JP6775195B2 - Detection device, detection method and detection program - Google Patents

Detection device, detection method and detection program Download PDF

Info

Publication number
JP6775195B2
JP6775195B2 JP2016228373A JP2016228373A JP6775195B2 JP 6775195 B2 JP6775195 B2 JP 6775195B2 JP 2016228373 A JP2016228373 A JP 2016228373A JP 2016228373 A JP2016228373 A JP 2016228373A JP 6775195 B2 JP6775195 B2 JP 6775195B2
Authority
JP
Japan
Prior art keywords
light
detection device
polarization
polarization intensity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228373A
Other languages
Japanese (ja)
Other versions
JP2018025528A (en
Inventor
達男 伊藤
達男 伊藤
弘一 楠亀
弘一 楠亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US15/471,050 priority Critical patent/US10360459B2/en
Priority to EP17164978.3A priority patent/EP3229011B1/en
Publication of JP2018025528A publication Critical patent/JP2018025528A/en
Application granted granted Critical
Publication of JP6775195B2 publication Critical patent/JP6775195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、対象物における、水分の状態、凍結の状態等を検知する検知装置、検知方法及び検知プログラムに関する。 The present invention relates to a detection device, a detection method, and a detection program for detecting the state of water, the state of freezing, etc. in an object.

従来、路面(対象物の一例)に光を出射する光源と、光の強度を検出する光検出手段(受光部の一例)と、S偏光を透過する第1検光子(偏光分離部の一例)と、P偏光を透過する第2検光子(偏光分離部の一例)と、光検出手段からの出力信号を処理する信号処理手段(制御部の一例)とを備えた路面状態検出センサ(検知装置の一例)が開示されている(例えば特許文献1参照)。 Conventionally, a light source that emits light to a road surface (an example of an object), a light detecting means for detecting the intensity of light (an example of a light receiving unit), and a first analyzer that transmits S-polarized light (an example of a polarization separating unit). A road surface condition detection sensor (detection device) including a second detector that transmits P-polarized light (an example of a polarization separation unit) and a signal processing means (an example of a control unit) that processes an output signal from the light detection means. (Example) is disclosed (see, for example, Patent Document 1).

この路面状態検出センサでは、P偏光における特定の波長間の相対光強度に基づき路面状態を識別する。 This road surface condition detection sensor identifies the road surface condition based on the relative light intensity between specific wavelengths in P-polarized light.

特開2005−43240号公報Japanese Unexamined Patent Publication No. 2005-43240

しかしながら、従来の検知装置では、P偏光(直線偏光)を対象物に照射して波長間の相対光強度に基づき対象物の状態を識別しているが、直線偏光とは異なる偏光を用いて対象物の状態を精度よく検知したいという要望がある。 However, in the conventional detection device, the state of the object is identified based on the relative light intensity between wavelengths by irradiating the object with P polarized light (linearly polarized light), but the object uses polarized light different from the linearly polarized light. There is a desire to accurately detect the state of an object.

そこで、本発明は、対象物の状態を精度よく検知することができる検知装置、検知方法及び検知プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a detection device, a detection method, and a detection program capable of accurately detecting the state of an object.

上記目的を達成するため、本発明の一態様に係る検知装置は、第1波長帯域の光と、前記第1波長帯域よりも水に吸収され難い第2波長帯域の光とを対象物に向けて出射する光源と、前記対象物で反射又は散乱されたS偏光及びP偏光を含む光から、少なくともP偏光を分離する偏光分離部と、前記対象物で反射又は散乱した光を、前記偏光分離部を介して受光する受光部と、前記受光部が受光した光に基づく情報から前記対象物の状態を判断する制御部とを備え、前記光源から出射する光は、前記S偏光と前記P偏光との割合が略均一なランダム偏光であり、前記制御部は、前記第1波長帯域の前記S偏光におけるS1偏光強度、及び前記第1波長帯域の前記P偏光におけるP1偏光強度と、前記第2波長帯域の前記S偏光におけるS2偏光強度又は前記第2波長帯域の前記P偏光におけるP2偏光強度とに基づく情報を前記受光部から取得し、前記S2偏光強度又は前記P2偏光強度が所定の閾値よりも大きい場合に、前記対象物が積雪の状態であると判断し、前記S1偏光強度と前記S2偏光強度とが略等しい場合又は前記P1偏光強度と前記P2偏光強度とが略等しい場合に、前記対象物が乾燥の状態であると判断し、前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度に、前記P2偏光強度を除算した値が所定値以下である場合に、前記対象物が冠水の状態であると判断し、前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度における強度に、前記P2偏光強度を除算した値が所定値よりも大きい場合に、前記対象物が凍結の状態であると判断するIn order to achieve the above object, the detection device according to one aspect of the present invention directs light in the first wavelength band and light in the second wavelength band, which is less easily absorbed by water than the first wavelength band, toward an object. The polarized light separation unit that separates at least P-polarized light from the light source that emits light and the light that contains S-polarized light and P-polarized light that is reflected or scattered by the object, and the light that is reflected or scattered by the object are polarized. It includes a light receiving unit that receives light through the unit and a control unit that determines the state of the object from information based on the light received by the light receiving unit, and the light emitted from the light source is the S-polarized light and the P-polarized light. substantially uniform randomly polarized der proportion of is, the control unit includes a step S1 polarization intensity in the S-polarized light of the first wavelength band, and P1 polarization intensity in the P-polarized light of the first wavelength band, said first Information based on the S2 polarization intensity in the S polarization in the two wavelength band or the P2 polarization intensity in the P polarization in the second wavelength band is acquired from the light receiving unit, and the S2 polarization intensity or the P2 polarization intensity is a predetermined threshold value. If it is larger than, it is determined that the object is in a snowy state, and the S1 polarization intensity and the S2 polarization intensity are substantially equal to each other, or the P1 polarization intensity and the P2 polarization intensity are substantially equal to each other. When it is determined that the object is in a dry state, the P2 polarization intensity is larger than the S2 polarization intensity, and the value obtained by dividing the S2 polarization intensity by the P2 polarization intensity is equal to or less than a predetermined value. In addition, when it is determined that the object is submerged, the P2 polarization intensity is larger than the S2 polarization intensity, and the intensity at the S2 polarization intensity is divided by the P2 polarization intensity, which is a predetermined value. If it is larger than, it is determined that the object is in a frozen state .

また、上記目的を達成するため、本発明の一態様に係る検知方法は、検知装置を用いて対象物の状態を検知する検知方法であって、前記制御部は、前記第1波長帯域の前記S偏光におけるS1偏光強度、及び前記第1波長帯域の前記P偏光におけるP1偏光強度と、前記第2波長帯域の前記S偏光におけるS2偏光強度又は前記第2波長帯域の前記P偏光におけるP2偏光強度とに基づく情報を前記受光部から取得する取得ステップと、前記S2偏光強度又は前記P2偏光強度が所定の閾値よりも大きい場合に、前記対象物が積雪の状態であると判断する積雪判断ステップと、前記S1偏光強度と前記S2偏光強度とが略等しい場合又は前記P1偏光強度と前記P2偏光強度とが略等しい場合に、前記対象物が乾燥の状態であると判断する乾燥判断ステップと、前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度に、前記P2偏光強度を除算した値が所定値以である場合に、前記対象物が冠水の状態であると判断する冠水判断ステップと、前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度における強度に、前記P2偏光強度を除算した値が所定値よりも大きい場合に、前記対象物が凍結の状態であると判断する凍結判断ステップとを含む。 Further, in order to achieve the above object, the detection method according to one aspect of the present invention is a detection method for detecting the state of an object using a detection device, and the control unit is the above-mentioned first wavelength band. S1 polarization intensity in S polarization, P1 polarization intensity in the P polarization in the first wavelength band, S2 polarization intensity in the S polarization in the second wavelength band, or P2 polarization intensity in the P polarization in the second wavelength band. An acquisition step of acquiring information based on the above from the light receiving unit, and a snow accumulation determination step of determining that the object is in a snow accumulation state when the S2 polarization intensity or the P2 polarization intensity is larger than a predetermined threshold value. When the S1 polarization intensity and the S2 polarization intensity are substantially equal to each other, or when the P1 polarization intensity and the P2 polarization intensity are substantially equal to each other, the drying determination step of determining that the object is in a dry state, and the above-mentioned If P2 polarization intensity is greater than the step S2 polarization intensity, and step S2 in polarization intensity, when the value obtained by dividing the P2 polarization intensity is below a predetermined value, determining that the object is a state of flooding Submersion determination step to be performed, and when the P2 polarization intensity is larger than the S2 polarization intensity and the value obtained by dividing the P2 polarization intensity by the intensity at the S2 polarization intensity is larger than a predetermined value, the object is Includes a freeze determination step to determine that is in a frozen state.

また、上記目的を達成するため、本発明の一態様に係る検知プログラムは、検知方法をコンピュータに実行させる。 Further, in order to achieve the above object, the detection program according to one aspect of the present invention causes a computer to execute a detection method.

なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータで読み取り可能なCD−ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these general or specific embodiments may be realized in a system, method, integrated circuit, computer program or recording medium such as a computer-readable CD-ROM, system, method, integrated circuit, computer. It may be realized by any combination of a program and a recording medium.

本発明によれば、対象物の状態を精度よく検知することができる。 According to the present invention, the state of an object can be detected with high accuracy.

図1は、実施の形態1に係る検知装置を示す模式図である。FIG. 1 is a schematic view showing a detection device according to the first embodiment. 図2は、実施の形態1に係る検知装置の動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the detection device according to the first embodiment. 図3は、実施の形態1の変形例に係る検知装置を備えた車両を示す模式図である。FIG. 3 is a schematic view showing a vehicle provided with a detection device according to a modified example of the first embodiment. 図4は、実施の形態2に係る検知装置を示す模式図である。FIG. 4 is a schematic view showing the detection device according to the second embodiment. 図5は、実施の形態2に係る検知装置を示す模式図である。FIG. 5 is a schematic view showing the detection device according to the second embodiment. 図6は、実施の形態2の変形例に係る検知装置を示す模式図である。FIG. 6 is a schematic view showing a detection device according to a modified example of the second embodiment. 図7は、実施の形態2の変形例に係る検知装置の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the detection device according to the modified example of the second embodiment. 図8は、実施の形態3に係る検知装置を示す模式図である。FIG. 8 is a schematic view showing the detection device according to the third embodiment. 図9は、実施の形態4に係る検知装置を示す模式図である。FIG. 9 is a schematic view showing the detection device according to the fourth embodiment. 図10は、実施の形態4の変形例に係る検知装置を示す模式図である。FIG. 10 is a schematic view showing a detection device according to a modified example of the fourth embodiment. 図11は、実施の形態5に係る検知装置を示す模式図である。FIG. 11 is a schematic view showing the detection device according to the fifth embodiment. 図12は、実施の形態6に係る検知装置を備えた車両を示す模式図である。FIG. 12 is a schematic view showing a vehicle provided with the detection device according to the sixth embodiment. 図13は、実施の形態6に係る車両支援システムの車両を示すブロック図である。FIG. 13 is a block diagram showing a vehicle of the vehicle support system according to the sixth embodiment. 図14は、実施の形態6に係る車両支援システムを示す模式図である。FIG. 14 is a schematic view showing the vehicle support system according to the sixth embodiment. 図15は、実施の形態6の変形例に係る検知装置を備えた車両を示す模式図である。FIG. 15 is a schematic view showing a vehicle provided with a detection device according to a modified example of the sixth embodiment. 図16は、実施の形態7に係る検知装置を備えた車両を示す模式図である。FIG. 16 is a schematic view showing a vehicle provided with the detection device according to the seventh embodiment. 図17の(a)は、実施の形態7に係る検知装置と車輪とを示す模式図である。図17の(b)は、比較例に係る検知装置と車輪とを示す模式図である。FIG. 17A is a schematic view showing the detection device and the wheel according to the seventh embodiment. FIG. 17B is a schematic view showing a detection device and wheels according to a comparative example.

(本発明の基礎となった知見)
現在、対象物における水分量等の状態を検知する検知装置が求められている。例えば、屋外における路面を対象物とした場合に、路面では、凍結の状態、冠水の状態、積雪の状態、乾燥の状態が存在する。検知装置は、この4つの状態を識別する必要がある。
(Knowledge on which the present invention is based)
Currently, there is a demand for a detection device that detects a state such as the amount of water in an object. For example, when an outdoor road surface is used as an object, the road surface has a frozen state, a flooded state, a snow-covered state, and a dry state. The detection device needs to identify these four states.

水には、特有な波長領域で光を吸収する吸収スペクトルが存在する。そこで、本発明者達は、路面の状態を検知する手段として、水の吸収スペクトルに着目した。 Water has an absorption spectrum that absorbs light in a unique wavelength region. Therefore, the present inventors have focused on the absorption spectrum of water as a means for detecting the state of the road surface.

光の波長と、水の吸収係数との関係において、水には、例えば、光の近赤外領域(700nm〜2500nmと言われる)において740nm、980nm、1450nm、1940nm付近に光を吸収するピーク(吸収ピーク)が存在している。特に、水の性質として、光の吸収ピークにおいて、光の波長が大きくなるほど、光を吸収し易い。そこで、原理的には、吸収のピーク近傍の波長を含んだ光を路面に照射し、その反射光の多寡によって水や氷の有無を検出することができる。 Regarding the relationship between the wavelength of light and the absorption coefficient of water, water has peaks that absorb light in the near infrared region of light (called 700 nm to 2500 nm) in the vicinity of 740 nm, 980 nm, 1450 nm, and 1940 nm (referred to as 700 nm to 2500 nm). Absorption peak) is present. In particular, as a property of water, the larger the wavelength of light at the peak of light absorption, the easier it is to absorb light. Therefore, in principle, it is possible to irradiate the road surface with light containing a wavelength near the peak of absorption and detect the presence or absence of water or ice by the amount of the reflected light.

そこで、例えば、路面が冠水した状態である場合に、水面に入射した光のうち、S偏光は、P偏光に比べて水面で正反射し易い性質がある。つまり、S偏光は、入射角を大きくすればするほど、P偏光よりも反射率が上昇し易い性質がある。一方、P偏光はS偏光に比べて水面で正反射し難い性質がある。つまり、P偏光は、入射角を大きくすればするほど、S偏光ほどは反射率が上昇し難い性質がある。このため、P偏光は、水面に入射した場合、水を透過し、路面で散乱されて、一部の光は光源側に向かう。このような光の性質において、例えば、光源側に受光部を配置した場合では、正反射するS偏光の受光量は、対象物で散乱した光を受光するP偏光の受光量よりも少なくなる。 Therefore, for example, when the road surface is submerged, among the light incident on the water surface, S-polarized light has a property of being more likely to be specularly reflected on the water surface than P-polarized light. That is, S-polarized light has a property that the reflectance is more likely to increase than P-polarized light as the incident angle is increased. On the other hand, P-polarized light has a property that it is less likely to be specularly reflected on the water surface than S-polarized light. That is, P-polarized light has a property that the higher the incident angle, the more difficult it is for the reflectance to increase as much as S-polarized light. Therefore, when the P-polarized light is incident on the water surface, it passes through the water and is scattered on the road surface, and a part of the light is directed to the light source side. In such a property of light, for example, when a light receiving unit is arranged on the light source side, the amount of light received by S-polarized light that is specularly reflected is smaller than the amount of light received by P-polarized light that receives light scattered by an object.

また、路面が凍結した状態である場合、氷の表面は水表面に比べれば粗面となっているため、路面が冠水した状態に比べると、S偏光もP偏光も表面で散乱される。このため、光源側に受光部を配置した場合では、水に比べれば、S偏光の受光量とP偏光の受光量とに大きな差が出ない。つまり、散乱光におけるS偏光の強度とP偏光の強度との比(S偏光の強度/P偏光の強度)は、凍結の状態では1より小さく、冠水の状態では凍結の状態の時よりもさらに小さくなるため、適切な閾値を設定すれば、冠水の状態と凍結の状態とを識別することが可能となる。このため、水が光を吸収するピーク近傍の波長を含んだ光において、P偏光及びS偏光の割合が略均一なランダム偏光を路面に照射すれば、散乱光の強度と、P偏光及びS偏光の比率とを測定することで路面状態を検知することができると考えられる。 Further, when the road surface is in a frozen state, the surface of the ice is rougher than the water surface, so that both S-polarized light and P-polarized light are scattered on the surface as compared with the state where the road surface is flooded. Therefore, when the light receiving portion is arranged on the light source side, there is no significant difference between the light receiving amount of S-polarized light and the light receiving amount of P-polarized light as compared with water. That is, the ratio of the intensity of S-polarized light to the intensity of P-polarized light in scattered light (intensity of S-polarized light / intensity of P-polarized light) is less than 1 in the frozen state, and further in the submerged state than in the frozen state. Therefore, if an appropriate threshold value is set, it becomes possible to distinguish between a submerged state and a frozen state. Therefore, if the road surface is irradiated with random polarized light having a substantially uniform ratio of P-polarized light and S-polarized light in light containing a wavelength near the peak at which water absorbs light, the intensity of scattered light and the P-polarized light and S-polarized light are obtained. It is considered that the road surface condition can be detected by measuring the ratio of.

また、路面が乾燥した状態での散乱光の強度を1とすると、積雪の状態では散乱光の強度は1より大きくなる。このため、散乱光の強度を見るだけで路面が乾燥した状態か、積雪の状態かを判断することができる。 Further, assuming that the intensity of the scattered light when the road surface is dry is 1, the intensity of the scattered light is larger than 1 in the snowy state. Therefore, it is possible to determine whether the road surface is dry or snowy just by looking at the intensity of the scattered light.

なお、対象物で吸収された光を導きだすだけでは、対象物における表面形状の影響や、水以外の吸収物質の影響を受けるため精度の良い検知を行うことができない。このため、これらの影響を抑制する、ニ色分光とよばれる方式を用いることが一般的である。これは、光を吸収する吸収ピークの波長以外に、吸収の少ない波長の光も用いることで、表面形状や水以外の吸収物質の影響を補償する方式である。本実施の形態でも、散乱光の強度の代わりに、光を吸収する吸収ピークの波長と、吸収の少ない波長の光との強度比を用いて水及び氷の存在を検出することが好ましい。 It should be noted that it is not possible to perform accurate detection simply by deriving the light absorbed by the object because it is affected by the surface shape of the object and the absorbing substances other than water. For this reason, it is common to use a method called two-color spectroscopy that suppresses these effects. This is a method of compensating for the influence of the surface shape and absorbing substances other than water by using light having a wavelength of less absorption in addition to the wavelength of the absorption peak that absorbs light. Also in this embodiment, it is preferable to detect the presence of water and ice by using the intensity ratio of the wavelength of the absorption peak that absorbs light and the light of the wavelength that absorbs less light instead of the intensity of scattered light.

このように、従来の検知装置に対して異なる手段を用いて、対象物の状態(対象物における水分や氷等の有無)を検知したい。また、従来の検知装置において用いられた直線偏光とは異なる偏光を用いて、対象物の状態を精度よく検知したいという要望がある。 In this way, we want to detect the state of the object (presence or absence of water, ice, etc. in the object) by using a different means than the conventional detection device. Further, there is a demand for accurately detecting the state of an object by using polarized light different from the linearly polarized light used in the conventional detection device.

そこで、対象物の状態を精度よく検知することができる検知装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a detection device capable of accurately detecting the state of an object.

以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement positions of the components, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present invention. Therefore, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present invention will be described as arbitrary components.

また、「略**」との記載は、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。また、「**近傍」との記載においても同様である。 Further, the description of "abbreviated **" is intended to include not only exactly the same but also substantially the same when explaining by taking "substantially the same" as an example. The same applies to the description of "** neighborhood".

なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 It should be noted that each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate description will be omitted or simplified.

(実施の形態1)
以下、本発明の実施の形態1に係る検知装置について説明する。
(Embodiment 1)
Hereinafter, the detection device according to the first embodiment of the present invention will be described.

[構成]
まず、本実施の形態に係る検知装置1の構成について図1を用いて説明する。
[Constitution]
First, the configuration of the detection device 1 according to the present embodiment will be described with reference to FIG.

図1は、実施の形態1に係る検知装置1を示す模式図である。 FIG. 1 is a schematic view showing the detection device 1 according to the first embodiment.

図1に示すように、検知装置1は、光を対象物に照射し、対象物の状態を検知する装置である。本実施の形態において、対象物とは、例えば、道路の路面である。対象物の状態とは、道路の路面においては、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態である。 As shown in FIG. 1, the detection device 1 is a device that irradiates an object with light and detects the state of the object. In the present embodiment, the object is, for example, the road surface of a road. The state of the object is a state of snow cover, a state of dryness, a state of flooding, and a state of freezing on the road surface.

検知装置1は、光源3と、受光部4と、偏光分離部5と、波長分離部6と、制御部7と、出力部8と、電源部9と、記憶部11とを備える。光源3、受光部4、偏光分離部5、波長分離部6、制御部7、出力部8、電源部9及び記憶部11は、図示しない筺体に設けられていてもよい。 The detection device 1 includes a light source 3, a light receiving unit 4, a polarization separating unit 5, a wavelength separating unit 6, a control unit 7, an output unit 8, a power supply unit 9, and a storage unit 11. The light source 3, the light receiving unit 4, the polarization separating unit 5, the wavelength separating unit 6, the control unit 7, the output unit 8, the power supply unit 9, and the storage unit 11 may be provided in a housing (not shown).

