JP6788375B2 - Light emitting device and lighting device - Google Patents

Light emitting device and lighting device Download PDF

Info

Publication number
JP6788375B2
JP6788375B2 JP2016095130A JP2016095130A JP6788375B2 JP 6788375 B2 JP6788375 B2 JP 6788375B2 JP 2016095130 A JP2016095130 A JP 2016095130A JP 2016095130 A JP2016095130 A JP 2016095130A JP 6788375 B2 JP6788375 B2 JP 6788375B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
lit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016095130A
Other languages
Japanese (ja)
Other versions
JP2017204551A (en
Inventor
貴好 山根
貴好 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016095130A priority Critical patent/JP6788375B2/en
Publication of JP2017204551A publication Critical patent/JP2017204551A/en
Application granted granted Critical
Publication of JP6788375B2 publication Critical patent/JP6788375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

本発明は、複数の発光素子を備えた発光装置に関する。 The present invention relates to a light emitting device including a plurality of light emitting elements.

発光装置では、白色光など所望の色の発光を得るために、発光素子と、発光素子からの光の一部を波長変換する蛍光体とを組み合わせたものが多用されている。近年、所定の間隙を開けて、複数の発光素子を面内に一次元あるいは二次元的に配列し、隣合う発光素子の間隙を封止樹脂で充填した発光装置が、照明機器、照明灯具、あるいは舞台演出用の照明などに利用されている。
このような発光装置は、複数の発光素子を個別に点消灯させる機能を有し、街灯のような照明機器に用いた場合、人が歩いている道筋のみを照らすことができ、車両用灯具に用いた場合、対向車や人にまぶしさを与えないために人への照射部のみを暗くすることができる。舞台演出用の照明に用いた場合、一部のみを照らしたり、一部のみを暗くしたりすることができる。そのため、点灯時には均一に照らし、発光素子の一部を消灯する場合は、消灯部分を完全に暗くしたいという要望がある。
In the light emitting device, a combination of a light emitting element and a phosphor that converts a part of the light from the light emitting element into wavelength is often used in order to obtain light emission of a desired color such as white light. In recent years, a light emitting device in which a plurality of light emitting elements are arranged one-dimensionally or two-dimensionally in a plane with a predetermined gap and the gap between adjacent light emitting elements is filled with a sealing resin has been used for lighting equipment, lighting equipment, and the like. Alternatively, it is used for lighting for stage production.
Such a light emitting device has a function of turning on and off a plurality of light emitting elements individually, and when used in a lighting device such as a street light, it can illuminate only the path on which a person is walking, and can be used as a vehicle lighting tool. When used, it is possible to darken only the irradiation portion for a person so as not to give glare to an oncoming vehicle or a person. When used for stage production lighting, it can illuminate only part of it or dim only part of it. Therefore, there is a desire to illuminate the light uniformly when it is lit, and to completely darken the light-extinguishing portion when a part of the light emitting element is turned off.

しかし、上記発光装置では、発光素子間の距離が大きい場合、投影像には、隣接する発光素子同士の間にわずかな暗部(暗線)が形成されることがある。この暗部の形成を抑制するためには、配列された素子間の距離は小さくする必要がある。一方、配列された素子間の距離を小さくした場合、一部の発光素子を消灯させた時に、点灯している発光素子から消灯させた発光素子に向かって、光が導波し、消灯させた発光素子の側面に到達する。この導波光により、消灯させた発光素子周辺領域から光が放出され、消灯させた発光素子周辺領域が完全な暗部になりにくい。そのため、点灯している発光素子と消灯させた発光素子との境界(カットオフ)が投影像において不明確となってしまう。 However, in the above light emitting device, when the distance between the light emitting elements is large, a slight dark portion (dark line) may be formed between the adjacent light emitting elements in the projected image. In order to suppress the formation of this dark portion, it is necessary to reduce the distance between the arranged elements. On the other hand, when the distance between the arranged elements is reduced, when some of the light emitting elements are turned off, the light is waveguideed from the lit light emitting element toward the turned off light emitting element, and the light is turned off. It reaches the side surface of the light emitting element. Due to this waveguide light, light is emitted from the region around the light emitting element that has been turned off, and the region around the light emitting element that has been turned off is unlikely to become a completely dark part. Therefore, the boundary (cutoff) between the light emitting element that is lit and the light emitting element that is turned off becomes unclear in the projected image.

特許文献1は、所定の間隙を開けて配列した複数の発光素子を備えた発光装置の技術を開示している。発光素子の側面は、発光層からの発光光の一部を透過させる半透光性を有する半透光膜で覆われている。一つの発光素子の側面の半透光膜は、隣接する他の発光素子から素子間領域を導波した光を反射させて素子間領域から光を取り出させ、かつ導波光の素子側面への到達を防止する。これにより、特許文献1の発光装置は、投影像において、発光素子点灯時には素子間領域の暗線形成を防止し、消灯時にはカットオフを明確にする。 Patent Document 1 discloses a technique of a light emitting device including a plurality of light emitting elements arranged with a predetermined gap. The side surface of the light emitting element is covered with a semipermeable membrane having a semipermeable membrane that transmits a part of the light emitted from the light emitting layer. The semitransparent film on the side surface of one light emitting element reflects the light waveguideed in the inter-element region from another adjacent light emitting element to extract the light from the inter-element region, and reaches the side surface of the waveguide light. To prevent. As a result, the light emitting device of Patent Document 1 prevents the formation of dark lines in the inter-element region when the light emitting element is lit, and makes the cutoff clear when the light emitting element is turned off.

特開2015−177021号公報JP-A-2015-177021

しかしながら、特許文献1の発光装置では、個々の発光装置の側面を半透光膜で覆う必要があるため、製造工程が複雑になる。 However, in the light emitting device of Patent Document 1, the side surface of each light emitting device needs to be covered with a semipermeable membrane, which complicates the manufacturing process.

本発明の目的は、簡素な構成でありながら、複数の発光素子の少なくとも一部が消灯している場合に、点灯している発光素子と消灯している発光素子との境界(カットオフ)を投影像において明確にする発光装置を提供することである。 An object of the present invention is to provide a boundary (cutoff) between a light emitting element that is lit and a light emitting element that is turned off when at least a part of a plurality of light emitting elements is turned off, although the configuration is simple. It is to provide a light emitting device that makes clear in a projected image.

