JP6781535B2 - Obstacle determination device and obstacle determination method - Google Patents

Obstacle determination device and obstacle determination method Download PDF

Info

Publication number
JP6781535B2
JP6781535B2 JP2015147358A JP2015147358A JP6781535B2 JP 6781535 B2 JP6781535 B2 JP 6781535B2 JP 2015147358 A JP2015147358 A JP 2015147358A JP 2015147358 A JP2015147358 A JP 2015147358A JP 6781535 B2 JP6781535 B2 JP 6781535B2
Authority
JP
Japan
Prior art keywords
measurement space
ground
obstacle
vehicle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147358A
Other languages
Japanese (ja)
Other versions
JP2017026535A (en
Inventor
達朗 黒田
達朗 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015147358A priority Critical patent/JP6781535B2/en
Priority to US15/218,646 priority patent/US10093312B2/en
Publication of JP2017026535A publication Critical patent/JP2017026535A/en
Application granted granted Critical
Publication of JP6781535B2 publication Critical patent/JP6781535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、障害物判定装置及び障害物判定方法に関する。 The present invention relates to an obstacle determination device and an obstacle determination method.

センサ情報を利用して自己の動作を決定し、自律的に行動する自律走行装置(自動走行装置とも呼ばれる)が開発されている。例えば光学式の測距装置(測距センサ)は、測定範囲内に存在する物体との距離を計測することができ、1次元又は2次元の距離データマップを取得することができるため、自律走行装置が障害物を検知して回避するための安全装置として用いられている。 An autonomous driving device (also called an automatic driving device) has been developed that uses sensor information to determine its own movement and acts autonomously. For example, an optical distance measuring device (distance measuring sensor) can measure the distance to an object existing in the measurement range and can acquire a one-dimensional or two-dimensional distance data map, and thus autonomously travel. The device is used as a safety device to detect and avoid obstacles.

自律走行装置のような移動体が障害物を検知するための構成に関して、例えば特許文献1には、デプスセンサと、デプスセンサにより取得された距離画像に基づいてデプスセンサの俯角を推定する俯角推定部と、上記俯角、上記デプスセンサの高さ、及び上記距離画像の距離に基づいて路面に存在する障害物を検出する検出部と、を備えた障害物検出装置が開示されている。この障害物検出装置は、移動体の走行時にデプスセンサが揺れて俯角が変動しても、移動体が走行する路面における障害物を検出することができる。 Regarding the configuration for a moving body such as an autonomous traveling device to detect an obstacle, for example, Patent Document 1 describes a depth sensor, a depression angle estimation unit that estimates the depression angle of the depth sensor based on a distance image acquired by the depth sensor, and the like. An obstacle detection device including a detection unit for detecting an obstacle existing on a road surface based on the depression angle, the height of the depth sensor, and the distance of the distance image is disclosed. This obstacle detection device can detect an obstacle on the road surface on which the moving body travels even if the depth sensor shakes and the depression angle fluctuates while the moving body travels.

特開2013−254474号公報Japanese Unexamined Patent Publication No. 2013-254474

測距装置を利用して障害物を検出する構成では、測距装置によって物体との距離を計測することができるものの、測距装置による計測範囲(計測空間領域)内に地面が含まれる場合、地面と検出すべき障害物とを区別して検出することができない。地面と障害物とを区別して検出するためには、例えば測距装置と地面との相対角度と計測距離とに基づいて、計測点が地面かどうかを判別する必要がある。しかしながら、この方法では、車体及び測距装置に揺れが生じた場合や地面の傾斜が変化する位置の手前に到達した場合に、測距装置と地面との相対角度が変動するため、精確に判別することが困難になる。 In the configuration that detects obstacles using a distance measuring device, the distance to an object can be measured by the distance measuring device, but when the ground is included in the measurement range (measurement space area) by the distance measuring device, It is not possible to distinguish between the ground and obstacles to be detected. In order to distinguish between the ground and an obstacle, it is necessary to determine whether or not the measurement point is the ground, for example, based on the relative angle between the distance measuring device and the ground and the measurement distance. However, in this method, the relative angle between the distance measuring device and the ground fluctuates when the vehicle body and the distance measuring device are shaken or when the ground reaches a position where the inclination of the ground changes. It becomes difficult to do.

地面と障害物とを区別して検出するための構成としては、測距装置の出力データに対してデータ処理を施し、障害物とは別のオブジェクトとして地面を正しく認識することが考えられるが、この場合、データ処理の負荷が大きくなる。また、衝撃による揺れや地面の傾斜変化をデータ処理により補正するためには、アルゴリズムがより複雑となり、更にデータ処理の負荷が大きくなる。そして、負荷の大きいデータ処理を行うためには、高性能で高コストの処理系が必要となる。 As a configuration for distinguishing and detecting the ground and an obstacle, it is conceivable to perform data processing on the output data of the ranging device and correctly recognize the ground as an object different from the obstacle. In that case, the load of data processing becomes large. Further, in order to correct the shaking due to the impact and the change in the inclination of the ground by data processing, the algorithm becomes more complicated and the load of data processing becomes larger. Then, in order to perform heavy data processing, a high-performance and high-cost processing system is required.

また、特許文献1に記載の技術は、移動体の走行時にデプスセンサが揺れた俯角が変動しても路面上の障害物を検出するために、データ処理によって地面とセンサとの相対角度を推定しているが、その推定のために複雑なアルゴリズムに基づいて多量の演算処理を行う必要があり、高性能の処理装置が必要となる。 Further, the technique described in Patent Document 1 estimates the relative angle between the ground and the sensor by data processing in order to detect an obstacle on the road surface even if the depression angle that the depth sensor sways fluctuates while the moving body is traveling. However, in order to estimate it, it is necessary to perform a large amount of arithmetic processing based on a complicated algorithm, and a high-performance processing device is required.

本発明は、上述のごとき実情に鑑みてなされたものであり、その目的は、測距装置を備えた障害物判定装置において、簡易な構成と簡易なアルゴリズムにより、衝撃による揺れや地面の傾斜変化が生じた場合でも地面を障害物と誤判定しないようにすることにある。 The present invention has been made in view of the actual situation as described above, and an object of the present invention is to use an obstacle determination device equipped with a distance measuring device to perform shaking due to an impact or change in inclination of the ground by a simple configuration and a simple algorithm. The purpose is to prevent the ground from being mistakenly judged as an obstacle even if a problem occurs.

上記課題を解決するために、本発明の第1の技術手段は、車両に搭載され計測対象物までの距離を計測する測距装置と、該測距装置による距離の計測結果に基づいて、前記測距装置の前方の計測空間領域内の障害物の有無を判定する障害物判定部と、を備えた障害物判定装置であって、前記計測空間領域は、前記車両が水平な地面に置かれた場合に、前記計測空間領域の前方方向及び/又は幅方向への深度に応じて、前記計測空間領域の底面の位置が段階的に高くなるように定義された第1の計測空間領域であることを特徴としたものである。 In order to solve the above problems, the first technical means of the present invention is based on a distance measuring device mounted on a vehicle and measuring a distance to a measurement object and a distance measurement result by the distance measuring device. An obstacle determination device including an obstacle determination unit for determining the presence or absence of an obstacle in the measurement space area in front of the distance measuring device, wherein the vehicle is placed on a horizontal ground in the measurement space area. In this case, it is a first measurement space region defined so that the position of the bottom surface of the measurement space region is gradually increased according to the depth in the front direction and / or the width direction of the measurement space region. It is characterized by that.

第2の技術手段は、第1の技術手段において、前記第1の計測空間領域は、前記車両が水平な前記地面に置かれた場合に、前記深度に依らず、前記計測空間領域の上面の位置が一定の高さになるように定義されていることを特徴としたものである。 The second technical means is that in the first technical means, the first measurement space region is located on the upper surface of the measurement space region regardless of the depth when the vehicle is placed on the horizontal ground . It is characterized in that the position is defined so as to have a constant height.