光源3は、対象物に向けて光を出射するように設けられる発光モジュールである。光源3が出射する光は、S偏光とP偏光との割合が略均一なランダム偏光であり、可視光や赤外光等である。略均一なランダム偏光とは、光における電界の振動方向がランダムであり、様々な方向に振動する成分が存在することを言い、ランダムに振動する成分が単位時間において均一であることを意味している。 The light source 3 is a light emitting module provided so as to emit light toward an object. The light emitted by the light source 3 is random polarized light in which the ratio of S-polarized light and P-polarized light is substantially uniform, and is visible light, infrared light, or the like. Randomly polarized light means that the vibration direction of the electric field in light is random and there are components that oscillate in various directions, and that the components that oscillate randomly are uniform in a unit time. There is.

本実施の形態では光は、赤外光を用いている。S偏光は、第1波長帯域の光及び第2波長帯域の光である。また、P偏光は、第1波長帯域の光及び第2波長帯域の光である。第2波長帯域の光は、第1波長帯域と異なる波長帯域であり、第1波長帯域よりも水に吸収され難い性質を有する。第1波長帯域の光及び第2波長帯域の光は、水が光を吸収し易い吸収ピーク近傍の波長帯域である。本実施の形態では、光源3の光は、第1波長帯域の一例として波長λ1の光、第2波長帯域の一例として波長λ2の光を用いている。 In the present embodiment, infrared light is used as the light. The S-polarized light is light in the first wavelength band and light in the second wavelength band. Further, P-polarized light is light in the first wavelength band and light in the second wavelength band. Light in the second wavelength band has a wavelength band different from that in the first wavelength band, and has a property of being less easily absorbed by water than the first wavelength band. The light in the first wavelength band and the light in the second wavelength band are wavelength bands near the absorption peak in which water easily absorbs light. In the present embodiment, the light of the light source 3 uses light having a wavelength of λ1 as an example of the first wavelength band and light having a wavelength of λ2 as an example of the second wavelength band.

第1波長帯域の赤外光は、水における、740nm近傍、980nm近傍、1450nm近傍及び1940nm近傍のうちいずれかで吸収波長となる吸収ピークの光である。また、第2波長帯域の赤外光は、第1波長帯域の赤外光よりも波長が短い光である。例えば、第1波長帯域の赤外光が980nm近傍の光である場合は、第2波長帯域の赤外光を800nm近傍の光としてもよい。また、第1波長帯域の赤外光が1940nm近傍の光である場合は、第2波長帯域の赤外光を1550nm近傍の光としてもよい。 The infrared light in the first wavelength band is light having an absorption peak having an absorption wavelength at any of 740 nm, 980 nm, 1450 nm, and 1940 nm in water. Further, the infrared light in the second wavelength band is light having a shorter wavelength than the infrared light in the first wavelength band. For example, when the infrared light in the first wavelength band is light in the vicinity of 980 nm, the infrared light in the second wavelength band may be light in the vicinity of 800 nm. When the infrared light in the first wavelength band is light in the vicinity of 1940 nm, the infrared light in the second wavelength band may be light in the vicinity of 1550 nm.

光源3としては、例えば、ハロゲンランプなどの連続スペクトル光を出射する光源3を用いることができるが、これに限定されない。例えば、光源3は、LED(Light Emitting Diode)素子、半導体レーザ等の半導体発光素子、または、有機EL(Electro Luminescence)や無機EL等のEL素子等その他の固体発光素子であってもよい。 As the light source 3, for example, a light source 3 that emits continuous spectrum light such as a halogen lamp can be used, but the light source 3 is not limited to this. For example, the light source 3 may be an LED (Light Emitting Diode) element, a semiconductor light emitting element such as a semiconductor laser, or another solid light emitting element such as an EL element such as an organic EL (Electroluminescence) or an inorganic EL.

受光部4は、照射された光が対象物で散乱した光を受光するように、対象物と向かい合うように設けられる。つまり、受光部4は、光源3側に設けられ、光源3の光が対象物で正反射した光を受光するように配置されているのではない。受光部4は、受光した光量に関する情報を生成する。受光部4は、例えば、赤外線センサ等の光センサであるが、カメラであってもよい。 The light receiving unit 4 is provided so as to face the object so that the irradiated light receives the light scattered by the object. That is, the light receiving unit 4 is provided on the light source 3 side, and is not arranged so that the light of the light source 3 receives the light that is specularly reflected by the object. The light receiving unit 4 generates information regarding the amount of light received. The light receiving unit 4 is, for example, an optical sensor such as an infrared sensor, but may be a camera.

具体的には、受光部4は、光量に関する情報として、情報P1、情報P2及び情報S1を生成し、制御部7に送信する。情報P1は、P偏光フィルタ51及び第1波長分離フィルタ61を通過した、P偏光かつ波長λ1におけるP1偏光強度の光に基づく情報である。情報P2は、P偏光フィルタ51及び第2波長分離フィルタ62を通過した、P偏光かつ波長λ2におけるP2偏光強度の光に基づく情報である。情報S1は、S偏光フィルタ52及び第1波長分離フィルタ61を通過した、S偏光かつ波長λ1におけるS1偏光強度の光に基づく情報である。後述する情報S2は、S偏光フィルタ52及び第2波長分離フィルタ62を通過した、S偏光かつ波長λ2におけるS2偏光強度の光に基づく情報である。本実施に形態では、波長λ1の光は、波長λ2の波長の光よりも水に吸収され易い波長である。つまり、水が光を吸収する吸収ピークにおいて、波長λ1は、波長λ2よりも波長が大きい。なお、波長λ1は、波長λ1近傍の光である。また、波長λ2においても同様である。 Specifically, the light receiving unit 4 generates information P1, information P2, and information S1 as information regarding the amount of light, and transmits the information to the control unit 7. The information P1 is information based on light of P polarization and P1 polarization intensity at wavelength λ1 that has passed through the P polarization filter 51 and the first wavelength separation filter 61. The information P2 is information based on light having P polarization and P2 polarization intensity at wavelength λ2, which has passed through the P polarization filter 51 and the second wavelength separation filter 62. The information S1 is information based on light having S polarization and S1 polarization intensity at wavelength λ1 that has passed through the S polarization filter 52 and the first wavelength separation filter 61. The information S2 described later is information based on light having S polarization and S2 polarization intensity at wavelength λ2 that has passed through the S polarization filter 52 and the second wavelength separation filter 62. In the present embodiment, the light having a wavelength λ1 is a wavelength that is more easily absorbed by water than the light having a wavelength λ2. That is, at the absorption peak where water absorbs light, the wavelength λ1 has a wavelength larger than the wavelength λ2. The wavelength λ1 is light in the vicinity of the wavelength λ1. The same applies to the wavelength λ2.

偏光分離部5は、対象物と受光部4との間に設けられ、対象物で散乱された光から所定の偏光を分離する機能を有する。偏光分離部5は、例えば、偏光フィルタ、偏光ビームスプリッタ等である。 The polarization separating unit 5 is provided between the object and the light receiving unit 4, and has a function of separating a predetermined polarized light from the light scattered by the object. The polarizing separator 5 is, for example, a polarizing filter, a polarizing beam splitter, or the like.

偏光分離部5は、P偏光フィルタ51と、S偏光フィルタ52とを有する。P偏光フィルタ51は、P偏光の光を透過させる性質を有する。S偏光フィルタ52は、S偏光の光を透過させる性質を有する。P偏光フィルタ51及びS偏光フィルタ52は、図示しない駆動部によって互いの位置を入れ替えるように設けられる。 The polarizing separation unit 5 has a P polarizing filter 51 and an S polarizing filter 52. The P-polarizing filter 51 has a property of transmitting P-polarized light. The S polarization filter 52 has a property of transmitting S-polarized light. The P polarizing filter 51 and the S polarizing filter 52 are provided so as to exchange their positions with each other by a drive unit (not shown).

波長分離部6は、所定の波長領域の光のみを透過させる波長を分離する機能を有する。本実施の形態において、波長分離部6は、偏光分離部5と受光部4との間に設けられるが、対象物と偏光分離部5との間に設けられていてもよい。 The wavelength separation unit 6 has a function of separating wavelengths that transmit only light in a predetermined wavelength region. In the present embodiment, the wavelength separation unit 6 is provided between the polarization separation unit 5 and the light receiving unit 4, but may be provided between the object and the polarization separation unit 5.

波長分離部6は、第1波長分離フィルタ61と、第2波長分離フィルタ62とを有する。第1波長分離フィルタ61は、波長λ1近傍の光を透過させる機能を有する。第2波長分離フィルタ62は、波長λ2近傍の光を透過させる機能を有する。第1波長分離フィルタ61及び第2波長分離フィルタ62においても、図示しない駆動部によって互いの位置を入れ替えるように設けられる。 The wavelength separation unit 6 includes a first wavelength separation filter 61 and a second wavelength separation filter 62. The first wavelength separation filter 61 has a function of transmitting light in the vicinity of the wavelength λ1. The second wavelength separation filter 62 has a function of transmitting light in the vicinity of the wavelength λ2. The first wavelength separation filter 61 and the second wavelength separation filter 62 are also provided so as to exchange positions with each other by a drive unit (not shown).

制御部7は、受光部4、光源3、出力部8及び電源部9等に電気的に接続されている。制御部7は、受光部4が受光した光量に関する情報を受信する。制御部7は、この光量に関する情報から、光源3における光の出力を調節してもよい。 The control unit 7 is electrically connected to the light receiving unit 4, the light source 3, the output unit 8, the power supply unit 9, and the like. The control unit 7 receives information regarding the amount of light received by the light receiving unit 4. The control unit 7 may adjust the output of light in the light source 3 from the information regarding the amount of light.

制御部7は、判断部71と、電源制御部72とを有する。 The control unit 7 includes a determination unit 71 and a power supply control unit 72.

判断部71は、制御部7を介して受信した情報P1、情報P2及び情報S1に基づいて、対象物における、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態を判断する。電源制御部72は、光源3が光を出射するように制御する。 The determination unit 71 determines the snow state, the dry state, the flooded state, and the frozen state of the object based on the information P1, the information P2, and the information S1 received via the control unit 7. The power supply control unit 72 controls the light source 3 to emit light.

電源部9は、例えば、一次電池や二次電池から供給される電源だけでなく、電力系統から供給される電源であってもよい。電源部9は、制御部7に接続され、制御部7を介して出力部8、光源3等の各部に電力を供給する。 The power supply unit 9 may be, for example, not only the power supply supplied from the primary battery or the secondary battery, but also the power supply supplied from the power system. The power supply unit 9 is connected to the control unit 7 and supplies electric power to each unit such as the output unit 8 and the light source 3 via the control unit 7.

出力部8は、例えば、液晶ディスプレイ、LEDディスプレイ、有機ELディスプレイ等のモニタや、音声等を出力するスピーカ等である。出力部8は、判断部71が判断した対象物の状態を出力する。具体的には、出力部8は、判断部71で判断された、対象物における、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態といった情報を出力する。 The output unit 8 is, for example, a monitor such as a liquid crystal display, an LED display, or an organic EL display, a speaker that outputs sound or the like, or the like. The output unit 8 outputs the state of the object determined by the determination unit 71. Specifically, the output unit 8 outputs information such as a snow cover state, a dry state, a flooded state, and a frozen state in the object determined by the determination unit 71.

記憶部11は、制御部7にプロセッサまたはマイクロコンピュータなどが含まれる場合に、制御部7が実行する制御プログラムが記憶される装置である。記憶部11は、例えば、半導体メモリによって実現される。なお、記憶部11には、過去の対象物における、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態に関する過去の情報が格納されていてもよい。 The storage unit 11 is a device that stores a control program executed by the control unit 7 when the control unit 7 includes a processor, a microcomputer, or the like. The storage unit 11 is realized by, for example, a semiconductor memory. The storage unit 11 may store past information regarding the snow-covered state, the dry state, the flooded state, and the frozen state of the past object.

このような検知装置1における、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態を判断する方法について説明する。 A method for determining a snow-covered state, a dry state, a flooded state, and a frozen state in such a detection device 1 will be described.

対象物における積雪の状態の判断は、情報P2の反射率が閾値以上であるか否かで判断できる。この閾値は、対象物を路面とした場合における、アスファルト、コンクリート、白線、黄線、積雪において、これら路面に光を照射した場合の反射率に基づいて算出されている。各々の反射率は、アスファルトでは約0.11であり、コンクリートでは約0.42であり、白線では約0.63であり、黄線では約0.52であり、積雪では約0.9である。この結果から、本実施の形態では、積雪以外で最も反射率が高い白線の反射率と、積雪の反射率との間の値である閾値を0.8と設定した。なお、この閾値は一例であり、特に限定されず、積雪の状態と積雪の状態以外で最も反射率が高い対象物との間であればよい。判断部71は、情報P2が閾値よりも大きいか否かで、路面が積雪の状態であるか否かを判断する。 The state of snow cover on the object can be determined by whether or not the reflectance of the information P2 is equal to or greater than the threshold value. This threshold value is calculated based on the reflectance when the road surface is irradiated with light on asphalt, concrete, white line, yellow line, and snow when the object is the road surface. The reflectance of each is about 0.11 for asphalt, about 0.42 for concrete, about 0.63 for the white line, about 0.52 for the yellow line, and about 0.9 for snow cover. is there. From this result, in the present embodiment, the threshold value, which is a value between the reflectance of the white line having the highest reflectance other than snow cover and the reflectance of snow cover, is set to 0.8. Note that this threshold value is an example and is not particularly limited as long as it is between a snow-covered state and an object having the highest reflectance other than the snow-covered state. The determination unit 71 determines whether or not the road surface is in a snowy state depending on whether or not the information P2 is larger than the threshold value.

対象物における乾燥の状態の判断は、情報P1と情報P2とが近似しているか否かで判断できる。これは、乾燥した状態の対象物に、略均一のランダム偏光が入射した場合、波長λ1の光及び波長λ2の光は、共に同程度の量が対象物で吸収される。このため、対象物での散乱光において、波長λ1の光量と波長λ2の光量とが略同一となる。また、本実施の形態では、情報P1と情報P2とが近似しているとは、情報P1と情報P2との誤差が±20%以内に収まっている場合をいう。例えば、対象物が路面では、路面の素材によって異なるためこの誤差範囲であることが好ましい。 The dry state of the object can be determined by whether or not the information P1 and the information P2 are similar to each other. This is because when substantially uniform random polarized light is incident on a dry object, the same amount of light having a wavelength λ1 and light having a wavelength λ2 are absorbed by the object. Therefore, in the scattered light of the object, the light amount of the wavelength λ1 and the light amount of the wavelength λ2 are substantially the same. Further, in the present embodiment, the fact that the information P1 and the information P2 are similar means that the error between the information P1 and the information P2 is within ± 20%. For example, when the object is a road surface, it is preferable to have this error range because it differs depending on the material of the road surface.

対象物における冠水の状態の判断は、本実施の形態では、S2偏光強度(情報S2)/P2偏光強度(情報P2)が所定値以下であるか否かで判断する。これは、波長λ2の光が水に入射した場合に、S偏光はP偏光に比べて反射率が大きいため、水で散乱した反射光にはP偏光がS偏光よりも多く含まれる。ここで、S2偏光強度(情報S2)/P2偏光強度(情報P2)は、凍結の状態及び冠水の状態では共に1よりも小さくなるが、冠水の状態は凍結の状態よりも更に小さくなる。つまり、S2偏光強度(情報S2)/P2偏光強度(情報P2)は、波長λ2のS偏光と波長λ2のP偏光との比(S2偏光強度における強度にP2偏光強度を除算した値)である。このため、冠水の状態と凍結の状態とを判断するためには、例えば、S2偏光強度(情報S2)/P2偏光強度(情報P2)が所定値以下の状態であるか否かで判断できる。本実施の形態では、所定値を0.9としている。なお、冠水の状態と凍結の状態とを判断するためには、例えば、S1偏光強度(情報S1)/P1偏光強度(情報P1)が所定値以下の状態であるか否かで判断してもよい。 In the present embodiment, the state of flooding in the object is determined by whether or not the S2 polarization intensity (information S2) / P2 polarization intensity (information P2) is equal to or less than a predetermined value. This is because when light having a wavelength of λ2 is incident on water, S-polarized light has a higher reflectance than P-polarized light, so that reflected light scattered by water contains more P-polarized light than S-polarized light. Here, the S2 polarization intensity (information S2) / P2 polarization intensity (information P2) is smaller than 1 in both the frozen state and the submerged state, but the submerged state is further smaller than the frozen state. That is, the S2 polarization intensity (information S2) / P2 polarization intensity (information P2) is the ratio of the S polarization of the wavelength λ2 to the P polarization of the wavelength λ2 (the value obtained by dividing the intensity at the S2 polarization intensity by the P2 polarization intensity). .. Therefore, in order to determine the state of flooding and the state of freezing, for example, it can be determined whether or not the S2 polarization intensity (information S2) / P2 polarization intensity (information P2) is a predetermined value or less. In the present embodiment, the predetermined value is 0.9. In order to determine the flooded state and the frozen state, for example, it may be determined whether or not the S1 polarization intensity (information S1) / P1 polarization intensity (information P1) is equal to or less than a predetermined value. Good.

対象物における凍結の状態の判断は、冠水の状態を判断する方法により、S2偏光強度(情報S2)/P2偏光強度(情報P2)が、1以下0.9よりも大きい場合で判断する。 The frozen state of the object is determined when the S2 polarization intensity (information S2) / P2 polarization intensity (information P2) is 1 or less and greater than 0.9 by the method of determining the state of flooding.

[検知装置の動作]
次に、検知装置1における動作、検知装置1を用いた検知方法、及び検知方法をコンピュータに実行させる検知プログラムの一例について、図2を用いて説明する。
[Operation of detection device]
Next, an operation in the detection device 1, a detection method using the detection device 1, and an example of a detection program for causing a computer to execute the detection method will be described with reference to FIG.

図2は、実施の形態1に係る検知装置1の動作を示すフローチャートである。 FIG. 2 is a flowchart showing the operation of the detection device 1 according to the first embodiment.

図2に示すように、例えば、P1偏光強度の光を受光部4に受光させる場合、制御部7は、受光部4と対象物との間に、P偏光フィルタ51と第1波長分離フィルタ61とが位置するように、駆動部によって配置させる。そして、制御部7は光源3から光を出射させて、対象物に光が照射される(ステップS1)。対象物に照射された光は、散乱され、一部の光が受光部4に向かう。そして、この光は、P偏光フィルタ51及び第1波長分離フィルタ61を通過して、P1偏光強度の光となり、受光部4で受光される。受光部4は、受光した光量に関する情報P1を生成し、情報P1を制御部7に送信する(ステップS2)。 As shown in FIG. 2, for example, when light of P1 polarization intensity is received by the light receiving unit 4, the control unit 7 receives a P polarization filter 51 and a first wavelength separation filter 61 between the light receiving unit 4 and the object. It is arranged by the drive unit so that and is located. Then, the control unit 7 emits light from the light source 3 to irradiate the object with light (step S1). The light radiated to the object is scattered, and a part of the light is directed to the light receiving unit 4. Then, this light passes through the P polarizing filter 51 and the first wavelength separation filter 61 to become light having P1 polarization intensity, and is received by the light receiving unit 4. The light receiving unit 4 generates information P1 regarding the amount of received light, and transmits the information P1 to the control unit 7 (step S2).

次に、制御部7は、受光部4から情報P1を受信(取得ステップの一例)し、情報P1を記憶部11に格納する(ステップS3)。 Next, the control unit 7 receives the information P1 from the light receiving unit 4 (an example of the acquisition step), and stores the information P1 in the storage unit 11 (step S3).

次に、S2偏光強度の光を受光部4に受光させる場合、制御部7は、受光部4と対象物との間に、S偏光フィルタ52と第2波長分離フィルタ62とが位置するように、駆動部によって配置させる。すると、対象物で散乱されて受光部4に向かう光は、S偏光フィルタ52及び第2波長分離フィルタ62を通過して、S2偏光強度の光となり、受光部4で受光される。受光部4は、受光した光量に関する情報S2を生成し、情報S2を制御部7に送信する(ステップS4)。 Next, when the light receiving unit 4 receives light of S2 polarization intensity, the control unit 7 arranges that the S polarization filter 52 and the second wavelength separation filter 62 are located between the light receiving unit 4 and the object. , Arranged by the drive unit. Then, the light scattered by the object and directed to the light receiving unit 4 passes through the S polarizing filter 52 and the second wavelength separation filter 62 to become light having S2 polarization intensity, and is received by the light receiving unit 4. The light receiving unit 4 generates information S2 regarding the amount of received light, and transmits the information S2 to the control unit 7 (step S4).

次に、制御部7は、受光部4から情報S2を受信(取得ステップの一例)し、情報S2を記憶部11に格納する(ステップS5)。 Next, the control unit 7 receives the information S2 from the light receiving unit 4 (an example of the acquisition step), and stores the information S2 in the storage unit 11 (step S5).