上記課題を解決するために、本発明の発光装置は、基板と、基板上に間隙をあけて配列された複数の発光素子と、複数の発光素子の間に充填された光散乱性樹脂と、を備える。複数の発光素子の少なくとも一つの周囲の領域の光散乱性樹脂は、サーモクロミック材料を含む。 In order to solve the above problems, the light emitting device of the present invention includes a substrate, a plurality of light emitting elements arranged with a gap on the substrate, and a light scattering resin filled between the plurality of light emitting elements. To be equipped. The light scattering resin in at least one peripheral region of the plurality of light emitting devices includes a thermochromic material.

本発明によれば、簡素な構成を用いて、個別に点消灯する複数の発光素子の少なくとも一部が消灯している場合に、投影像におけるカットオフを明確にできる。 According to the present invention, it is possible to clarify the cutoff in the projected image when at least a part of the plurality of light emitting elements that are individually turned on and off is turned off by using a simple configuration.

(a)は、全部の発光素子が点灯している場合の一例としての本実施形態の発光装置1の上面構造の概略および光の進路を示す説明図であり、(b)は、図(a)のA−A´断面構造の概略および光の進路を示す説明図である。(A) is an explanatory view showing the outline of the upper surface structure of the light emitting device 1 of the present embodiment and the path of light as an example when all the light emitting elements are lit, and FIG. It is explanatory drawing which shows the outline of the cross-sectional structure of AA'of () and the path of light. (a)は、中央に配置された発光素子が消灯した場合の、図1(a)の発光装置の上面構造の概略および光の進路を示す説明図であり、(b)は、図(a)のA−A´断面構造の概略および光の進路を示す説明図である。(A) is an explanatory view showing the outline of the upper surface structure of the light emitting device of FIG. 1 (a) and the path of light when the light emitting element arranged at the center is turned off, and FIG. 1 (b) is an explanatory view showing the path of light. It is explanatory drawing which shows the outline of the cross-sectional structure of AA'of () and the path of light. (a)は、全部の発光素子が消灯している場合の一例としての本実施形態の発光装置1の上面図であり、(b)は、図(a)のA−A´断面図である。(A) is a top view of the light emitting device 1 of the present embodiment as an example when all the light emitting elements are turned off, and (b) is a cross-sectional view taken along the line AA'of FIG. (A). ..

以下、本発明の実施形態について、図面を参照して説明する。なお、全図において、同一機能を有するものは同一の符号をつけ、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, those having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.

<第一実施形態>
まず、図1および図2を用いて第一実施形態の発光装置1に係る構成の概略および発光素子の側面から発光された光の進路について説明する。
<First Embodiment>
First, the outline of the configuration according to the light emitting device 1 of the first embodiment and the path of the light emitted from the side surface of the light emitting element will be described with reference to FIGS. 1 and 2.

本発明の発光装置1は、基板70と、基板70上に互いの側面が間隙sをあけるように配列された複数の発光素子10と、複数の発光素子10の間に充填された光散乱性樹脂20と、を備える。複数の発光素子10の少なくとも一つ(発光素子11)の周囲の領域の光散乱性樹脂20は、サーモクロミック材料を含む。 The light emitting device 1 of the present invention includes a substrate 70, a plurality of light emitting elements 10 arranged on the substrate 70 so that side surfaces thereof have a gap s, and a light scattering property filled between the plurality of light emitting elements 10. The resin 20 is provided. The light scattering resin 20 in the region around at least one of the plurality of light emitting elements 10 (light emitting element 11) contains a thermochromic material.

サーモクロミック材料30は、発光素子11の点灯時に発光素子11の熱により到達する温度において、発光素子11の光に対して透明であり、発光素子11の消灯時の温度では発光素子11の光を透過しないものを用いる。 The thermochromic material 30 is transparent to the light of the light emitting element 11 at the temperature reached by the heat of the light emitting element 11 when the light emitting element 11 is lit, and emits the light of the light emitting element 11 at the temperature when the light emitting element 11 is turned off. Use a non-transparent material.

光散乱性樹脂20は、発光素子10の光を散乱させる光散乱剤と発光素子10の光に対して透明であるバインダー樹脂とを混合したものを用いる。 As the light scattering resin 20, a mixture of a light scattering agent that scatters the light of the light emitting element 10 and a binder resin that is transparent to the light of the light emitting element 10 is used.

発光素子10は上面および側面から光を発する素子であり、LED素子、EL素子等の所望の素子を用いることができる。 The light emitting element 10 is an element that emits light from the upper surface and the side surface, and a desired element such as an LED element or an EL element can be used.

このような発光装置1において、すべての発光素子10が点灯している場合、発光素子10の上面および側面から光が発せられる。発光素子10の側面から発せられる光40は、光散乱性樹脂20に入射し、その内部で四方八方に散乱される。散乱された光のうち一部は、間隙sをあけて隣接する発光素子10方向に導波する光(導波光)43となる。導波光43の一部は光散乱性樹脂20で散乱され、他の一部は到達した発光素子10の側面で反射され、いずれも光散乱性樹脂20上面に向かう光44となる。点灯時にはサーモクロミック材料30は光に対して透明性を有するため、側面からの光40の散乱、導波、反射を阻止しない(図1)。よって、発光装置1の上面全体から光が出射される。
一方、図2(a)、(b)のように、一部の発光素子11を消灯させ、残りの発光素子10を点灯させた場合、消灯している発光素子11の周囲のサーモクロミック材料30は温度が低下し、光を透過しないため、光を透過しない遮光領域31が形成される(図2)。このため、点灯している発光素子10からの導波光43は、遮光領域31を透過できず、発光素子11の側面へも到達できない。よって、消灯している発光素子11およびその周囲のサーモクロミック材料30から光が上方に出射されないため、投影像における点灯している発光素子10およびその周囲領域とのカットオフが明確となる。
In such a light emitting device 1, when all the light emitting elements 10 are lit, light is emitted from the upper surface and the side surface of the light emitting element 10. The light 40 emitted from the side surface of the light emitting element 10 is incident on the light scattering resin 20 and scattered in all directions inside the light scattering resin 20. A part of the scattered light becomes light (waveguided light) 43 that is guided in the direction of the adjacent light emitting element 10 with a gap s. A part of the waveguide light 43 is scattered by the light scattering resin 20, and the other part is reflected by the side surface of the light emitting element 10 that has reached, and all of them become the light 44 toward the upper surface of the light scattering resin 20. Since the thermochromic material 30 is transparent to light when lit, it does not block the scattering, waveguide, and reflection of the light 40 from the side surface (FIG. 1). Therefore, light is emitted from the entire upper surface of the light emitting device 1.
On the other hand, as shown in FIGS. 2A and 2B, when some of the light emitting elements 11 are turned off and the remaining light emitting elements 10 are turned on, the thermochromic material 30 around the light emitting element 11 that is turned off is turned on. As the temperature drops and light is not transmitted, a light-shielding region 31 that does not transmit light is formed (FIG. 2). Therefore, the waveguide light 43 from the lit light emitting element 10 cannot pass through the light shielding region 31 and cannot reach the side surface of the light emitting element 11. Therefore, since the light is not emitted upward from the light emitting element 11 that is turned off and the thermochromic material 30 around the light emitting element 11, the cutoff between the light emitting element 10 that is turned off and the surrounding region thereof in the projected image becomes clear.

