JP6757504B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6757504B2
JP6757504B2 JP2017545088A JP2017545088A JP6757504B2 JP 6757504 B2 JP6757504 B2 JP 6757504B2 JP 2017545088 A JP2017545088 A JP 2017545088A JP 2017545088 A JP2017545088 A JP 2017545088A JP 6757504 B2 JP6757504 B2 JP 6757504B2
Authority
JP
Japan
Prior art keywords
positive electrode
cation exchange
exchange resin
negative electrode
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017545088A
Other languages
Japanese (ja)
Other versions
JPWO2017064843A1 (en
Inventor
要 中島
要 中島
平祐 西川
平祐 西川
周二 人見
人見  周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Publication of JPWO2017064843A1 publication Critical patent/JPWO2017064843A1/en
Application granted granted Critical
Publication of JP6757504B2 publication Critical patent/JP6757504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池に代表される非水電解質二次電池は、携帯用端末、電気自動車、ハイブリッド自動車等に広く用いられており、今後もエネルギー密度の向上が期待されている。現在、実用化されているリチウムイオン二次電池の正極活物質にはリチウム遷移金属酸化物、負極活物質には炭素材料、電解質には非水溶媒にリチウム塩を溶解させた非水電解質が主に用いられている。 Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in portable terminals, electric vehicles, hybrid vehicles, etc., and are expected to continue to improve energy density in the future. Currently, the positive electrode active material of lithium ion secondary batteries currently in practical use is lithium transition metal oxide, the negative electrode active material is carbon material, and the electrolyte is mainly a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent. It is used in.

非水電解質二次電池の正極活物質として、リチウム遷移金属酸化物の代替に硫黄を用いる検討が進められている。硫黄は、質量あたりの理論容量が1675mAh/gと大きいため、高容量化に向けた次世代正極活物質として期待されている。
しかしながら、充放電中に正極で生成したリチウム多硫化物(Li、4≦n≦8)が非水電解質に溶出し、負極に到達して還元されることにより自己放電が進行するシャトル現象が課題となっている。シャトル現象を抑制するために、正極と負極との間にカチオン交換樹脂層を配置する技術が知られている。(特許文献1〜3、非特許文献1、2)。
Studies are underway to use sulfur as a positive electrode active material for non-aqueous electrolyte secondary batteries as a substitute for lithium transition metal oxides. Since sulfur has a large theoretical capacity of 1675 mAh / g per mass, it is expected as a next-generation positive electrode active material for increasing the capacity.
However, a shuttle in which self-discharge proceeds by elution of lithium polysulfide (Li 2 Sn , 4 ≦ n ≦ 8) generated at the positive electrode during charging / discharging into a non-aqueous electrolyte, reaching the negative electrode and reducing the amount. The phenomenon has become an issue. A technique of arranging a cation exchange resin layer between a positive electrode and a negative electrode is known in order to suppress the shuttle phenomenon. (Patent Documents 1 to 3 and Non-Patent Documents 1 and 2).

特開2015−128063号公報Japanese Unexamined Patent Publication No. 2015-128063 国際公開第2015/083314号International Publication No. 2015/0833114 特表2015−507837号公報Japanese Patent Application Laid-Open No. 2015-507738

Journal of Power Sources,Vol.251,p.417−422(2014)Journal of Power Sources, Vol. 251 p. 417-422 (2014) Journal of Power Sources,Vol.218,p.163−167(2012)Journal of Power Sources, Vol. 218, p. 163-167 (2012)

正極と負極との間にカチオン交換樹脂層を設けた場合、正極とカチオン交換樹脂層、又は負極とカチオン交換樹脂層との界面における抵抗が大きく、カチオン交換樹脂層を有する非水電解質二次電池の高率放電性能が低いという課題を、本発明者らは見出した。 When a cation exchange resin layer is provided between the positive electrode and the negative electrode, the resistance at the interface between the positive electrode and the cation exchange resin layer or the negative electrode and the cation exchange resin layer is large, and the non-aqueous electrolyte secondary battery has the cation exchange resin layer. The present inventors have found a problem that the high rate discharge performance of the above is low.

上記課題を解決するための本発明の一側面にかかる非水電解質二次電池は、硫黄を含む正極と、負極と、非水電解質と、正極と負極との間に配され、ラフネスファクターが3以上である第一面を有するカチオン交換樹脂層と、を備える。 The non-aqueous electrolyte secondary battery according to one aspect of the present invention for solving the above problems is arranged between a positive electrode containing sulfur, a negative electrode, a non-aqueous electrolyte, and a positive electrode and a negative electrode, and has a roughness factor of 3. The cation exchange resin layer having the above-mentioned first surface is provided.

本発明の一側面によれば、カチオン交換樹脂層の第一面の界面抵抗が低く、優れた高率放電性能を有する非水電解質二次電池を提供できる。 According to one aspect of the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a low interfacial resistance on the first surface of the cation exchange resin layer and having excellent high rate discharge performance.

第一実施形態に係る非水電解質二次電池の外観斜視図である。It is external perspective view of the non-aqueous electrolyte secondary battery which concerns on 1st Embodiment. 本実施形態の非水電解質二次電池の局所的な構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the local structure of the non-aqueous electrolyte secondary battery of this embodiment. 第一実施形態に係る非水電解質二次電池を複数個集合して構成した蓄電装置を示す概略図である。It is a schematic diagram which shows the power storage device which was configured by gathering a plurality of non-aqueous electrolyte secondary batteries which concerns on 1st Embodiment. 本実施形態の実施例に用いた抵抗測定用セルの構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the cell for resistance measurement used in the Example of this Embodiment. 本実施形態の実施例に用いた試験用セルの構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the test cell used in the Example of this Embodiment. 実施例における界面抵抗とカチオン交換樹脂層表面のラフネスファクターとの関係を示す図である。It is a figure which shows the relationship between the interfacial resistance and the roughness factor of the surface of a cation exchange resin layer in an Example. 実施例における界面抵抗とカチオン交換樹脂層表面の算術平均粗さとの関係を示す図である。It is a figure which shows the relationship between the interfacial resistance and the arithmetic mean roughness of the surface of a cation exchange resin layer in an Example. 実施例における界面抵抗とカチオン交換樹脂層表面の最大高さ粗さとの関係を示す図である。It is a figure which shows the relationship between the interfacial resistance and the maximum height roughness of the surface of a cation exchange resin layer in an Example. (a)実施例電池2−1の放電カーブを示す図であり、(b)比較例電池2−1の放電カーブを示す図である。(A) It is a figure which shows the discharge curve of the Example battery 2-1 and (b) is a figure which shows the discharge curve of the comparative example battery 2-1.

本発明の一側面に係る非水電解質二次電池は、硫黄を含む正極と、負極と、非水電解質と、正極と負極との間に配され、ラフネスファクターが3以上である第一面を有するカチオン交換樹脂層と、を備える。 The non-aqueous electrolyte secondary battery according to one aspect of the present invention is arranged between a positive electrode containing sulfur, a negative electrode, a non-aqueous electrolyte, and a positive electrode and a negative electrode, and has a first surface having a roughness factor of 3 or more. It is provided with a cation exchange resin layer having.

上記構成を有することにより、カチオン交換樹脂層の第一面の界面抵抗が低減され、非水電解質二次電池の高率放電性能が向上する。 By having the above structure, the interfacial resistance of the first surface of the cation exchange resin layer is reduced, and the high rate discharge performance of the non-aqueous electrolyte secondary battery is improved.

カチオン交換樹脂層の第一面の算術平均粗さRaは、0.5μm以上であることが好ましい。 The arithmetic average roughness Ra of the first surface of the cation exchange resin layer is preferably 0.5 μm or more.