次に、P2偏光強度の光を受光部4に受光させる場合、制御部7は、受光部4と対象物との間に、P偏光フィルタ51と第2波長分離フィルタ62とが位置するように、駆動部によって配置させる。すると、対象物で散乱されて受光部4に向かう光は、P偏光フィルタ51及び第2波長分離フィルタ62を通過して、P2偏光強度の光となり、受光部4で受光される。受光部4は、受光した光量に関する情報P2を生成し、情報P2を制御部7に送信する(ステップS6)。 Next, when the light receiving unit 4 receives light of P2 polarization intensity, the control unit 7 arranges that the P polarization filter 51 and the second wavelength separation filter 62 are located between the light receiving unit 4 and the object. , Arranged by the drive unit. Then, the light scattered by the object and directed to the light receiving unit 4 passes through the P polarizing filter 51 and the second wavelength separation filter 62 to become light having P2 polarization intensity, and is received by the light receiving unit 4. The light receiving unit 4 generates information P2 regarding the amount of received light, and transmits the information P2 to the control unit 7 (step S6).

次に、制御部7は、受光部4から情報P2を受信し、情報P2を記憶部11に格納する(ステップS7)。 Next, the control unit 7 receives the information P2 from the light receiving unit 4 and stores the information P2 in the storage unit 11 (step S7).

次に、制御部7の判断部71は、情報P2が所定の閾値よりも大きいか否かを判断する(ステップS8)。情報P2が閾値よりも大きい場合(ステップS8ではYES)、判断部71は、対象物の状態が積雪の状態であると判断する(ステップS13:積雪判断ステップの一例)。制御部7は、判断部71が判断した積雪の状態であるという内容を出力部8に出力する(ステップS12)。こうして、このフローはスタートに戻り、同様の検知を行う。 Next, the determination unit 71 of the control unit 7 determines whether or not the information P2 is larger than a predetermined threshold value (step S8). When the information P2 is larger than the threshold value (YES in step S8), the determination unit 71 determines that the state of the object is the snow cover state (step S13: an example of the snow cover determination step). The control unit 7 outputs to the output unit 8 the content that the determination unit 71 has determined that it is in a snowy state (step S12). In this way, this flow returns to the start and performs the same detection.

なお、ステップS8で、情報P2の代わりに情報S2が所定の閾値よりも大きいか否かを判断してもよい。この場合、S偏光フィルタ52及び第2波長分離フィルタ62を通過させて、S偏光かつ波長λ2であるS2偏光強度の光を取り出し、ステップS6で、受光部4は、受光した光量に関する情報S2を生成し、情報S2を制御部7に送信してもよい。また、ステップS7で、制御部7は、受光部4から情報S2を受信し、情報S2を記憶部11に格納してもよい。 In step S8, it may be determined whether or not the information S2 is larger than the predetermined threshold value instead of the information P2. In this case, light having S-polarized light and S2 polarization intensity having a wavelength λ2 is taken out by passing through the S-polarizing filter 52 and the second wavelength separation filter 62, and in step S6, the light receiving unit 4 receives information S2 regarding the amount of received light. It may be generated and the information S2 may be transmitted to the control unit 7. Further, in step S7, the control unit 7 may receive the information S2 from the light receiving unit 4 and store the information S2 in the storage unit 11.

一方、情報P2が閾値以下である場合(ステップS8ではNO)、判断部71は、情報P1と情報P2とが近似しているか否かを判断する(ステップS9)。なお、ステップS9で、情報S1と情報S2とが近似しているか否かを判断してもよい。 On the other hand, when the information P2 is equal to or less than the threshold value (NO in step S8), the determination unit 71 determines whether or not the information P1 and the information P2 are close to each other (step S9). In step S9, it may be determined whether or not the information S1 and the information S2 are similar to each other.

具体的には、判断部71は、情報P1と情報P2との誤差が±20%以内に収まっている場合(ステップS9ではYES)、情報P1と情報P2とが近似していると判断し、対象物の状態が乾燥の状態であると判断する(ステップS14:乾燥判断ステップの一例)。この場合、制御部7は、判断部71が判断した乾燥の状態であるという内容を出力部8に出力する(ステップS12)。こうして、このフローはスタートに戻り、同様の検知を行う。 Specifically, when the error between the information P1 and the information P2 is within ± 20% (YES in step S9), the determination unit 71 determines that the information P1 and the information P2 are close to each other. It is determined that the state of the object is a dry state (step S14: an example of the drying determination step). In this case, the control unit 7 outputs to the output unit 8 the content that the determination unit 71 has determined that the state is dry (step S12). In this way, this flow returns to the start and performs the same detection.

一方、情報P1と情報P2との誤差が±20%以内に収まっていない場合(ステップS9ではNO)、判断部71は、S偏光(情報S2)/P偏光(情報P2)が所定値以下の状態であるか否かを判断する(ステップS10)。なお、ステップS10では、波長λ1の光を使用しても良いが、波長λ1の光よりも波長λ2の光のほうが、水に吸収されにくく、かつ、受光部4に戻ってくる光の強度が大きくなりノイズの影響を受けにくくなるため、波長λ2の光を使用したほうが好ましい。 On the other hand, when the error between the information P1 and the information P2 is not within ± 20% (NO in step S9), the determination unit 71 has S polarization (information S2) / P polarization (information P2) of a predetermined value or less. It is determined whether or not it is in a state (step S10). In step S10, light having a wavelength of λ1 may be used, but light having a wavelength of λ2 is less likely to be absorbed by water than light having a wavelength of λ1, and the intensity of the light returning to the light receiving unit 4 is high. It is preferable to use light having a wavelength of λ2 because it becomes large and less susceptible to noise.

具体的には、S偏光(情報S2)/P偏光(情報P2)が所定値(本実施の形態では0.9)以下の場合(ステップS10ではYES)、判断部71は、対象物の状態が冠水の状態であると判断する(ステップS15:冠水判断ステップの一例)。そして、制御部7は、判断部71が判断した冠水の状態であるという内容を出力部8に出力する(ステップS12)。こうして、このフローはスタートに戻り、同様の検知を行う。 Specifically, when the S polarization (information S2) / P polarization (information P2) is equal to or less than a predetermined value (0.9 in the present embodiment) (YES in step S10), the determination unit 71 determines the state of the object. Is in a flooded state (step S15: an example of a flooded determination step). Then, the control unit 7 outputs to the output unit 8 the content that the state of flooding is determined by the determination unit 71 (step S12). In this way, this flow returns to the start and performs the same detection.

なお、ステップS9で、情報P1と情報P2との大小判定を行い、情報P1が情報P2に100%−20%を乗算した値より小さければ、制御部7は、水での反射率が低いP偏光で、かつ、水に吸収されやすい波長λ1の光である情報P1から、対象物に水が存在していると判断、又は存在している可能性があると判断してもよい。 In step S9, the magnitude of the information P1 and the information P2 is determined, and if the information P1 is smaller than the value obtained by multiplying the information P2 by 100% -20%, the control unit 7 has a low reflectance in water. From the information P1 which is polarized light and is light having a wavelength λ1 which is easily absorbed by water, it may be determined that water exists in the object, or it may be determined that water may exist.

一方、S偏光(情報S2)/P偏光(情報P2)が所定値(本実施の形態では0.9)よりも大きい場合(ステップS10ではNO)、判断部71は、対象物の状態が凍結の状態(ステップS11:凍結判断ステップの一例)であると判断する。そして、制御部7は、判断部71が判断した凍結の状態であるという内容を出力部8に出力する(ステップS12)。こうして、このフローはスタートに戻り、同様の検知を行う。 On the other hand, when the S polarization (information S2) / P polarization (information P2) is larger than the predetermined value (0.9 in the present embodiment) (NO in step S10), the determination unit 71 freezes the state of the object. (Step S11: An example of the freezing determination step). Then, the control unit 7 outputs to the output unit 8 the content that the determination unit 71 is in the frozen state (step S12). In this way, this flow returns to the start and performs the same detection.

[実施の形態1の作用効果]
次に、本実施の形態における検知装置1、検知方法及び検知プログラムの作用効果について説明する。
[Action and effect of embodiment 1]
Next, the operation and effect of the detection device 1, the detection method, and the detection program in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置1は、第1波長帯域の波長λ1の光と、第1波長帯域の波長λ1よりも水に吸収され難い第2波長帯域の波長λ2の光とを対象物に向けて出射する光源3と、対象物で反射又は散乱S偏光及びP偏光を含む光から、少なくともP偏光を分離する偏光分離部5と、対象物で反射又は散乱した光を、偏光分離部5を介して受光する受光部4と、受光部4が受光した光に基づく情報から対象物の状態を判断する制御部7とを備える。そして、光源3から出射する光は、S偏光とP偏光との割合が略均一なランダム偏光である。 As described above, the detection device 1 according to the present embodiment includes light having a wavelength λ1 in the first wavelength band and light having a wavelength λ2 in the second wavelength band that is less likely to be absorbed by water than the wavelength λ1 in the first wavelength band. A light source 3 that emits light toward an object, a polarization separator 5 that separates at least P-polarized light from light that is reflected or scattered by the object and contains S-polarized light and P-polarized light, and light that is reflected or scattered by the object. A light receiving unit 4 that receives light via the polarization separating unit 5 and a control unit 7 that determines the state of an object from information based on the light received by the light receiving unit 4 are provided. The light emitted from the light source 3 is randomly polarized light having a substantially uniform ratio of S-polarized light and P-polarized light.

この構成によれば、第1波長帯域の波長λ1の光及び第2波長帯域の波長λ2の光と、S偏光及びP偏光とを組み合わせることで、制御部が対象物の状態を判断することができる。 According to this configuration, the control unit can determine the state of the object by combining the light having the wavelength λ1 in the first wavelength band and the light having the wavelength λ2 in the second wavelength band with S-polarized light and P-polarized light. it can.

したがって、この検知装置では、直線偏光を用いた対象物の状態を検知する場合とは異なる偏光を用いて、対象物の状態を精度よく検知することができる。 Therefore, this detection device can accurately detect the state of the object by using polarized light different from the case of detecting the state of the object using linearly polarized light.

また、本実施の形態に係る検知装置1において、制御部7の判断部71は、第1波長帯域の波長λ1のS偏光におけるS1偏光強度、及び第1波長帯域の波長λ1のP偏光におけるP1偏光強度と、第2波長帯域の波長λ2のS偏光におけるS2偏光強度又は第2波長帯域の波長λ2のP偏光におけるP2偏光強度とに基づく情報を受光部4から取得する。また、制御部7の判断部71は、S2偏光強度又はP2偏光強度が所定の閾値よりも大きい場合に、対象物が積雪の状態であると判断する。さらに、制御部7の判断部71は、S1偏光強度とS2偏光強度とが略等しい場合又はP1偏光強度とP2偏光強度とが略等しい場合に、対象物が乾燥の状態であると判断する。また、制御部7は、P2偏光強度がS2偏光強度よりも大きい場合、かつ、S2偏光強度に、P2偏光強度を除算した値が所定値以である場合に、対象物が冠水の状態であると判断する。そして、制御部7の判断部71は、P2偏光強度がS2偏光強度よりも大きい場合、かつ、S2偏光強度における強度に、P2偏光強度を除算した値が所定値よりも大きい場合に、対象物が凍結の状態であると判断する。 Further, in the detection device 1 according to the present embodiment, the determination unit 71 of the control unit 7 determines the S1 polarization intensity in the S polarization of the wavelength λ1 in the first wavelength band and the P1 in the P polarization of the wavelength λ1 in the first wavelength band. Information based on the polarization intensity and the S2 polarization intensity in the S polarization of the wavelength λ2 in the second wavelength band or the P2 polarization intensity in the P polarization of the wavelength λ2 in the second wavelength band is acquired from the light receiving unit 4. Further, the determination unit 71 of the control unit 7 determines that the object is in a snow-covered state when the S2 polarization intensity or the P2 polarization intensity is larger than a predetermined threshold value. Further, the determination unit 71 of the control unit 7 determines that the object is in a dry state when the S1 polarization intensity and the S2 polarization intensity are substantially equal to each other or when the P1 polarization intensity and the P2 polarization intensity are substantially equal to each other. The control unit 7, when P2 polarization intensity is greater than S2 polarization intensity, and to S2 polarization intensity, when the value obtained by dividing the P2 polarization intensity is below a predetermined value, the object is in a state of flooding Judge that there is. Then, the determination unit 71 of the control unit 7 determines the object when the P2 polarization intensity is larger than the S2 polarization intensity and when the value obtained by dividing the P2 polarization intensity by the intensity in the S2 polarization intensity is larger than the predetermined value. Is determined to be in a frozen state.

この構成によれば、P偏光及びS偏光と、波長λ1及び波長λ2の光との組み合わせから、受光部4は、情報P1、情報P2、情報S1及び情報S2を生成することができる。判断部71は、受光した情報(情報P1、情報P2、情報S1及び情報S2)から、対象物における、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態を判断することができる。このため、対象物の状態を確実に検知することができる。 According to this configuration, the light receiving unit 4 can generate information P1, information P2, information S1 and information S2 from the combination of P-polarized light and S-polarized light and light having wavelength λ1 and wavelength λ2. The determination unit 71 can determine the snow-covered state, the dry state, the flooded state, and the frozen state of the object from the received information (information P1, information P2, information S1 and information S2). Therefore, the state of the object can be reliably detected.

また、本実施の形態に係る検知装置1は、さらに、対象物と受光部4との間には、対象物で反射又は散乱された光から、第1波長帯域の波長λ1の光及び第2波長帯域の波長λ2の光を分離する波長分離部6を備える。 Further, in the detection device 1 according to the present embodiment, between the object and the light receiving unit 4, the light reflected or scattered by the object, the light having the wavelength λ1 in the first wavelength band, and the second light. A wavelength separation unit 6 for separating light having a wavelength λ2 in the wavelength band is provided.

この構成によれば、光源3が出射する光から所望の波長の光を取り出すことができる。このため、所望の波長の光を出射する光源3を用意する必要もなく、製造コストの高騰化を抑制することができる。 According to this configuration, light having a desired wavelength can be extracted from the light emitted by the light source 3. Therefore, it is not necessary to prepare a light source 3 that emits light having a desired wavelength, and it is possible to suppress an increase in manufacturing cost.

また、本実施の形態に係る検知装置1において、光源3が出射する光は、赤外光である。第1波長帯域の波長λ1の赤外光は、水における、740nm近傍、980nm近傍、1450nm近傍及び1940nm近傍のうちいずれかで吸収波長となる吸収ピークの光である。そして、第2波長帯域の波長λ2の赤外光は、第1波長帯域の波長λ1の赤外光よりも波長が短い光である。 Further, in the detection device 1 according to the present embodiment, the light emitted by the light source 3 is infrared light. The infrared light having a wavelength of λ1 in the first wavelength band is light having an absorption peak having an absorption wavelength at any of the vicinity of 740 nm, the vicinity of 980 nm, the vicinity of 1450 nm, and the vicinity of 1940 nm in water. The infrared light having a wavelength λ2 in the second wavelength band is light having a shorter wavelength than the infrared light having a wavelength λ1 in the first wavelength band.

この構成によれば、例えば、波長λ1として1940nm近傍の光を選択すれば水の吸収性が高いため、高感度のセンサになる。また、波長λ1として980nm近傍の光を選択すればシリコン製のフォトディテクタを用いることができるという利点がある。 According to this configuration, for example, if light in the vicinity of 1940 nm is selected as the wavelength λ1, the water absorption is high, so that the sensor has high sensitivity. Further, if light in the vicinity of 980 nm is selected as the wavelength λ1, there is an advantage that a silicon photodetector can be used.

また、本実施の形態に係る検知方法は、検知装置1を用いて対象物の状態を検知する。また、制御部7の判断部71は、第1波長帯域の波長λ1のS偏光におけるS1偏光強度、及び第1波長帯域の波長λ1のP偏光におけるP1偏光強度と、第2波長帯域の波長λ2のS偏光におけるS2偏光強度又は第2波長帯域の波長λ2のP偏光におけるP2偏光強度とに基づく情報を受光部4から取得する取得ステップと、S2偏光強度又はP2偏光強度が所定の閾値よりも大きい場合に、対象物が積雪の状態であると判断する積雪判断ステップと、S1偏光強度とS2偏光強度とが略等しい場合又はP1偏光強度とP2偏光強度とが略等しい場合に、対象物が乾燥の状態であると判断する乾燥判断ステップと、P2偏光強度がS2偏光強度よりも大きい場合、かつ、S2偏光強度に、P2偏光強度を除算した値が所定値以である場合に、対象物が冠水の状態であると判断する冠水判断ステップと、P2偏光強度がS2偏光強度よりも大きい場合、かつ、S2偏光強度における強度に、P2偏光強度を除算した値が所定値よりも大きい場合に、対象物が凍結の状態であると判断する凍結判断ステップとを含む。 Further, in the detection method according to the present embodiment, the state of the object is detected by using the detection device 1. Further, the determination unit 71 of the control unit 7 determines the S1 polarization intensity in the S polarization of the wavelength λ1 in the first wavelength band, the P1 polarization intensity in the P polarization of the wavelength λ1 in the first wavelength band, and the wavelength λ2 in the second wavelength band. The acquisition step of acquiring information based on the S2 polarization intensity in the S polarization or the P2 polarization intensity in the P polarization of the wavelength λ2 in the second wavelength band from the light receiving unit 4, and the S2 polarization intensity or the P2 polarization intensity is greater than a predetermined threshold value. When the size is large, the object is determined to be in a snowy state, and the S1 polarization intensity and the S2 polarization intensity are substantially equal to each other, or the P1 polarization intensity and the P2 polarization intensity are approximately equal to each other. and drying determination step of determining that the state of the drying, if P2 polarization intensity is greater than S2 polarization intensity, and to S2 polarization intensity, when the value obtained by dividing the P2 polarization intensity is below a predetermined value, the target A submergence determination step for determining that an object is submerged, and a case where the P2 polarization intensity is greater than the S2 polarization intensity and the value obtained by dividing the P2 polarization intensity by the intensity at the S2 polarization intensity is greater than a predetermined value. Including a freezing determination step of determining that the object is in a frozen state.

この検知方法においても、本実施の形態に係る検知装置1と同様の作用効果を奏する。 This detection method also has the same effect as that of the detection device 1 according to the present embodiment.

また、本実施の形態に係る検知プログラムは、検知方法をコンピュータに実行させる。 Further, the detection program according to the present embodiment causes the computer to execute the detection method.

この検知プログラムにおいても、本実施の形態に係る検知装置1と同様の作用効果を奏する。 This detection program also has the same effect as the detection device 1 according to the present embodiment.

(実施の形態1の変形例)
以下、実施の形態1の本変形例に係る検知装置1について、図3を用いて説明する。
(Modified Example of Embodiment 1)
Hereinafter, the detection device 1 according to the present modification of the first embodiment will be described with reference to FIG.

図3は、実施の形態1の変形例に係る検知装置1を備えた車両110を示す模式図である。 FIG. 3 is a schematic view showing a vehicle 110 provided with a detection device 1 according to a modification of the first embodiment.

実施の形態1の本変形例では、受光部4の一例としてカメラ140を用いている点で、実施の形態1と相違している。 This modification of the first embodiment is different from the first embodiment in that the camera 140 is used as an example of the light receiving unit 4.

実施の形態1の本変形例における他の構成は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present modification of the first embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図3に示すように、実施の形態1の本変形例において、検知装置1は、車両110に設けられる。車両110は、車体111と、車輪112と、ハンドル113と、操舵角検知部114と、速度検知部115とを有する。 As shown in FIG. 3, in the present modification of the first embodiment, the detection device 1 is provided in the vehicle 110. The vehicle 110 includes a vehicle body 111, wheels 112, a steering wheel 113, a steering angle detection unit 114, and a speed detection unit 115.

車体111には、車輪112、ハンドル113、操舵角検知部114及び速度検知部115等が設けられる。車輪112はハンドル113によって操舵される。操舵角検知部114は、車輪112の操舵角を検知するセンサであり、例えば、相対角変化量を測定する舵角センサ等である。操舵角検知部114は、車輪112の操舵角を検知し、検知した操舵角情報(第1情報の一例)を制御部7に送信する。速度検知部115は、車両110の走行速度を検知するセンサであり、例えば、速度検知センサ等である。速度検知部115は、車両110の走行速度を検知し、検知した速度情報(第2情報の一例)を制御部7に送信する。 The vehicle body 111 is provided with wheels 112, a steering wheel 113, a steering angle detection unit 114, a speed detection unit 115, and the like. The wheels 112 are steered by the handle 113. The steering angle detection unit 114 is a sensor that detects the steering angle of the wheel 112, and is, for example, a steering angle sensor that measures a relative angle change amount. The steering angle detection unit 114 detects the steering angle of the wheel 112 and transmits the detected steering angle information (an example of the first information) to the control unit 7. The speed detection unit 115 is a sensor that detects the traveling speed of the vehicle 110, and is, for example, a speed detection sensor or the like. The speed detection unit 115 detects the traveling speed of the vehicle 110 and transmits the detected speed information (an example of the second information) to the control unit 7.

カメラ140は、光源3が赤外光を出射した際に、対象物を撮像した第1画像(情報の一例)を生成し、制御部7に送信する。この第1画像には、対象物の状態である積雪の状態、乾燥の状態、冠水の状態及び凍結の状態が映り込む。実施の形態1の本変形例における対象物は、例えば、路面、自動車のラジエータグリル等である。 When the light source 3 emits infrared light, the camera 140 generates a first image (an example of information) of an image of an object and transmits it to the control unit 7. In this first image, the state of snow cover, the state of dryness, the state of flooding, and the state of freezing, which are the states of the object, are reflected. The object in this modification of the first embodiment is, for example, a road surface, a radiator grill of an automobile, or the like.