図1から図3を参照して、さらに、本実施形態の構成について詳しく説明する。 The configuration of the present embodiment will be described in detail with reference to FIGS. 1 to 3.

本実施形態の発光装置1は、上述の基板70と、複数の発光素子10(11)と、光散乱性樹脂20に加えて、基板70上に設けられた枠材80と、複数の発光素子10(11)の上面および光散乱性樹脂20の上面に配置された波長変換層60と、を備える。枠材80は、最も外側に配列された発光素子10の周囲に間隔をあけて設けられている。波長変換層60の側面は枠材80に覆われている。本実施形態では、すべての発光素子が個々に点消灯することができるように制御された駆動回路に接続されている。また、すべての発光素子10(11)の間の間隙sにはサーモクロミック材料30を含有する光散乱性樹脂20が充填されている。 The light emitting device 1 of the present embodiment includes the above-mentioned substrate 70, a plurality of light emitting elements 10 (11), a light scattering resin 20, a frame material 80 provided on the substrate 70, and a plurality of light emitting elements. A wavelength conversion layer 60 arranged on the upper surface of 10 (11) and the upper surface of the light scattering resin 20 is provided. The frame material 80 is provided at intervals around the light emitting elements 10 arranged on the outermost side. The side surface of the wavelength conversion layer 60 is covered with a frame member 80. In this embodiment, all the light emitting elements are connected to a drive circuit controlled so that they can be turned on and off individually. Further, the gaps s between all the light emitting elements 10 (11) are filled with the light scattering resin 20 containing the thermochromic material 30.

サーモクロミック材料30としては、発光素子10(11)の熱により発光素子10(11)の光の透過率が可逆的に変化する材料を用いる。例えば、発光素子10(11)の点灯時の温度では透明性を有して光を透過し、発光素子10(11)の消灯時の温度では黒色に着色して光の透過を妨げる材料を用いる。一例としては温度に依存して色を着色から透明(無色)へと変化するロイコ染料(例えば、株式会社記録素材総合研究所のOR−30やOR−60等)を用いることができる。
光散乱性樹脂20に対するサーモクロミック材料30の濃度は、発光素子10が点灯時に透明性を有して光を透過し、かつ消灯時に遮光するように設定する。
サーモクロミック材料30の発光素子10の点灯時における屈折率は、光散乱性樹脂20を構成するバインダー樹脂の屈折率と同程度であることが光透過性が高まるため好ましい。
As the thermochromic material 30, a material whose light transmittance of the light emitting element 10 (11) is reversibly changed by the heat of the light emitting element 10 (11) is used. For example, a material is used that is transparent and transmits light at the temperature at which the light emitting element 10 (11) is lit, and is colored black at the temperature at which the light emitting element 10 (11) is extinguished to prevent light transmission. .. As an example, a leuco dye (for example, OR-30 or OR-60 of Recording Materials Research Institute Co., Ltd.) that changes its color from colored to transparent (colorless) depending on the temperature can be used.
The concentration of the thermochromic material 30 with respect to the light scattering resin 20 is set so that the light emitting element 10 has transparency when it is lit, transmits light, and blocks light when it is extinguished.
It is preferable that the refractive index of the thermochromic material 30 when the light emitting element 10 is lit is about the same as the refractive index of the binder resin constituting the light scattering resin 20 because the light transmission is enhanced.

光散乱性樹脂20の光散乱剤としては、酸化チタン、酸化亜鉛などを用いることができる。バインダー樹脂に対する光散乱剤の含有量は、発光素子10の側面から出射された光40を導波させながらその一部を散乱して、光散乱性樹脂20の上面から均一な分布で出射できるように設定する。
バインダー樹脂としては、透明性および耐熱性を有するものであればよく、例えば、ジメチルシリコーン(信越化学工業(株)製)を用いることができる。バインダー樹脂の屈折率は、波長変換層60の屈折率と同程度あるいはそれより小さいことが好ましい。これにより、光散乱性樹脂20の上面からの光を効率よく波長変換層60に入射させることができる。
As the light scattering agent of the light scattering resin 20, titanium oxide, zinc oxide, or the like can be used. The content of the light scattering agent in the binder resin is such that a part of the light 40 emitted from the side surface of the light emitting element 10 is dispersed while being waveguideed so that the light can be emitted from the upper surface of the light scattering resin 20 in a uniform distribution. Set to.
The binder resin may be any one having transparency and heat resistance, and for example, dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd.) can be used. The refractive index of the binder resin is preferably about the same as or smaller than the refractive index of the wavelength conversion layer 60. As a result, the light from the upper surface of the light scattering resin 20 can be efficiently incident on the wavelength conversion layer 60.