カチオン交換樹脂層の第一面の算術平均粗さRaが0.5μm以上であることにより、界面抵抗を低減することができる。 When the arithmetic average roughness Ra of the first surface of the cation exchange resin layer is 0.5 μm or more, the interfacial resistance can be reduced.

カチオン交換樹脂層の第一面の最大高さ粗さRzは、5μm以上であることが好ましい。 The maximum height roughness Rz of the first surface of the cation exchange resin layer is preferably 5 μm or more.

カチオン交換樹脂層の第一面の最大高さ粗さRzが5μm以上であることにより、電解質塩濃度が低い場合においても、カチオン交換樹脂層の第一面の界面抵抗を低減することができる。 Since the maximum height roughness Rz of the first surface of the cation exchange resin layer is 5 μm or more, the interfacial resistance of the first surface of the cation exchange resin layer can be reduced even when the electrolyte salt concentration is low.

前記非水電解質二次電池はさらに多孔質層を備えていてもよい。その場合、多孔質層はカチオン交換樹脂層の第一面に接していることが好ましい。 The non-aqueous electrolyte secondary battery may further include a porous layer. In that case, the porous layer is preferably in contact with the first surface of the cation exchange resin layer.

詳しくは後述するが、カチオン交換樹脂層中では、カチオンが選択的(優先的)に移動し、アニオンの移動は起こりにくい。一方、カチオン及びアニオンを含む非水電解質が含浸された多孔質層中では、カチオン及びアニオンの双方が移動することができる。そのため、カチオン交換樹脂層と多孔質層とを備える非水電解質二次電池では、イオンの伝達機構が異なるため、カチオン交換樹脂層と多孔質層との界面の抵抗が大きい値となる傾向にある。このように、界面抵抗が高い非水電解質二次電池に本実施形態を適用することにより、顕著に界面抵抗が低減し、優れた高率放電性能を備えた非水電解質二次電池を得ることができる。 As will be described in detail later, in the cation exchange resin layer, the cations move selectively (preferentially), and the movement of anions is unlikely to occur. On the other hand, both the cation and the anion can move in the porous layer impregnated with the non-aqueous electrolyte containing the cation and the anion. Therefore, in a non-aqueous electrolyte secondary battery provided with a cation exchange resin layer and a porous layer, the resistance at the interface between the cation exchange resin layer and the porous layer tends to be large because the ion transfer mechanism is different. .. As described above, by applying the present embodiment to the non-aqueous electrolyte secondary battery having high interfacial resistance, the interfacial resistance is remarkably reduced, and a non-aqueous electrolyte secondary battery having excellent high rate discharge performance can be obtained. Can be done.

非水電解質は、正極とカチオン交換樹脂層との間に配される正極電解質、及び負極とカチオン交換樹脂層との間に配される負極電解質を備え、正極電解質はリチウム多硫化物を含み、負極電解質の硫黄換算濃度が正極電解質の硫黄換算濃度よりも低いことが好ましい。 The non-aqueous electrolyte comprises a positive electrode electrolyte disposed between the positive electrode and the cation exchange resin layer, and a negative electrode electrolyte disposed between the negative electrode and the cation exchange resin layer, and the positive electrode electrolyte contains lithium polysulfide. It is preferable that the sulfur equivalent concentration of the negative electrode electrolyte is lower than the sulfur equivalent concentration of the positive electrode electrolyte.

上記構成により、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。 With the above configuration, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance can be obtained.

上記構成において、正極電解質の硫黄換算濃度が、1.2mol/l以上であることが好ましい。 In the above configuration, the sulfur equivalent concentration of the positive electrode electrolyte is preferably 1.2 mol / l or more.

このような構成により、充放電サイクル性能がより優れたものとなるだけでなく、サイクル後の充放電効率を高くすることができる。 With such a configuration, not only the charge / discharge cycle performance can be improved, but also the charge / discharge efficiency after the cycle can be increased.

上記構成において、正極電解質の硫黄換算濃度は、3.0mol/l以上であることが好ましい。 In the above configuration, the sulfur equivalent concentration of the positive electrode electrolyte is preferably 3.0 mol / l or more.

このような構成により、高容量かつ高エネルギー密度を有する非水電解質二次電池が提供できる。 With such a configuration, a non-aqueous electrolyte secondary battery having a high capacity and a high energy density can be provided.

正極電解質の硫黄換算濃度は、18mol/l以下であることが好ましい。 The sulfur equivalent concentration of the positive electrode electrolyte is preferably 18 mol / l or less.

このような構成により、正極電解質の粘度が上がりすぎず、正極電解質とカチオン交換樹脂層との界面抵抗が高くなり過ぎないので、硫黄の利用率が高く、エネルギー密度の高い非水電解質二次電池が得られる。 With such a configuration, the viscosity of the positive electrode electrolyte does not increase too much, and the interfacial resistance between the positive electrode electrolyte and the cation exchange resin layer does not become too high. Therefore, the sulfur utilization rate is high and the energy density of the non-aqueous electrolyte secondary battery is high. Is obtained.

上記構成において、前記正極電解質及び前記負極電解質の少なくとも一方に含まれるアニオンの濃度が0.7mol/l以下であることが好ましい。 In the above configuration, the concentration of anions contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte is preferably 0.7 mol / l or less.

このような構成とすることにより、非水電解質とカチオン交換樹脂層との界面抵抗の低い非水電解質二次電池とすることができる。 With such a configuration, a non-aqueous electrolyte secondary battery having a low interfacial resistance between the non-aqueous electrolyte and the cation exchange resin layer can be obtained.

正極電解質に含まれるアニオンの濃度が、0.3mol/l以下であることが好ましい。 The concentration of the anion contained in the positive electrode electrolyte is preferably 0.3 mol / l or less.

上記構成により、正極電解質に含まれるリチウム多硫化物の濃度を高くしても、非水電解質とカチオン交換樹脂層との界面抵抗が上昇しにくく、高い容量を有する非水電解質二次電池とすることができる。 With the above configuration, even if the concentration of lithium polysulfide contained in the positive electrode electrolyte is increased, the interfacial resistance between the non-aqueous electrolyte and the cation exchange resin layer does not easily increase, and the non-aqueous electrolyte secondary battery has a high capacity. be able to.

正極及び負極の少なくとも一方がカチオン交換樹脂を含み、非水電解質に含まれるアニオンの濃度が0.7mol/l以下であってもよい。 At least one of the positive electrode and the negative electrode may contain a cation exchange resin, and the concentration of anions contained in the non-aqueous electrolyte may be 0.7 mol / l or less.

このような構成により、優れた充放電サイクル性能を有する非水電解質二次電池を得ることができる。 With such a configuration, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance can be obtained.

以下、本発明の実施形態に係る非水電解質二次電池について説明する。以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示している。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。 Hereinafter, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, components, arrangement positions of components, connection forms, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present invention will be described as arbitrary components constituting the more preferable form.

本実施形態に係る非水電解質二次電池は、非水電解質二次電池は、硫黄を含む正極、負極、正極と負極との間に介在するカチオン交換樹脂層、正極とカチオン交換樹脂層の間に配される正極電解質(非水電解質の一例)、及び負極とカチオン交換樹脂層の間に配される負極電解質(非水電解質の一例)を備え、カチオン交換樹脂層は、ラフネスファクターが3以上である第一面を備える。なお、非水電解質二次電池に用いられる非水電解質は、通常、電解質塩と非水溶媒とを含むが、本明細書においては、電解質塩を含まない非水溶媒を「非水電解質」ということがある。ラフネスファクターとは、見かけの単位表面積(幾何単位面積)に対する実表面積の比であり、その表面の粗さを示す指標である。 In the non-aqueous electrolyte secondary battery according to the present embodiment, the non-aqueous electrolyte secondary battery includes a positive electrode containing sulfur, a negative electrode, a cation exchange resin layer interposed between the positive electrode and the negative electrode, and between the positive electrode and the cation exchange resin layer. The positive electrode electrolyte (an example of a non-aqueous electrolyte) and the negative electrode electrolyte (an example of a non-aqueous electrolyte) arranged between the negative electrode and the cation exchange resin layer are provided, and the cation exchange resin layer has a roughness factor of 3 or more. It has the first side that is. The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery usually contains an electrolyte salt and a non-aqueous solvent, but in the present specification, the non-aqueous solvent containing no electrolyte salt is referred to as “non-aqueous electrolyte”. Sometimes. The roughness factor is the ratio of the actual surface area to the apparent unit surface area (geometric unit area), and is an index showing the roughness of the surface.