第3の技術手段は、第1又は第2の技術手段において、前記障害物判定部は、前記車両が水平な前記地面に置かれた場合に、前記計測空間領域の底面の位置が前記地面に平行に定義された第2の計測空間領域に基づいて、前記地面を示す所定形状の障害物を検知した場合にはじめて、前記計測空間領域の定義を、前記第1の計測空間領域に変更することを特徴としたものである。 The third technical means is that in the first or second technical means, when the vehicle is placed on the horizontal ground, the position of the bottom surface of the measurement space region is on the ground. The definition of the measurement space area is changed to the first measurement space area only when an obstacle having a predetermined shape indicating the ground is detected based on the second measurement space area defined in parallel. It is characterized by.

第4の技術手段は、第1の技術手段において、前記第1の計測空間領域は、前記車両が水平な前記地面に置かれた場合に、前記深度が深い程、前記計測空間領域の上面の位置が段階的又は連続的に高くなるように定義されていることを特徴としたものである。 A fourth technical means is the first technical means, wherein the first measurement space area, when the vehicle is placed on level the ground, the higher the depth is deep, the upper surface of the measurement space area It is characterized in that the position is defined to be gradually or continuously raised.

第5の技術手段は、第4の技術手段において、前記障害物判定部は、前記車両が水平な前記地面に置かれた場合に、前記計測空間領域の底面の位置が前記地面に平行に定義された第2の計測空間領域に基づいて、前記地面を示す所定形状の障害物を検知した場合にはじめて、前記計測空間領域の定義を、前記第1の計測空間領域に変更することを特徴としたものである。 The fifth technical means is defined in the fourth technical means that the position of the bottom surface of the measurement space region is parallel to the ground when the vehicle is placed on the horizontal ground. The feature is that the definition of the measurement space area is changed to the first measurement space area only when an obstacle having a predetermined shape indicating the ground is detected based on the second measurement space area. It was done.

第6の技術手段は、車両に搭載され計測対象物までの距離を計測する測距装置による距離の計測結果に基づいて、前記測距装置の前方の計測空間領域内の障害物の有無を判定する障害物判定ステップを有する障害物判定方法であって、前記計測空間領域は、前記車両が水平な地面に置かれた場合に、前記計測空間領域の前方方向及び/又は幅方向への深度に応じて、前記計測空間領域の底面の位置が段階的に高くなるように定義されていることを特徴としたものである。 The sixth technical means determines the presence or absence of an obstacle in the measurement space area in front of the distance measuring device based on the distance measurement result by the distance measuring device mounted on the vehicle and measuring the distance to the measurement target. An obstacle determination method having an obstacle determination step, wherein the measurement space area has a depth in the forward direction and / or width direction of the measurement space area when the vehicle is placed on a horizontal ground. Correspondingly, the position of the bottom surface of the measurement space region is defined to be gradually increased.

本発明によれば、測距装置を備えた障害物判定装置において、測距装置の前方の計測空間領域を、地面を検出し難いように定義することにより、複雑な構成とアルゴリズムを必要とすることなく単純なアルゴリズムで、衝撃による揺れや地面の傾斜変化が生じた場合でも地面を障害物と誤判定しないようにできる。 According to the present invention, in an obstacle determination device provided with a distance measuring device, a complicated configuration and an algorithm are required by defining the measurement space area in front of the distance measuring device so as to make it difficult to detect the ground. With a simple algorithm, it is possible to prevent the ground from being mistakenly judged as an obstacle even if the ground shakes or the ground tilt changes due to an impact.

本発明の第1の実施形態に係る障害物判定装置の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the obstacle determination apparatus which concerns on 1st Embodiment of this invention. 図1の障害物判定装置を備えた移動体の一構成例を示す外観図である。FIG. 3 is an external view showing a configuration example of a moving body provided with the obstacle determination device of FIG. 1. 障害物判定装置を搭載した移動体における従来の計測空間領域の例を示す進行方向断面図である。It is a traveling direction sectional view which shows an example of the conventional measurement space area in the moving body equipped with the obstacle determination device. 図3Aの計測空間領域が地形変化により変化した例を示す模式図である。It is a schematic diagram which shows the example which the measurement space area of FIG. 3A changed by the topographical change. 図3Aの計測空間領域の進行方向に垂直な面の断面図である。It is sectional drawing of the plane perpendicular to the traveling direction of the measurement space region of FIG. 3A. 図3Bの計測空間領域の進行方向に垂直な面の断面図である。It is sectional drawing of the plane perpendicular to the traveling direction of the measurement space area of FIG. 3B. 図1の障害物判定装置を搭載した移動体における計測空間領域の例を示す進行方向断面図である。It is a traveling direction sectional view which shows an example of the measurement space area in the moving body equipped with the obstacle determination apparatus of FIG. 図4Aの計測空間領域が地形変化により変化した例を示す模式図である。It is a schematic diagram which shows the example which the measurement space area of FIG. 4A changed by the topographical change. 図4Aの計測空間領域が地形変化により変化した他の例を示す模式図である。It is a schematic diagram which shows another example which the measurement space area of FIG. 4A changed by the topographical change. 本発明の第2の実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す進行方向に垂直な面の断面図である。It is sectional drawing of the plane perpendicular to the traveling direction which shows the example of the measurement space area in the moving body equipped with the obstacle determination apparatus which concerns on 2nd Embodiment of this invention. 図5Aの計測空間領域が地形変化により変化した例を示す模式図である。It is a schematic diagram which shows the example which the measurement space area of FIG. 5A changed by the topographical change. 本発明の第3の実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す斜視図である。It is a perspective view which shows the example of the measurement space area in the moving body equipped with the obstacle determination apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す進行方向に垂直な面の断面図である。It is sectional drawing of the plane perpendicular to the traveling direction which shows the example of the measurement space area in the moving body equipped with the obstacle determination apparatus which concerns on 4th Embodiment of this invention.

本発明に係る障害物判定装置は、測距装置を用いて障害物を判定する装置であり、地面を障害物として誤検知することを防ぐようにした装置である。この障害物判定装置は、主に移動体に設置される。この移動体は、工場や公共施設の施設内、或いはそれらの施設や駐車場等の敷地内で移動させる移動体や、公道を走行する自動車や自動二輪車等の移動体などである。特に敷地内や施設内で自動的に移動させる移動体には、自律走行型の制御機構を有する、所謂、自律走行装置がある。自動車等の運転者による運転を基本とする移動体も自律走行型の制御を搭載することで、自律走行、或いは運転者の運転補助としての自律走行が可能になる。また、上記障害物判定装置が搭載される移動体は、人や物を運搬する運搬目的だけでなく、移動しながら周囲を監視するためにも用いることができ、その場合の移動体は監視ロボットとも呼べる。以下、図面を参照しながら、本発明の様々な実施形態について説明する。 The obstacle determination device according to the present invention is an device that determines an obstacle using a distance measuring device, and is a device that prevents erroneous detection of the ground as an obstacle. This obstacle determination device is mainly installed on a moving body. This moving body is a moving body that is moved in a facility of a factory or a public facility, or in a site such as those facilities or a parking lot, or a moving body such as a car or a motorcycle traveling on a public road. In particular, a moving body that is automatically moved within a site or facility includes a so-called autonomous traveling device having an autonomous traveling type control mechanism. By installing autonomous driving type control in a moving body that is basically driven by a driver of an automobile or the like, autonomous driving or autonomous driving as a driving assistance of the driver becomes possible. Further, the moving body equipped with the obstacle determination device can be used not only for the purpose of transporting people and objects but also for monitoring the surroundings while moving, and the moving body in that case is a monitoring robot. It can also be called. Hereinafter, various embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態について、図1〜図4Cを参照しながら説明する。図1は、本実施形態に係る障害物判定装置の一構成例を示すブロック図で、図2は、図1の障害物判定装置を備えた移動体の一構成例を示す外観図である。
(First Embodiment)
The first embodiment of the present invention will be described with reference to FIGS. 1 to 4C. FIG. 1 is a block diagram showing a configuration example of an obstacle determination device according to the present embodiment, and FIG. 2 is an external view showing a configuration example of a moving body including the obstacle determination device of FIG.