発光素子10(11)の一例として、所定の波長の青色光を発するLED素子を用いる。図2(a)の例では、これらの発光素子10(11)は、基板70上に、所定の間隙sをあけて、二次元方向に正方マトリックス状(3行×3列)に配置されている。発光素子10の配列は、目的の配光が得られるように定める。間隔sは、発光素子10と発光素子10との間の位置の投影像に暗線が生じない距離であって、発光素子10からの熱が周囲のサーモクロミック材料30に伝導してその変色温度に到達することにより遮光領域31が生じる程度の距離が必要である。 As an example of the light emitting element 10 (11), an LED element that emits blue light having a predetermined wavelength is used. In the example of FIG. 2A, these light emitting elements 10 (11) are arranged in a square matrix shape (3 rows × 3 columns) in the two-dimensional direction with a predetermined gap s on the substrate 70. There is. The arrangement of the light emitting elements 10 is determined so that the desired light distribution can be obtained. The interval s is a distance at which a dark line does not occur in the projected image of the position between the light emitting element 10 and the light emitting element 10, and the heat from the light emitting element 10 is conducted to the surrounding thermochromic material 30 to reach the discoloration temperature. A distance is required so that the light-shielding region 31 is generated by reaching the light-shielding region 31.

波長変換層60は、複数の発光素子10(11)の上面および光散乱性樹脂20の上面全体を覆っており、波長変換層60の上面が発光装置1の光取り出し面となる。波長変換層60は、典型的には、YAG系蛍光体、SiAlON系蛍光体などの蛍光体をシリコーン樹脂、エポキシ樹脂、無機バインダーなどの透光性樹脂に分散させて硬化させた層である。あるいは、蛍光ガラスや蛍光セラミックを用いることも可能である。本実施形態では、YAG系蛍光体を使用する。 The wavelength conversion layer 60 covers the entire upper surfaces of the plurality of light emitting elements 10 (11) and the light scattering resin 20, and the upper surface of the wavelength conversion layer 60 serves as a light extraction surface of the light emitting device 1. The wavelength conversion layer 60 is typically a layer obtained by dispersing a fluorescent substance such as a YAG-based phosphor or a SiAlON-based phosphor in a translucent resin such as a silicone resin, an epoxy resin, or an inorganic binder and curing the layer. Alternatively, fluorescent glass or fluorescent ceramic can be used. In this embodiment, a YAG-based phosphor is used.

基板70は、AlN製の基板であり、Au等の導電性金属で配線パターンが形成されている。発光素子10(11)がフェイスアップ型のLED素子である場合、発光素子10(11)上面の一部に配置される、給電用の電極パッドは、例えば、金製のワイヤー(不図示)を用いて基板70の配線パターンに接続される。配線パターンおよびワイヤーを介して、個々の発光素子10(11)への電流の供給を制御することにより、個々の発光素子10(11)の点消灯が制御される。 The substrate 70 is a substrate made of AlN, and the wiring pattern is formed of a conductive metal such as Au. When the light emitting element 10 (11) is a face-up type LED element, the power feeding electrode pad arranged on a part of the upper surface of the light emitting element 10 (11) is, for example, a gold wire (not shown). It is connected to the wiring pattern of the substrate 70 using. By controlling the supply of current to the individual light emitting elements 10 (11) via the wiring pattern and the wire, the turning on and off of the individual light emitting elements 10 (11) is controlled.

枠材80は、光散乱性樹脂20および波長変換層60を形成する樹脂を注入する際の注入枠として用いられるが、省略することも可能である。枠材80の材料としては、セラミック、樹脂等を用いることができる。 The frame material 80 is used as an injection frame when injecting the light scattering resin 20 and the resin forming the wavelength conversion layer 60, but it can be omitted. As the material of the frame material 80, ceramic, resin or the like can be used.

次に、すべての発光素子10(11)が消灯している場合(図3)、すべての発光素子10(11)が点灯している場合(図1)および、一部の発光素子11が消灯している場合(図2)の本実施形態の発光装置1の各部の動作を説明する。なお、一例として、65℃以下で黒色に着色し、70℃以上で透明になるサーモクロミック材料30を用いて説明する。 Next, when all the light emitting elements 10 (11) are turned off (FIG. 3), when all the light emitting elements 10 (11) are turned on (FIG. 1), and when some of the light emitting elements 11 are turned off. The operation of each part of the light emitting device 1 of the present embodiment in this case (FIG. 2) will be described. As an example, the thermochromic material 30 which is colored black at 65 ° C. or lower and becomes transparent at 70 ° C. or higher will be described.

すべての発光素子10(11)が消灯している場合(図3(a)、(b))、光散乱性樹脂20内のサーモクロミック材料30は、室温により65℃より低い温度になるため、黒色を呈する。 When all the light emitting elements 10 (11) are turned off (FIGS. 3A and 3B), the temperature of the thermochromic material 30 in the light scattering resin 20 becomes lower than 65 ° C. depending on the room temperature. It is black.

すべての発光素子10(11)が点灯している場合(図1(a)、(b))、発光素子10(11)の上面および側面からの光(青色光)50、40が発光される。発光による発光素子10(11)の熱により、光散乱性樹脂20に含まれるサーモクロミック材料30の温度が上昇し、温度が70℃に達すると、サーモクロミック材料の色は黒色から透明(無色)に変わる。これにより、波長変換層60へ向かう発光素子10(11)の側面からの光40の透過が阻害されない。
発光素子10(11)の上面から発せられる光50は波長変換層60に入射し、一部が蛍光体により黄色光に波長変換される。一方、発光素子10(11)の側面から発せられる光40は、光散乱性樹脂20に入射し、一部が光散乱剤により散乱されながら導波する導波光43となって、隣り合う発光素子10(11)に向かう。光散乱性樹脂20により散乱された光は、光散乱性樹脂20内部から波長変換層60に向かう光41となる。隣り合う発光素子10(11)に到達した光44はその側面で反射されて波長変換層60に向かう。発光素子10(11)の側面からの光は発光素子10(11)の上面からの光50とともに最終的に波長変換層60に入射する。
そのため、発光素子10(11)の上面および光散乱性樹脂20の上面からほぼ一様な青色光が波長変換層60へ入射する。波長変換層60では、蛍光体により青色光の一部が黄色の蛍光に変換され、変換された黄色蛍光と残りの青色光が混合される。これにより、波長変換層60の上面から外部へ白色光が出射される。
When all the light emitting elements 10 (11) are lit (FIGS. 1A and 1B), the light (blue light) 50 and 40 from the upper surface and the side surface of the light emitting element 10 (11) are emitted. .. The temperature of the thermochromic material 30 contained in the light scattering resin 20 rises due to the heat of the light emitting element 10 (11) due to light emission, and when the temperature reaches 70 ° C., the color of the thermochromic material changes from black to transparent (colorless). It changes to. As a result, the transmission of the light 40 from the side surface of the light emitting element 10 (11) toward the wavelength conversion layer 60 is not hindered.
The light 50 emitted from the upper surface of the light emitting element 10 (11) is incident on the wavelength conversion layer 60, and a part of the light is converted into yellow light by the phosphor. On the other hand, the light 40 emitted from the side surface of the light emitting element 10 (11) becomes a waveguide light 43 that is incident on the light scattering resin 20 and is waveguided while being partially scattered by a light scattering agent, and is adjacent to the light emitting elements. Head to 10 (11). The light scattered by the light scattering resin 20 becomes the light 41 directed from the inside of the light scattering resin 20 toward the wavelength conversion layer 60. The light 44 that has reached the adjacent light emitting elements 10 (11) is reflected by the side surface thereof and heads toward the wavelength conversion layer 60. The light from the side surface of the light emitting element 10 (11) finally enters the wavelength conversion layer 60 together with the light 50 from the upper surface of the light emitting element 10 (11).
Therefore, substantially uniform blue light is incident on the wavelength conversion layer 60 from the upper surface of the light emitting element 10 (11) and the upper surface of the light scattering resin 20. In the wavelength conversion layer 60, a part of the blue light is converted into yellow fluorescence by the phosphor, and the converted yellow fluorescence and the remaining blue light are mixed. As a result, white light is emitted from the upper surface of the wavelength conversion layer 60 to the outside.