カチオン交換樹脂層は、カチオン交換樹脂を含む層であり、正極と負極とを絶縁状態に保つセパレータの役割を有する。カチオン交換樹脂は、主に炭化水素からなるポリマー中に、スルホン酸基、カルボン酸基等のアニオン性の官能基が結合した構造を有する。このアニオン性基の静電相互作用により、高いカチオン透過性を有する一方、アニオンの透過性は低い。すなわち、カチオン交換樹脂は、リチウムイオンを通過させ、正極電解質(電解液)中でわずかに解離してアニオン性を帯びているリチウム多硫化物の通過を阻止する。これにより、カチオン交換樹脂層は、正極から負極へのリチウム多硫化物の移動を抑制するため、シャトル現象が抑制される。 The cation exchange resin layer is a layer containing a cation exchange resin and has a role of a separator that keeps a positive electrode and a negative electrode in an insulated state. The cation exchange resin has a structure in which an anionic functional group such as a sulfonic acid group or a carboxylic acid group is bonded to a polymer mainly composed of a hydrocarbon. Due to the electrostatic interaction of this anionic group, it has high cation permeability, but low anion permeability. That is, the cation exchange resin allows lithium ions to pass through and is slightly dissociated in the positive electrode electrolyte (electrolyte solution) to prevent the passage of anionic lithium polysulfide. As a result, the cation exchange resin layer suppresses the movement of the lithium polysulfide from the positive electrode to the negative electrode, so that the shuttle phenomenon is suppressed.

本実施形態に係るカチオン交換樹脂層は、少なくとも一方の表面である第一面のラフネスファクターの下限が3であり、好ましくは4であり、より好ましくは10である。カチオン交換樹脂層の第一面のラフネスファクターの上限は、20が好ましく、18がより好ましく、16がさらに好ましい。ラフネスファクターが3以上であることにより、カチオン交換樹脂層と非水電解質との界面の抵抗が低減するため、非水電解質二次電池の高率放電性能が向上する。
本実施形態におけるカチオン交換樹脂層の第一面は、JIS B 0601:2013に規定される算術平均粗さRaが、好ましくは0.5μm以上、より好ましくは2μm以上である。上記算術平均粗さRaが上記範囲を満たすことにより、カチオン交換樹脂層と正極との界面の抵抗を低減することができる。さらに、カチオン交換樹脂層の強度を維持するために、上記算術平均粗さRaは、10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましい。
In the cation exchange resin layer according to the present embodiment, the lower limit of the roughness factor of the first surface, which is at least one surface, is 3, preferably 4, and more preferably 10. The upper limit of the roughness factor of the first surface of the cation exchange resin layer is preferably 20, more preferably 18, and even more preferably 16. When the roughness factor is 3 or more, the resistance at the interface between the cation exchange resin layer and the non-aqueous electrolyte is reduced, so that the high rate discharge performance of the non-aqueous electrolyte secondary battery is improved.
The first surface of the cation exchange resin layer in the present embodiment has an arithmetic average roughness Ra defined in JIS B 0601: 2013, preferably 0.5 μm or more, more preferably 2 μm or more. When the arithmetic mean roughness Ra satisfies the above range, the resistance at the interface between the cation exchange resin layer and the positive electrode can be reduced. Further, in order to maintain the strength of the cation exchange resin layer, the arithmetic average roughness Ra is preferably 10 μm or less, more preferably 8 μm or less, still more preferably 5 μm or less.

本実施形態におけるカチオン交換樹脂層の第一面は、JIS B 0601:2013に規定される最大高さ粗さRzが、5μm以上であることが好ましく、10μm以上であることがより好ましい。最大高さ粗さRzが上記範囲を満たすことにより、非水電解質中の電解質塩濃度が低い場合においても、界面抵抗を低減することができる。上記最大高さ粗さRzは、30μm以下が好ましく、28μm以下がより好ましい。 The first surface of the cation exchange resin layer in the present embodiment preferably has a maximum height roughness Rz defined in JIS B 0601: 2013 of 5 μm or more, and more preferably 10 μm or more. When the maximum height roughness Rz satisfies the above range, the interfacial resistance can be reduced even when the electrolyte salt concentration in the non-aqueous electrolyte is low. The maximum height roughness Rz is preferably 30 μm or less, more preferably 28 μm or less.

カチオン交換樹脂層の第一面のラフネスファクター、算術平均粗さRa及び最大高さ粗さRzは、カチオン交換樹脂層の表面を以下の条件により撮影及び測定し、形状解析を行うことにより求める。
・測定機器:超深度形状測定顕微鏡VK−8500(キーエンス社製)
・測定範囲:1.04×10−3 cm
・形状解析アプリケーション:VK−H1A9(キーエンス社製)
The roughness factor, arithmetic mean roughness Ra, and maximum height roughness Rz of the first surface of the cation exchange resin layer are obtained by photographing and measuring the surface of the cation exchange resin layer under the following conditions and performing shape analysis.
-Measuring equipment: Ultra-depth shape measuring microscope VK-8500 (manufactured by KEYENCE)
-Measurement range: 1.04 x 10 -3 cm 2
-Shape analysis application: VK-H1A9 (manufactured by KEYENCE)

本実施形態に係るカチオン交換樹脂層の表面のラフネスファクターを3以上とする粗面化処理の方法としては、例えば、サンドペーパー等の研磨材によってカチオン交換樹脂層の表面を荒らす方法や、サンドブラスト法、化学エッチング法などが挙げられる。研磨材としては、JIS R 6010:2000に規定される研磨布紙用研磨剤の粒度が320〜1000であるサンドペーパーを用いることが好ましい。 Examples of the roughening treatment method for setting the roughness factor of the surface of the cation exchange resin layer according to the present embodiment to 3 or more include a method of roughening the surface of the cation exchange resin layer with an abrasive such as sandpaper, and a sandblasting method. , Chemical etching method and the like. As the polishing material, it is preferable to use sandpaper having a particle size of the polishing agent for polishing padding specified in JIS R 6010: 2000 of 320 to 1000.

本実施形態に係るカチオン交換樹脂層の厚みは、20〜180μmが好ましく、30〜180μmがより好ましい。30μm以上とすることで、粗面化処理を行ってもカチオン交換樹脂層の厚みが充分に保たれるので、電池製造時のハンドリングが容易となる。また、180μm以下とすることで、電池の内部抵抗を低減できるとともに、電池のエネルギー密度を向上させることができる。 The thickness of the cation exchange resin layer according to the present embodiment is preferably 20 to 180 μm, more preferably 30 to 180 μm. When the thickness is 30 μm or more, the thickness of the cation exchange resin layer is sufficiently maintained even if the roughening treatment is performed, so that the handling at the time of battery production becomes easy. Further, by setting the thickness to 180 μm or less, the internal resistance of the battery can be reduced and the energy density of the battery can be improved.

カチオン交換樹脂層は、カチオン交換樹脂とその他の高分子との混合物を薄膜状に成形し、表面を粗面化したものであってもよい。その他の高分子としては、後述する多孔質層を構成する材料を適宜用いることができる。 The cation exchange resin layer may be formed by molding a mixture of the cation exchange resin and other polymers into a thin film and roughening the surface. As the other polymer, a material constituting the porous layer described later can be appropriately used.