また、カメラ140は、光源3が可視光を出射した際に、対象物を撮像した第2画像(情報の一例)を生成し、制御部7に送信する。この第2画像は、対象物における通常の画像である。 Further, when the light source 3 emits visible light, the camera 140 generates a second image (an example of information) of an image of the object and transmits it to the control unit 7. This second image is a normal image of the object.

制御部7は、カメラ140から受信した、第2画像に第1画像に重ねた第3画像を生成し、第3画像を出力部8に出力させる。つまり、出力部8には、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態が付加された、対象物における画像が出力される。 The control unit 7 generates a third image received from the camera 140 and superimposed on the first image, and causes the output unit 8 to output the third image. That is, the output unit 8 outputs an image of the object to which the snow-covered state, the dry state, the flooded state, and the frozen state are added.

また、カメラ140は、対象物とカメラ140との距離を示す第4画像を生成し、制御部7に送信する。この第4画像は、距離の情報を有する画像である。 Further, the camera 140 generates a fourth image showing the distance between the object and the camera 140, and transmits the fourth image to the control unit 7. This fourth image is an image having distance information.

制御部7は、カメラ140から受信した、第4画像を第3画像に重ねた、第5画像を生成し、第5画像を出力部8に出力させる。つまり、出力部8には、積雪の状態、乾燥の状態、冠水の状態及び凍結の状態が付加された、対象物における画像に、さらに、対象物とカメラ140との距離を示した情報が付加された画像が出力される。なお、第1画像から第5画像までは、静止画であってもよく、動画像であってもよい。 The control unit 7 generates a fifth image in which the fourth image received from the camera 140 is superimposed on the third image, and outputs the fifth image to the output unit 8. That is, in the output unit 8, information indicating the distance between the object and the camera 140 is added to the image of the object to which the snow state, the dry state, the flooded state, and the frozen state are added. The image is output. The first to fifth images may be still images or moving images.

また、制御部7は、車輪112の操舵角情報及び車両110の速度情報に応じて、対象物を撮像する位置を変更する。例えば、光源3は、光源3の光軸方向(光を出射する方向)を変更できるように、揺動可能に設けられていてもよい。光源3を揺動する手段としては、駆動機構によって実現することができる。また、この場合、駆動機構は、カメラ140、偏光分離部5及び波長分離部6の姿勢を変更(カメラ140では撮像する位置を変更)するように構成されていてもよい。 Further, the control unit 7 changes the position where the object is imaged according to the steering angle information of the wheels 112 and the speed information of the vehicle 110. For example, the light source 3 may be provided so as to be swingable so that the optical axis direction (direction in which light is emitted) of the light source 3 can be changed. The means for swinging the light source 3 can be realized by a drive mechanism. Further, in this case, the drive mechanism may be configured to change the postures of the camera 140, the polarization separation unit 5, and the wavelength separation unit 6 (the camera 140 changes the position to be imaged).

対象物を撮像する位置を変更する例としては、制御部7は、車輪112の操舵角が大きくなるに従って、車輪112の操舵角から操舵角検知部114が検知した車両110の進行方向であって、検知装置1から遠い対象物をカメラ140に撮像させる。また、制御部7は、車両110の走行速度が速くなるに従って、検知装置1から遠い対象物をカメラ140に撮像させる。操舵角が大きくなったり、車両110の走行速度が速くなったりすれば、車両110の搭乗者(使用者)がより遠方における対象物の状態を把握したい場合がある。なお、操舵角だけでなく、操舵角の増加率(操舵角の角速度)に従って、検知装置1から遠い対象物をカメラ140に撮像させてもよい。 As an example of changing the position for photographing an object, the control unit 7 is the traveling direction of the vehicle 110 detected by the steering angle detecting unit 114 from the steering angle of the wheels 112 as the steering angle of the wheels 112 increases. , The camera 140 is made to take an image of an object far from the detection device 1. Further, the control unit 7 causes the camera 140 to take an image of an object far from the detection device 1 as the traveling speed of the vehicle 110 increases. If the steering angle becomes large or the traveling speed of the vehicle 110 becomes high, the passenger (user) of the vehicle 110 may want to grasp the state of the object at a greater distance. In addition to the steering angle, the camera 140 may image an object far from the detection device 1 according to the rate of increase in the steering angle (angular velocity of the steering angle).

また、遠い対象物を撮像する一例としては、例えば、車両110における現在の走行時に照射していた光源3の光軸方向を、より水平に近づけるように、現在照射していた光源3から光軸上の対象物までの距離よりも遠い対象物に向けて、光源3の光を照射する。 Further, as an example of imaging a distant object, for example, the optical axis from the light source 3 currently being irradiated so as to bring the optical axis direction of the light source 3 irradiated during the current traveling of the vehicle 110 closer to horizontal. The light of the light source 3 is irradiated toward the object farther than the distance to the upper object.

この検知装置1においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 1, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、実施の形態1の本変形例における検知装置1の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 1 in the present modification of the first embodiment will be described.

上述したように、実施の形態1の本変形例に係る検知装置1は、さらに、対象物の状態を出力する出力部8を備える。また、光源3は、赤外光と可視光とを出射する。そして、カメラ140は、光源が赤外光を出射した際に、対象物を撮像した第1画像と、光源が可視光を出射した際に、対象物を撮像した第2画像とを生成して制御部7の判断部71に送信する。そして、制御部7の判断部71は、カメラ140から受信した第2画像に第1画像を重ねた第3画像を生成し、第3画像を出力部8に出力する。 As described above, the detection device 1 according to the present modification of the first embodiment further includes an output unit 8 that outputs the state of the object. Further, the light source 3 emits infrared light and visible light. Then, the camera 140 generates a first image in which the object is imaged when the light source emits infrared light and a second image in which the object is imaged when the light source emits visible light. It is transmitted to the determination unit 71 of the control unit 7. Then, the determination unit 71 of the control unit 7 generates a third image in which the first image is superimposed on the second image received from the camera 140, and outputs the third image to the output unit 8.

これらの構成によれば、対象物における通常の画像に、対象物の状態を付加した第3画像が出力部8に出力されるため、搭乗者に判り易い情報を提供することができる。このため、搭乗者は、対象物の状態を即座に認識して判断することができるため、車両110における危険回避を行い易い。 According to these configurations, a third image in which the state of the object is added to the normal image of the object is output to the output unit 8, so that information that is easy for the passenger to understand can be provided. Therefore, since the passenger can immediately recognize and determine the state of the object, it is easy to avoid danger in the vehicle 110.

また、実施の形態1の本変形例に係る検知装置1において、カメラ140は、第2画像における対象物とカメラ140との距離を示す第4画像を生成して制御部7の判断部71に送信する。制御部7の判断部71は、カメラ140から受信した第4画像を第3画像に重ねた、第5画像を生成し、第5画像を出力部8に出力する。 Further, in the detection device 1 according to the present modification of the first embodiment, the camera 140 generates a fourth image showing the distance between the object and the camera 140 in the second image, and causes the determination unit 71 of the control unit 7 to generate a fourth image. Send. The determination unit 71 of the control unit 7 generates a fifth image in which the fourth image received from the camera 140 is superimposed on the third image, and outputs the fifth image to the output unit 8.

この構成によれば、第3画像に距離情報が付加された第5画像が出力部8に出力されるため、搭乗者により判り易い情報を提供することができる。このため、搭乗者は、対象物の状態をより即座に認識して判断することができるため、車両110における危険回避をより行い易い。 According to this configuration, since the fifth image in which the distance information is added to the third image is output to the output unit 8, it is possible to provide information that is easy for the passenger to understand. Therefore, since the passenger can more immediately recognize and judge the state of the object, it is easier to avoid danger in the vehicle 110.

また、実施の形態1の本変形例に係る検知装置1は、車両110に搭載される。また、車両110は、ハンドル113によって操舵される車輪112と、車輪112の操舵角を検知する操舵角検知部114と、車両110の走行速度を検知する速度検知部115とを有しする。さらに、操舵角検知部114は、車輪112の操舵角に関する第1情報を制御部7に送信する。また、速度検知部115は、車両110の走行速度に関する第2情報を制御部7に送信する。そして、制御部7は、第1情報及び第2情報に応じて、光源3が照射する方向と対象物を撮像する位置とを変更させるように制御する。 Further, the detection device 1 according to the present modification of the first embodiment is mounted on the vehicle 110. Further, the vehicle 110 has a wheel 112 that is steered by the steering wheel 113, a steering angle detection unit 114 that detects the steering angle of the wheel 112, and a speed detection unit 115 that detects the traveling speed of the vehicle 110. Further, the steering angle detection unit 114 transmits the first information regarding the steering angle of the wheels 112 to the control unit 7. Further, the speed detection unit 115 transmits the second information regarding the traveling speed of the vehicle 110 to the control unit 7. Then, the control unit 7 controls so as to change the irradiation direction of the light source 3 and the position at which the object is imaged according to the first information and the second information.

この構成によれば、車両110における走行速度やハンドル113の操舵角に応じて、制御部7が光を照射する方向と対象物を撮像する位置とを変更するため、対象物における適切な位置の状態を検知することができる。 According to this configuration, the direction in which the control unit 7 irradiates light and the position in which the object is imaged are changed according to the traveling speed of the vehicle 110 and the steering angle of the steering wheel 113, so that the appropriate position in the object is determined. The state can be detected.

また、実施の形態1の本変形例に係る検知装置1において、制御部7は、車輪112の操舵角が大きくなるに従って、車輪112の操舵角から操舵角検知部114が検知した車両110の進行方向であって、当該検知装置1から遠い対象物をカメラ140に撮像させる。 Further, in the detection device 1 according to the present modification of the first embodiment, the control unit 7 advances the vehicle 110 detected by the steering angle detection unit 114 from the steering angle of the wheels 112 as the steering angle of the wheels 112 increases. The camera 140 is made to take an image of an object that is in the direction and is far from the detection device 1.

この構成によれば、車輪112の操舵角が大きい場合に、遠方の対象物を撮像するため、搭乗者により判り易い情報を提供することができる。このため、搭乗者は、対象物の状態を認識し易い。 According to this configuration, when the steering angle of the wheel 112 is large, a distant object is imaged, so that information that is easy for the passenger to understand can be provided. Therefore, the passenger can easily recognize the state of the object.

また、実施の形態1の本変形例に係る検知装置1において、制御部7は、車両110の走行速度が速くなるに従って当該検知装置1から遠い対象物をカメラ140に撮像させる。 Further, in the detection device 1 according to the present modification of the first embodiment, the control unit 7 causes the camera 140 to take an image of an object farther from the detection device 1 as the traveling speed of the vehicle 110 increases.

この構成によれば、車両110の走行速度が速い場合に、遠方の対象物を撮像するため、搭乗者により判り易い情報を提供することができる。このため、搭乗者は、対象物の状態を認識し易い。 According to this configuration, when the traveling speed of the vehicle 110 is high, a distant object is imaged, so that information that is easy for the passenger to understand can be provided. Therefore, the passenger can easily recognize the state of the object.

実施の形態1の本変形例における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present modification of the first embodiment also have the same effects as those of the first embodiment.

(実施の形態2)
以下、本実施の形態に係る検知装置200について説明する。
(Embodiment 2)
Hereinafter, the detection device 200 according to the present embodiment will be described.

[構成]
本実施の形態に係る検知装置200の構成について、図4を用いて説明する。
[Constitution]
The configuration of the detection device 200 according to the present embodiment will be described with reference to FIG.

図4は、実施の形態2に係る検知装置200を示す模式図である。 FIG. 4 is a schematic view showing the detection device 200 according to the second embodiment.

実施の形態1では1つの光源3が設けられていたが、本実施の形態における検知装置200では2つの光源3が設けられる点で異なる。また、実施の形態1では1つの受光部4が設けられていたが、本実施の形態における検知装置200では第1受光部41及び第2受光部42が設けられる点で異なる。さらに、本実施の形態では、実施の形態1のような波長分離部6を設けていない点で異なる。 In the first embodiment, one light source 3 is provided, but the detection device 200 in the present embodiment is different in that two light sources 3 are provided. Further, although one light receiving unit 4 is provided in the first embodiment, the detection device 200 in the present embodiment is different in that the first light receiving unit 41 and the second light receiving unit 42 are provided. Further, the present embodiment is different in that the wavelength separation unit 6 as in the first embodiment is not provided.

本実施の形態における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図4に示すように、検知装置200は、制御部7、偏光分離部5の他に、第1光源31と、第2光源32と、第1受光部41と、第2受光部42とを有する。なお、本実施の形態では、偏光分離部5は、S偏光とP偏光とを分離可能な偏光ビームスプリッタである。 As shown in FIG. 4, in addition to the control unit 7 and the polarization separating unit 5, the detection device 200 includes a first light source 31, a second light source 32, a first light receiving unit 41, and a second light receiving unit 42. Have. In the present embodiment, the polarization separating unit 5 is a polarization beam splitter capable of separating S-polarized light and P-polarized light.

第1光源31が出射する光は、S偏光とP偏光との割合が略均一なランダム偏光であり、第1波長帯域の光である。本実施の形態では、第1波長帯域の波長は、λ1としている。第2光源32が出射する光は、S偏光とP偏光との割合が略均一なランダム偏光であり、第2波長帯域の光である。本実施の形態では、第2波長帯域の波長は、λ2としている。第1光源31及び第2光源32は、各々の光軸と対象物とが交差するように設けられる。第1光源31及び第2光源32は、実施の形態1と同様の光源3であってもよい。 The light emitted by the first light source 31 is random polarized light in which the ratio of S-polarized light and P-polarized light is substantially uniform, and is light in the first wavelength band. In the present embodiment, the wavelength of the first wavelength band is λ1. The light emitted by the second light source 32 is random polarized light in which the ratio of S-polarized light and P-polarized light is substantially uniform, and is light in the second wavelength band. In the present embodiment, the wavelength of the second wavelength band is λ2. The first light source 31 and the second light source 32 are provided so that their respective optical axes intersect with the object. The first light source 31 and the second light source 32 may be the same light source 3 as in the first embodiment.

第1受光部41は、偏光分離部5で分離された光のうち、S偏光を受光する。第2受光部42は、偏光分離部5で分離された光のうち、P偏光を受光する。第1受光部41及び第2受光部42は、受光した光に基づく情報を制御部7に送信する。 The first light receiving unit 41 receives S-polarized light among the light separated by the polarization separating unit 5. The second light receiving unit 42 receives P-polarized light among the light separated by the polarization separating unit 5. The first light receiving unit 41 and the second light receiving unit 42 transmit information based on the received light to the control unit 7.

制御部7の電源制御部72は、第1光源31が波長λ1の光を出射するように制御し、第2光源32が波長λ1の光を出射するように制御する。電源制御部72は、第1光源31及び第2光源32が互い違いで、交互に点灯及び消灯するように制御する。 The power supply control unit 72 of the control unit 7 controls the first light source 31 to emit light having a wavelength λ1 and controls the second light source 32 to emit light having a wavelength λ1. The power supply control unit 72 controls so that the first light source 31 and the second light source 32 are alternately turned on and off.

図5は、実施の形態2に係る検知装置200を示す模式図である。なお、図5に示すように、偏光分離部5は、実施の形態1と同様のS偏光フィルタ52及びP偏光フィルタ51であってもよい。この場合、実施の形態1と同様に、1つの受光部4でもよい。 FIG. 5 is a schematic view showing the detection device 200 according to the second embodiment. As shown in FIG. 5, the polarizing separation unit 5 may be the S polarizing filter 52 and the P polarizing filter 51 similar to those in the first embodiment. In this case, one light receiving unit 4 may be used as in the first embodiment.

この検知装置200においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 200, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、本実施の形態における検知装置200の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 200 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置200において、光源3は、第1波長帯域の波長λ1の光を出射する第1光源31と、第2波長帯域の波長λ2の光を出射する第2光源32とを有する。そして、制御部7は、第1光源31と第2光源32とが互い違いで、交互に点灯及び消灯するように制御する。 As described above, in the detection device 200 according to the present embodiment, the light source 3 emits the light of the wavelength λ1 of the first wavelength band and the light of the wavelength λ2 of the second wavelength band. It has a second light source 32. Then, the control unit 7 controls so that the first light source 31 and the second light source 32 are alternately turned on and off.

この構成によれば、第1光源31が波長λ1の光を出射し、第2光源32が波長λ2の光を出射するため、実施の形態1のように波長分離部6を必要としない。このため、光源3の光から波長を分離する構成を設けることなく、対象物を介した波長λ1と波長λ2との光をそれぞれ受光することができる。このため、検知装置200の大型化を抑制することができる。 According to this configuration, since the first light source 31 emits light having a wavelength λ1 and the second light source 32 emits light having a wavelength λ2, the wavelength separation unit 6 is not required as in the first embodiment. Therefore, it is possible to receive the light of the wavelength λ1 and the wavelength λ2, respectively, through the object without providing the configuration for separating the wavelength from the light of the light source 3. Therefore, it is possible to suppress the increase in size of the detection device 200.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(実施の形態2の変形例)
以下、実施の形態2の本変形例に係る検知装置200について、図6を用いて説明する。
(Modified Example of Embodiment 2)
Hereinafter, the detection device 200 according to the present modification of the second embodiment will be described with reference to FIG.

図6は、実施の形態2の変形例に係る検知装置200を示す模式図である。 FIG. 6 is a schematic view showing a detection device 200 according to a modified example of the second embodiment.

実施の形態2では、実施の形態1と同様、受光部4は、照射された光が対象物で散乱した光を受光するように、光源3側で対象物と向かい合うように設けられるが、図6に示すように、実施の形態2の本変形例では、受光部4は、照射された光が対象物で正反射した光を受光するように設けられる点で相違している。また、実施の形態2では、偏光分離部5によってP偏光とS偏光とに分離していたが、実施の形態2の本変形例では、偏光分離部5はP偏光フィルタ51だけを用いている。つまり、偏光分離部5は、S偏光及びP偏光を含む光から、少なくともP偏光を分離する。 In the second embodiment, as in the first embodiment, the light receiving unit 4 is provided so as to face the object on the light source 3 side so that the irradiated light receives the light scattered by the object. As shown in 6, in the present modification of the second embodiment, the light receiving unit 4 is different in that the light receiving unit 4 is provided so as to receive the light that is specularly reflected by the object. Further, in the second embodiment, the P-polarized light and the S-polarized light are separated by the polarizing separation unit 5, but in the present modification of the second embodiment, the polarization separation unit 5 uses only the P polarization filter 51. .. That is, the polarization separating unit 5 separates at least P-polarized light from light containing S-polarized light and P-polarized light.

実施の形態2の本変形例において、検知装置200は、皮膚の水分量を検知するにあたり、おおよそ、皮膚における角質層(約10μm〜20μm)の水分量を知ることに最適である。この角質層の水分量により皮膚の状態(保湿の状態、乾燥の状態、肌荒れ等)を検知することができる。つまり、皮膚の比較的浅い部分の水分量の多寡で、皮膚の状況を検知することができる。そこで、本実施の形態では、P偏光だけを用いる。 In the present modification of the second embodiment, the detection device 200 is most suitable for detecting the water content of the skin to roughly know the water content of the stratum corneum (about 10 μm to 20 μm) in the skin. The state of the skin (moisturizing state, dry state, rough skin, etc.) can be detected by the amount of water in the stratum corneum. That is, the condition of the skin can be detected by the amount of water in the relatively shallow part of the skin. Therefore, in this embodiment, only P-polarized light is used.

実施の形態2の本変形例における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present modification of the second embodiment are the same as those in the first embodiment and the like, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図6に示すように、制御部7は、式1を用いて情報P1及び情報P2から水分量と相関のある指数Aを算出する(中村睦子、中内茂樹著「近赤外分光画像で見る化粧品の保湿効果」 光学、2010年 39巻 11号 P529−P533参照)。 As shown in FIG. 6, the control unit 7 calculates an index A that correlates with the water content from the information P1 and the information P2 using the equation 1 (viewed by near-infrared spectroscopic image by Mutsuko Nakamura and Shigeki Nakauchi). Moisturizing effect of cosmetics "Optical, 2010, Vol. 39, No. 11, P529-P533).

Figure 0006775195
Figure 0006775195

ここで、指数Aは、対象物が乾燥した状態で0となり、対象物が有する水分量が多くなればなるほど0より大きくなることを表す指標である。 Here, the index A is an index indicating that the index A becomes 0 when the object is dry, and becomes larger than 0 as the amount of water contained in the object increases.

制御部7は、算出した指数Aから、記憶部11に格納されている計算式やテーブルに従って、対象物の水分量を演算する。例えば、計算式やテーブルは、皮膚と水分量との光量比から導かれた検量線であってもよい。 The control unit 7 calculates the water content of the object from the calculated index A according to the calculation formula or table stored in the storage unit 11. For example, the calculation formula or table may be a calibration curve derived from the light amount ratio between the skin and the water content.