次に、中央の発光素子11のみ消灯させた場合(図2(a)、(b))、発光素子11の温度が低下するため、中央の発光素子11の周囲の光散乱性樹脂20に含有されているサーモクロミック材料30の温度が低下し、65℃以下になるとサーモクロミック材料は黒色に変化する。これにより、中央の発光素子11の周囲には、黒色に着色しているサーモクロミック材料30を含有する光散乱性樹脂20による遮光領域31が形成される。一方、発光素子11を囲む発光素子10は点灯し続けているため、これらの発光素子10周囲の光散乱性樹脂20は透明なままであり、側面からの光40は中央の発光素子11の側面に向かって光散乱性樹脂20内を伝搬する導波光43となる。しかしながら、発光素子11の周囲には遮光領域31が形成されているため、導波光43の遮光領域31で吸収され、発光素子11の側面へ到達しない。これにより、発光素子11の周囲の領域からは光が出射されず、消灯させた発光素子11およびその周辺領域を完全に消灯させることができる。 Next, when only the central light emitting element 11 is turned off (FIGS. 2A and 2B), the temperature of the light emitting element 11 drops, so that the light scattering resin 20 around the central light emitting element 11 contains the light scattering element 11. When the temperature of the thermochromic material 30 is lowered to 65 ° C. or lower, the thermochromic material turns black. As a result, a light-shielding region 31 made of the light-scattering resin 20 containing the thermochromic material 30 colored in black is formed around the central light-emitting element 11. On the other hand, since the light emitting element 10 surrounding the light emitting element 11 continues to light, the light scattering resin 20 around these light emitting elements 10 remains transparent, and the light 40 from the side surface is the side surface of the central light emitting element 11. The waveguide light 43 propagates in the light scattering resin 20 toward the light scattering resin 20. However, since the light-shielding region 31 is formed around the light-emitting element 11, it is absorbed by the light-shielding region 31 of the waveguide light 43 and does not reach the side surface of the light-emitting element 11. As a result, no light is emitted from the region around the light emitting element 11, and the light emitting element 11 and its peripheral region that have been turned off can be completely turned off.

本実施形態によれば、複数の発光素子10の一部(発光素子11)を消灯させている場合、その周囲領域のサーモクロミック材料30が黒色に着色し、遮光領域31を形成することにより、投影像におけるカットオフが明確になる。また、すべての発光素子10(11)が点灯している場合には、サーモクロミック材料30が透明になることにより、光散乱性樹脂20の上面からの出射される光の量が低減されないため、発光素子10(11)の上面および光散乱性樹脂20の上面からほぼ一様の光を出射することができる。 According to the present embodiment, when a part of the plurality of light emitting elements 10 (light emitting element 11) is turned off, the thermochromic material 30 in the surrounding region is colored black to form the light shielding region 31. The cutoff in the projected image becomes clear. Further, when all the light emitting elements 10 (11) are lit, the amount of light emitted from the upper surface of the light scattering resin 20 is not reduced because the thermochromic material 30 becomes transparent. Almost uniform light can be emitted from the upper surface of the light emitting element 10 (11) and the upper surface of the light scattering resin 20.

サーモクロミック材料30の変色温度は、上記実施形態では65℃に設定したが、発光素子10の発熱量および周辺の温度雰囲気などを考慮して決定することが好ましい。また、変色温度はサーモクロミック材料30の分子構造や配合によって制御することができる。 Although the discoloration temperature of the thermochromic material 30 is set to 65 ° C. in the above embodiment, it is preferably determined in consideration of the calorific value of the light emitting element 10 and the ambient temperature atmosphere. Further, the discoloration temperature can be controlled by the molecular structure and composition of the thermochromic material 30.

発光素子10(11)は、所定の波長の青色光を発するLED素子であれば、フェイスダウン型などを用いてよい。 As the light emitting element 10 (11), a face-down type or the like may be used as long as it is an LED element that emits blue light having a predetermined wavelength.

サーモクロミック材料30が、光を散乱させる機能をあわせもつ場合は、光散乱剤を兼用させてもよい。 When the thermochromic material 30 also has a function of scattering light, a light scattering agent may also be used.

上述の説明では、温度に依存して透過率が変わるサーモクロミック材料30の場合を説明したが、舞台照明光源に用いるなど、発光装置1の用途によっては、温度に依存して色が変わるサーモクロミック材料30を使用することもできる。 In the above description, the case of the thermochromic material 30 whose transmittance changes depending on the temperature has been described, but the thermochromic whose color changes depending on the temperature depending on the application of the light emitting device 1 such as used as a stage lighting light source. Material 30 can also be used.