本実施形態に係る非水電解質二次電池は、さらに多孔質層を備えていてもよい。多孔質層は、カチオン交換樹脂層の第一面に接していることが好ましい。
通常、正極及び負極の表面は、粒子状の活物質に由来する凹凸を有している。そのため、柔軟性が低いカチオン交換樹脂層を用いた場合、粗面化した第一面と正極又は負極との接触面積が、粗面化していない場合に比べて低下する虞がある。ポリマーを含む多孔質層は、カチオン交換樹脂層に比べて柔軟性に優れているため、多孔質層がカチオン交換樹脂層の第一面に接していることで、正極−多孔質層−カチオン交換樹脂層の第一面間、又は負極−多孔質層−カチオン交換樹脂層の第一面間の接触が良好に保たれ、リチウムイオンが良好に伝達される。さらに、多孔質層に非水電解質を保持させることができるので、正極又は負極中での非水電解質の偏在が起こりにくく、正極又は負極での充放電反応を均一化できる。
なお、多孔質層は、正極とカチオン交換樹脂層の第一面との間のみに設けられてもよいし、負極とカチオン交換樹脂層の第一面との間のみに設けられてもよい。あるいは、正極とカチオン交換樹脂層の間及び負極とカチオン交換樹脂層の間の両方に、多孔質層を設けてもよい。
The non-aqueous electrolyte secondary battery according to the present embodiment may further include a porous layer. The porous layer is preferably in contact with the first surface of the cation exchange resin layer.
Usually, the surfaces of the positive electrode and the negative electrode have irregularities derived from the particulate active material. Therefore, when a cation exchange resin layer having low flexibility is used, the contact area between the roughened first surface and the positive electrode or the negative electrode may be smaller than that in the case where the roughened first surface is not used. Since the porous layer containing the polymer is more flexible than the cation exchange resin layer, the positive electrode-porous layer-cation exchange occurs when the porous layer is in contact with the first surface of the cation exchange resin layer. Good contact between the first surfaces of the resin layer or between the negative electrode-porous layer-cation exchange resin layer first surface is maintained, and lithium ions are satisfactorily transferred. Further, since the non-aqueous electrolyte can be retained in the porous layer, uneven distribution of the non-aqueous electrolyte in the positive electrode or the negative electrode is unlikely to occur, and the charge / discharge reaction at the positive electrode or the negative electrode can be made uniform.
The porous layer may be provided only between the positive electrode and the first surface of the cation exchange resin layer, or may be provided only between the negative electrode and the first surface of the cation exchange resin layer. Alternatively, a porous layer may be provided both between the positive electrode and the cation exchange resin layer and between the negative electrode and the cation exchange resin layer.

本実施形態において、正極電解質はリチウム多硫化物を含むことが好ましい。さらに、正極電解質の硫黄換算濃度が負極電解質の硫黄換算濃度よりも高いことが好ましい。なお、以降の説明において、「正極電解質」と「負極電解質」とを合わせて「非水電解質」ということがある。 In the present embodiment, the positive electrode electrolyte preferably contains lithium polysulfide. Further, it is preferable that the sulfur equivalent concentration of the positive electrode electrolyte is higher than the sulfur equivalent concentration of the negative electrode electrolyte. In the following description, the "positive electrode electrolyte" and the "negative electrode electrolyte" may be collectively referred to as a "non-aqueous electrolyte".

カチオン交換樹脂層により、正極から負極へのリチウム多硫化物の移動は抑制されるが、充放電反応中に正極で生成したリチウム多硫化物は、非水溶媒への溶解性が高いため、充放電サイクル中に容易に正極電解質中に溶出する。本発明者らは、正極とカチオン交換樹脂層との間に配される正極電解質にあらかじめリチウム多硫化物を混合しておくことにより、正極で生成したリチウム多硫化物の溶出が抑制されるばかりでなく、正極電解質中のリチウム多硫化物が正極活物質として充放電反応に寄与することにより、優れた充放電サイクル性能を発揮できることを見出した。すなわち、本実施形態において、正極電解質がリチウム多硫化物を含み、正極電解質の硫黄換算濃度を負極電解質の硫黄換算濃度より高くすることにより、高い充放電サイクル性能を有する非水電解質二次電池が得られる。ここで、硫黄換算濃度とは、非水電解質中の硫黄化合物の濃度を硫黄原子の濃度に換算した値である。すなわち、1mol/lの硫化リチウム(LiS)は硫黄換算濃度1mol/lに相当し、1mol/lのLiは硫黄換算濃度6mol/lに相当し、1mol/lの硫黄(S)は硫黄換算濃度8mol/lに相当する。The cation exchange resin layer suppresses the movement of lithium polysulfide from the positive electrode to the negative electrode, but the lithium polysulfide produced at the positive electrode during the charge / discharge reaction is highly soluble in a non-aqueous solvent, so it is filled. Easily eluted into the positive electrode electrolyte during the discharge cycle. By mixing lithium polysulfide in advance with the positive electrode electrolyte arranged between the positive electrode and the cation exchange resin layer, the present inventors only suppress the elution of the lithium polysulfide generated at the positive electrode. Instead, it was found that the lithium polysulfide in the positive electrode electrolyte contributes to the charge / discharge reaction as the positive electrode active material, so that excellent charge / discharge cycle performance can be exhibited. That is, in the present embodiment, the positive electrode electrolyte contains lithium polysulfide, and the sulfur equivalent concentration of the positive electrode electrolyte is higher than the sulfur equivalent concentration of the negative electrode electrolyte, so that the non-aqueous electrolyte secondary battery having high charge / discharge cycle performance can be obtained. can get. Here, the sulfur-equivalent concentration is a value obtained by converting the concentration of the sulfur compound in the non-aqueous electrolyte into the concentration of the sulfur atom. That is, 1 mol / l lithium sulfide (Li 2 S) corresponds to a sulfur equivalent concentration of 1 mol / l, and 1 mol / l Li 2 S 6 corresponds to a sulfur equivalent concentration of 6 mol / l, and 1 mol / l sulfur (S). 8 ) corresponds to a sulfur equivalent concentration of 8 mol / l.

正極電解質の硫黄換算濃度の下限は、1.2mol/lが好ましく、1.5mol/lがより好ましく、3.0mol/lがさらに好ましい。硫黄換算濃度が1.2mol/l以上であることにより、充放電サイクル後の充放電効率が向上する。硫黄換算濃度が3.0mol/l以上であることにより、高容量かつ高エネルギー密度を有する非水電解質二次電池が実現できる。 The lower limit of the sulfur equivalent concentration of the positive electrode electrolyte is preferably 1.2 mol / l, more preferably 1.5 mol / l, and even more preferably 3.0 mol / l. When the sulfur equivalent concentration is 1.2 mol / l or more, the charge / discharge efficiency after the charge / discharge cycle is improved. When the sulfur equivalent concentration is 3.0 mol / l or more, a non-aqueous electrolyte secondary battery having a high capacity and a high energy density can be realized.

正極電解質の硫黄換算濃度の上限は、18mol/lが好ましく、12mol/lがより好ましく、9mol/lがさらに好ましい。硫黄換算濃度が上記上限以下であることにより、正極電解質の粘度が上がりすぎず、正極電解質とカチオン交換樹脂層との界面抵抗が高くなり過ぎないので、硫黄の利用率が高く、エネルギー密度の高い非水電解質二次電池が得られる。 The upper limit of the sulfur equivalent concentration of the positive electrode electrolyte is preferably 18 mol / l, more preferably 12 mol / l, and even more preferably 9 mol / l. When the sulfur conversion concentration is not more than the above upper limit, the viscosity of the positive electrode electrolyte does not increase too much, and the interfacial resistance between the positive electrode electrolyte and the cation exchange resin layer does not become too high, so that the sulfur utilization rate is high and the energy density is high. A non-aqueous electrolyte secondary battery can be obtained.