図1で例示するように、本実施形態に係る障害物判定装置1は、光学式の計測機構により計測対象物Mまでの距離を計測する光学式測距装置(以下、単に測距装置)10、及び障害物判定部17を備える。 As illustrated in FIG. 1, the obstacle determination device 1 according to the present embodiment is an optical distance measuring device (hereinafter, simply distance measuring device) 10 that measures the distance to the measurement object M by an optical measuring mechanism. , And an obstacle determination unit 17.

具体的には、測距装置10は、レーザ光源から出力される測定光に変調を加えて光学窓を通して対象物に照射し、計測対象物Mからの反射光を、光学窓を通して受光素子で検出して距離を測定する。測定光の変調方式としてAM(Amplitude Modify)方式とTOF(Time of Flight)方式が実用化されており、測距装置10はいずれの方式を採用してもよい。AM方式は、正弦波でAM変調された測定光とその反射光を光電変換して、それらの信号間の位相差を計算し、位相差から距離を演算する。TOF方式は、パルス状に変調された測定光とその反射光を光電変換し、それらの信号間の遅延時間から距離を演算する方式である。 Specifically, the distance measuring device 10 modulates the measurement light output from the laser light source, irradiates the object through the optical window, and detects the reflected light from the measurement object M with the light receiving element through the optical window. And measure the distance. The AM (Amplitude Modify) method and the TOF (Time of Flight) method have been put into practical use as the modulation method of the measurement light, and any method may be adopted for the distance measuring device 10. In the AM method, the measurement light AM-modulated with a sine wave and the reflected light thereof are photoelectrically converted, the phase difference between the signals is calculated, and the distance is calculated from the phase difference. The TOF method is a method in which pulse-modulated measurement light and its reflected light are photoelectrically converted, and the distance is calculated from the delay time between these signals.

測距装置10は、測定光を縦方向及び横方向に2次元的に走査して、反射光を受光することで一定の計測空間領域(計測範囲)内における計測対象物Mまでの距離を計測する。つまり、測距装置10はこの計測範囲におけるエリアセンサであるとも言える。このような測距装置10として代表的なものは3D−LIDAR(Light Detection and Ranging又はLaser Imaging Detection and Ranging)やレーザレンジファインダなど挙げられるが、計測方向を限ってもよければ、鉛直方向に走査するように設置された2D−LIDARを採用することもできる。この場合、水平方向に所定間隔でこのような2D−LIDARを配置することで、上述のような計測空間領域をカバーすることができる。なお、レーザレンジファインダはTOF方式を採用した測距センサであり、走査軸を1軸、2軸もたせることで、それぞれ2次元平面の計測、3次元的な計測が可能となる。また、LIDARはレーザレンジファインダの一種であるとも言える。 The distance measuring device 10 measures the distance to the measurement object M within a certain measurement space area (measurement range) by scanning the measurement light two-dimensionally in the vertical direction and the horizontal direction and receiving the reflected light. To do. That is, it can be said that the distance measuring device 10 is an area sensor in this measurement range. Typical examples of such a distance measuring device 10 include 3D-LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) and a laser range finder, but if the measurement direction may be limited, scanning in the vertical direction may be mentioned. It is also possible to adopt a 2D-LIDAR installed so as to do so. In this case, by arranging such 2D-LIDARs at predetermined intervals in the horizontal direction, the measurement space area as described above can be covered. The laser range finder is a distance measuring sensor that employs the TOF method, and by providing one and two scanning axes, it is possible to measure two-dimensional planes and three-dimensional measurements, respectively. It can also be said that LIDAR is a kind of laser range finder.

また、この他、光を走査することなく発光部から赤外光などの光を照射し、受光素子に2次元受光センサを使用して、2次元受光センサの受光結果により一定の計測空間領域内における対象物までの距離を計測するようにすることもできる。2次元受光センサとしては、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor Image Sensor)が挙げられる。このような測距装置としては、例えば、近赤外線LED(Light Emitting Diode)をパルス発光させ、CCDで反射光の到着時間を読み取って3次元測点画像を得るTOFカメラが挙げられる。 In addition to this, light such as infrared light is emitted from the light emitting part without scanning the light, a two-dimensional light receiving sensor is used for the light receiving element, and the light receiving result of the two-dimensional light receiving sensor is within a certain measurement space area. It is also possible to measure the distance to the object in. Examples of the two-dimensional light receiving sensor include a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor Image Sensor). Examples of such a distance measuring device include a TOF camera in which a near-infrared LED (Light Emitting Diode) emits pulse light and a CCD reads the arrival time of the reflected light to obtain a three-dimensional station image.

本構成例の測距装置10は、測定光を出力する発光部12と、発光部12から発光された測定光の反射光を受光する受光部15と、発光された測定光の光路を駆動走査し、反射光を受光部15に導くためのミラー等の光路調整部を備えた光学機構部13と、発光部12から発光された測定光及びその反射光を通過させる光学窓16と、発光部12の発光駆動及び上記光路調整部の駆動制御を行う駆動制御部11と、受光部15で光電変換された出力信号及び駆動制御部11からの光路駆動情報に基づいて、計測対象物Mまでの距離を算出し、距離情報の計測結果として出力する距離算出部14と、を有する。 The distance measuring device 10 of this configuration example drives and scans a light emitting unit 12 that outputs measurement light, a light receiving unit 15 that receives reflected light of the measurement light emitted from the light emitting unit 12, and an optical path of the emitted measurement light. An optical mechanism unit 13 provided with an optical path adjusting unit such as a mirror for guiding the reflected light to the light receiving unit 15, an optical window 16 for passing the measurement light emitted from the light emitting unit 12 and the reflected light thereof, and a light emitting unit. Based on the drive control unit 11 that performs the light emission drive of the 12 and the drive control of the optical path adjustment unit, the output signal photoelectrically converted by the light receiving unit 15, and the optical path drive information from the drive control unit 11, the measurement object M is reached. It has a distance calculation unit 14 that calculates a distance and outputs it as a measurement result of distance information.

障害物判定部17は、測距装置10による距離の計測結果に基づいて、測距装置10の前方の計測空間領域内の障害物の有無を判定する。障害物判定部17は、障害物判定装置1の前方の計測空間領域内に物体があると判定された場合、その物体を障害物として判定する。上記計測空間領域は、所謂、計測エリア(障害物検知エリア)として基本的に所定の領域に定められており、計測対象点(測点)の座標空間を示す領域であると言える。この計測空間領域については本実施形態の主たる特徴であり、後述する。 The obstacle determination unit 17 determines the presence or absence of an obstacle in the measurement space area in front of the distance measuring device 10 based on the distance measurement result by the distance measuring device 10. When the obstacle determination unit 17 determines that there is an object in the measurement space area in front of the obstacle determination device 1, the obstacle determination unit 17 determines the object as an obstacle. The measurement space area is basically defined as a so-called measurement area (obstacle detection area) in a predetermined area, and can be said to be an area indicating the coordinate space of the measurement target point (measurement point). This measurement space area is the main feature of this embodiment and will be described later.

障害物判定部17における障害物の判定方法は問わないが、例えば測距装置10で距離が計測された(無限遠ではなく有限であった)測点のそれぞれについて直交座標(少なくとも1つの方向の座標は距離とする)を得て、各座標のうち上記計測空間領域内の座標が存在した場合、障害物有りと判定すればよい。好ましくは、上記計測空間領域内に所定数だけ計測された測点が存在した場合にはじめて、障害物有りと判定する。 The method of determining an obstacle in the obstacle determination unit 17 does not matter, but for example, the distance is measured by the distance measuring device 10 (it was finite instead of infinity), and the coordinates are orthogonal (at least in one direction). (Coordinates are distances), and if any of the coordinates within the measurement space area exists, it may be determined that there is an obstacle. Preferably, it is determined that there is an obstacle only when a predetermined number of measurement points are present in the measurement space area.