光散乱性樹脂20に用いるバインダー樹脂として、高温で透明性を有し、低温で遮光するような、温度に依存して可逆的に透過率が変化する熱応答性高分子樹脂を用いてもよい。この場合、サーモクロミック材料30を使用せずに、熱応答性高分子樹脂と光散乱剤とを組み合わせたものを光散乱性樹脂20として用いることができる。 As the binder resin used for the light scattering resin 20, a heat-responsive polymer resin having transparency at a high temperature and light-shielding at a low temperature, whose transmittance changes reversibly depending on the temperature, may be used. .. In this case, a combination of the heat-responsive polymer resin and the light scattering agent can be used as the light scattering resin 20 without using the thermochromic material 30.

本実施形態では、すべての発光素子10間の間隙sがサーモクロミック材料30を含む光散乱性樹脂20で充填されている場合を説明したが、個別に消灯する発光素子10(11)が決まっている場合、その発光素子11の周囲の間隙sがサーモクロミック材料30を含む光散乱性樹脂20で充填されていればよい。また、本実施形態では、発光素子10が二次元方向に正方マトリックス状に配列する場合を説明したが、これに限定されず、発光素子10は、一次元方向に配列していてもよい。 In the present embodiment, the case where the gaps s between all the light emitting elements 10 are filled with the light scattering resin 20 containing the thermochromic material 30 has been described, but the light emitting elements 10 (11) to be individually turned off are determined. If so, the gap s around the light emitting element 11 may be filled with the light scattering resin 20 containing the thermochromic material 30. Further, in the present embodiment, the case where the light emitting elements 10 are arranged in a square matrix in the two-dimensional direction has been described, but the present invention is not limited to this, and the light emitting elements 10 may be arranged in the one-dimensional direction.

次に本実施形態の発光装置1の製造方法の一例を説明する。 Next, an example of the manufacturing method of the light emitting device 1 of the present embodiment will be described.

配線パターンが印字されたAlN製基板70上に、一辺が300mmの9個の青色発光素子10を所定の間隙sをあけて二次元方向に正方マトリックス状(3行×3列)になる位置に実装する。 On the AlN substrate 70 on which the wiring pattern is printed, nine blue light emitting elements 10 having a side of 300 mm are arranged in a square matrix shape (3 rows × 3 columns) in the two-dimensional direction with a predetermined gap s. Implement.

次に、青色発光素子10の電極パッドとAlN製基板70の配線パターンとに金ワイヤーを用いてワイヤーボンディングを行い、発光素子10と基板70とを電気的に接続する。 Next, wire bonding is performed between the electrode pad of the blue light emitting element 10 and the wiring pattern of the AlN substrate 70 using a gold wire, and the light emitting element 10 and the substrate 70 are electrically connected.

次いで、最も外側に配置されている発光素子10の周囲に間隔をあけて、枠材80を配置する。 Next, the frame member 80 is arranged at intervals around the light emitting element 10 arranged on the outermost side.

その後、所定量の散乱剤を含んだ光散乱性樹脂20に、所定量のサーモクロミック材料30を均一に分散させた硬化前の樹脂ペーストを用意する。用意した樹脂ペーストを、枠材80と枠材80側の発光素子10の側面との間に注入し、かつ隣接する発光素子10間の間隙sに充填するように注入する。注入した樹脂ペーストを所定の条件(加熱、紫外線照射等)で硬化する。これにより、すべての発光素子10の間に充填されているサーモクロミック材料30含有光散乱性樹脂20を形成する。 Then, a resin paste before curing is prepared in which a predetermined amount of the thermochromic material 30 is uniformly dispersed in the light scattering resin 20 containing a predetermined amount of the scattering agent. The prepared resin paste is injected between the frame material 80 and the side surface of the light emitting element 10 on the frame material 80 side, and is injected so as to fill the gap s between the adjacent light emitting elements 10. The injected resin paste is cured under predetermined conditions (heating, ultraviolet irradiation, etc.). As a result, the thermochromic material 30-containing light scattering resin 20 packed between all the light emitting elements 10 is formed.

次いで、黄色蛍光体を所定の濃度で分散させた、硬化前の透明樹脂(透明樹脂ペースト)を用意し、透明樹脂ペーストをディスペンサ―を用いてすべての青色発光素子10上面、硬化した光散乱性樹脂20の上面、および枠材80の側面を覆うように塗布し、所定の硬化条件(加熱、紫外線照射など)で硬化させ、波長変換層60を形成する。 Next, a transparent resin (transparent resin paste) before curing, in which the yellow phosphor is dispersed at a predetermined concentration, is prepared, and the transparent resin paste is applied to all the upper surfaces of the blue light emitting elements 10 using a dispenser, and the cured light scattering property. It is applied so as to cover the upper surface of the resin 20 and the side surface of the frame material 80, and is cured under predetermined curing conditions (heating, ultraviolet irradiation, etc.) to form the wavelength conversion layer 60.

上述の製造方法は、すべての発光素子10間の間隙sがサーモクロミック材料を含む光散乱性樹脂20で充填される場合を説明したが、点消灯する発光素子10(11)の周囲の間隙sのみをサーモクロミック材料含有光散乱性樹脂20で充填する場合は、上述の光散乱性樹脂20を形成する工程おいて、サーモクロミック材料含有樹脂ペーストとは別にサーモクロミック材料を含まない散乱性樹脂ペーストを用意し、点消灯する発光素子10(11)の周囲の間隙以外の間隙を、サーモクロミック材料を含まない樹脂ペーストで充填する工程が追加される。 In the above-mentioned manufacturing method, the case where the gaps s between all the light emitting elements 10 are filled with the light scattering resin 20 containing the thermochromic material has been described, but the gaps around the light emitting elements 10 (11) that turn on and off are s. When only the thermochromic material-containing light-scattering resin 20 is filled, in the step of forming the above-mentioned light-scattering resin 20, a scattering resin paste that does not contain a thermochromic material separately from the thermochromic material-containing resin paste Is prepared, and a step of filling the gaps other than the gaps around the light emitting element 10 (11) that is turned on and off with a resin paste containing no thermochromic material is added.