正極電解質が含有するリチウム多硫化物としては、特に限定されないが、Li(4≦n≦8)で表されるリチウム多硫化物が好ましい。The lithium polysulfide contained in the positive electrode electrolyte is not particularly limited, but a lithium polysulfide represented by Li 2 Sn (4 ≦ n ≦ 8) is preferable.

組成式Li(4≦n≦8)で表されるリチウム多硫化物の製造方法は限定されない。例えば、目的とする組成比でリチウム硫化物(LiS)と硫黄(S)とを、溶媒中で混合及び撹拌したのち、密閉容器に入れて80℃の恒温槽で4日以上反応させることにより、得ることができる。The method for producing a lithium polysulfide represented by the composition formula Li 2 Sn (4 ≦ n ≦ 8) is not limited. For example, lithium sulfide (Li 2 S) and sulfur (S 8 ) at the desired composition ratio are mixed and stirred in a solvent, placed in a closed container, and reacted in a constant temperature bath at 80 ° C. for 4 days or more. By doing so, it can be obtained.

本実施形態において、負極電解質は正極電解質よりも硫黄換算濃度が低いことが好ましい。すなわち、負極電解質に含まれる単体硫黄、リチウム多硫化物及びLiSの濃度の総和が、正極電解質のそれよりも低いことが好ましい。リチウム多硫化物は、負極活物質と反応して負極活物質の充電深度を下げるとともに、還元生成物としてLiSを生じる。LiSは非水溶媒に不溶性であるため、負極表面に析出して負極の反応面積を低下させる。このため、負極電解質の硫黄換算濃度の上限は、0.5mol/lが好ましく、0mol/lであってもよい。リチウム多硫化物は、負極表面で反応して固体電解質被膜(SEI)を形成することが知られているため、負極電解質は少量のリチウム多硫化物を含んでいることが好ましい。In the present embodiment, the negative electrode electrolyte preferably has a lower sulfur conversion concentration than the positive electrode electrolyte. That is, elemental sulfur contained in the negative electrode electrolyte, the sum of the concentration of the lithium polysulfide and Li 2 S, is preferably lower than that of the positive electrode electrolyte. Lithium polysulfides, along with react with the negative electrode active material lowers the state of charge of the negative electrode active material, resulting in Li 2 S as the reducing product. Since Li 2 S is insoluble in a non-aqueous solvent, it precipitates on the surface of the negative electrode to reduce the reaction area of the negative electrode. Therefore, the upper limit of the sulfur-equivalent concentration of the negative electrode electrolyte is preferably 0.5 mol / l and may be 0 mol / l. Since it is known that lithium polysulfide reacts on the surface of the negative electrode to form a solid electrolyte coating (SEI), the negative electrode electrolyte preferably contains a small amount of lithium polysulfide.

本実施形態に係る非水電解質二次電池において、正極及び負極の少なくとも一方がカチオン交換樹脂を備えることが好ましい。この場合、非水電解質に含まれるアニオンの濃度が0.7mol/l以下であることがより好ましい。 In the non-aqueous electrolyte secondary battery according to the present embodiment, it is preferable that at least one of the positive electrode and the negative electrode is provided with a cation exchange resin. In this case, the concentration of the anion contained in the non-aqueous electrolyte is more preferably 0.7 mol / l or less.

正極及び負極の少なくとも一方がカチオン交換樹脂を備える態様は特に限定されないが、正極合剤層又は負極合剤層の表面又は内部に備えることが好ましい。すなわち、カチオン交換樹脂が合剤層の表面を覆う態様でも良いし、合剤層内部の少なくとも一部に存在する態様でも良い。 The mode in which at least one of the positive electrode and the negative electrode is provided with the cation exchange resin is not particularly limited, but it is preferably provided on the surface or inside of the positive electrode mixture layer or the negative electrode mixture layer. That is, the cation exchange resin may cover the surface of the mixture layer, or may be present in at least a part of the inside of the mixture layer.

前述したように、カチオン交換樹脂は、カチオンのみを通過させ、アニオンの通過を阻害する。したがって、カチオン交換樹脂中のリチウムイオンの輸率はほぼ1である。すなわち、カチオン交換樹脂は、シングルイオン伝導体となっている。一方、リチウム塩を含む非水電解質中では、リチウムイオンと対アニオンの双方が移動するため、リチウムイオンの輸率は1ではなく、非水電解質はシングルイオン伝導体ではない。このように、イオンの伝達機構が異なるため、非水電解質とカチオン交換樹脂層の界面では、界面抵抗が大きい。
カチオン交換樹脂が、正極及び負極の少なくとも一方に含まれることにより、カチオン交換樹脂層と正極活物質又は負極活物質との間にカチオン交換樹脂からなるリチウム伝導パスが形成される。すなわち、リチウムイオンは、非水電解質を経由することなく、カチオン交換樹脂層と正極活物質又は負極活物質との間を行き来できることから、カチオン交換樹脂層の界面抵抗を小さくすることができる。これにより、高い放電容量と優れた充放電サイクル性能を有する非水電解質二次電池を得ることができると推測される。
As described above, the cation exchange resin allows only cations to pass through and inhibits the passage of anions. Therefore, the transport number of lithium ions in the cation exchange resin is almost 1. That is, the cation exchange resin is a single ion conductor. On the other hand, in a non-aqueous electrolyte containing a lithium salt, both lithium ions and counter anions move, so the transport number of lithium ions is not 1, and the non-aqueous electrolyte is not a single ion conductor. As described above, since the ion transfer mechanism is different, the interface resistance is large at the interface between the non-aqueous electrolyte and the cation exchange resin layer.
When the cation exchange resin is contained in at least one of the positive electrode and the negative electrode, a lithium conduction path made of the cation exchange resin is formed between the cation exchange resin layer and the positive electrode active material or the negative electrode active material. That is, since lithium ions can move back and forth between the cation exchange resin layer and the positive electrode active material or the negative electrode active material without passing through a non-aqueous electrolyte, the interfacial resistance of the cation exchange resin layer can be reduced. It is presumed that this makes it possible to obtain a non-aqueous electrolyte secondary battery having a high discharge capacity and excellent charge / discharge cycle performance.

正極合剤層が備えるカチオン交換樹脂は、正極合剤層全体の質量に対して、10質量%〜150質量%であることが好ましい。カチオン交換樹脂の量が、正極合剤層全体の質量に対して10質量%〜150質量%であることにより、正極合剤層内に連続したリチウムイオン伝導チャネルを形成できるため好ましい。 The cation exchange resin contained in the positive electrode mixture layer is preferably 10% by mass to 150% by mass with respect to the total mass of the positive electrode mixture layer. When the amount of the cation exchange resin is 10% by mass to 150% by mass with respect to the total mass of the positive electrode mixture layer, continuous lithium ion conduction channels can be formed in the positive electrode mixture layer, which is preferable.

負極合剤層が備えるカチオン交換樹脂は、負極合剤層全体の質量に対して、10質量%〜150質量%であることが好ましい。カチオン交換樹脂の量が、負極合剤層全体の質量に対して10質量%〜150質量%であることにより、負極合剤層内に連続したリチウムイオン伝導チャネルを形成できるため好ましい。 The cation exchange resin contained in the negative electrode mixture layer is preferably 10% by mass to 150% by mass with respect to the total mass of the negative electrode mixture layer. When the amount of the cation exchange resin is 10% by mass to 150% by mass with respect to the total mass of the negative electrode mixture layer, continuous lithium ion conduction channels can be formed in the negative electrode mixture layer, which is preferable.