上述のような障害物判定装置1は、図2で例示するように、障害物を検知しながら障害物との衝突を回避して自動走行する自律走行装置など移動体2に搭載される。この例では、測距装置10が本体部20に取り付けられており、本体部20の内部に障害物判定部17を構成するユニットが搭載されている。 As illustrated in FIG. 2, the obstacle determination device 1 as described above is mounted on a moving body 2 such as an autonomous traveling device that automatically travels while detecting an obstacle and avoiding a collision with the obstacle. In this example, the distance measuring device 10 is attached to the main body 20, and the unit constituting the obstacle determination unit 17 is mounted inside the main body 20.

また、例示した移動体2は、本体部20に4輪の車輪21が取り付けられてなり、図示しないが、移動体2を走行させる駆動部やその制御を行う駆動制御部(区別のために車輪駆動制御部と呼ぶ)が設けられている。上記駆動部は、例えば複数の車輪21を回転駆動するためのモータ及び/又はエンジン等により構成される。無論、例示するような車輪21に限らず、例えばキャタピラなどを駆動させてもよい。 Further, in the illustrated moving body 2, four wheels 21 are attached to the main body portion 20, and although not shown, a driving unit for traveling the moving body 2 and a drive control unit for controlling the driving unit (wheels for distinction). (Called a drive control unit) is provided. The drive unit is composed of, for example, a motor and / or an engine for rotationally driving a plurality of wheels 21. Of course, the wheels 21 as illustrated may be driven, for example, caterpillars and the like.

上記車輪駆動制御部は、障害物判定部17による判定結果に基づいて障害物との衝突を回避する動作を行わせるように上記駆動部を制御する。ここでは障害物判定部17により障害物が判定されると、その情報が上記車輪駆動制御部に出力され、そこで、障害物との衝突を回避するように、例えば走行している移動体2の走行方向を変更させたり、減速させたり、障害物の手前で停止させるような制御を行う。この制御に基づいて上記駆動部に、走行方向の変更、減速、停止などの動作を行わせることができ、これにより障害物との衝突を回避することができる。 The wheel drive control unit controls the drive unit so as to perform an operation of avoiding a collision with an obstacle based on a determination result by the obstacle determination unit 17. Here, when an obstacle is determined by the obstacle determination unit 17, the information is output to the wheel drive control unit, where, for example, a moving body 2 traveling so as to avoid a collision with the obstacle. Control is performed to change the traveling direction, decelerate, or stop in front of an obstacle. Based on this control, the drive unit can be made to perform operations such as changing the traveling direction, decelerating, and stopping, thereby avoiding a collision with an obstacle.

その他、移動体2には、地図情報を記憶する記憶部や位置情報取得部などを設けることで、予定ルートに沿った移動が可能になる。この位置情報取得部としては、GPS(Global Positioning System)等のGNSS(Global Navigation Satellite System)やQZSS(Quasi Zenith Satellite System)などを用いて移動体2の位置を取得するユニットが挙げられる。 In addition, by providing the moving body 2 with a storage unit for storing map information, a position information acquisition unit, and the like, it is possible to move along the planned route. Examples of the position information acquisition unit include a unit that acquires the position of the moving body 2 by using a GNSS (Global Navigation Satellite System) such as GPS (Global Positioning System) or a QZSS (Quasi Zenith Satellite System).

次に、図3A〜図4Cを併せて参照しながら、本実施形態の主たる特徴について説明する。図3Aは、障害物判定装置を搭載した移動体における従来の計測空間領域の例を示す進行方向断面図、図3Bは、図3Aの計測空間領域が地形変化により変化した例を示す模式図、図3Cは、図3Aの計測空間領域の進行方向に垂直な面の断面図、図3Dは、図3Bの計測空間領域の進行方向に垂直な面の断面図である。なお、図3A〜図3Dでは従来の計測空間領域を示しているが、後述する第5の実施形態のために、便宜上、その障害物判定装置における測距装置、それを搭載する移動体にそれぞれ符号16、2を付して説明する。 Next, the main features of the present embodiment will be described with reference to FIGS. 3A to 4C. FIG. 3A is a cross-sectional view in the traveling direction showing an example of a conventional measurement space area in a moving body equipped with an obstacle determination device, and FIG. 3B is a schematic view showing an example in which the measurement space area of FIG. 3A is changed due to a terrain change. 3C is a cross-sectional view of a plane perpendicular to the traveling direction of the measurement space region of FIG. 3A, and FIG. 3D is a cross-sectional view of a plane perpendicular to the traveling direction of the measurement space region of FIG. 3B. Although the conventional measurement space area is shown in FIGS. 3A to 3D, for convenience, the distance measuring device in the obstacle determination device and the moving body on which the measurement space area is mounted are used for the fifth embodiment described later. Reference numerals 16 and 2 will be attached for reference.

また、図4Aは、図1の障害物判定装置1を搭載した移動体2における計測空間領域の例を示す進行方向断面図、図4Bは、図4Aの計測空間領域が地形変化により変化した例を示す模式図、図4Cは、図4Aの計測空間領域が地形変化により変化した他の例を示す模式図である。 Further, FIG. 4A is a cross-sectional view in the traveling direction showing an example of the measurement space area in the moving body 2 equipped with the obstacle determination device 1 of FIG. 1, and FIG. 4B is an example in which the measurement space area of FIG. 4A is changed due to topographical changes. 4C is a schematic view showing another example in which the measurement space area of FIG. 4A is changed due to a change in topography.

本実施形態の主たる特徴として、上記計測空間領域は、上記計測空間領域の前方方向への深度に応じて(つまり上記深度が大きくなるに連れて)、上記計測空間領域の底面の位置が段階的又は連続的に高くなるように定義されている。本実施形態において、この定義は基本的に事前になされている。なお、本発明では、上記計測空間領域の分解能(計測精度)については特に問わず、単に分解能が良ければ計測できる距離や方向の精度が上がるに過ぎない。 As a main feature of the present embodiment, in the measurement space region, the position of the bottom surface of the measurement space region is stepwise according to the depth of the measurement space region in the forward direction (that is, as the depth increases). Or it is defined to be continuously higher. In this embodiment, this definition is basically made in advance. In the present invention, the resolution (measurement accuracy) of the measurement space region is not particularly limited, and if the resolution is good, the accuracy of the measurable distance and direction is merely increased.

ここで、前方方向への深度とは、基本的に光学窓16からの前方方向への距離を指すが、例えば光学機構部13又は発光部12から光学窓16までの光路の距離を加算した値などを用いてもよい。移動体2が水平な地面に置かれている場合で且つその地面及び移動体2の進行方向に垂直な面内に測距装置10の光学窓16が載置されている場合(以下、便宜上、モデル配置と呼ぶ)、上記底面の位置とは、例えば上記地面からの計測空間領域の底端の高さを意味する。つまり、モデル配置の場合、上記底面の位置とは上記計測空間領域の上記地面からのオフセット量を意味する。 Here, the depth in the forward direction basically refers to the distance in the forward direction from the optical window 16, but is a value obtained by adding, for example, the distance of the optical path from the optical mechanism unit 13 or the light emitting unit 12 to the optical window 16. Etc. may be used. When the moving body 2 is placed on a horizontal ground and the optical window 16 of the distance measuring device 10 is placed in a plane perpendicular to the ground and the traveling direction of the moving body 2 (hereinafter, for convenience). The position of the bottom surface (referred to as model arrangement) means, for example, the height of the bottom edge of the measurement space region from the ground. That is, in the case of model arrangement, the position of the bottom surface means the offset amount of the measurement space area from the ground.