本実施形態の発光装置1は、基板70をさらに金属基板(例えば、Cu製)に搭載することができる。この場合、基板70は金属基板に金属製(例えば、Ag)フィラーを含む接着剤を用いて接着させ、基板70の配線パターンと金属基板の配線パターンとは金ワイヤーを用いてワイヤーボンディングされる。発光装置1を金属基板に搭載させることにより、発光素子10の熱を効率よく金属基板に伝導させて、発光素子10の熱引き効率を高めることができる。 In the light emitting device 1 of the present embodiment, the substrate 70 can be further mounted on a metal substrate (for example, made of Cu). In this case, the substrate 70 is bonded to the metal substrate by using an adhesive containing a metal (for example, Ag) filler, and the wiring pattern of the substrate 70 and the wiring pattern of the metal substrate are wire-bonded by using a gold wire. By mounting the light emitting device 1 on a metal substrate, the heat of the light emitting element 10 can be efficiently conducted to the metal substrate, and the heat drawing efficiency of the light emitting element 10 can be improved.

以上説明した本発明の発光装置は、発光アレイ、LEDアレイなどの光源として、あるいは、一般照明、街路灯、ヘッドランプ、舞台用照明など照明装置の光源として用いることができる。 The light emitting device of the present invention described above can be used as a light source for a light emitting array, an LED array, or the like, or as a light source for a lighting device such as general lighting, a street light, a headlamp, or a stage lighting.

1・・・発光装置、10・・・発光素子、20・・・光散乱性樹脂、30・・・サーモクロミック材料、60・・・波長変換層、70・・・基板、s・・・間隙

1 ... light emitting device, 10 ... light emitting element, 20 ... light scattering resin, 30 ... thermochromic material, 60 ... wavelength conversion layer, 70 ... substrate, s ... gap

Claims (6)

基板と、前記基板上に間隙をあけて配列された複数の発光素子と、前記複数の発光素子の間に充填された光散乱性樹脂と、を備えた発光装置であって、
前記複数の発光素子のうち少なくとも一つの発光素子である第1の発光素子は、その周囲の領域の前記光散乱性樹脂が、サーモクロミック材料を含み、
前記サーモクロミック材料は、その温度が変色温度に到達すると光の透過率が可逆的に変化する材料であり、前記第1の発光素子の点灯時に前記第1の発光素子の熱により到達する温度において透明であり、前記第1の発光素子の消灯時の温度では他の前記発光素子から発せられた光を遮光して前記第1の発光素子に到達させないものであり、
前記複数の発光素子のうちの前記第1の発光素子と、前記第1の発光素子に隣接する第2の発光素子との距離は、前記第1の発光素子および前記第2の発光素子が点灯している場合には、前記第1の発光素子と前記第2の発光素子との間における前記サーモクロミック材料が透明となる温度に達し、前記第1の発光素子および前記第2の発光素子のいずれか一方のみが点灯している場合には、消灯している前記発光素子の周囲の前記サーモクロミック材料が透明となる温度に達せず、点灯している発光素子からの光を遮光する遮光領域を生じる距離であることを特徴とする発光装置。
A light emitting device including a substrate, a plurality of light emitting elements arranged with a gap on the substrate, and a light scattering resin filled between the plurality of light emitting elements.
In the first light emitting element, which is at least one of the plurality of light emitting elements, the light scattering resin in the surrounding region contains a thermochromic material.
The thermochromic material is a material in which the light transmission rate changes reversibly when the temperature reaches the discoloration temperature, and at a temperature reached by the heat of the first light emitting element when the first light emitting element is lit. It is transparent, and at the temperature at which the first light emitting element is turned off, the light emitted from the other light emitting element is blocked and does not reach the first light emitting element .
The distance between the first light emitting element and the second light emitting element adjacent to the first light emitting element among the plurality of light emitting elements is such that the first light emitting element and the second light emitting element are lit. If this is the case, the temperature at which the thermochromic material between the first light emitting element and the second light emitting element becomes transparent is reached, and the first light emitting element and the second light emitting element become transparent. When only one of them is lit, the thermochromic material around the luminescent element that is lit does not reach a temperature at which it becomes transparent, and a light-shielding region that blocks light from the lit light-emitting element. A light emitting device characterized by a distance that causes
請求項のいずれか一つの請求項に記載の発光装置であって、
前記複数の発光素子および前記光散乱性樹脂の上面に、前記発光素子から発せられた光の少なくとも一部を波長変換する波長変換層が配置されていることを特徴とする発光装置。
A light emitting device according to any one of claims 1,
A light emitting device characterized in that a wavelength conversion layer that converts at least a part of the light emitted from the light emitting element is arranged on the upper surface of the plurality of light emitting elements and the light scattering resin.
請求項1または請求項2に記載の発光装置であって、
前記サーモクロミック材料は、前記光を遮光する際の温度では黒色であることを特徴とする発光装置。
The light emitting device according to claim 1 or 2 .
The thermochromic material is a light emitting device characterized in that it is black at a temperature at which the light is blocked.
請求項1からのいずれか一つの請求項に記載の発光装置であって、
前記サーモクロミック材料が含有された前記光散乱性樹脂が周囲に配置された前記発光素子は、個別に消灯可能であることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 3 .
A light emitting device characterized in that the light emitting elements in which the light scattering resin containing the thermochromic material is arranged around the light emitting elements can be individually extinguished.
請求項1からのいずれか一つの請求項に記載の発光装置を用いる照明装置。 A lighting device using the light emitting device according to any one of claims 1 to 4 . 基板と、
前記基板上に間隙をあけて配置され独立して点消灯可能な第1の発光素子および第2の発光素子と、
前記間隙に位置し、前記第1の発光素子および前記第2の発光素子の側面を覆う光散乱性樹脂と、
前記第1の発光素子、前記第2の発光素子および前記光散乱性樹脂層の上面を覆う波長変換層と
を備えた発光装置であって、
前記光散乱性樹脂は、光の透過率が温度に応じて可逆的に変化するサーモクロミック材料または熱応答性高分子樹脂を含み、前記第1の発光素子および前記第2の発光素子のうち一方が点灯し他方が消灯している場合、点灯している前記発光素子の光を遮光して消灯している前記発光素子に到達させない構成であり、
前記サーモクロミック材料は、室温においては着色し、前記第1の発光素子および前記第2の発光素子の何れかを点灯させた時に点灯した発光素子の周囲の前記光散乱性樹脂が到達する温度においては、前記着色状態から光透過状態となる変色温度を有する材料であり、
前記熱応答性高分子樹脂は、低温で遮光し、前記第1の発光素子もしくは前記第2の発光素子の何れかを点灯させた時に点灯した発光素子の周囲の前記光散乱性樹脂が到達する高温においては透明性を有する材料であり、
前記波長変換層は、蛍光体を透光性樹脂に分散した層、蛍光ガラスもしくは蛍光セラミックからなり、少なくとも前記第1の発光素子および前記第2の発光素子から発せられた光の一部を異なる色の光に変換して上面から外部に出射し、
前記第1の発光素子と前記第2の発光素子は隣接しており、前記第1の発光素子と前記第2の発光素子との距離は、前記第1の発光素子および前記第2の発光素子が点灯している場合には、前記第1の発光素子と前記第2の発光素子との間における前記サーモクロミック材料が透明となる温度に達し、前記第1の発光素子および前記第2の発光素子のいずれか一方のみが点灯している場合には、消灯している前記発光素子の周囲の前記サーモクロミック材料が透明となる温度に達せず、点灯している発光素子からの光を遮光する遮光領域を生じる距離であることを特徴とする発光装置。
With the board
A first light emitting element and a second light emitting element, which are arranged on the substrate with a gap and can be turned on and off independently,
A light-scattering resin located in the gap and covering the side surfaces of the first light emitting element and the second light emitting element,
A light emitting device including the first light emitting element, the second light emitting element, and a wavelength conversion layer covering the upper surface of the light scattering resin layer.
The light-scattering resin contains a thermochromic material or a heat-responsive polymer resin whose light transmittance changes reversibly with temperature, and is one of the first light emitting element and the second light emitting element. When is lit and the other is off, the light of the lit light emitting element is blocked so that it does not reach the lit light emitting element.
The thermochromic material is colored at room temperature, and at a temperature reached by the light scattering resin around the light emitting element that is turned on when either the first light emitting element or the second light emitting element is turned on. Is a material having a discoloration temperature that changes from the colored state to the light transmitting state.
The thermosetting polymer resin is shielded from light at a low temperature, and the light scattering resin around the light emitting element that is turned on when either the first light emitting element or the second light emitting element is turned on reaches. It is a material that is transparent at high temperatures.
The wavelength conversion layer is made of a layer in which a phosphor is dispersed in a translucent resin, fluorescent glass or fluorescent ceramic, and at least a part of the light emitted from the first light emitting element and the second light emitting element is different. Converts to colored light and emits it from the top surface to the outside ,
The first light emitting element and the second light emitting element are adjacent to each other, and the distance between the first light emitting element and the second light emitting element is the distance between the first light emitting element and the second light emitting element. When is lit, the temperature at which the thermochromic material between the first light emitting element and the second light emitting element becomes transparent is reached, and the first light emitting element and the second light emitting element are emitted. When only one of the elements is lit, the thermochromic material around the illuminating element that is lit does not reach a temperature at which the thermochromic material becomes transparent, and the light from the lit light emitting element is blocked. A light emitting device characterized by a distance that creates a light-shielding area .
JP2016095130A 2016-05-11 2016-05-11 Light emitting device and lighting device Active JP6788375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095130A JP6788375B2 (en) 2016-05-11 2016-05-11 Light emitting device and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095130A JP6788375B2 (en) 2016-05-11 2016-05-11 Light emitting device and lighting device