正極合剤層の内部にカチオン交換樹脂が存在する正極は、次のようにして作製することができる。粒子状の正極活物質、カチオン交換樹脂、導電剤、及び結着剤を、アルコールやトルエン等の分散媒と混合し、正極合剤ペーストを作製する。得られた正極合剤ペーストを、シート状の正極基材の両面に塗布、乾燥後、プレスすることにより、正極を作製する。正極活物質、カチオン交換樹脂、導電剤、及び結着剤等を混合する方法としては、例えば、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルなどの粉体混合機を用い、乾式又は湿式で混合する方法が採用される。カチオン交換樹脂としては、第一実施形態において挙げた材料を適宜用いることができる。
負極合剤層内部にカチオン交換樹脂が含まれている負極も、上述の方法により作製できる。
A positive electrode in which a cation exchange resin is present inside the positive electrode mixture layer can be produced as follows. Particulate positive electrode active material, cation exchange resin, conductive agent, and binder are mixed with a dispersion medium such as alcohol or toluene to prepare a positive electrode mixture paste. The obtained positive electrode mixture paste is applied to both sides of a sheet-shaped positive electrode base material, dried, and then pressed to prepare a positive electrode. As a method of mixing the positive electrode active material, the cation exchange resin, the conductive agent, the binder, etc., for example, a powder mixer such as a V-type mixer, an S-type mixer, a scavenger, a ball mill, or a planetary ball mill The method of mixing by dry or wet is adopted. As the cation exchange resin, the materials mentioned in the first embodiment can be appropriately used.
A negative electrode containing a cation exchange resin inside the negative electrode mixture layer can also be produced by the above method.

カチオン交換樹脂を含む溶液を、正極合剤層上又は負極合剤層上に塗布することにより、カチオン交換樹脂が正極又は負極表面を覆う形態としてもよい。その際、カチオン交換樹脂を含む溶液が合剤層内部に浸透することにより、合剤層表面及び内部にカチオン交換樹脂が存在することが好ましい。カチオン交換樹脂を含む溶液を塗布する方法としては、例えば、スプレー法、ディスペンス法、浸漬法、ブレードコート法が挙げられる。 By applying the solution containing the cation exchange resin on the positive electrode mixture layer or the negative electrode mixture layer, the cation exchange resin may cover the surface of the positive electrode or the negative electrode. At that time, it is preferable that the cation exchange resin is present on the surface and inside of the mixture layer by allowing the solution containing the cation exchange resin to permeate into the inside of the mixture layer. Examples of the method for applying the solution containing the cation exchange resin include a spray method, a dispense method, a dipping method, and a blade coating method.

カチオン交換樹脂は、正極及び負極の少なくとも一方に含まれていればよいが、正極に含まれていることが好ましく、正極及び負極の両方に含まれていてもよい。カチオン交換樹脂が正極に含まれていることで、充放電反応中に正極で生成したリチウム多硫化物が正極近傍に存在する正極電解質中に溶出することが抑制され、正極の容量低下が生じにくい。カチオン交換樹脂が正極及び負極に含まれていることで、正極からカチオン交換樹脂層を経て負極に至るまで、カチオン交換樹脂によるリチウムイオン伝導パスが形成されるため、リチウムイオンの伝導が良好となり、高い放電容量及び充放電効率を達成することができる。 The cation exchange resin may be contained in at least one of the positive electrode and the negative electrode, but is preferably contained in the positive electrode and may be contained in both the positive electrode and the negative electrode. Since the cation exchange resin is contained in the positive electrode, the lithium polysulfide generated in the positive electrode during the charge / discharge reaction is suppressed from being eluted into the positive electrode electrolyte existing in the vicinity of the positive electrode, and the capacity of the positive electrode is unlikely to decrease. .. Since the cation exchange resin is contained in the positive electrode and the negative electrode, a lithium ion conduction path is formed by the cation exchange resin from the positive electrode to the negative electrode through the cation exchange resin layer, so that lithium ion conduction is improved. High discharge capacity and charge / discharge efficiency can be achieved.

非水電解質(正極電解質及び負極電解質)は、電解質塩に由来するアニオンを含んでいてもよい。なお、本実施形態におけるアニオンとは、非水溶媒中に溶解している電解質塩由来のアニオンを指し、カチオン交換樹脂の分子構造中に含まれるスルホン酸基等のアニオン性官能基や、リチウム多硫化物及びリチウム多硫化物の一部が乖離してアニオン性を帯びた化合物は含まない。
正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度の上限は、0.7mol/lが好ましく、0.5mol/lがより好ましく、0.3mol/lがさらに好ましい。正極電解質に含まれるアニオンの濃度の上限は、0.3mol/lが好ましく、0.2mol/lがより好ましく、0mol/lであってもよい。アニオンの濃度が上記上限以下であることにより、非水電解質の粘度を下げることが可能となり、放電容量が高く、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。
The non-aqueous electrolyte (positive electrode electrolyte and negative electrode electrolyte) may contain an anion derived from an electrolyte salt. The anion in the present embodiment refers to an anion derived from an electrolyte salt dissolved in a non-aqueous solvent, and an anionic functional group such as a sulfonic acid group contained in the molecular structure of the cation exchange resin, or lithium polysulfide. It does not contain compounds in which some of the sulfides and lithium polysulfides are dissociated and become anionic.
The upper limit of the concentration of the anion contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte is preferably 0.7 mol / l, more preferably 0.5 mol / l, and even more preferably 0.3 mol / l. The upper limit of the concentration of the anion contained in the positive electrode electrolyte is preferably 0.3 mol / l, more preferably 0.2 mol / l, and may be 0 mol / l. When the anion concentration is not more than the above upper limit, the viscosity of the non-aqueous electrolyte can be lowered, and a non-aqueous electrolyte secondary battery having a high discharge capacity and excellent charge / discharge cycle performance can be obtained.

正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度の下限は、0mol/lであってもよいが、0.1mol/lが好ましく、0.3mol/lがより好ましい。非水電解質中に少量のアニオンを含むことにより、優れた充放電サイクル性能が得られる。 The lower limit of the concentration of the anion contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte may be 0 mol / l, but 0.1 mol / l is preferable, and 0.3 mol / l is more preferable. Excellent charge / discharge cycle performance can be obtained by containing a small amount of anions in the non-aqueous electrolyte.

本実施形態に係る正極は、正極基材、及び正極基材上に直接又は中間層を介して配された正極合剤層を含む。 The positive electrode according to the present embodiment includes a positive electrode base material and a positive electrode mixture layer arranged directly or via an intermediate layer on the positive electrode base material.

正極基材としては、電池内で悪影響を及ぼさない電子伝導体であれば、公知の材料を適宜用いることができる。正極基材としては、例えば、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。正極基材の形状は、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚みの限定は特にないが、1〜500μmのものが用いられる。 As the positive electrode base material, a known material can be appropriately used as long as it is an electronic conductor that does not adversely affect the inside of the battery. Examples of the positive electrode base material include aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., as well as aluminum and copper for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The surface of which is treated with carbon, nickel, titanium, silver or the like can be used. As the shape of the positive electrode base material, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foam body, a fiber group forming body and the like are used. The thickness is not particularly limited, but one having a thickness of 1 to 500 μm is used.

上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電剤を含むことで正極基材と正極合剤層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば結着剤及び導電剤を含有する組成物により形成できる。 The intermediate layer is a coating layer on the surface of the positive electrode base material, and the contact resistance between the positive electrode base material and the positive electrode mixture layer is reduced by containing a conductive agent such as carbon particles. The composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a binder and a conductive agent.