具体例を挙げて説明する。図3A,図3Cに示す計測空間領域D0は測距装置10で計測可能な領域内で定義された直方体の領域であり、上記モデル配置における計測空間領域D0の断面形状はその上面及び下面が地面Gに平行となっている。なお、測距装置10には計測限界距離が定められていて、計測限界距離よりも遠い位置にある物体については精度良く距離を計測することはできないため、計測空間領域D0のように深度の大きさ(深さ)に限度をもたせている。また、移動体2の進行速度や旋回径などによって手前方向にも計測限界距離を決めておくことができ、この距離より近い位置に障害物が存在してしまうような場面であってもその距離より遠くの段階で事前に検知済みとなるため問題ない。 A specific example will be described. The measurement space area D0 shown in FIGS. 3A and 3C is a rectangular parallelepiped area defined within the area that can be measured by the distance measuring device 10, and the cross-sectional shape of the measurement space area D0 in the model arrangement is such that the upper surface and the lower surface are the ground. It is parallel to G. The distance measuring device 10 has a measurement limit distance, and it is not possible to accurately measure the distance of an object located farther than the measurement limit distance. Therefore, the depth is large as in the measurement space area D0. There is a limit to the depth. In addition, the measurement limit distance can be determined in the front direction according to the traveling speed and turning diameter of the moving body 2, and even in a situation where an obstacle exists at a position closer than this distance, that distance can be determined. There is no problem because it is detected in advance at a farther stage.

例示した計測空間領域D0であっても、地面Gが平坦な場合であれば上記モデル配置となるため問題が生じない。しかし、地面Gには通常、段差や未舗装路の凸凹がある。図3B,図3Dで例示するように、地面Gに窪み(凹部)Guが存在し、その窪みGuに車輪21が落ちた場合、計測空間領域D0の後方部分D0aは問題ないが、前方部分D0bが地面Gと重複し、測距装置10が地面Gを計測対象物(つまり障害物)として検知してしまう。そして、地面Gを障害物として検知してしまうと、走行上障害になるものがないような場面でも安全のために停止等の回避動作を行うことになり、ユーザビリティが低下してしまう。 Even in the illustrated measurement space area D0, if the ground G is flat, the above model arrangement is used, so that no problem occurs. However, the ground G usually has steps and irregularities on unpaved roads. As illustrated in FIGS. 3B and 3D, when a recess (recess) Gu exists in the ground G and the wheel 21 falls into the recess Gu, there is no problem in the rear portion D0a of the measurement space area D0, but the front portion D0b. Overlaps with the ground G, and the distance measuring device 10 detects the ground G as a measurement object (that is, an obstacle). Then, if the ground G is detected as an obstacle, the avoidance operation such as stopping is performed for safety even in a situation where there is no obstacle in running, and the usability is deteriorated.

このような誤検知の原因は、移動体2の車体及び測距装置10が前傾すると、測距装置10から離れた位置(奥行方向)にある計測領域は、より大きく地面Gの方向にずれることにある。本実施形態ではこの点に着目し、前傾後の車体による計測空間領域D0の地面Gからの高さを考慮して車体が前傾した時に計測空間領域が地面Gを誤検知しないように対策を施す。 The cause of such false detection is that when the vehicle body of the moving body 2 and the distance measuring device 10 are tilted forward, the measurement area at a position (depth direction) away from the distance measuring device 10 is further shifted toward the ground G. There is. In this embodiment, paying attention to this point, the height of the measurement space area D0 by the vehicle body after leaning forward from the ground G is taken into consideration so that the measurement space area does not erroneously detect the ground G when the vehicle body tilts forward. To give.

つまり、本実施形態では、計測空間領域として、例えば図4Aで示す計測空間領域D1を定義して利用する。計測空間領域D1も測距装置10で計測可能な領域内で定義された領域であるが、計測空間領域D0において深度が大きくなるに連れて(光学窓16からの垂直方向距離が遠くになる程)その底面の位置が段階的に高くなる(その底面を浮かせる)ように定義された領域である。段階的に高くする場合、深度に応じて高くする度合いは計測空間領域D1で例示したように一定割合であってもよい(つまり深度に比例して高くしてもよい)が、一定割合でなくてもよい。また、図示しないが、深度が大きくなるに連れて、段階的ではなく連続的に(滑らかなスロープ状に)高くなるように定義されていてもよい。 That is, in the present embodiment, for example, the measurement space area D1 shown in FIG. 4A is defined and used as the measurement space area. The measurement space area D1 is also an area defined within the area that can be measured by the distance measuring device 10, but as the depth increases in the measurement space area D0 (the longer the vertical distance from the optical window 16 becomes). ) It is an area defined so that the position of the bottom surface is gradually raised (the bottom surface is floated). In the case of stepwise increase, the degree of increase according to the depth may be a constant ratio as illustrated in the measurement space area D1 (that is, may be increased in proportion to the depth), but is not a constant ratio. You may. Also, although not shown, it may be defined to increase continuously (in a smooth slope) rather than stepwise as the depth increases.

このような計測空間領域D1を採用することで、図4Bで例示するように、図3Bの例と同様に地面Gに窪みGuが存在し、その窪みGuに車輪21が落ちた場合や、同様の状態が移動体2の揺れによって生じた場合であっても、計測空間領域D1の前方部分が地面Gと重複することを防止できる。つまり、測距装置10が地面Gを計測対象物(つまり障害物)として検知してしまうことを防止することができる。 By adopting such a measurement space area D1, as illustrated in FIG. 4B, there is a dent Gu in the ground G as in the example of FIG. 3B, and the wheel 21 falls in the dent Gu, or the same. Even when the state of is caused by the shaking of the moving body 2, it is possible to prevent the front portion of the measurement space area D1 from overlapping with the ground G. That is, it is possible to prevent the distance measuring device 10 from detecting the ground G as a measurement object (that is, an obstacle).

また、窪みGuに限らず、図4Cにおいて変化位置Gbで地面Gの傾斜が変化した例を挙げるように、地面Gの傾斜の変化(図示したように変化の前後で角度が180°未満となるような変化)があった場合にも、計測空間領域D0を採用した場合には地面Gを検知してしまうのに対して、計測空間領域D1を採用した場合にはそのような検知を防止することができる。 Further, not limited to the recess Gu, as shown in FIG. 4C where the inclination of the ground G changes at the change position Gb, the change in the inclination of the ground G (as shown in the figure, the angle becomes less than 180 ° before and after the change). Even if there is such a change), the ground G is detected when the measurement space area D0 is adopted, whereas such detection is prevented when the measurement space area D1 is adopted. be able to.

また、本実施形態における計測空間領域は、図4A〜図4Cで例示したように、上記深度に依らず(計測対象距離に依らず)上記計測空間領域の上面の位置が一定の高さになるように定義されているが、これに限らない。なお、一定の高さとは、上記モデル配置時の地面からの高さが一定であることを意味する。 Further, in the measurement space region in the present embodiment, as illustrated in FIGS. 4A to 4C, the position of the upper surface of the measurement space region becomes a constant height regardless of the depth (regardless of the measurement target distance). It is defined as, but it is not limited to this. The constant height means that the height from the ground when the model is arranged is constant.

また、底面や上面の位置を調整する前の計測空間領域(図3A〜図4Cの例では計測空間領域D0)が直方体であることを前提に説明したが、これに限ったものではない。上記前の計測空間領域として、例えば、光学窓16の光出射点を中心として前方に放射状に設けた測点群において、前方方向の深度の下限及び上限を設け、幅及び高さ方向については上記中心を通り光学窓16に垂直な中心軸を中心とする矩形領域内といった限界などを設けたものを採用してもよい。 Further, the description has been made on the premise that the measurement space area (measurement space area D0 in the examples of FIGS. 3A to 4C) before adjusting the positions of the bottom surface and the upper surface is a rectangular parallelepiped, but the description is not limited to this. As the measurement space area before the above, for example, in a group of measuring points radially provided in front of the light emitting point of the optical window 16, the lower and upper limits of the depth in the front direction are set, and the width and height directions are described above. Those having a limit such as within a rectangular region centered on the central axis passing through the center and perpendicular to the optical window 16 may be adopted.