Publications (2)

Publication Number Publication Date
JP2017204551A JP2017204551A (en) 2017-11-16
JP6788375B2 true JP6788375B2 (en) 2020-11-25

Family

ID=60322489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095130A Active JP6788375B2 (en) 2016-05-11 2016-05-11 Light emitting device and lighting device

Country Status (1)

Country Link
JP (1) JP6788375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220156660A (en) 2017-12-21 2022-11-25 루미리즈 홀딩 비.브이. Lighting device
US11557703B2 (en) * 2017-12-21 2023-01-17 Lumileds Llc Light intensity adaptive LED sidewalls

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395103U (en) * 1986-12-11 1988-06-20
JP2004239935A (en) * 2003-02-03 2004-08-26 Inax Corp Thermosensitive color-changing light emitting device
US9793247B2 (en) * 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
JP4744178B2 (en) * 2005-04-08 2011-08-10 シャープ株式会社 Light emitting diode
JP5459685B2 (en) * 2008-09-23 2014-04-02 コーニンクレッカ フィリップス エヌ ヴェ Lighting device with thermally changing reflective element
KR20120029097A (en) * 2010-09-16 2012-03-26 엘지이노텍 주식회사 Thermochromism light emitting device package and illumination device having the same
JP2012169189A (en) * 2011-02-15 2012-09-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
JP5629630B2 (en) * 2011-04-08 2014-11-26 スタンレー電気株式会社 Optical semiconductor device
DE102011084406B3 (en) * 2011-10-13 2013-04-11 Osram Gmbh Conversion element and arrangement with at least one light emitting diode and a conversion element
CN104344329A (en) * 2014-10-27 2015-02-11 立达信绿色照明股份有限公司 Thermochromic LED (Light-emitting Diode) lamp

Also Published As

Publication number Publication date
JP2017204551A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US7498734B2 (en) Light emitting device with wavelength converted by phosphor
JP5440064B2 (en) Lighting device
JP6186904B2 (en) Light emitting device
JP5196711B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4873963B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN101971376B (en) Semiconductor arrangement
JP6331389B2 (en) Light emitting device
JP5092866B2 (en) Display unit and manufacturing method thereof
JP5810301B2 (en) Lighting device
JP2019050209A (en) Light emitting device
DE112010001153T5 (en) LED module with improved light output
DE112007000775B4 (en) Light-emitting device
JP2013051375A (en) Light-emitting device
JP2007266356A (en) Light-emitting device and illuminator using the same
JP4671745B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
TW201119092A (en) LED device manufacturing method
JP2010225791A (en) Semiconductor light emitting device
KR102607320B1 (en) Light-emitting device
JP2008053702A (en) Light-emitting device, and lighting device
JP6788375B2 (en) Light emitting device and lighting device
CN106887507B (en) Light emitting device and method for manufacturing the same
JP6683000B2 (en) Light emitting device and manufacturing method thereof
JP4800669B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP5613475B2 (en) Light emitting device package and light emitting device package group including the same
JP2012174939A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201030

R150 Certificate of patent or registration of utility model

Ref document number: 6788375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250