正極合剤層は、活物質、導電剤及び結着剤を含み、活物質は硫黄を含む。活物質として、導電性物質と複合化した硫黄を用いることが好ましい。導電性物質としては、多孔性カーボン、カーボンブラック、黒鉛、炭素繊維などの炭素材料やポリアニリン、ポリチオフェン、ポリアセチレン、ポリピロールなどの電子伝導性ポリマーが挙げられる。正極合剤層は、必要に応じて、硫黄以外の活物質、増粘剤、フィラー等を含んでいてもよい。
正極合剤層は、固体状態の硫黄を含まなくてもよい。この場合、正極合剤層は導電剤及び結着剤のみを含有し、正極電解質中のリチウム多硫化物が活物質として充放電に寄与する。固体状硫黄を含有することで、非水電解質二次電池の放電容量及びエネルギー密度を向上させられるため、好ましい。
The positive electrode mixture layer contains an active material, a conductive agent and a binder, and the active material contains sulfur. As the active material, it is preferable to use sulfur compounded with a conductive material. Examples of the conductive substance include carbon materials such as porous carbon, carbon black, graphite and carbon fiber, and electron conductive polymers such as polyaniline, polythiophene, polyacetylene and polypyrrole. The positive electrode mixture layer may contain an active material other than sulfur, a thickener, a filler and the like, if necessary.
The positive electrode mixture layer may not contain sulfur in a solid state. In this case, the positive electrode mixture layer contains only a conductive agent and a binder, and the lithium polysulfide in the positive electrode electrolyte contributes to charging and discharging as an active material. The inclusion of solid sulfur is preferable because it can improve the discharge capacity and energy density of the non-aqueous electrolyte secondary battery.

硫黄以外の正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、LiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiCo(1−y)、LiNiMnCo(1−y−z)、LiNiMn(2−y)等)、あるいは、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)から選択することができる。また、これらの化合物中の元素またはポリアニオンは一部他の元素またはアニオン種で置換されていてもよく、表面にZrO、MgO、Al等の金属酸化物や炭素を被覆されていてもよい。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料、単体の硫黄等が挙げられるが、これらに限定されない。また、これらの化合物は単独で用いてもよく、2種以上を混合して用いてもよい。As the positive electrode active material other than sulfur, a known material can be appropriately used as long as it is a positive electrode active material that can occlude and release lithium ions. For example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , Li x Ni). y Co (1-y) O 2 , Li x N y Mn z Co (1-y-z) O 2 , Li x N y Mn (2-y) O 4 etc.), or Li w Me x (XO) y ) z (Me represents at least one kind of transition metal, X represents, for example, P, Si, B, V) polyanion compounds (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO) 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.) can be selected. In addition, the elements or polyanions in these compounds may be partially substituted with other elements or anion species, and the surface is coated with metal oxides such as ZrO 2 , MgO, Al 2 O 3 and carbon. May be good. Further, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparastyrene, polyacetylene, and polyacene-based materials, pseudo-graphite structural carbonaceous materials, elemental sulfur and the like can be mentioned, but are not limited thereto. In addition, these compounds may be used alone or in combination of two or more.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、士状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又は2種以上の混合物を用いることができる。これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極合剤層の総質量に対して0.1質量%〜50質量%が好ましく、0.5質量%〜30質量%がより好ましい。アセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要な炭素量を削減できるため好ましい。 The conductive agent is not limited as long as it is an electronically conductive material that does not adversely affect the battery performance, but for example, natural graphite (scaly graphite, scaly graphite, arsenic graphite, etc.), artificial graphite, carbon black, acetylene black, etc. It is possible to use one or a mixture of two or more conductive materials such as Ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material. it can. Among these, acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability. The amount of the conductive agent added is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, based on the total mass of the positive electrode mixture layer. It is preferable to use acetylene black pulverized into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced.

結着剤としては、一般に非水電解質二次電池に使用される結着剤が使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーの1種又は2種以上の混合物を使用することができる。結着剤の添加量は、正極合剤層の総質量に対して1〜50質量%が好ましく、2〜30質量%がより好ましい。 As the binder, a binder generally used for non-aqueous electrolyte secondary batteries can be used, and for example, a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, etc. One or a mixture of two or more polymers having rubber elasticity such as ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber can be used. The amount of the binder added is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the positive electrode mixture layer.

増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium, it is preferable to inactivate this functional group by methylation or the like in advance.

フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。 The filler is not particularly limited as long as it does not adversely affect the battery performance. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.

本実施形態に係る負極は、負極基材と、負極基材上に直接又は中間層を介して配された負極合剤層を含む。負極合剤層は、負極活物質及び結着剤を含む。負極合剤層は、必要に応じて、導電剤、増粘剤、フィラー等を含んでいてもよい。負極の中間層は、上述した正極の中間層と同様とすることができる。 The negative electrode according to the present embodiment includes a negative electrode base material and a negative electrode mixture layer arranged directly on the negative electrode base material or via an intermediate layer. The negative electrode mixture layer contains a negative electrode active material and a binder. The negative electrode mixture layer may contain a conductive agent, a thickener, a filler and the like, if necessary. The intermediate layer of the negative electrode can be the same as the intermediate layer of the positive electrode described above.

負極合剤層に用いられる負極活物質としては、電気化学的にリチウムイオンを吸蔵放出可能な物質であれば、特に制限はなく、適宜公知の材料を使用できる。例えば、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。炭素質材料としては、グラファイト(黒鉛)、コークス類、難黒鉛化性炭素、易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極活物質として好ましく、例えば、人造黒鉛、天然黒鉛が好ましい。特に、負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。 The negative electrode active material used in the negative electrode mixture layer is not particularly limited as long as it is a substance that can electrochemically occlude and release lithium ions, and a known material can be used as appropriate. Examples thereof include carbonic materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals capable of forming alloys with lithium such as Sn and Si. Examples of the carbonaceous material include graphite (graphite), cokes, non-graphitizable carbon, easily graphitizable carbon, fullerene, carbon nanotubes, carbon black, activated carbon and the like. Among these, graphite is preferable as a negative electrode active material because it has an operating potential extremely close to that of metallic lithium and can be charged and discharged at a high operating voltage. For example, artificial graphite and natural graphite are preferable. In particular, graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging. These may be used alone or in any combination and ratio of two or more. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.

負極合剤層に用いられる結着剤としては、前述した種々の結着剤を用いることができる。また、負極合剤層は、上述の導電剤、増粘剤及びフィラー等を含んでいてもよい。 As the binder used for the negative electrode mixture layer, the above-mentioned various binders can be used. Further, the negative electrode mixture layer may contain the above-mentioned conductive agent, thickener, filler and the like.

負極基材としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐還元性の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。
負極基材の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚みの限定は特にないが、1〜500μmのものが用いられる。
As the negative electrode base material, in addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., adhesiveness, conductivity, and reduction resistance For the purpose, one having a surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used.
As the shape of the negative electrode base material, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foam body, a fiber group forming body and the like are used. The thickness is not particularly limited, but one having a thickness of 1 to 500 μm is used.

本実施形態において、カチオン交換樹脂層は、正極と負極とを絶縁するセパレータの役割を担う。カチオン交換樹脂層はカチオン交換樹脂を含む。カチオン交換樹脂としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルベンゼンスルホン酸、ポリベンゼンメタンスルホン酸、ポリアクリルアミド−2−メチル−1−プロパンスルホン酸が挙げられる。また、種々の樹脂にスルホン酸基(−SOH)、カルボン酸基(−COOH)、又は水酸基(−OH)を導入することにより、カチオン交換樹脂を得ることができる。種々の樹脂としては、パーフルオロカーボン樹脂、芳香族ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリベンゾイミダゾール樹脂等が挙げられる。
高いイオン伝導性が得られるため、パーフルオロカーボン樹脂にスルホン酸基を導入したパーフルオロカーボンスルホン酸樹脂が好ましい。
In the present embodiment, the cation exchange resin layer serves as a separator that insulates the positive electrode and the negative electrode. The cation exchange resin layer contains a cation exchange resin. Examples of the cation exchange resin include polyacrylic acid, polymethacrylic acid, polyvinylbenzenesulfonic acid, polybenzenemethanesulfonic acid, and polyacrylamide-2-methyl-1-propanesulfonic acid. Further, a sulfonic acid group to a variety of resin (-SO 3 H), by introducing a carboxylic acid group (-COOH), or a hydroxyl group (-OH), a can be obtained cation exchange resin. Examples of various resins include perfluorocarbon resin, aromatic polyetherketone resin, polyphenylene sulfide resin, polyethersulfone resin, polyphenylene oxide resin, polybenzimidazole resin and the like.
A perfluorocarbon sulfonic acid resin in which a sulfonic acid group is introduced into a perfluorocarbon resin is preferable because high ionic conductivity can be obtained.