以上、本実施形態によれば、測距装置10の前方の計測空間領域を、地面を検出し難いように定義しているため、複雑な構成とアルゴリズムを必要とすることなく単純なアルゴリズムで、衝撃による揺れや地面の傾斜変化が生じた場合でも地面を障害物と誤判定しないようにできる。また、本実施形態では、計測空間領域を狭めているものの、測距装置10から遠い程狭めているため、実質的に衝突回避処理への影響が少ないと言える。例えば平坦な地面に低い物体が存在した場合、測距装置10から離間した位置では検知できないことになるが、より接近すると検知できるため、その物体への衝突を回避することができる。 As described above, according to the present embodiment, the measurement space area in front of the distance measuring device 10 is defined so as to make it difficult to detect the ground. Therefore, a simple algorithm is used without requiring a complicated configuration and algorithm. It is possible to prevent the ground from being mistakenly judged as an obstacle even when the ground is shaken or the ground is tilted due to an impact. Further, in the present embodiment, although the measurement space area is narrowed, it is narrowed as it is farther from the distance measuring device 10, so that it can be said that the influence on the collision avoidance processing is substantially small. For example, when a low object exists on a flat ground, it cannot be detected at a position away from the distance measuring device 10, but it can be detected when it is closer, so that it is possible to avoid a collision with the object.

また、以上では、測距装置として光学式の測距装置を例に挙げたが、センシングのために放射されるものとしては、レーザ光、赤外光、可視光などに限ったものではなく、超音波、電磁波などを採用することもできる。つまり、上記障害物判定装置は、光学式測距装置の代わりに超音波、電磁波などを放射して測距する測距装置を備えることができる。特に指向性をもたせるなどの工夫により、超音波などでも測点毎の物体の有無がセンシングできる。 Further, in the above, an optical distance measuring device has been mentioned as an example of the distance measuring device, but the radiation emitted for sensing is not limited to laser light, infrared light, visible light, and the like. Ultrasonic waves, electromagnetic waves, etc. can also be adopted. That is, the obstacle determination device may include a distance measuring device that radiates ultrasonic waves, electromagnetic waves, or the like to measure the distance instead of the optical distance measuring device. In particular, the presence or absence of an object at each station can be sensed even with ultrasonic waves by devising measures such as giving directivity.

(第2の実施形態)
本発明の第2の実施形態について、図5A及び図5Bを参照しながら説明する。図5Aは、本発明の第2の実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す進行方向に垂直な面の断面図、図5Bは、図5Aの計測空間領域が地形変化により変化した例を示す模式図である。なお、本実施形態では、第1の実施形態との重複箇所の説明を基本的に省略するが、第1の実施形態で説明した様々な応用例が適用できる。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 5A and 5B. FIG. 5A is a cross-sectional view of a plane perpendicular to the traveling direction showing an example of a measurement space region in a moving body equipped with an obstacle determination device according to a second embodiment of the present invention, and FIG. 5B is a measurement space of FIG. 5A. It is a schematic diagram which shows the example which the area changed by the topographical change. In the present embodiment, the description of the overlapping portion with the first embodiment is basically omitted, but various application examples described in the first embodiment can be applied.

第1の実施形態では、計測空間領域D1で例示したように、計測空間領域がその前方方向への深度に応じてその底面の位置が段階的又は連続的に高くなるように定義した。これに対し、本実施形態では、計測空間領域は、上記計測空間領域の幅方向への深度(左右方向の深度)に応じて、上記計測空間領域の底面の位置が段階的又は連続的に高くなるように定義されている。図5Aに示す計測空間領域D2はそのように定義された一例である。 In the first embodiment, as illustrated in the measurement space area D1, the position of the bottom surface of the measurement space area is defined to be gradually or continuously raised according to the depth in the forward direction thereof. On the other hand, in the present embodiment, in the measurement space region, the position of the bottom surface of the measurement space region is gradually or continuously raised according to the depth in the width direction (depth in the left-right direction) of the measurement space region. It is defined to be. The measurement space area D2 shown in FIG. 5A is an example defined as such.

図5Bで例示したように、地面Gに窪みGuがありその窪みGuに車輪21が落ちた場合や、振動で測距装置10が左右に揺れた場合などには、測距装置10の左右方向の傾きが生じ、計測空間領域D2も左右に揺れることになる。しかし、本実施形態では、このような揺れに対しても、底面の位置が段階的又は連続的に高くなっているため、地面Gを障害物として誤検知することを防ぐことができる。また、本実施形態では、計測空間領域を狭めるに際し、測距装置から遠い程狭めているため、実用的であると言える。 As illustrated in FIG. 5B, when there is a dent Gu on the ground G and the wheel 21 falls into the dent Gu, or when the distance measuring device 10 sways to the left or right due to vibration, the left-right direction of the distance measuring device 10 Will occur, and the measurement space area D2 will also sway from side to side. However, in the present embodiment, even with such shaking, the position of the bottom surface is gradually or continuously raised, so that it is possible to prevent erroneous detection of the ground G as an obstacle. Further, in the present embodiment, when the measurement space area is narrowed, it can be said that it is practical because the distance from the distance measuring device is narrowed.

本実施形態における計測空間領域の他の例として、上述した放射状領域を採用し、前方方向の深度の上限及び下限を設けると共に、少なくとも下面側について、幅及び高さ方向については光出射点の上記中心軸を中心とする円筒領域又は楕円領域内といった限界を設けたものを採用してもよい。 As another example of the measurement space region in the present embodiment, the above-mentioned radial region is adopted, the upper limit and the lower limit of the depth in the front direction are set, and at least on the lower surface side, the light emission point is described in the width and height directions. Those having a limit such as in a cylindrical region or an elliptical region centered on the central axis may be adopted.

また、本実施形態においても、上記計測空間領域は、図5Aで例示したように深度(本実施形態では左右方向への深度)に依らず、上記計測空間領域の上面の位置が一定の高さになるように定義されているが、これに限らない。なお、一定の高さとは、上記モデル配置時の地面からの高さが一定であることを意味する。 Further, also in the present embodiment, the position of the upper surface of the measurement space region is a constant height regardless of the depth (the depth in the left-right direction in the present embodiment) as illustrated in FIG. 5A. It is defined to be, but it is not limited to this. The constant height means that the height from the ground when the model is arranged is constant.

(第3の実施形態)
上述したように第2の実施形態は、第1の実施形態の応用例を適用できる。本発明の第3の実施形態として、双方の実施形態を適用した場合の実施形態について、図6を参照しながら説明する。図6は、本実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す斜視図である。なお、本実施形態では、第1,第2の実施形態との重複箇所の説明を基本的に省略するが、第1,第2の実施形態で説明した様々な応用例が適用できる。
(Third Embodiment)
As described above, the application example of the first embodiment can be applied to the second embodiment. As a third embodiment of the present invention, an embodiment in which both embodiments are applied will be described with reference to FIG. FIG. 6 is a perspective view showing an example of a measurement space region in a moving body equipped with the obstacle determination device according to the present embodiment. In the present embodiment, the description of the overlapping portion with the first and second embodiments is basically omitted, but various application examples described in the first and second embodiments can be applied.

本実施形態では、第1,第2の双方の実施形態を適用し、計測空間領域をその前方方向への深度及びその左右方向(幅方向)への深度に応じてその底面の位置が段階的又は連続的に高くなるように定義する。図6に示す計測空間領域D3はそのように定義された一例である。本実施形態により、測距装置10の前傾や左右方向の傾きのいずれが生じた場合でも地面を障害物として誤検知することを防ぐことができる。 In this embodiment, both the first and second embodiments are applied, and the position of the bottom surface of the measurement space area is stepwise according to the depth in the front direction and the depth in the left-right direction (width direction). Or it is defined to be continuously higher. The measurement space area D3 shown in FIG. 6 is an example defined as such. According to this embodiment, it is possible to prevent erroneous detection of the ground as an obstacle regardless of whether the distance measuring device 10 is tilted forward or tilted in the left-right direction.

(第4の実施形態)
本発明の第4の実施形態について、図7を参照しながら説明する。図7は、本実施形態に係る障害物判定装置を搭載した移動体における計測空間領域の例を示す進行方向に垂直な面の断面図である。なお、本実施形態では、第1〜第3の実施形態との重複箇所の説明を基本的に省略するが、第1〜第3の実施形態で説明した様々な応用例が適用できる。
(Fourth Embodiment)
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view of a plane perpendicular to the traveling direction showing an example of a measurement space region in a moving body equipped with the obstacle determination device according to the present embodiment. In the present embodiment, the description of the overlapping portion with the first to third embodiments is basically omitted, but various application examples described in the first to third embodiments can be applied.