この検知装置200では、身体に装着することで、皮膚の水分量(皮膚における水分の状態)を検知することができる。この場合、人体の皮膚が対象物となる。検知装置200では、受光部4が皮膚(皮膚の表面と皮膚の内部)で反射した光を受光し、制御部7が、受光部4を介して得た光の強度から、皮膚の水分量を算出する。 The detection device 200 can detect the amount of water in the skin (the state of water in the skin) by wearing it on the body. In this case, the skin of the human body is the object. In the detection device 200, the light receiving unit 4 receives the light reflected by the skin (the surface of the skin and the inside of the skin), and the control unit 7 determines the water content of the skin from the intensity of the light obtained through the light receiving unit 4. calculate.

皮膚に入射した光は、皮膚の表面で反射される光と、皮膚の内部(約10μm〜約20μm)まで入射して散乱された光とがある。皮膚の内部で散乱した光は、皮膚の表面で反射する光が正反射する方向とは異なる方向に、大部分の光が出射してしまう。また、皮膚で反射した光のうちP偏光が受光されるため、皮膚の表面での反射が少なくなる。このため、この検知装置200では、皮膚の表面から少し内部まで入った反射光を受光することで、皮膚の水分量だけを検知することが可能となる。 The light incident on the skin includes light reflected on the surface of the skin and light incident on the inside of the skin (about 10 μm to about 20 μm) and scattered. Most of the light scattered inside the skin is emitted in a direction different from the direction in which the light reflected on the surface of the skin is specularly reflected. Further, since P-polarized light is received among the light reflected by the skin, the reflection on the surface of the skin is reduced. Therefore, the detection device 200 can detect only the amount of water in the skin by receiving the reflected light that has entered a little from the surface of the skin to the inside.

なお、皮膚の状態を検知するにあたり、P偏光を用いているが、これは必須ではなく、S偏光を用いてもよい。また、対象物の状態の水分量を検知すればよく、凍結の状態を検知することは、必須ではない。 In addition, in detecting the state of the skin, P-polarized light is used, but this is not indispensable, and S-polarized light may be used. Further, it is sufficient to detect the water content in the state of the object, and it is not essential to detect the frozen state.

[検知装置の動作]
次に、検知装置200における動作の一例について、図7を用いて説明する。
[Operation of detection device]
Next, an example of the operation in the detection device 200 will be described with reference to FIG. 7.

図7は、実施の形態2の変形例に係る検知装置200の動作を示すフローチャートである。 FIG. 7 is a flowchart showing the operation of the detection device 200 according to the modified example of the second embodiment.

図7に示すように、まず、使用者は、皮膚における水分量を検知するために、検知装置200を身体に装着する。そして、検知装置200に格納されている専用のプログラムを起動させる。 As shown in FIG. 7, first, the user wears the detection device 200 on the body in order to detect the amount of water in the skin. Then, the dedicated program stored in the detection device 200 is started.

例えば、P1偏光強度の光を受光部4に受光させる場合、制御部7が第1光源31から波長λ1の光を出射させるため、皮膚に光が照射される(ステップS21)。皮膚に照射された光は、散乱され、一部の光がP偏光フィルタ51側に向かう。そして、この光は、P偏光フィルタ51を通過して、P1偏光強度の光となり、受光部4で受光される。受光部4は、受光した光量に関する情報P1を生成し、情報P1を制御部7に送信する(ステップS22)。そして、制御部7は第1光源31を消灯させる。 For example, when the light receiving unit 4 receives light having a P1 polarization intensity, the control unit 7 emits light having a wavelength of λ1 from the first light source 31, so that the skin is irradiated with light (step S21). The light radiated to the skin is scattered, and a part of the light is directed to the P polarizing filter 51 side. Then, this light passes through the P polarizing filter 51, becomes light having P1 polarization intensity, and is received by the light receiving unit 4. The light receiving unit 4 generates information P1 regarding the amount of received light, and transmits the information P1 to the control unit 7 (step S22). Then, the control unit 7 turns off the first light source 31.

次に、制御部7は、受光部4から情報P1を受信し、情報P1を記憶部11に格納する(ステップS23)。 Next, the control unit 7 receives the information P1 from the light receiving unit 4 and stores the information P1 in the storage unit 11 (step S23).

次に、P2偏光強度の光を受光部4に受光させる場合、制御部7が第2光源32から波長λ2の光を出射させるため、皮膚に光が照射される(ステップS24)。皮膚に照射された光は、散乱され、一部の光がP偏光フィルタ51側に向かう。そして、この光は、P偏光フィルタ51を通過して、P2偏光強度の光となり、受光部4で受光される。受光部4は、受光した光量に関する情報P2を生成し、情報P2を制御部7に送信する(ステップS25)。そして、制御部7は第2光源32を消灯させる。 Next, when the light receiving unit 4 receives the light having the P2 polarization intensity, the control unit 7 emits the light having the wavelength λ2 from the second light source 32, so that the skin is irradiated with the light (step S24). The light radiated to the skin is scattered, and a part of the light is directed to the P polarizing filter 51 side. Then, this light passes through the P polarizing filter 51, becomes light having P2 polarization intensity, and is received by the light receiving unit 4. The light receiving unit 4 generates information P2 regarding the amount of received light, and transmits the information P2 to the control unit 7 (step S25). Then, the control unit 7 turns off the second light source 32.

次に、制御部7は、受光部4から情報P2を受信し、情報P2を記憶部11に格納する(ステップS26)。 Next, the control unit 7 receives the information P2 from the light receiving unit 4 and stores the information P2 in the storage unit 11 (step S26).

次に、制御部7は、式1を用いて、情報P1及び情報P2から水分量と相関のある指数Aを算出する(ステップS27)。なお、情報P1と情報P2とが等しくなるように、あらかじめ第1光源31と第2光源32との出力を調節すれば、指数Aは、対象物が乾燥の状態にある場合に0となり、対象物の水分量が増加するにしたがって0よりも大きくなる。 Next, the control unit 7 calculates an index A correlating with the water content from the information P1 and the information P2 using the equation 1 (step S27). If the outputs of the first light source 31 and the second light source 32 are adjusted in advance so that the information P1 and the information P2 are equal, the index A becomes 0 when the object is in a dry state, and the target. It becomes larger than 0 as the water content of the object increases.

次に、制御部7は、算出した指数Aから、記憶部11に格納されている計算式やテーブルに従って水分量を演算する(ステップS28)。 Next, the control unit 7 calculates the amount of water from the calculated index A according to the calculation formula or table stored in the storage unit 11 (step S28).

次に、制御部7は、ステップS28で得た水分量を出力部8に出力させる(ステップS29)。こうして、このフローはスタートに戻り、同様の検知を行い続ける。 Next, the control unit 7 causes the output unit 8 to output the amount of water obtained in step S28 (step S29). In this way, this flow returns to the start and continues to perform the same detection.

実施の形態2の本変形例における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present modification of the second embodiment also have the same effects as those of the first embodiment.

(実施の形態3)
以下、本実施の形態に係る検知装置300について説明する。
(Embodiment 3)
Hereinafter, the detection device 300 according to the present embodiment will be described.

[構成]
本実施の形態に係る検知装置300の構成について、図8を用いて説明する。
[Constitution]
The configuration of the detection device 300 according to the present embodiment will be described with reference to FIG.

図8は、実施の形態3に係る検知装置300を示す模式図である。 FIG. 8 is a schematic view showing the detection device 300 according to the third embodiment.

実施の形態2では光源3の光を直接、対象物に照射していたが、本実施の形態では走査ミラー310(反射板の一例)を介して対象物に光を照射する点で異なる。 In the second embodiment, the light from the light source 3 is directly irradiated to the object, but in the present embodiment, the object is irradiated with the light through the scanning mirror 310 (an example of the reflector).

また、本実施の形態では、カメラ140とP偏光フィルタ51との間に、入射した光を散乱させる散乱板150が設けられる点で、実施の形態2の変形例と異なる。 Further, the present embodiment is different from the modified example of the second embodiment in that a scattering plate 150 for scattering the incident light is provided between the camera 140 and the P polarizing filter 51.

なお、実施の形態2の変形例と同様に、カメラ140は、照射された光が対象物で正反射した光を受光するように設けられる。本実施の形態では、受光部4の一例としてカメラ140を用いている。 As in the modified example of the second embodiment, the camera 140 is provided so that the irradiated light receives the light that is specularly reflected by the object. In this embodiment, the camera 140 is used as an example of the light receiving unit 4.

本実施の形態における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図8に示すように、走査ミラー310は、光源3からの光を、対象物の異なる場所に配光するように、揺動可能な鏡である。走査ミラー310は、例えば、2つのガルバノミラーを組み合わせた鏡を使用してもよい。具体的には、制御部7は、第1光源31から光が出射されると、走査ミラー310を揺動させながら、光源3からの光を反射させて、対象物に照射する光を走査させる。走査ミラー310の揺動は、駆動機構を有する揺動部311により行われる。この光の走査は、対象物における所定の範囲内を照射するように、走査ミラー310が揺動する。 As shown in FIG. 8, the scanning mirror 310 is a swingable mirror so as to distribute the light from the light source 3 to different places of the object. As the scanning mirror 310, for example, a mirror in which two galvano mirrors are combined may be used. Specifically, when light is emitted from the first light source 31, the control unit 7 reflects the light from the light source 3 while swinging the scanning mirror 310 to scan the light to irradiate the object. .. The swing of the scanning mirror 310 is performed by the swing portion 311 having a drive mechanism. In this scanning of light, the scanning mirror 310 swings so as to irradiate a predetermined range of the object.

なお、本実施の形態では、走査ミラー310を揺動させているが、第1光源31及び第2光源32を揺動させる構成でもよい。 In the present embodiment, the scanning mirror 310 is oscillated, but the first light source 31 and the second light source 32 may be oscillated.

なお、散乱板150と受光部4との間に、ND(Neutral Density)フィルタを備えてもよい。そして、カメラ140は、散乱板150及びNDフィルタを介した光を受光してもよい。 An ND (Neutral Density) filter may be provided between the scattering plate 150 and the light receiving unit 4. Then, the camera 140 may receive the light that has passed through the scattering plate 150 and the ND filter.

この検知装置300では、第1光源31及び第2光源32から出射した光は、走査ミラー310で反射、及び対象物で散乱し、P偏光フィルタ51及び散乱板150を介してカメラ140で受光される。具体的には、走査ミラー310を介して対象物で反射した光は、P偏光だけがP偏光フィルタ51を透過し、散乱板150に入射して散乱される。そして、カメラ140は、散乱板150で散乱された光を検出する。また、散乱板150には、対象物で反射した以外の光である、対象物で散乱した光も入射する。散乱板150を介して出射した光は、反射光による強度の高い輝点と、対象物で散乱した光による強度の低い輝点とが存在する。制御部7は、カメラ140から得た情報のうち、強度の高い輝点の情報だけを記憶してもよい。 In this detection device 300, the light emitted from the first light source 31 and the second light source 32 is reflected by the scanning mirror 310 and scattered by the object, and is received by the camera 140 through the P polarizing filter 51 and the scattering plate 150. To. Specifically, in the light reflected by the object through the scanning mirror 310, only P-polarized light passes through the P-polarizing filter 51, enters the scattering plate 150, and is scattered. Then, the camera 140 detects the light scattered by the scattering plate 150. Further, the light scattered by the object, which is the light other than the light reflected by the object, is also incident on the scattering plate 150. The light emitted through the scattering plate 150 has a bright spot having a high intensity due to the reflected light and a bright spot having a low intensity due to the light scattered by the object. The control unit 7 may store only the information of the bright spot having high intensity among the information obtained from the camera 140.

この検知装置300においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 300, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、本実施の形態における検知装置300の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 300 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置300は、さらに、光源3からの光を対象物に向けて反射する走査ミラー310と、走査ミラー310で反射した光を対象物に走査させるように、走査ミラー310及び光源3の少なくとも一方を揺動させる揺動部311とを備える。 As described above, the detection device 300 according to the present embodiment further causes the object to scan the scanning mirror 310 that reflects the light from the light source 3 toward the object and the light reflected by the scanning mirror 310. Also includes a scanning mirror 310 and a swinging portion 311 that swings at least one of the light sources 3.

この構成によれば、走査ミラー310及び光源3の少なくとも一方を揺動させない構成に比べ、対象物の状態をより広域な範囲で検知することができる。 According to this configuration, the state of the object can be detected in a wider range as compared with the configuration in which at least one of the scanning mirror 310 and the light source 3 is not swung.

また、本実施の形態に係る検知装置300は、さらに、対象物と受光部4との間に、光を散乱させる散乱板150を備える。そして、受光部4は、散乱板150を介した光を受光する。 Further, the detection device 300 according to the present embodiment further includes a scattering plate 150 that scatters light between the object and the light receiving unit 4. Then, the light receiving unit 4 receives the light that has passed through the scattering plate 150.

この構成によれば、制御部7は、反射光による強度の高い輝点や、対象物で散乱した光による強度の低い輝点等を認識する。このため、制御部7は、対象物における水分量の分布を検知することができる。 According to this configuration, the control unit 7 recognizes a bright spot having a high intensity due to the reflected light, a bright spot having a low intensity due to the light scattered by the object, and the like. Therefore, the control unit 7 can detect the distribution of the amount of water in the object.

特に、本実施の形態に係る検知装置300において、受光部4は、カメラ140である。そして、カメラ140は、散乱板150を介した光を受光する。 In particular, in the detection device 300 according to the present embodiment, the light receiving unit 4 is a camera 140. Then, the camera 140 receives the light passing through the scattering plate 150.

この構成によれば、反射光による強度の高い輝点や、対象物で散乱した光による強度の低い輝点等を画像情報として認識する。このため、制御部7は、強度の高い輝点と強度の低い輝点を表した、対象物における水分量を示す画像情報から検知することができる。 According to this configuration, bright spots having high intensity due to reflected light, bright spots having low intensity due to light scattered by an object, and the like are recognized as image information. Therefore, the control unit 7 can detect from the image information indicating the amount of water in the object, which represents the bright spots having high intensity and the bright spots having low intensity.

また、本実施の形態に係る検知装置300は、散乱板150と受光部4との間に、NDフィルタを備えてもよい。そして、カメラ140は、散乱板150及びNDフィルタを介した光を受光してもよい。 Further, the detection device 300 according to the present embodiment may include an ND filter between the scattering plate 150 and the light receiving unit 4. Then, the camera 140 may receive the light that has passed through the scattering plate 150 and the ND filter.

この構成によれば、NDフィルタが、散乱板150で強度の高い輝点と、強度の低い輝点とが分離した光から、強度の高い輝点の光だけを通過させる。このため、対象物における水分量を示す画像情報から確実に検知することができる。 According to this configuration, the ND filter allows only the light of the high-intensity bright spot to pass from the light in which the high-intensity bright spot and the low-intensity bright spot are separated by the scattering plate 150. Therefore, it can be reliably detected from the image information indicating the amount of water in the object.

特に、カメラ140の代わりに単一画素の受光部4を用いて散乱板150全面の光強度を検知することができるようにしてもよい。この場合、NDフィルタを設けるだけで、散乱板150の光から強度の高い光だけを通過させることができる。このため、簡易な構成で、対象物の水分量を確実に検知することができる。 In particular, the light intensity of the entire surface of the scattering plate 150 may be detected by using the light receiving unit 4 having a single pixel instead of the camera 140. In this case, only high-intensity light can be passed from the light of the scattering plate 150 simply by providing the ND filter. Therefore, the water content of the object can be reliably detected with a simple configuration.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(実施の形態4)
以下、本実施の形態に係る検知装置400について説明する。
(Embodiment 4)
Hereinafter, the detection device 400 according to the present embodiment will be described.

[構成]
本実施の形態に係る検知装置400の構成について、図9を用いて説明する。
[Constitution]
The configuration of the detection device 400 according to the present embodiment will be described with reference to FIG.

図9は、実施の形態4に係る検知装置400を示す模式図である。 FIG. 9 is a schematic view showing the detection device 400 according to the fourth embodiment.

本実施の形態では、反射ミラー410を設け、反射ミラー410と対象物とを介して反射等した光を受光するという点で、実施の形態2に対して相違する。 The present embodiment is different from the second embodiment in that the reflection mirror 410 is provided and the light reflected or the like is received through the reflection mirror 410 and the object.

本実施の形態における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図9に示すように、実施の形態2における、第1光源31、第2光源32、制御部7、記憶部11、電源部9、偏光分離部5、第1受光部41及び第2受光部42の他に、本実施の形態では、検知装置400は、さらに、筺体420と、反射ミラー410とを備える。 As shown in FIG. 9, in the second embodiment, the first light source 31, the second light source 32, the control unit 7, the storage unit 11, the power supply unit 9, the polarization separation unit 5, the first light receiving unit 41 and the second light receiving unit 41. In addition to 42, in the present embodiment, the detection device 400 further includes a housing 420 and a reflection mirror 410.

筺体420は、第1光源31、第2光源32、制御部7、記憶部11、電源部9、偏光分離部5、第1受光部41、第2受光部42及び反射ミラー410等を収容した箱状の部材である。 The housing 420 accommodates the first light source 31, the second light source 32, the control unit 7, the storage unit 11, the power supply unit 9, the polarization separation unit 5, the first light receiving unit 41, the second light receiving unit 42, the reflection mirror 410, and the like. It is a box-shaped member.

第1光源31及び第2光源32は、対象物に向けて光が照射されるように、筺体420に設けられる。 The first light source 31 and the second light source 32 are provided on the housing 420 so that the light is emitted toward the object.

反射ミラー410は、対象物に対して向かい合うように設けられる。具体的には、反射ミラー410は、第1光源31及び第2光源32からの光が対象物と反射ミラー410との間で、それぞれ1回以上反射するように設けられる。なお、第1光源31及び第2光源32における各々の光軸は、反射ミラー410に向いていてもよい。つまり、反射ミラー410と対象物との間で、それぞれ1回以上の反射が行われればよい。なお、対象物においては、拡散した光を受光部4が受光してもよい。 The reflection mirror 410 is provided so as to face the object. Specifically, the reflection mirror 410 is provided so that the light from the first light source 31 and the second light source 32 is reflected once or more between the object and the reflection mirror 410, respectively. The optical axes of the first light source 31 and the second light source 32 may be directed to the reflection mirror 410. That is, it is sufficient that one or more reflections are performed between the reflection mirror 410 and the object. In the object, the light receiving unit 4 may receive the diffused light.

このような検知装置400では、第1光源31及び第2光源32とから出射した光は、透光板430と対象物との間を、それぞれ1回以上反射しながら第1受光部41及び第2受光部42側に進行する。第1受光部41及び第2受光部42は、反射ミラー410と対象物との間で反射等が行われた後の光を、偏光分離部5を介して受光する。 In such a detection device 400, the light emitted from the first light source 31 and the second light source 32 is reflected between the translucent plate 430 and the object one or more times, and is reflected by the first light receiving unit 41 and the first light receiving unit 41. 2 Proceeds to the light receiving unit 42 side. The first light receiving unit 41 and the second light receiving unit 42 receive the light after reflection or the like between the reflection mirror 410 and the object via the polarization separating unit 5.

この検知装置400においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 400, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、本実施の形態における検知装置400の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 400 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置400は、さらに、光を反射する反射ミラー410と、反射ミラー410、光源3、受光部4、偏光分離部5及び判断部71を収容した筺体420とを備える。そして、反射ミラー410は、対象物と向かい合う状態で、反射ミラー410と対象物との間で、それぞれ1回以上の反射が起こるように筺体420に設けられる。 As described above, the detection device 400 according to the present embodiment further includes a reflection mirror 410 that reflects light, a reflection mirror 410, a light source 3, a light receiving unit 4, a polarization separation unit 5, and a determination unit 71. It is equipped with 420. Then, the reflection mirror 410 is provided on the housing 420 so that one or more reflections occur between the reflection mirror 410 and the object while facing the object.

この構成によれば、対象物に光が繰り返し入射するため、対象物の状態をより正確に検知することができ、検知性能の信頼性及び感度を高めることができる。特に、対象物において微量の水分を検知する場合において好適である。 According to this configuration, since light is repeatedly incident on the object, the state of the object can be detected more accurately, and the reliability and sensitivity of the detection performance can be improved. In particular, it is suitable for detecting a trace amount of water in an object.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(実施の形態4の変形例)
以下、実施の形態4の本変形例に係る検知装置400について、図10を用いて説明する。
(Modified Example of Embodiment 4)
Hereinafter, the detection device 400 according to the present modification of the fourth embodiment will be described with reference to FIG.

図10は、実施の形態4の変形例に係る検知装置400を示す模式図である。 FIG. 10 is a schematic view showing a detection device 400 according to a modified example of the fourth embodiment.

実施の形態4の本変形例では、反射ミラー410と対象物との間に透光板430を設けている点で、実施の形態4に対して相違する。 This modification of the fourth embodiment is different from the fourth embodiment in that a light transmitting plate 430 is provided between the reflection mirror 410 and the object.

実施の形態4の本変形例における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present modification of the fourth embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図10に示すように、実施の形態4の本変形例において、検知装置400は、例えば、車両におけるラジエータグリル等に設けられる。検知装置400は、第1光源31、第2光源32、制御部7、記憶部11、電源部9、偏光分離部5、第1受光部41及び第2受光部42の他に、さらに、光を透光させる透明な透光板430を有している。 As shown in FIG. 10, in the present modification of the fourth embodiment, the detection device 400 is provided, for example, on a radiator grill or the like in a vehicle. In addition to the first light source 31, the second light source 32, the control unit 7, the storage unit 11, the power supply unit 9, the polarization separation unit 5, the first light receiving unit 41, and the second light receiving unit 42, the detection device 400 further includes light. It has a transparent light-transmitting plate 430 that allows light to pass through.

