 株式会社リコー Distance measuring device, surveillance camera, 3D measuring device, moving object, robot and distance measuring method
JP6848364B2 (en) 2016-11-10 2021-03-24 株式会社リコー Distance measuring device, mobile body, robot, 3D measuring device, surveillance camera and distance measuring method
JP6988071B2 (en) 2016-11-16 2022-01-05 株式会社リコー Distance measuring device and distance measuring method
EP3674747B1 (en) * 2017-08-22 2023-04-12 Sony Group Corporation Signal processing device, signal processing method, program, moving body, and signal processing system
EP3564704B1 (en) * 2017-08-28 2023-01-18 Sony Semiconductor Solutions Corporation Distance measuring device and distance measuring method
EP3514574A1 (en) * 2018-01-19 2019-07-24 Koninklijke Philips N.V. Time-of-flight imaging system for autonomous movable objects
JP2020153909A (en) * 2019-03-22 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device and ranging device
JP2020204600A (en) * 2019-06-19 2020-12-24 株式会社デンソー Optical distance measuring device
WO2021060144A1 (en) * 2019-09-23 2021-04-01 ソニーセミコンダクタソリューションズ株式会社 Distance measuring system
WO2023190278A1 (en) * 2022-04-01 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 Light detection device
WO2023190277A1 (en) * 2022-04-01 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 Light detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310679A (en) * 1999-02-24 2000-11-07 Denso Corp Semiconductor light projector and distance measuring instrument
JP3993045B2 (en) * 2001-08-31 2007-10-17 ペンタックス株式会社 3D image input device
JP4981780B2 (en) * 2008-10-20 2012-07-25 本田技研工業株式会社 Ranging system and ranging method
EP2315045B1 (en) * 2009-10-22 2012-08-01 Sick Ag Measurement of distances or changes in distances
JP5623121B2 (en) * 2010-04-27 2014-11-12 キヤノン株式会社 Subject information acquisition device
EP2395369A1 (en) * 2010-06-09 2011-12-14 Thomson Licensing Time-of-flight imager.
JP2013076645A (en) * 2011-09-30 2013-04-25 Stanley Electric Co Ltd Distance image generation apparatus and distance image generation method
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
WO2015189895A1 (en) * 2014-06-09 2015-12-17 ギガフォトン株式会社 Laser system

Also Published As

Publication number Publication date
JP2017125829A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6805504B2 (en) Distance measuring device, mobile device and distance measuring method
US11662433B2 (en) Distance measuring apparatus, recognizing apparatus, and distance measuring method
JP6852416B2 (en) Distance measuring device, mobile body, robot, device and 3D measuring method
US10596964B2 (en) Distance measurement device, moveable device, and distance measuring method
JP2018077071A (en) Distance measuring device, monitoring camera, three-dimensional measurement device, moving body, robot, method for setting condition of driving light source, and method for measuring distance
US20170307359A1 (en) Distance measuring device and method for determining a distance
JP2018077143A (en) Distance measuring device, moving body, robot, three-dimensional measurement device, monitoring camera, and method for measuring distance
US11531104B2 (en) Full waveform multi-pulse optical rangefinder instrument
KR20140079733A (en) Distance measurement apparatus, distance measurement method, and computer-readable storage medium
JP2012021949A (en) Measuring apparatus
JP7135350B2 (en) OBJECT DETECTION DEVICE, MOBILE DEVICE, AND OBJECT DETECTION METHOD
JP4761751B2 (en) Distance measuring device
JP2018009917A (en) Distance measurement device, mobile body, robot, three-dimensional measurement device, and distance measurement method
US20150006106A1 (en) Optical Sensor
KR102367123B1 (en) Controlling method in distance measuring device using TOF
US20160266254A1 (en) Electro-Optical Distance Meter
KR101260280B1 (en) Device and method for optically scanning 3 dimensional object
KR102567502B1 (en) Time of flight apparatus
JP5216673B2 (en) Light receiver for distance meter and distance meter
US20160337633A1 (en) 3d camera module
KR20220065589A (en) light detecting device, LIDAR device including the light detecting device and method for measuring distance
CN111788495A (en) Light detection device, light detection method, and laser radar device
JP6850575B2 (en) Optical ranging device
US20230204727A1 (en) Distance measurement device and distance measurement method
JP2008191099A (en) Light projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151