本実施形態における計測空間領域は、上記深度(前方方向及び/又は幅方向への深度)が深い程、上記計測空間領域の上面の位置が段階的又は連続的に高くなるように、つまり計測空間領域D0で例示した調整前の計測空間領域を高くシフトしたように定義されている。図7に示す計測空間領域D4はそのように定義された一例である。 In the measurement space region of the present embodiment, the deeper the depth (depth in the forward direction and / or the width direction), the higher the position of the upper surface of the measurement space region gradually or continuously, that is, the measurement space. It is defined as a high shift of the measurement space area before adjustment illustrated in the area D0. The measurement space area D4 shown in FIG. 7 is an example defined as such.

計測空間領域D4では、変化位置Gbで地面Gの傾斜が変化した場合や窪みに車輪21が落ちた場合や段差を乗り越えた場合などのように、地面Gを障害物と誤検知することを避けるためにその下面の位置を高くしただけでなく、上面の位置も合わせて高くしている。よって、このような場面でも、ある程度の高さの障害物を遠くの位置から検知することができる。無論、下面の位置の高さの変化度合いと上面の位置の高さの変化度合いとは異なってもよいし、第2,第3の実施形態のように幅方向の深さについても適用することもできる。 In the measurement space area D4, it is possible to avoid erroneously detecting the ground G as an obstacle, such as when the inclination of the ground G changes at the change position Gb, when the wheel 21 falls into a depression, or when the vehicle climbs over a step. Therefore, not only the position of the lower surface is raised, but also the position of the upper surface is raised. Therefore, even in such a scene, an obstacle having a certain height can be detected from a distant position. Of course, the degree of change in the height of the lower surface position and the degree of change in the height of the upper surface position may be different, and the depth in the width direction may also be applied as in the second and third embodiments. You can also.

(第5の実施形態)
本発明の第5の実施形態について、第1〜第4の実施形態との重複箇所の説明を基本的に省略するが、第1〜第4の実施形態で説明した様々な応用例が適用できる。
(Fifth Embodiment)
Although the description of the overlapping portion of the fifth embodiment of the present invention with the first to fourth embodiments is basically omitted, various application examples described in the first to fourth embodiments can be applied. ..

本実施形態における障害物判定部17は、事前に定義された計測空間領域の底面の一部を少なくとも含み且つ地面を示す所定形状の障害物を検知した場合にはじめて、上記計測空間領域の定義を、上記底面(及び上記上面)の位置が段階的又は連続的に高くなるように変更(更新)する。 The obstacle determination unit 17 in the present embodiment defines the measurement space area only when it detects an obstacle having a predetermined shape including at least a part of the bottom surface of the measurement space area defined in advance and indicating the ground. , The position of the bottom surface (and the top surface) is changed (updated) so as to be gradually or continuously raised.

上記事前に定義された計測空間領域とは、底面(及び上面)位置変更前のものであって、換言すれば計測空間領域D0で例示したような底面が深度に応じて高くなっていない計測空間領域である。また、所定形状とは、例えば計測空間領域D0の底面を含み、幅方向全域にわたる長方形の形状を指し、この判定についてはどのような方法を採用してもよい。 The above-defined measurement space area is the one before the bottom surface (and top surface) position is changed, in other words, the measurement space whose bottom surface is not raised according to the depth as illustrated in the measurement space area D0. It is an area. Further, the predetermined shape refers to, for example, a rectangular shape including the bottom surface of the measurement space area D0 and covers the entire width direction, and any method may be adopted for this determination.

つまり、本実施形態における障害物判定部17は、例えば計測空間領域D0を事前に定義しておき、その定義に従って地面(計測空間領域D0の底面の一部を少なくとも含む所定形状の障害物)を検知した場合にはじめて、計測空間領域の定義を、計測空間領域D1,D2,D3,D4などに変更する。 That is, the obstacle determination unit 17 in the present embodiment defines, for example, the measurement space area D0 in advance, and sets the ground (an obstacle having a predetermined shape including at least a part of the bottom surface of the measurement space area D0) according to the definition. Only when it is detected, the definition of the measurement space area is changed to the measurement space areas D1, D2, D3, D4 and the like.

このような制御により、まず簡易的に地面を検知し、その後、地面を誤検知しないような計測空間領域D1等を採用するため、地面を検知する前は遠い位置から低い障害物を検知することも可能になる。つまり、本実施形態では、最初は広い計測範囲で計測しておき、計測範囲を狭めた方がよいと想定される場合のみ狭め、さらに狭めるに際しては、測距装置から遠い程狭めているため、実用的であると言える。 With such control, the ground is first easily detected, and then the measurement space area D1 or the like that does not erroneously detect the ground is adopted. Therefore, before detecting the ground, a low obstacle is detected from a distant position. Will also be possible. That is, in the present embodiment, the measurement is performed in a wide measurement range at first, and the measurement range is narrowed only when it is assumed that it is better to narrow the measurement range, and when further narrowing, the distance from the distance measuring device is narrowed. It can be said that it is practical.

(その他)
以上、本発明に係る障害物判定装置について説明したが、本発明は、その処理手順を説明したように障害物判定方法としての形態も採り得る。この障害物判定方法は、計測対象物までの距離を計測する測距装置による距離の計測結果に基づいて、上記測距装置の前方の計測空間領域内の障害物の有無を判定する障害物判定ステップを有する。そして、上記計測空間領域は、上記計測空間領域の前方方向及び/又は幅方向への深度に応じて、上記計測空間領域の底面の位置が段階的又は連続的に高くなるように定義されている。その他の応用例は障害物判定装置について説明した通りであり、その説明を省略する。
(Other)
Although the obstacle determination device according to the present invention has been described above, the present invention may also take a form as an obstacle determination method as described in the processing procedure thereof. This obstacle determination method determines the presence or absence of an obstacle in the measurement space area in front of the distance measuring device based on the measurement result of the distance by the distance measuring device that measures the distance to the measurement target. Have steps. The measurement space region is defined so that the position of the bottom surface of the measurement space region is gradually or continuously raised according to the depth in the front direction and / or the width direction of the measurement space region. .. Other application examples are as described for the obstacle determination device, and the description thereof will be omitted.

1…障害物判定装置、2…移動体、10…測距装置、11…駆動制御部、12…発光部、13…光学機構部、14…距離算出部、15…受光部、16…光学窓、17…障害物判定部、20…本体部、21…車輪、D0…一般的な計測空間領域、D1,D2,D3,D4…計測空間領域、G…地面、Gu…窪み、Gb…傾きの変化位置、M…計測対象物。 1 ... Obstacle determination device, 2 ... Moving object, 10 ... Distance measuring device, 11 ... Drive control unit, 12 ... Light emitting unit, 13 ... Optical mechanism unit, 14 ... Distance calculation unit, 15 ... Light receiving unit, 16 ... Optical window , 17 ... Obstacle determination unit, 20 ... Main body, 21 ... Wheels, D0 ... General measurement space area, D1, D2, D3, D4 ... Measurement space area, G ... Ground, Gu ... Depression, Gb ... Tilt Change position, M ... Measurement target.