透光板430は、筺体420の外周面から露出した状態で筺体420に設けられる。透光板430は、筺体420から露出している面である境界面431を有している。境界面431には、雪や雨等が付着する。実施の形態4の本変形例における対象物とは、透光板430に付着した雨や雪等である。なお、透光板430は、入射した光の吸収率が0でなくとも、波長λ1と波長λ2とに対する吸収率がほぼ同じであれば、どのような透光板430を用いても構わない。 The light transmitting plate 430 is provided on the housing 420 in a state of being exposed from the outer peripheral surface of the housing 420. The translucent plate 430 has a boundary surface 431 that is a surface exposed from the housing 420. Snow, rain, etc. adhere to the boundary surface 431. The object in the present modification of the fourth embodiment is rain, snow, or the like attached to the translucent plate 430. As the light transmitting plate 430, any light transmitting plate 430 may be used as long as the absorption rates for the wavelength λ1 and the wavelength λ2 are substantially the same, even if the absorption rate of the incident light is not 0.

第1光源31及び第2光源32は、透光板430の反射ミラー410側から入射し、境界面431で反射するように設けられている。 The first light source 31 and the second light source 32 are provided so as to enter from the reflection mirror 410 side of the light transmitting plate 430 and reflect at the boundary surface 431.

このような検知装置400では、第1光源31及び第2光源32から出射した光は、透光板430と反射ミラー410との間を反射しながら第1受光部41及び第2受光部42側に向かって進行する。具体的には、透光板430に入射した光は、透光板430の反射ミラー410側から入射して透光板430内部を透過し、透光板430の境界面431で反射して反射ミラー410に向かう。そして、同様の反射を繰り返して第1受光部41及び第2受光部42側に向かう。なお、透光板430の反射ミラー410側の面には、境界面431で反射した光が、透光板430の反射ミラー410側の面で反射が起こらないように、無反射コーティングをしておくことが好ましい。この場合、透光板430の境界面431と反射ミラー410とで好適に反射が繰り返される。 In such a detection device 400, the light emitted from the first light source 31 and the second light source 32 is reflected between the light transmitting plate 430 and the reflection mirror 410 on the side of the first light receiving unit 41 and the second light receiving unit 42. Proceed towards. Specifically, the light incident on the translucent plate 430 is incident from the reflection mirror 410 side of the translucent plate 430, transmitted through the inside of the transmissive plate 430, and is reflected and reflected by the boundary surface 431 of the transmissive plate 430. Head to Mirror 410. Then, the same reflection is repeated toward the first light receiving unit 41 and the second light receiving unit 42 side. The surface of the translucent plate 430 on the reflection mirror 410 side is coated with a non-reflective coating so that the light reflected by the boundary surface 431 is not reflected on the surface of the translucent plate 430 on the reflection mirror 410 side. It is preferable to keep it. In this case, reflection is suitably repeated between the boundary surface 431 of the light transmitting plate 430 and the reflection mirror 410.

例えば、透光板430の境界面431に雪や雨等が付着した場合、境界面431に入射した光は、一部の光は境界面431で乱反射されるが、他の一部の光は透光板430の境界面431で屈折する。また、雪や雨などが境界面431に付着していない場合は、境界面431で正反射される。こうして、この検知装置400では、境界面431に付着した対象物を検知することができる。なお、例えば、境界面431に氷の膜ができる場合があるため、表面を粗面にして乱反射することができるように構成していてもよい。また、例えば、水であれば、外部との界面が略平坦になるため、界面で正反射されたりする。 For example, when snow, rain, or the like adheres to the boundary surface 431 of the translucent plate 430, some of the light incident on the boundary surface 431 is diffusely reflected by the boundary surface 431, but some other light is diffusely reflected. It is refracted at the boundary surface 431 of the light transmitting plate 430. Further, when snow or rain does not adhere to the boundary surface 431, it is specularly reflected by the boundary surface 431. In this way, the detection device 400 can detect the object attached to the boundary surface 431. In addition, for example, since an ice film may be formed on the boundary surface 431, the surface may be roughened so that diffuse reflection can be performed. Further, for example, in the case of water, since the interface with the outside becomes substantially flat, specular reflection may occur at the interface.

この検知装置400においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 400, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、実施の形態4の本変形例における検知装置400の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 400 in the present modification of the fourth embodiment will be described.

上述したように、実施の形態4の本変形例に係る検知装置400は、さらに、対象物が付着する境界面431を有し、光を透光させる透光板430を備える。そして、透光板430は、透光板430と反射ミラー410との間で、それぞれ1回以上の反射が起こるように、境界面431が筺体420から露出するように設けられる。 As described above, the detection device 400 according to the present modification of the fourth embodiment further includes a light transmitting plate 430 having a boundary surface 431 to which an object adheres and transmitting light. The light-transmitting plate 430 is provided so that the boundary surface 431 is exposed from the housing 420 so that reflection occurs one or more times between the light-transmitting plate 430 and the reflection mirror 410.

この構成によれば、透光板430の境界面431に光が繰り返し入射するため、透光板430の境界面431を検出面することができ、検知性能の信頼性及び感度を高めることができる。 According to this configuration, since light is repeatedly incident on the boundary surface 431 of the translucent plate 430, the boundary surface 431 of the translucent plate 430 can be detected, and the reliability and sensitivity of the detection performance can be improved. ..

特に、透光板430の境界面431と反射ミラー410とで多重反射させることで、検知装置400を小型化することができる。 In particular, the detection device 400 can be miniaturized by performing multiple reflections on the boundary surface 431 of the light transmitting plate 430 and the reflection mirror 410.

実施の形態4の本変形例における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present modification of the fourth embodiment also have the same effects as those of the first embodiment.

(実施の形態5)
以下、本実施の形態に係る検知装置500について、図11を用いて説明する。
(Embodiment 5)
Hereinafter, the detection device 500 according to the present embodiment will be described with reference to FIG.

[構成]
本実施の形態に係る検知装置500の構成について、図11を用いて説明する。
[Constitution]
The configuration of the detection device 500 according to the present embodiment will be described with reference to FIG.

図11は、実施の形態5に係る検知装置500を示す模式図である。 FIG. 11 is a schematic view showing the detection device 500 according to the fifth embodiment.

本実施の形態では、反射ミラー410及び透光板430の代わりにライトガイド530(透光部の一例)を備えた点で、実施の形態4に対して相違する。 The present embodiment differs from the fourth embodiment in that a light guide 530 (an example of a light transmitting portion) is provided instead of the reflecting mirror 410 and the light transmitting plate 430.

本実施の形態における他の構成は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

検知装置500は、第1光源31、第2光源32、制御部7、記憶部11、電源部9、偏光分離部5、第1受光部41及び第2受光部42の他に、さらに、ライトガイド530を備える。 In addition to the first light source 31, the second light source 32, the control unit 7, the storage unit 11, the power supply unit 9, the polarization separating unit 5, the first light receiving unit 41, and the second light receiving unit 42, the detection device 500 further includes a light. A guide 530 is provided.

ライトガイド530は、入射面531と、出射面532と、境界面533とを有し、長尺な透光性の部材である。ライトガイド530の一端側には、入射面531から光が入射するように、第1光源31及び第2光源32が設けられる。ライトガイド530の他端側には、偏光分離部5、第1受光部41及び第2受光部42が設けられ、出射面532から出射する光を受光する。ライトガイド530は、境界面533が筺体420の外周面から露出するように設けられる。ライトガイド530は、例えば、多成分ガラス、石英、プラスチック等の樹脂等で構成されていてもよく、液体ライトガイドであってもよい。なお、境界面533においても、表面を粗面にして乱反射することができるように構成していてもよい。 The light guide 530 has an incident surface 531, an exit surface 532, and a boundary surface 533, and is a long translucent member. A first light source 31 and a second light source 32 are provided on one end side of the light guide 530 so that light is incident from the incident surface 531. On the other end side of the light guide 530, a polarization separating unit 5, a first light receiving unit 41, and a second light receiving unit 42 are provided to receive light emitted from the emitting surface 532. The light guide 530 is provided so that the boundary surface 533 is exposed from the outer peripheral surface of the housing 420. The light guide 530 may be made of, for example, a resin such as multi-component glass, quartz, or plastic, or may be a liquid light guide. The boundary surface 533 may also be configured so that the surface can be roughened to allow diffuse reflection.

例えば、検知装置500を車両に用いる場合では、境界面533に雪や雨等が付着し、検知装置500を人体における皮膚の水分量を検知するために使用する場合では、境界面533に皮膚が接触する。 For example, when the detection device 500 is used in a vehicle, snow, rain, etc. adhere to the boundary surface 533, and when the detection device 500 is used to detect the water content of the skin in the human body, the skin is attached to the boundary surface 533. Contact.

このような検知装置500では、第1光源31及び第2光源32とから出射した光は、ライトガイド530の入射面531から入射し、ライトガイド530内で反射をしながら透光し、第1受光部41及び第2受光部42側に向かって進行する。 In such a detection device 500, the light emitted from the first light source 31 and the second light source 32 is incident on the incident surface 531 of the light guide 530, is reflected in the light guide 530, and is transmitted through the first light guide 530. It proceeds toward the light receiving unit 41 and the second light receiving unit 42 side.

この検知装置500においても、図2に示すフローチャートと同様の動作が行われる。 Also in this detection device 500, the same operation as the flowchart shown in FIG. 2 is performed.

[作用効果]
次に、本実施の形態における検知装置500の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 500 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置500は、さらに、対象物が付着する境界面533を有し、光を透光させるライトガイド530を備える。ライトガイド530は、光源3から入射した光を、偏光分離部5を介して受光部4に導く。 As described above, the detection device 500 according to the present embodiment further includes a boundary surface 533 to which an object adheres, and a light guide 530 that transmits light. The light guide 530 guides the light incident from the light source 3 to the light receiving unit 4 via the polarization separating unit 5.

この構成によれば、ライトガイド530の境界面533に光が繰り返し入射するため、ライトガイド530の境界面533を検出面とすることができ、検知性能の信頼性及び感度を高めることができる。 According to this configuration, since light is repeatedly incident on the boundary surface 533 of the light guide 530, the boundary surface 533 of the light guide 530 can be used as a detection surface, and the reliability and sensitivity of the detection performance can be improved.

特に、ライトガイド530内で多重反射させることで、検知装置500を小型化することができる。 In particular, the detection device 500 can be miniaturized by performing multiple reflections in the light guide 530.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(実施の形態6)
以下、本実施の形態に係る検知装置600について説明する。
(Embodiment 6)
Hereinafter, the detection device 600 according to the present embodiment will be described.

[構成]
本実施の形態に係る検知装置600の構成について、図12を用いて説明する。
[Constitution]
The configuration of the detection device 600 according to the present embodiment will be described with reference to FIG.

図12は、実施の形態6に係る検知装置600を備えた車両610を示す模式図である。 FIG. 12 is a schematic view showing a vehicle 610 provided with the detection device 600 according to the sixth embodiment.

実施の形態1の変形例では車両110の進行方向に向けて光源3の光を照射して対象物の状態を検知していたが、本実施の形態では、車両610の下方側(対象物側)及びその周辺に向けて光源3の光を照射して対象物の状態を検知する点等で異なる。 In the modified example of the first embodiment, the state of the object is detected by irradiating the light of the light source 3 toward the traveling direction of the vehicle 110, but in the present embodiment, the lower side (object side) of the vehicle 610 is detected. ) And its surroundings by irradiating the light of the light source 3 to detect the state of the object.

本実施の形態における他の構成は、実施の形態1の変形例等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present embodiment are the same as those in the modified example of the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図12に示すように、車両610は、検知装置600と、筒体630とを有し、例えば、検知装置600及び筒体630をエンジンルームに収容している。なお、本実施の形態では、検知装置600及び筒体630は、車両610のエンジンルームに設けられているが、これに限定されず、車両610下側の対象物を検知さえすれば、如何様に設けられていてもよい。 As shown in FIG. 12, the vehicle 610 has a detection device 600 and a cylinder 630, and for example, the detection device 600 and the cylinder 630 are housed in the engine room. In the present embodiment, the detection device 600 and the tubular body 630 are provided in the engine room of the vehicle 610, but the present invention is not limited to this, as long as the object under the vehicle 610 is detected. It may be provided in.

検知装置600は、筒体630の一端側に配置されている。つまり、検知装置600は、筒体630に対して対象物とは反対側に設けられている。検知装置600は、筒体630を介して車両610下側の対象物を検知する。なお、本実施の形態では、対象物は、例えば道路の路面である。 The detection device 600 is arranged on one end side of the tubular body 630. That is, the detection device 600 is provided on the side of the cylinder 630 opposite to the object. The detection device 600 detects an object on the lower side of the vehicle 610 via the tubular body 630. In the present embodiment, the object is, for example, the road surface of a road.

検知装置600は、検知範囲内の対象物の状態を検知する。この検知範囲は、対象物の状態を検知することができる範囲であり、主に、対象物に光が照射される範囲である。検知範囲は、車両610の下方及び車両610の下方の周辺に位置する対象物である。具体的には、検知範囲は、車両610直下及び車両610直下周囲における対象物である。本実施の形態では、検知範囲の一例として、筒体630の他端側から出射し、対象物に照射された光の範囲としている。 The detection device 600 detects the state of the object within the detection range. This detection range is a range in which the state of the object can be detected, and is mainly a range in which the object is irradiated with light. The detection range is an object located below the vehicle 610 and around the lower part of the vehicle 610. Specifically, the detection range is an object directly under the vehicle 610 and around the vehicle 610. In the present embodiment, as an example of the detection range, the range of light emitted from the other end side of the tubular body 630 and radiated to the object.

筒体630は、検知装置600の光源3が照射する光と、対象物で反射又は散乱した光とを案内する管状をなしている。本実施の形態では、筒体630が鉛直方向に対して傾斜した状態で車体に設けられているが、鉛直方向と略平行に設けられていてもよい。 The tubular body 630 has a tubular shape that guides the light emitted by the light source 3 of the detection device 600 and the light reflected or scattered by the object. In the present embodiment, the tubular body 630 is provided on the vehicle body in a state of being inclined with respect to the vertical direction, but it may be provided substantially parallel to the vertical direction.

筒体630は、長尺な筒であり、案内孔631と、一端側開口631aと、他端側開口631bとを有する。案内孔631は、長手方向に延びるように形成されている。案内孔631は、一端側から他端側まで貫通している。案内孔631の一端側が一端側開口631aであり、案内孔631の他端側が他端側開口631bである。本実施の形態では、一端側が上側であり、他端側が下側である。一端側開口631a近傍には、検知装置600が光を出射及び受光(筒体630を介して対象物の状態を検知)できるように設けられている。他端側開口631bは、対象物側と向かい合い、車両610の外部と連続している。 The tubular body 630 is a long cylinder, and has a guide hole 631, an opening 631a on one end side, and an opening 631b on the other end side. The guide hole 631 is formed so as to extend in the longitudinal direction. The guide hole 631 penetrates from one end side to the other end side. One end side of the guide hole 631 is the one end side opening 631a, and the other end side of the guide hole 631 is the other end side opening 631b. In the present embodiment, one end side is the upper side and the other end side is the lower side. A detection device 600 is provided in the vicinity of the one-end side opening 631a so that light can be emitted and received (the state of the object is detected via the tubular body 630). The other end side opening 631b faces the object side and is continuous with the outside of the vehicle 610.

案内孔631を形成する面は、光を反射する光反射面であり、例えば、鏡面反射する面である。 The surface forming the guide hole 631 is a light reflecting surface that reflects light, for example, a surface that reflects specularly.

なお、本実施の形態では、筒体630は、断面が円形の円筒状をなしているが、筒状であればよく、多角形状等をなしていてもよい。また、筒体630の径は略一定であるが、検知装置600から遠ざかるに従って次第に大径になってもよい。つまり、筒体630の対象物側が大径であり、筒体630の検知装置600側が小径であってもよい。 In the present embodiment, the tubular body 630 has a cylindrical shape with a circular cross section, but it may have a tubular shape and may have a polygonal shape or the like. Further, although the diameter of the tubular body 630 is substantially constant, the diameter may gradually increase as the distance from the detection device 600 increases. That is, the object side of the cylinder 630 may have a large diameter, and the detection device 600 side of the cylinder 630 may have a small diameter.

このような検知装置600を用いて対象物の状態を検知する場合、検知装置600の光源3は、筒体630の案内孔631を通過して(介して)対象物に光を照射する。そして、検知装置600の受光部4は、対象物で反射又は散乱した光を筒体630の案内孔631を通過して(介して)受光する。こうして、対象物の状態を検知する。検知装置600における動作については、実施の形態1等と同様でありその説明を省略する。 When the state of the object is detected by using such a detection device 600, the light source 3 of the detection device 600 irradiates the object with light through (via) the guide hole 631 of the tubular body 630. Then, the light receiving unit 4 of the detection device 600 receives (via) the light reflected or scattered by the object through the guide hole 631 of the tubular body 630. In this way, the state of the object is detected. The operation of the detection device 600 is the same as that of the first embodiment, and the description thereof will be omitted.

図13は、実施の形態6に係る車両支援システムの車両610を示すブロック図である。図14は、実施の形態6に係る車両支援システムを示す模式図である。 FIG. 13 is a block diagram showing a vehicle 610 of the vehicle support system according to the sixth embodiment. FIG. 14 is a schematic view showing the vehicle support system according to the sixth embodiment.

検知装置600は、図14に示すように、車両610に搭載される車両支援システムを構成していてもよい。車両支援システムでは、一例として3台の車両610を示しているが、台数は特に限定されない。 As shown in FIG. 14, the detection device 600 may constitute a vehicle support system mounted on the vehicle 610. In the vehicle support system, three vehicles 610 are shown as an example, but the number of vehicles is not particularly limited.

図13に示すように、検知装置600は、光源3、制御部7、記憶部11、電源部9の他に、通信部640を有している。通信部640は、他の車両610と通信を行うことが可能なアンテナ等を有する装置である。 As shown in FIG. 13, the detection device 600 includes a communication unit 640 in addition to the light source 3, the control unit 7, the storage unit 11, and the power supply unit 9. The communication unit 640 is a device having an antenna or the like capable of communicating with another vehicle 610.

図13及び図14に示すように、制御部7は、通信部640を介して同一道路を走行している他の車両610から位置情報を逐次、共有し合ってもよい。例えば、制御部7は、同一道路を走行している後続の車両610に向けて、車両610下方及び車両610の下方の周辺における対象物の状態に関する情報を、通信部640を介して送信してもよい。本実施の形態では、例えば、先頭の車両610の検知装置600が検知した対象物の状態に関する情報を、後続の2台の車両610に送信してもよい。そして、後続の2台の車両610は、通信部640を介して受信し、この情報を出力部8に出力してもよい。また、後続の2台の車両610は、通信部640を介してさらに後続の車両610に、対象物の状態に関する情報を送信してもよい。この場合、後続の車両610は、先頭の車両610から対象物の状態に関する情報を得ることができるため、車両610における危険回避をより行い易くなる。なお、後続の各々の車両610も、対象物の状態を検知する。 As shown in FIGS. 13 and 14, the control unit 7 may sequentially share position information from other vehicles 610 traveling on the same road via the communication unit 640. For example, the control unit 7 transmits information on the state of the object in the vicinity of the lower part of the vehicle 610 and the lower part of the vehicle 610 to the following vehicle 610 traveling on the same road via the communication unit 640. May be good. In the present embodiment, for example, information regarding the state of the object detected by the detection device 600 of the leading vehicle 610 may be transmitted to the following two vehicles 610. Then, the following two vehicles 610 may receive the information via the communication unit 640 and output this information to the output unit 8. Further, the two following vehicles 610 may transmit information regarding the state of the object to the following vehicle 610 via the communication unit 640. In this case, since the following vehicle 610 can obtain information on the state of the object from the leading vehicle 610, it becomes easier to avoid danger in the vehicle 610. In addition, each of the following vehicles 610 also detects the state of the object.

また、検知装置600は、カーナビなどに設けられている車載用アンテナを用いて後続の車両610と通信を行ってもよい。このため、通信部640は、検知装置600の必須の構成要件ではない。 Further, the detection device 600 may communicate with the following vehicle 610 using an in-vehicle antenna provided in a car navigation system or the like. Therefore, the communication unit 640 is not an indispensable constituent requirement of the detection device 600.

[作用効果]
次に、本実施の形態における検知装置600の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 600 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置600において、当該検知装置600が対象物の状態を検知する検知範囲は、車両610の下方及び車両610の下方の周辺に位置する対象物である。 As described above, in the detection device 600 according to the present embodiment, the detection range in which the detection device 600 detects the state of the object is an object located below the vehicle 610 and around the lower part of the vehicle 610. ..

この構成によれば、車両610下側の対象物の状態を検知するため、車両610の進行方向に向けて光を照射する場合に比べ、検知範囲と検知装置600との距離を短くすることができる。このため、車両610のピッチングによる検知範囲の位置ズレを小さくすることができる。 According to this configuration, in order to detect the state of the object under the vehicle 610, the distance between the detection range and the detection device 600 can be shortened as compared with the case of irradiating light in the traveling direction of the vehicle 610. it can. Therefore, the positional deviation of the detection range due to pitching of the vehicle 610 can be reduced.