Claims (4)

車両に搭載され計測対象物までの距離を計測する測距装置と、該測距装置による距離の計測結果に基づいて、前記測距装置の前方の計測空間領域内の障害物の有無を判定する障害物判定部と、を備えた障害物判定装置であって、
前記計測空間領域は、前記車両が水平な地面に置かれた場合において、前記計測空間領域の前方方向及び/又は幅方向への深度に応じて、前記車両が水平な地面に置かれた状態で且つ前記地面及び前記車両の進行方向に垂直な面内に前記測距装置の光学窓が載置された状態で計測した場合の前記地面からの計測空間領域の底端の高さを意味する前記計測空間領域の底面の位置が段階的に高くなるように定義され前記車両に対し固定されていることを特徴とする障害物判定装置。
Based on the distance measuring device mounted on the vehicle and measuring the distance to the object to be measured and the distance measurement result by the distance measuring device, it is determined whether or not there is an obstacle in the measurement space area in front of the distance measuring device. An obstacle determination device equipped with an obstacle determination unit.
The measurement space region, In no event which the vehicle is placed on level ground, depending on the depth of the forward direction and / or width direction of the measurement space region, the vehicle is placed on level ground It means the height of the bottom edge of the measurement space region from the ground when measured in a state and in a state where the optical window of the distance measuring device is placed in the ground and in a plane perpendicular to the traveling direction of the vehicle. An obstacle determination device that is defined so that the position of the bottom surface of the measurement space region is gradually increased and is fixed to the vehicle .
記計測空間領域は、前記車両が水平な地面に置かれた場合において、前記深度に依らず、前記車両が水平な地面に置かれた状態で且つ前記地面及び前記車両の進行方向に垂直な面内に前記測距装置の光学窓が載置された状態で計測した場合の前記地面からの計測空間領域の上端の高さを意味する前記計測空間領域の上面の位置が一定の高さになるように定義されていることを特徴とする請求項1に記載の障害物判定装置。 Before SL total measuring spatial domain, In no event which the vehicle is placed on level ground, regardless of the depth, the and in a state in which the vehicle is placed on level ground ground and the traveling direction of the vehicle The position of the upper surface of the measurement space region, which means the height of the upper end of the measurement space region from the ground when measured with the optical window of the distance measuring device mounted in a plane perpendicular to the ground, is constant. The obstacle determination device according to claim 1, wherein the height is defined. 記計測空間領域は、前記車両が水平な地面に置かれた場合において、前記深度が深い程、前記車両が水平な地面に置かれた状態で且つ前記地面及び前記車両の進行方向に垂直な面内に前記測距装置の光学窓が載置された状態で計測した場合の前記地面からの計測空間領域の上端の高さを意味する前記計測空間領域の上面の位置が段階的に高くなるように定義された計測空間領域であることを特徴とする請求項1に記載の障害物判定装置。 Before SL total measuring spatial domain, In no event which the vehicle is placed on level ground, the higher the depth is deep, the traveling direction of the vehicle and the ground surface and the vehicle in a state placed on level ground The position of the upper surface of the measurement space area, which means the height of the upper end of the measurement space area from the ground when measured with the optical window of the distance measuring device mounted in a plane perpendicular to the ground, is stepwise. The obstacle determination device according to claim 1, wherein the measurement space area is defined to be high. 車両に搭載され計測対象物までの距離を計測する測距装置による距離の計測結果に基づいて、前記測距装置の前方の計測空間領域内の障害物の有無を判定する障害物判定ステップを有する障害物判定方法であって、
前記計測空間領域は、前記車両が水平な地面に置かれた場合において、前記計測空間領域の前方方向及び/又は幅方向への深度に応じて、前記車両が水平な地面に置かれた状態で且つ前記地面及び前記車両の進行方向に垂直な面内に前記測距装置の光学窓が載置された状態で計測した場合の前記地面からの計測空間領域の底端の高さを意味する前記計測空間領域の底面の位置が段階的に高くなるように定義され前記車両に対し固定されていることを特徴とする障害物判定方法。
It has an obstacle determination step for determining the presence or absence of an obstacle in the measurement space area in front of the distance measuring device based on the measurement result of the distance by the distance measuring device mounted on the vehicle and measuring the distance to the measurement target. It is an obstacle judgment method
The measurement space region, In no event which the vehicle is placed on level ground, depending on the depth of the forward direction and / or width direction of the measurement space region, the vehicle is placed on level ground It means the height of the bottom edge of the measurement space region from the ground when measured in a state and in a state where the optical window of the ranging device is placed in the ground and in a plane perpendicular to the traveling direction of the vehicle. An obstacle determination method, characterized in that the position of the bottom surface of the measurement space region is defined to be gradually increased and is fixed to the vehicle .
JP2015147358A 2015-07-27 2015-07-27 Obstacle determination device and obstacle determination method Active JP6781535B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015147358A JP6781535B2 (en) 2015-07-27 2015-07-27 Obstacle determination device and obstacle determination method
US15/218,646 US10093312B2 (en) 2015-07-27 2016-07-25 Obstacle determining apparatus, moving body, and obstacle determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147358A JP6781535B2 (en) 2015-07-27 2015-07-27 Obstacle determination device and obstacle determination method

Publications (2)

Publication Number Publication Date
JP2017026535A JP2017026535A (en) 2017-02-02
JP6781535B2 true JP6781535B2 (en) 2020-11-04

Family

ID=57950488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147358A Active JP6781535B2 (en) 2015-07-27 2015-07-27 Obstacle determination device and obstacle determination method

Country Status (1)

Country Link
JP (1) JP6781535B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065701A1 (en) * 2018-09-25 2020-04-02 学校法人 千葉工業大学 Information processing device and mobile robot
CN109581390A (en) * 2018-11-27 2019-04-05 北京纵目安驰智能科技有限公司 Terrain detection method, system, terminal and storage medium based on ultrasonic radar
JP7221549B2 (en) * 2018-12-17 2023-02-14 学校法人千葉工業大学 Information processing device and mobile robot
CN112530160A (en) * 2020-11-18 2021-03-19 合肥湛达智能科技有限公司 Target distance detection method based on deep learning
CN114415680A (en) * 2022-01-06 2022-04-29 杭州申昊科技股份有限公司 Track inspection robot avoiding device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108825A (en) * 1998-10-02 2000-04-18 Michihiro Kannonji Housing installing structure of inter-vehicle distance measuring apparatus
JP2000353300A (en) * 1999-06-11 2000-12-19 Honda Motor Co Ltd Object recognizing device
US7741961B1 (en) * 2006-09-29 2010-06-22 Canesta, Inc. Enhanced obstacle detection and tracking for three-dimensional imaging systems used in motor vehicles
JP6030405B2 (en) * 2012-10-25 2016-11-24 シャープ株式会社 Planar detection device and autonomous mobile device including the same

Also Published As

Publication number Publication date
JP2017026535A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US10093312B2 (en) Obstacle determining apparatus, moving body, and obstacle determining method
CN110389586B (en) System and method for ground and free space exploration
JP6781535B2 (en) Obstacle determination device and obstacle determination method
US9946259B2 (en) Negative obstacle detector
JP5831415B2 (en) Parking assistance device
CN109791408B (en) Self-position estimation method and self-position estimation device
US10705534B2 (en) System and method for ground plane detection
US20110309967A1 (en) Apparatus and the method for distinguishing ground and obstacles for autonomous mobile vehicle
JP6447863B2 (en) Moving body
JP6875790B2 (en) Distance measuring device and traveling device
JP6464410B2 (en) Obstacle determination device and obstacle determination method
JP6183823B2 (en) Route generating apparatus and method
JP2017032329A (en) Obstacle determination device, mobile body, and obstacle determination method
JP2017059150A (en) Obstacle determination device, movable body and obstacle determination method
JP2018084492A (en) Self-position estimation method and self-position estimation device
US11474254B2 (en) Multi-axes scanning system from single-axis scanner
JP6886531B2 (en) Obstacle determination device, moving object, and obstacle determination method
JP6725982B2 (en) Obstacle determination device
US20230225580A1 (en) Robot cleaner and robot cleaner control method
JP6604052B2 (en) Runway boundary estimation device and runway boundary estimation method
JP7002791B2 (en) Information processing equipment and mobile robots
JP6267430B2 (en) Mobile environment map generation control device, mobile body, and mobile environment map generation method
KR101313859B1 (en) Autonomous mobile robot and driving method thereof
JP2015056123A (en) Environmental map generation control device of moving body, moving body, and environmental map generation method of moving body
US11914679B2 (en) Multispectral object-detection with thermal imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200624

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6781535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150