また、本実施の形態に係る検知装置600において、車両610には、光源3の光を照射する方向に延びる筒体630が設けられる。そして、検知装置600は、筒体630を介して対象物の状態を検知する。 Further, in the detection device 600 according to the present embodiment, the vehicle 610 is provided with a tubular body 630 extending in the direction of irradiating the light of the light source 3. Then, the detection device 600 detects the state of the object via the tubular body 630.

この構成によれば、検知装置600は、筒体630を介して対象物の状態を検知するため、車両610の下面に検知装置600を直接取り付ける場合に比べて、対象物から遠ざかっている。このため、車両610の走行中に発生する、泥跳ね等により光の照射や受光ができなくなったり、石跳ね等により検知装置600が故障してしまったりする等の不具合を抑制することができる。 According to this configuration, since the detection device 600 detects the state of the object via the tubular body 630, the detection device 600 is farther from the object than when the detection device 600 is directly attached to the lower surface of the vehicle 610. Therefore, it is possible to suppress problems such as light irradiation and light reception not being possible due to mud splashing and the like, and the detection device 600 breaking down due to stone splashing and the like, which occur while the vehicle 610 is traveling.

また、この検知装置600では、筒体630が車両610の下方に位置する対象物と他端側開口631bとが向かい合っているため、降雨や降雪の環境下であっても、筒体630の案内孔631に水や雪などが詰まり難い。このため、検知装置600の誤検知を抑制することができる。 Further, in this detection device 600, since the cylinder 630 faces the object located below the vehicle 610 and the other end side opening 631b, the guidance of the cylinder 630 is guided even in a rainy or snowy environment. The hole 631 is less likely to be clogged with water or snow. Therefore, false detection of the detection device 600 can be suppressed.

また、本実施の形態に係る検知装置600において、筒体630の内面は、光を反射する光反射面を有する。 Further, in the detection device 600 according to the present embodiment, the inner surface of the tubular body 630 has a light reflecting surface that reflects light.

この構成によれば、筒体630の光反射面が光を反射するため、筒体630を通過する際における光の利用効率が低下し難い。 According to this configuration, since the light reflecting surface of the tubular body 630 reflects light, it is difficult to reduce the efficiency of light utilization when passing through the tubular body 630.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(実施の形態6の変形例)
以下、本実施の形態に係る検知装置601について、図15を用いて説明する。
(Modified Example of Embodiment 6)
Hereinafter, the detection device 601 according to the present embodiment will be described with reference to FIG.

図15は、実施の形態6の変形例に係る検知装置601を備えた車両610を示す模式図である。 FIG. 15 is a schematic view showing a vehicle 610 provided with a detection device 601 according to a modification of the sixth embodiment.

実施の形態1の変形例では、車両110の進行方向に向けて光源3の光を照射して対象物の状態を検知するが、実施の形態6の本変形例では、車両610の下方及び車両610の下方の周辺に向けて光源3の光を照射して対象物の状態を検知する点等で異なる。 In the modified example of the first embodiment, the state of the object is detected by irradiating the light of the light source 3 in the traveling direction of the vehicle 110, but in the modified example of the sixth embodiment, the lower part of the vehicle 610 and the vehicle It differs in that the state of the object is detected by irradiating the light of the light source 3 toward the periphery below the 610.

本実施の形態における他の構成は、実施の形態1の変形例等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present embodiment are the same as those in the modified example of the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図15の一点鎖線は、車両610の前側(車両610の進行方向側)及び後側(車両610の進行方向とは反対側)を区切る線であり、車両610の長さ方向における略中央を通過する線である。 The alternate long and short dash line in FIG. 15 is a line that separates the front side (the traveling direction side of the vehicle 610) and the rear side (the side opposite to the traveling direction of the vehicle 610) of the vehicle 610, and passes substantially the center in the length direction of the vehicle 610. It is a line to do.

図15に示すように、車両610の下方及び車両610の下方の周辺に位置する対象物において、車両610の進行方向側が第1領域E1であり、車両610の進行方向と反対側が第2領域E2である。第1領域E1及び第2領域E2は、互いに異なる範囲である。実施の形態6の本変形例において、検知装置601が対象物の状態を検知する検知範囲は、第2領域E2である。なお、図15では、検知装置601の検知範囲を破線で示し、この検知範囲は、第2領域E2の一部が含まれる。 As shown in FIG. 15, in the objects located below the vehicle 610 and around the lower part of the vehicle 610, the traveling direction side of the vehicle 610 is the first region E1, and the side opposite to the traveling direction of the vehicle 610 is the second region E2. Is. The first region E1 and the second region E2 are different ranges from each other. In the present modification of the sixth embodiment, the detection range in which the detection device 601 detects the state of the object is the second region E2. In FIG. 15, the detection range of the detection device 601 is shown by a broken line, and this detection range includes a part of the second region E2.

検知装置601は、車両610後方側(車両610の進行方向とは反対側)に設けられている。具体的には、車両610の下方及び車両610の下方の周辺に位置する対象物において、検知装置601は、車両610の後方側の対象物の状態を検知するように設けられている。つまり、検知装置601は、車両610の下方及び車両610の下方の周辺に位置する対象物である第2領域E2を検知するように、車両610に設けられている。なお、検知装置601は、車両610の下方の全域を検知してもよい。 The detection device 601 is provided on the rear side of the vehicle 610 (the side opposite to the traveling direction of the vehicle 610). Specifically, the detection device 601 is provided so as to detect the state of the object on the rear side of the vehicle 610 in the objects located below the vehicle 610 and around the lower part of the vehicle 610. That is, the detection device 601 is provided in the vehicle 610 so as to detect the second region E2, which is an object located below the vehicle 610 and around the lower part of the vehicle 610. The detection device 601 may detect the entire area below the vehicle 610.

なお、検知装置601は、第2領域E2における対象物の状態を検知するが、さらに、第1領域E1における対象物の状態を検知してもよい。 The detection device 601 detects the state of the object in the second region E2, but may further detect the state of the object in the first region E1.

このような実施の形態6の本変形例に係る検知装置601において、車両610の下方及び車両610の下方の周辺に位置する対象物は、車両610の進行方向側の第1領域E1と、第1領域E1と異なり、車両610の進行方向とは反対側の第2領域E2とを有する。そして、当該検知装置601の検知範囲は、第2領域E2である。 In the detection device 601 according to the present modification of the sixth embodiment, the objects located below the vehicle 610 and around the lower part of the vehicle 610 are the first region E1 on the traveling direction side of the vehicle 610 and the first region E1. Unlike the one region E1, it has a second region E2 on the side opposite to the traveling direction of the vehicle 610. The detection range of the detection device 601 is the second region E2.

このように、第2領域E2を検知するために検知装置601を車両610の後方側に配置すれば、車両610走行中に発生する、泥跳ね等により照射や受光ができなくなったり、石跳ね等により検知装置601が故障してしまったりする等の不具合をより抑制することができる。 In this way, if the detection device 601 is arranged on the rear side of the vehicle 610 in order to detect the second region E2, irradiation or light reception cannot be performed due to mud splashing or the like, which occurs while the vehicle 610 is running, or stone splashing or the like. As a result, problems such as the detection device 601 failing can be further suppressed.

また、車両610がリヤビューカメラを備える場合、車両610が後方移動(バック)する際に、後輪が走行する範囲の対象物の状態を検知することもできる。 Further, when the vehicle 610 is equipped with a rear view camera, when the vehicle 610 moves backward (backward), it is possible to detect the state of an object in the range in which the rear wheels travel.

特に、検知装置601は、車輪112から離間した位置に設けることが好ましい。 In particular, the detection device 601 is preferably provided at a position away from the wheels 112.

実施の形態6の本変形例における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present modification of the sixth embodiment also have the same effects as those of the first embodiment.

(実施の形態7)
以下、本実施の形態に係る検知装置700について説明する。
(Embodiment 7)
Hereinafter, the detection device 700 according to the present embodiment will be described.

[構成]
本実施の形態に係る検知装置700の構成について、図16及び図17の(a)を用いて説明する。
[Constitution]
The configuration of the detection device 700 according to the present embodiment will be described with reference to FIGS. 16 and 17 (a).

図16は、実施の形態7に係る検知装置700を備えた車両710を示す模式図である。図17の(a)は、実施の形態7に係る検知装置700と車輪112とを示す模式図である。図17の(a)で示す直線の矢印は、車輪112の回転方向に沿った接線方向を示している。 FIG. 16 is a schematic view showing a vehicle 710 including the detection device 700 according to the seventh embodiment. FIG. 17A is a schematic view showing the detection device 700 and the wheel 112 according to the seventh embodiment. The straight arrow shown in FIG. 17A indicates the tangential direction along the rotation direction of the wheel 112.

実施の形態1の変形例では車両110の進行方向に向けて光源3の光を照射して対象物の状態を検知していたが、本実施の形態では、車両710の車輪112に向けて光源3の光を照射して車輪112の状態を検知する点等で異なる。 In the modified example of the first embodiment, the state of the object is detected by irradiating the light of the light source 3 toward the traveling direction of the vehicle 110, but in the present embodiment, the light source is directed toward the wheels 112 of the vehicle 710. It differs in that the state of the wheel 112 is detected by irradiating the light of 3.

本実施の形態における他の構成は、実施の形態1の変形例等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 Other configurations in the present embodiment are the same as those in the modified example of the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.

図16及び図17の(a)に示すように、検知装置700は、車両710の車輪112の外周端面(走行時に対象物と接触する面(表面の一例))における状態を検知するように、車輪112を収納するタイヤハウスに設けられている。検知装置700は、例えば、タイヤハウスを形成するフェンダライナに設けられている。車輪112は、軸心O周りで回転する車軸に接続されたホイールと、ホイールの外周に設けられたタイヤとを有する。なお、検知装置700の配置位置は、車輪112の外周端面における状態を検知すればよいため、本実施の形態の配置に限定されない。 As shown in FIGS. 16 and 17 (a), the detection device 700 detects a state on the outer peripheral end surface of the wheel 112 of the vehicle 710 (a surface that comes into contact with an object during traveling (an example of a surface)). It is provided in a tire house that houses the wheels 112. The detection device 700 is provided, for example, in a fender liner forming a tire house. The wheel 112 has a wheel connected to an axle that rotates around an axis O, and a tire provided on the outer circumference of the wheel. The arrangement position of the detection device 700 is not limited to the arrangement of the present embodiment because it is sufficient to detect the state on the outer peripheral end surface of the wheel 112.

検知装置700は、車輪112表面の状態を検知するように車両710に設けられる。検知装置700における光源3の光を照射する方向は、図17の(a)に示すように、車両710の略進行方向に向いている。具体的には、検知装置700の光源3は、車輪112の回転方向に沿った接線方向に沿って光を照射する。 The detection device 700 is provided on the vehicle 710 so as to detect the state of the surface of the wheel 112. As shown in FIG. 17A, the direction of irradiating the light of the light source 3 in the detection device 700 is substantially the traveling direction of the vehicle 710. Specifically, the light source 3 of the detection device 700 irradiates light along the tangential direction along the rotation direction of the wheel 112.

[比較例]
図17の(b)は、比較例に係る検知装置700’と車輪112’とを示す模式図である。図17の(b)で示す直線の矢印は、車輪112の回転方向に沿った接線方向を示している。
[Comparison example]
FIG. 17B is a schematic view showing the detection device 700'and the wheel 112' according to the comparative example. The straight arrow shown in FIG. 17B indicates the tangential direction along the rotation direction of the wheel 112.

図17の(b)に示すように、検知装置700’は、光源3の光を照射する方向が車輪112’の回転方向に沿った接線方向と相対するように設けられている。この場合では、車輪112’の回転時に車輪112’の回転方向に沿った接線方向に向かって、車輪112’に付着した泥、石等が向かう。このため、泥跳ね等により照射や受光ができなくなったり、石跳ね等により検知装置700’が故障してしまったりする等の不具合が生じる。 As shown in FIG. 17B, the detection device 700'is provided so that the direction of irradiating the light of the light source 3 is opposite to the tangential direction along the rotation direction of the wheel 112'. In this case, when the wheel 112'is rotated, mud, stones, etc. adhering to the wheel 112' are directed toward the tangential direction along the rotation direction of the wheel 112'. For this reason, there are problems such as the inability to irradiate or receive light due to mud splashing or the like, or the detection device 700'breaking down due to stone splashing or the like.

[作用効果]
次に、本実施の形態における検知装置700の作用効果について説明する。
[Action effect]
Next, the operation and effect of the detection device 700 in the present embodiment will be described.

上述したように、本実施の形態に係る検知装置700において、対象物は、車輪112である。そして、検知装置700は、車輪112表面の状態を検知するように車両710に設けられる。 As described above, in the detection device 700 according to the present embodiment, the object is the wheel 112. Then, the detection device 700 is provided on the vehicle 710 so as to detect the state of the surface of the wheel 112.

この構成によれば、検知装置700を車輪112に近い位置に配置することができるため、実施の形態1の変形例のように車両110の進行方向に向けて光源3の光を照射する場合に比べ、光源3の光出射出力を小さくすることができる。このため、検知装置700の省エネルギー化を実現することができる。 According to this configuration, since the detection device 700 can be arranged at a position close to the wheels 112, when the light of the light source 3 is irradiated toward the traveling direction of the vehicle 110 as in the modified example of the first embodiment. In comparison, the light emission output of the light source 3 can be reduced. Therefore, energy saving of the detection device 700 can be realized.

また、この検知装置700は、車輪112におけるタイヤと、タイヤに付着している水分等を識別するだけでよいため、複雑な材質からなるアスファルトとアスファルトに付着している水分等との識別に比べて、高精度な識別精度を必要としない。このため、この検知装置700おける製造コストの高騰化を抑制することができる。 Further, since the detection device 700 only needs to identify the tire on the wheel 112 and the water content adhering to the tire, it is compared with the discrimination between the asphalt made of a complicated material and the water content adhering to the asphalt. Therefore, high-precision identification accuracy is not required. Therefore, it is possible to suppress an increase in the manufacturing cost of the detection device 700.

特に、この検知装置700を車両710に用いれば、路面とタイヤとの間の水分等の有無を検知することができるため、タイヤのグリップ力をより正確に把握することができる。例えば、車両710走行中に凍結した路面、積雪した路面等から乾燥した路面に移り変わった際でも、タイヤが路面の影響を受けて濡れている場合なども把握することができる。 In particular, if this detection device 700 is used in the vehicle 710, it is possible to detect the presence or absence of moisture or the like between the road surface and the tire, so that the grip force of the tire can be grasped more accurately. For example, even when the road surface is changed from a frozen road surface, a snow-covered road surface, or the like while the vehicle is running 710 to a dry road surface, it is possible to grasp the case where the tires are wet due to the influence of the road surface.

また、本実施の形態に係る検知装置700において、光源3は、車輪112の回転方向に沿った接線方向に沿って光を照射する。 Further, in the detection device 700 according to the present embodiment, the light source 3 irradiates light along the tangential direction along the rotation direction of the wheel 112.

この構成によれば、図17の(b)のように、車輪112の回転時に、車輪112の回転方向に沿った接線方向に向かって、車輪112に付着した泥、石等が検知装置700に当たり難い。このため、泥跳ね等により照射や受光ができなくなったり、石跳ね等により検知装置700が故障してしまったりする等の不具合が生じ難い。 According to this configuration, as shown in FIG. 17B, when the wheel 112 is rotated, mud, stones, etc. adhering to the wheel 112 hit the detection device 700 in the tangential direction along the rotation direction of the wheel 112. hard. For this reason, it is unlikely that problems such as the inability to irradiate or receive light due to mud splashing or the failure of the detection device 700 due to stone splashing or the like occur.

本実施の形態における他の作用効果についても、実施の形態1等と同様の作用効果を奏する。 The other effects of the present embodiment also have the same effects as those of the first embodiment.

(その他変形例等)
以上、本発明に係る検知装置、検知方法及び検知プログラムについて、各実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other modifications, etc.)
Although the detection device, the detection method, and the detection program according to the present invention have been described above based on each embodiment, the present invention is not limited to the above-described embodiment.

例えば、上記実施の形態において、受光部が対象物で散乱した光を受光できるように、図1等のように光源側に受光部を配置した構成では、受光部は、対象物で正反射した光を受光する場合に比べ、検知装置の大型化を抑制することができる。 For example, in the above embodiment, in the configuration in which the light receiving unit is arranged on the light source side as shown in FIG. 1 so that the light receiving unit can receive the light scattered by the object, the light receiving unit is specularly reflected by the object. Compared with the case of receiving light, it is possible to suppress the increase in size of the detection device.

また、上記実施の形態における水において、水面でのP偏光の反射率は、入射角が53.1°の時に0となるため、出射した光における対象物への入射角を53.1°付近に設定すると、散乱した光のP偏光の強度とS偏光の強度との比を大きくすることができる。この場合、検知装置の検出精度を上げることができる。 Further, in the water of the above embodiment, the reflectance of P-polarized light on the water surface becomes 0 when the incident angle is 53.1 °, so that the incident angle of the emitted light to the object is around 53.1 °. When set to, the ratio of the intensity of P-polarized light of the scattered light to the intensity of S-polarized light can be increased. In this case, the detection accuracy of the detection device can be improved.

また、上記実施の形態において、出力部は、凍結の状態、冠水の状態、積雪の状態、乾燥の状態を表示するだけでなく、文字、映像等の出力を行う表示部であってもよい。また、出力部は、スピーカ等を介して、音声の出力を行ってもよい。この場合、検知装置が車両に適用されると、車両における周囲の対象物の状態を検知するため、制御部が出力部を介して搭乗者に周囲状況を知らせることで、安全走行支援を行うことができる。 Further, in the above embodiment, the output unit may be a display unit that not only displays a frozen state, a flooded state, a snow-covered state, and a dry state, but also outputs characters, images, and the like. Further, the output unit may output audio via a speaker or the like. In this case, when the detection device is applied to the vehicle, the control unit notifies the passenger of the surrounding conditions via the output unit in order to detect the state of the surrounding objects in the vehicle, thereby providing safe driving support. Can be done.

また、上記実施の形態において、検知装置を車両に適用する場合、車両が停止して搭乗者が降車する際に、出力部は、車両における周囲の対象物の状況を知らせてもよい。この場合、凍結等による降車時における搭乗者の転倒などを抑制することができる。 Further, in the above embodiment, when the detection device is applied to the vehicle, the output unit may notify the situation of the surrounding objects in the vehicle when the vehicle stops and the passenger gets off. In this case, it is possible to prevent the passenger from tipping over when getting off due to freezing or the like.

また、上記実施の形態において、検知装置を車両に適用する場合、制御部は、車両の運転状況や搭乗者のシートベルト装着状況などの情報を取得してもよい。そして、出力部は、シートベルト装着がされていない場合に、その旨を知らせてもよい。 Further, in the above embodiment, when the detection device is applied to the vehicle, the control unit may acquire information such as the driving status of the vehicle and the seatbelt wearing status of the passenger. Then, the output unit may notify the fact when the seat belt is not fastened.

また、上記実施の形態において、人体の皮膚の水分量を検知する場合、制御部は、検知した皮膚の水分量を記憶部に格納してもよい。そして、制御部は、過去に検知したデータを基に、データの比較を行い、その結果を出力してもよい。 Further, in the above embodiment, when detecting the water content of the skin of the human body, the control unit may store the detected water content of the skin in the storage unit. Then, the control unit may compare the data based on the data detected in the past and output the result.

また、上記実施の形態において、検知装置を人体における皮膚の水分量を検知するために使用してもよい。つまり、実施の形態2の変形例以外の検知装置においても使用することができる。 Further, in the above embodiment, the detection device may be used to detect the water content of the skin in the human body. That is, it can be used in a detection device other than the modification of the second embodiment.

以上、本発明の一つまたは複数の態様について、各実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。 Although one or more aspects of the present invention have been described above based on each embodiment, the present invention is not limited to this embodiment. As long as it does not deviate from the gist of the present invention, one or more of the present embodiments may be modified by those skilled in the art, or may be constructed by combining components in different embodiments. It may be included within the scope of the embodiment.

例えば、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 For example, in each of the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.

本発明は、路面、人体の皮膚等の対象物における水分量等の状態を検知するための装置に利用できる。車両に搭載された場合では、路面における凍結の状態、冠水の状態、積雪の状態、乾燥の状態を検知するために用いられる検知装置、検知方法及び検知プログラムに利用可能である。また、人体における皮膚の水分量を検知する場合では、皮膚における、乾燥の状態、保湿の状態を検知するために用いられる検知装置、検知方法及び検知プログラムにも利用可能である。 The present invention can be used as a device for detecting a state such as a water content in an object such as a road surface or human skin. When mounted on a vehicle, it can be used in detection devices, detection methods and detection programs used to detect frozen conditions, flooded conditions, snow conditions, and dry conditions on the road surface. Further, in the case of detecting the water content of the skin in the human body, it can also be used as a detection device, a detection method and a detection program used for detecting a dry state and a moisturizing state in the skin.

1、200、300、400、500、600、601、700 検知装置
3 光源(31 第1光源、32 第2光源)
4 受光部(41 第1受光部、42 第2受光部)
5 偏光分離部
6 波長分離部
7 制御部
8 出力部
71 判断部
72 電源制御部
110、610、710 車両
112 車輪
113 ハンドル
114 操舵角検知部
115 速度検知部
140 カメラ(受光部)
150 散乱板
310 走査ミラー(反射板)
311 揺動部
420 筺体
430 透光板
431、533 境界面
530 ライトガイド(透光部)
630 筒体
1,200,300,400,500,600,601,700 Detection device 3 Light source (31 first light source, 32 second light source)
4 Light receiving part (41 first light receiving part, 42 second light receiving part)
5 Polarization separation unit 6 Wavelength separation unit 7 Control unit 8 Output unit 71 Judgment unit 72 Power supply control unit 110, 610, 710 Vehicle 112 Wheels 113 Handle 114 Steering angle detection unit 115 Speed detection unit 140 Camera (light receiving unit)
150 Scattering plate 310 Scanning mirror (reflector)
311 Swing part 420 Housing 430 Translucent plate 431, 533 Boundary surface 530 Light guide (translucent part)
630 cylinder

Claims (24)

第1波長帯域の光と、前記第1波長帯域よりも水に吸収され難い第2波長帯域の光とを対象物に向けて出射する光源と、
前記対象物で反射又は散乱されたS偏光及びP偏光を含む光から、少なくともP偏光を分離する偏光分離部と、
前記対象物で反射又は散乱した光を、前記偏光分離部を介して受光する受光部と、
前記受光部が受光した光に基づく情報から前記対象物の状態を判断する制御部とを備え、
前記光源から出射する光は、前記S偏光と前記P偏光との割合が略均一なランダム偏光であり、
前記制御部は、
前記第1波長帯域の前記S偏光におけるS1偏光強度、及び前記第1波長帯域の前記P偏光におけるP1偏光強度と、前記第2波長帯域の前記S偏光におけるS2偏光強度又は前記第2波長帯域の前記P偏光におけるP2偏光強度とに基づく情報を前記受光部から取得し、
前記S2偏光強度又は前記P2偏光強度が所定の閾値よりも大きい場合に、前記対象物が積雪の状態であると判断し、
前記S1偏光強度と前記S2偏光強度とが略等しい場合又は前記P1偏光強度と前記P2偏光強度とが略等しい場合に、前記対象物が乾燥の状態であると判断し、
前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度に、前記P2偏光強度を除算した値が所定値以下である場合に、前記対象物が冠水の状態であると判断し、
前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度における強度に、前記P2偏光強度を除算した値が所定値よりも大きい場合に、前記対象物が凍結の状態であると判断する
検知装置。
A light source that emits light in the first wavelength band and light in the second wavelength band that is less easily absorbed by water than the first wavelength band toward an object.
A polarization separator that separates at least P-polarized light from light containing S-polarized light and P-polarized light reflected or scattered by the object.
A light receiving unit that receives light reflected or scattered by the object via the polarization separating unit, and a light receiving unit.
A control unit that determines the state of the object from information based on the light received by the light receiving unit is provided.
Light emitted from the light source, Ri substantially uniform randomly polarized der proportion of the S-polarized light and the P polarized light,
The control unit
The S1 polarization intensity in the S polarization in the first wavelength band, the P1 polarization intensity in the P polarization in the first wavelength band, and the S2 polarization intensity in the S polarization in the second wavelength band or the second wavelength band. Information based on the P2 polarization intensity in the P polarization is acquired from the light receiving unit.
When the S2 polarization intensity or the P2 polarization intensity is larger than a predetermined threshold value, it is determined that the object is in a snow-covered state.
When the S1 polarization intensity and the S2 polarization intensity are substantially equal, or when the P1 polarization intensity and the P2 polarization intensity are substantially equal, it is determined that the object is in a dry state.
When the P2 polarization intensity is larger than the S2 polarization intensity and the value obtained by dividing the P2 polarization intensity by the S2 polarization intensity is equal to or less than a predetermined value, it is determined that the object is in a flooded state. And
The object is in a frozen state when the P2 polarization intensity is larger than the S2 polarization intensity and when the value obtained by dividing the P2 polarization intensity by the intensity at the S2 polarization intensity is larger than a predetermined value. A detection device that determines that .
さらに、前記対象物と前記受光部との間には、前記対象物で反射又は散乱された光から、前記第1波長帯域の光及び前記第2波長帯域の光を分離する波長分離部を備えた
請求項1記載の検知装置。
Further, between the object and the light receiving unit, a wavelength separation unit that separates the light in the first wavelength band and the light in the second wavelength band from the light reflected or scattered by the object is provided. claims 1 Symbol placement of the sensing device.
さらに、前記光源からの光を前記対象物に向けて反射する反射板と、
前記反射板で反射した光を前記対象物に走査させるように、前記反射板及び前記光源の少なくとも一方を揺動させる揺動部とを備える
請求項1又は2に記載の検知装置。
Further, a reflector that reflects light from the light source toward the object,
The detection device according to claim 1 or 2 , further comprising a swinging portion that swings at least one of the reflector and the light source so that the object scans the light reflected by the reflector.
さらに、前記対象物と前記受光部との間に、光を散乱させる散乱板を備え、
前記受光部は、前記散乱板を介した光を受光する
請求項1〜のいずれか1項に記載の検知装置。
Further, a scattering plate for scattering light is provided between the object and the light receiving portion.
The detection device according to any one of claims 1 to 3 , wherein the light receiving unit receives light through the scattering plate.
さらに、前記散乱板と前記受光部との間に、NDフィルタを備え、
前記受光部は、前記散乱板及び前記NDフィルタを介した光を受光する
請求項記載の検知装置。
Further, an ND filter is provided between the scattering plate and the light receiving portion.
The detection device according to claim 4 , wherein the light receiving unit receives light that has passed through the scattering plate and the ND filter.
さらに、光を反射する反射ミラーと、前記反射ミラー、前記光源、前記受光部、前記偏光分離部及び前記制御部を収容した筺体とを備え、
前記反射ミラーは、前記対象物と向かい合う状態で、前記反射ミラーと前記対象物との間で、それぞれ1回以上の反射が起こるように前記筺体に設けられる
請求項1〜のいずれか1項に記載の検知装置。
Further, a reflection mirror that reflects light and a housing that houses the reflection mirror, the light source, the light receiving unit, the polarization separating unit, and the control unit are provided.
One of claims 1 to 5 , wherein the reflection mirror is provided on the housing so that one or more reflections occur between the reflection mirror and the object while facing the object. The detection device described in.
さらに、前記対象物が付着する境界面を有し、光を透光させる透光板を備え、
前記透光板は、前記透光板と前記反射ミラーとの間で、それぞれ1回以上の反射が起こるように、前記境界面が前記筺体から露出するように設けられる
請求項記載の検知装置。
Further, a translucent plate having a boundary surface to which the object is attached and transmitting light is provided.
The detection device according to claim 6 , wherein the light-transmitting plate is provided so that the boundary surface is exposed from the housing so that one or more reflections occur between the light-transmitting plate and the reflection mirror. ..
さらに、前記対象物が付着する境界面を有し、光を透光させる透光部を備え、
前記透光部は、前記光源から入射した光を、前記偏光分離部を介して前記受光部に導く
請求項1〜のいずれか1項に記載の検知装置。
Further, it has a boundary surface to which the object is attached, and is provided with a translucent portion that allows light to pass through.
The detection device according to any one of claims 1 to 7 , wherein the light transmitting unit guides light incident from the light source to the light receiving unit via the polarization separating unit.
前記光源は、前記第1波長帯域の光を出射する第1光源と、前記第2波長帯域の光を出射する第2光源とを有し、
前記制御部は、前記第1光源と前記第2光源とが互い違いで、交互に点灯及び消灯するように制御する
請求項1〜のいずれか1項に記載の検知装置。
The light source includes a first light source that emits light in the first wavelength band and a second light source that emits light in the second wavelength band.
The detection device according to any one of claims 1 to 8 , wherein the control unit controls the first light source and the second light source to be alternately turned on and off.
前記光源が出射する光は、赤外光であり、
前記第1波長帯域の赤外光は、水における、740nm近傍、980nm近傍、1450nm近傍及び1940nm近傍のうちいずれかで吸収波長となる吸収ピークの光であり、
前記第2波長帯域の赤外光は、前記第1波長帯域の赤外光よりも波長が短い光である
請求項1〜のいずれか1項に記載の検知装置。
The light emitted by the light source is infrared light.
The infrared light in the first wavelength band is light having an absorption peak having an absorption wavelength at any of 740 nm, 980 nm, 1450 nm, and 1940 nm in water.
The detection device according to any one of claims 1 to 9 , wherein the infrared light in the second wavelength band is light having a shorter wavelength than the infrared light in the first wavelength band.
前記受光部は、カメラである
請求項1〜1のいずれか1項に記載の検知装置。
The detection device according to any one of claims 1 to 10 , wherein the light receiving unit is a camera.
さらに、前記対象物の状態を出力する出力部を備え、
前記光源は、赤外光と可視光とを出射し、
前記カメラは、
前記光源が赤外光を出射した際に、前記対象物を撮像した第1画像と、
前記光源が可視光を出射した際に、前記対象物を撮像した第2画像とを生成して前記制御部に送信し、
前記制御部は、前記カメラから受信した前記第2画像に前記第1画像を重ねた第3画像を生成し、前記第3画像を前記出力部に出力する
請求項1記載の検知装置。
Further, it is provided with an output unit that outputs the state of the object.
The light source emits infrared light and visible light.
The camera
A first image of the object when the light source emits infrared light, and
When the light source emits visible light, a second image of the object is generated and transmitted to the control unit.
Wherein the control unit generates a third image overlaid the first image on the second image received from the camera, sensing apparatus of claim 1 1, wherein for outputting the third image to the output unit.
前記カメラは、前記第2画像における前記対象物と前記カメラとの距離を示す第4画像を生成して前記制御部に送信し、
前記制御部は、前記カメラから受信した前記第4画像を前記第3画像に重ねた、第5画像を生成し、前記第5画像を前記出力部に出力する
請求項1記載の検知装置。
The camera generates a fourth image showing the distance between the object and the camera in the second image and transmits the fourth image to the control unit.
Wherein the control unit, the fourth image received from the camera superimposed with the third image to generate a fifth image, sensing apparatus of claim 1 wherein outputting the fifth image to the output unit.
車両に搭載された請求項1〜1のいずれか1項に記載の検知装置であって、
前記車両は、ハンドルによって操舵される車輪と、前記車輪の操舵角を検知する操舵角検知部と、前記車両の走行速度を検知する速度検知部とを有し、
前記操舵角検知部は、前記車輪の操舵角に関する第1情報を前記制御部に送信し、
前記速度検知部は、前記車両の走行速度に関する第2情報を前記制御部に送信し、
前記制御部は、前記第1情報及び前記第2情報に応じて、前記光源が照射する方向と前記対象物を撮像する位置とを変更させるように制御する
検知装置。
A sensing device according to any one of claims 1 to 1 3 mounted on the vehicle,
The vehicle has wheels steered by a steering wheel, a steering angle detection unit that detects the steering angle of the wheels, and a speed detection unit that detects the traveling speed of the vehicle.
The steering angle detection unit transmits the first information regarding the steering angle of the wheel to the control unit.
The speed detection unit transmits second information regarding the traveling speed of the vehicle to the control unit.
The control unit is a detection device that controls so as to change the direction of irradiation by the light source and the position at which the object is imaged according to the first information and the second information.
当該検知装置が前記対象物の状態を検知する検知範囲は、前記車両の下方及び前記車両の下方の周辺に位置する前記対象物である
請求項1記載の検知装置。
The detection range of detection apparatus for detecting a state of said object, said as an object located around the lower part of the lower and the vehicle of the vehicle according to claim 1 4, wherein the sensing device.
前記車両の下方及び前記車両の下方の周辺に位置する前記対象物は、前記車両の進行方向側の第1領域と、前記第1領域と異なり、前記車両の進行方向とは反対側の第2領域とを有し、
当該検知装置の前記検知範囲は、前記第2領域である
請求項1記載の検知装置。
The object located below the vehicle and around the lower part of the vehicle has a first region on the traveling direction side of the vehicle and a second region on the opposite side of the traveling direction of the vehicle, unlike the first region. Has an area and
The detection range, the a second region claim 1 5, wherein the detection device of the detection device.
前記車両には、前記光源の光を照射する方向に延びる筒体が設けられ、
当該検知装置は、前記筒体を介して前記対象物の状態を検知する
請求項15又は16記載の検知装置。
The vehicle is provided with a cylinder extending in the direction of irradiating the light of the light source.
The detection device according to claim 15 or 16 , wherein the detection device detects the state of the object via the cylinder.
前記筒体の内面は、光を反射する光反射面を有する
請求項1記載の検知装置。
The detection device according to claim 17 , wherein the inner surface of the cylinder has a light reflecting surface that reflects light.
前記対象物は、前記車輪であり、
前記車輪表面の状態を検知するように前記車両に設けられる
請求項14〜18のいずれか1項に記載の検知装置。
The object is the wheel,
The detection device according to any one of claims 14 to 18 , which is provided on the vehicle so as to detect the state of the wheel surface.
前記光源は、前記車輪の回転方向に沿った接線方向に沿って光を照射する
請求項19記載の検知装置。
The detection device according to claim 19 , wherein the light source irradiates light along a tangential direction along the rotation direction of the wheel.
前記制御部は、
前記車輪の操舵角が大きくなるに従って当該検知装置から遠い前記対象物を前記受光部に撮像させる
請求項1記載の検知装置。
The control unit
Sensing apparatus according to claim 1 4, wherein the farther the object from the detection device is imaged on the light receiving unit in accordance with a steering angle of the wheel increases.
前記制御部は、
前記車両の走行速度が速くなるに従って、前記車輪の操舵角から前記操舵角検知部が検知した前記車両の進行方向であって、当該検知装置から遠い前記対象物を前記受光部に撮像させる
請求項2記載の検知装置。
The control unit
The claim that as the traveling speed of the vehicle increases, the light receiving unit images the object that is the traveling direction of the vehicle detected by the steering angle detection unit from the steering angle of the wheel and is far from the detection device. 21. The detection device according to 1 .
請求項1〜2のいずれか1項に記載の検知装置を用いて対象物の状態を検知する検知方法であって、
前記制御部は、
前記第1波長帯域の前記S偏光におけるS1偏光強度、及び前記第1波長帯域の前記P偏光におけるP1偏光強度と、前記第2波長帯域の前記S偏光におけるS2偏光強度又は前記第2波長帯域の前記P偏光におけるP2偏光強度とに基づく情報を前記受光部から取得する取得ステップと、
前記S2偏光強度又は前記P2偏光強度が所定の閾値よりも大きい場合に、前記対象物が積雪の状態であると判断する積雪判断ステップと、
前記S1偏光強度と前記S2偏光強度とが略等しい場合又は前記P1偏光強度と前記P2偏光強度とが略等しい場合に、前記対象物が乾燥の状態であると判断する乾燥判断ステップと、
前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度に、前記P2偏光強度を除算した値が所定値以である場合に、前記対象物が冠水の状態であると判断する冠水判断ステップと、
前記P2偏光強度が前記S2偏光強度よりも大きい場合、かつ、前記S2偏光強度における強度に、前記P2偏光強度を除算した値が所定値よりも大きい場合に、前記対象物が凍結の状態であると判断する凍結判断ステップとを含む
検知方法。
A detection method for detecting a state of an object by using a detection device according to any one of claims 1-2 2,
The control unit
The S1 polarization intensity in the S polarization in the first wavelength band, the P1 polarization intensity in the P polarization in the first wavelength band, and the S2 polarization intensity in the S polarization in the second wavelength band or the second wavelength band. The acquisition step of acquiring information based on the P2 polarization intensity in the P polarization from the light receiving unit, and
A snow cover determination step for determining that the object is in a snow cover state when the S2 polarization intensity or the P2 polarization intensity is larger than a predetermined threshold value.
A drying determination step for determining that the object is in a dry state when the S1 polarization intensity and the S2 polarization intensity are substantially equal to each other, or when the P1 polarization intensity and the P2 polarization intensity are substantially equal to each other.
If the P2 polarization intensity is greater than the step S2 polarization intensity, and, in step S2 polarization intensity, when the value obtained by dividing the P2 polarization intensity is below a predetermined value, when the object is in a state of flooding Submersion judgment step to judge and
The object is in a frozen state when the P2 polarization intensity is larger than the S2 polarization intensity and when the value obtained by dividing the P2 polarization intensity by the intensity at the S2 polarization intensity is larger than a predetermined value. A detection method that includes a freeze determination step to determine that.
請求項2記載の検知方法をコンピュータに実行させる
検知プログラム。
Detection program for executing the detecting method according to claim 2 3 wherein the computer.
JP2016228373A 2016-04-06 2016-11-24 Detection device, detection method and detection program Active JP6775195B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/471,050 US10360459B2 (en) 2016-04-06 2017-03-28 Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
EP17164978.3A EP3229011B1 (en) 2016-04-06 2017-04-05 Detection device, detection method, and non-transitory computer-readable recording medium storing detection program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662318899P 2016-04-06 2016-04-06
US62/318,899 2016-04-06
JP2016151590 2016-08-01
JP2016151590 2016-08-01

Publications (2)

Publication Number Publication Date
JP2018025528A JP2018025528A (en) 2018-02-15
JP6775195B2 true JP6775195B2 (en) 2020-10-28

Family

ID=61194317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228373A Active JP6775195B2 (en) 2016-04-06 2016-11-24 Detection device, detection method and detection program

Country Status (1)

Country Link
JP (1) JP6775195B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021576B2 (en) * 2018-03-16 2022-02-17 株式会社デンソーウェーブ Snow cover detection device and snow cover detection system
DE102020203293B4 (en) * 2020-03-13 2022-09-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein A device for detecting water on a surface and a method for detecting water on a surface
US20230168185A1 (en) * 2020-09-21 2023-06-01 Korea Research Institute Of Standards And Science Device and method for multi-reflection solution immersed silicon-based microchannel measurement
KR102359365B1 (en) * 2021-05-31 2022-02-08 (주)에스알디코리아 Road Climate Conditions Visualization System
KR102414233B1 (en) 2022-01-18 2022-06-29 (주)에스알디코리아 Control System based on Road Surface Recognition of Driving Vehicle and Method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264441A (en) * 1992-03-19 1993-10-12 Niigata Denki Kk Method and apparatus for detecting wetting condition of road surface
JPH0783827A (en) * 1993-09-20 1995-03-31 Mazda Motor Corp Road surface condition detecting device for use in vehicle
DE102004038397B3 (en) * 2004-08-06 2006-04-13 Bartec Gmbh Device for determining the dew point temperature of a measuring gas
JP2008105518A (en) * 2006-10-25 2008-05-08 Calsonic Kansei Corp Camera built-in lamp
DE102010025719A1 (en) * 2010-06-30 2012-05-16 Wabco Gmbh Device and method for emitting a dangerous ground signal under a vehicle
JP2015195489A (en) * 2014-03-31 2015-11-05 パナソニックIpマネジメント株式会社 Collision preventing system, collision preventing method and computer program
JP2015197358A (en) * 2014-04-01 2015-11-09 パナソニックIpマネジメント株式会社 Road surface condition detection system
JP6583725B2 (en) * 2014-09-17 2019-10-02 パナソニックIpマネジメント株式会社 Substance detector

Also Published As

Publication number Publication date
JP2018025528A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6775195B2 (en) Detection device, detection method and detection program
US10360459B2 (en) Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
US20150367855A1 (en) Method for detecting a roadway and corresponding detection systems
CN107428287A (en) Image projection apparatus
JP2013529775A (en) Sensor for detecting the roadway condition without contact and use thereof
DE602004009422D1 (en) DEVICE FOR DETECTING A ROAD SURFACE CONDITION
JP5716471B2 (en) Alcohol detection device and drive system
US10696209B2 (en) Vehicle lamp tool and method for controlling vehicle lamp tool
JP2012066805A (en) Method for detecting field of sight outside automobile, and sensor arrangement
EP1602913A1 (en) Salt concentration measuring method, salt concentration measuring apparatus, and vehicle on which the apparatus is mounted
KR101862831B1 (en) Vehicle headlight with a device for determining road conditions and a system for monitoring road conditions
WO2018094373A1 (en) Sensor surface object detection methods and systems
JP2009085939A (en) Method and device for detecting view field affecting phenomenon by vehicle, and computer program therefor
JP2013529775A5 (en)
FR2709837A1 (en) Optical distance measuring apparatus, and lens and photoreceptor element for its implementation.
JP2009103482A (en) Vehicle-mounted radar device
JP2020106443A (en) Road surface state detection system and road surface state detection method
JP2019038350A (en) Parking assist apparatus
KR102317073B1 (en) Lidar apparatus
KR101814975B1 (en) Vehicle, and control method for the same
JP2020177012A (en) Optical apparatus, on-board system, and movement apparatus
US20210372919A1 (en) Black-ice and standing-water detection system
KR101718929B1 (en) Road surface condition detecting apparatus and detecting method using the same
JP2015158444A (en) Vehicle attitude determination system, vehicle attitude determination program, and vehicle attitude determination method
KR20200131491A (en) Lidar apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R151 Written notification of patent or utility model registration

Ref document number: 6775195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151