カチオン交換樹脂層が、カチオン交換樹脂を含む形態は、特に限定されない。カチオン交換樹脂を膜状に形成したカチオン交換膜を用いてもよいし、市販のイオン交換膜を用いてもよい。具体的には、ナフィオン膜(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)、アシプレックス(商品名、旭化成社製)等を挙げることができる。 The form in which the cation exchange resin layer contains the cation exchange resin is not particularly limited. A cation exchange membrane formed by forming a cation exchange resin into a film may be used, or a commercially available ion exchange membrane may be used. Specific examples thereof include Nafion membrane (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass), Aciplex (trade name, manufactured by Asahi Kasei) and the like.

カチオン交換樹脂層は、多孔質層の多孔質構造の内部にカチオン交換樹脂を充填することにより形成よい。充填する方法としては、特に限定されないが、例えば、スプレー法、ディスペンス法、浸漬法、ブレードコート法を挙げることができる。 The cation exchange resin layer may be formed by filling the inside of the porous structure of the porous layer with the cation exchange resin. The filling method is not particularly limited, and examples thereof include a spray method, a dispense method, a dipping method, and a blade coating method.

カチオン交換樹脂層は、一方の表面から他方の表面へ連通する孔を有しない、すなわち非多孔性である。非多孔性であることにより、正極電解質と負極電解質とが混合されることがなく、リチウム多硫化物が負極へと到達する虞が低減される。なお、少なくとも一方の表面に、他方の表面と連絡しない細孔や凹凸を有していてもよい。 The cation exchange resin layer has no pores communicating from one surface to the other, that is, it is non-porous. Due to the non-porous property, the positive electrode electrolyte and the negative electrode electrolyte are not mixed, and the risk of lithium polysulfide reaching the negative electrode is reduced. In addition, at least one surface may have pores or irregularities that do not communicate with the other surface.

通常、市販されているカチオン交換樹脂又はカチオン交換膜は、アニオン性官能基にプロトンが結合したプロトン(H)型である。非水電解質二次電池にカチオン交換樹脂又はカチオン交換膜を適用するにあたって、H型からリチウム(Li)型に置換を行うことが好ましい。Li型への置換は、セパレータを水酸化リチウム水溶液に浸漬することによって行う。浸漬後、セパレータを25℃の脱イオン水で、洗浄水が中性となるまで洗浄する。水酸化リチウム水溶液の温度は70℃〜90℃が好ましく、浸漬時間は2時間〜6時間が好ましい。Usually, a commercially available cation exchange resin or cation exchange membrane is a proton (H + ) type in which a proton is bonded to an anionic functional group. When applying a cation exchange resin or a cation exchange membrane to a non-aqueous electrolyte secondary battery, it is preferable to replace the H + type with a lithium (Li + ) type. Substitution with Li + type is performed by immersing the separator in an aqueous solution of lithium hydroxide. After immersion, the separator is washed with deionized water at 25 ° C. until the washing water becomes neutral. The temperature of the lithium hydroxide aqueous solution is preferably 70 ° C. to 90 ° C., and the immersion time is preferably 2 hours to 6 hours.

カチオン交換樹脂層は、その内部でのリチウムイオンの伝導のために、非水溶媒を含むことが好ましい。カチオン交換樹脂層に含まれる非水溶媒には、後述する正極電解質又は負極電解質に使用できる各種非水溶媒が適宜使用できる。非水溶媒を含まないカチオン交換樹脂層をそのまま非水電解質二次電池に適用してもよいが、カチオン交換樹脂の中には、非水溶媒(又は非水電解質)の膨潤性が低いものがあるので、電池作製前にあらかじめ非水溶媒で膨潤処理を行うことが好ましい。膨潤処理は、Li型に置換されたカチオン交換樹脂層を、非水溶媒に浸漬することによって行う。膨潤処理時間は、12〜48時間が好ましい。The cation exchange resin layer preferably contains a non-aqueous solvent for the conduction of lithium ions inside the layer. As the non-aqueous solvent contained in the cation exchange resin layer, various non-aqueous solvents that can be used for the positive electrode electrolyte or the negative electrode electrolyte described later can be appropriately used. The cation exchange resin layer containing no non-aqueous solvent may be applied to the non-aqueous electrolyte secondary battery as it is, but some cation exchange resins have low swellability of the non-aqueous solvent (or non-aqueous electrolyte). Therefore, it is preferable to perform a swelling treatment with a non-aqueous solvent in advance before manufacturing the battery. The swelling treatment is performed by immersing the cation exchange resin layer substituted with the Li + type in a non-aqueous solvent. The swelling treatment time is preferably 12 to 48 hours.

カチオン交換樹脂層に含まれる非水溶媒の量は、カチオン交換樹脂層に対して30質量%以下であってもよい。このような構成とすることにより、カチオン交換樹脂層が非水溶媒によって適度に膨潤され、カチオン交換樹脂層内でのリチウムイオンの移動がスムーズになる。その結果、非水電解質二次電池の放電容量を大きくすることができる。 The amount of the non-aqueous solvent contained in the cation exchange resin layer may be 30% by mass or less with respect to the cation exchange resin layer. With such a configuration, the cation exchange resin layer is appropriately swollen by the non-aqueous solvent, and the movement of lithium ions in the cation exchange resin layer becomes smooth. As a result, the discharge capacity of the non-aqueous electrolyte secondary battery can be increased.

カチオン交換樹脂層に含有される非水溶媒の質量の調整方法としては、カチオン交換樹脂への含浸性が低い非水溶媒を用いることによって行ってもよいし、カチオン交換樹脂を浸漬する非水溶媒の量を、あらかじめカチオン交換樹脂の量に対して30質量%以下として行ってもよい。カチオン交換樹脂層への含浸性が低い溶媒としては、例えば、1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム、ジメチルエーテル、ジエチルエーテル等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類が挙げられる。その他、後述する正極電解質又は負極電解質に用いられる非水溶媒を適宜用いることができる。 The mass of the non-aqueous solvent contained in the cation exchange resin layer may be adjusted by using a non-aqueous solvent having a low impregnation property in the cation exchange resin, or a non-aqueous solvent in which the cation exchange resin is immersed. The amount of the above may be set to 30% by mass or less with respect to the amount of the cation exchange resin in advance. Examples of the solvent having low impregnation property into the cation exchange resin layer include 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglime, dimethyl ether, and diethyl. Examples thereof include ethers such as ether, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate. In addition, a non-aqueous solvent used for the positive electrode electrolyte or the negative electrode electrolyte described later can be appropriately used.

多孔質層を構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を用いることができる。 Examples of the material constituting the porous layer include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. Polymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride- Hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer , Vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like can be used.

正極電解質及び負極電解質に用いる非水溶媒は、限定されず、一般にリチウム二次電池等への使用が提案されているものが使用可能である。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。 The non-aqueous solvent used for the positive electrode electrolyte and the negative electrode electrolyte is not limited, and those generally proposed for use in lithium secondary batteries and the like can be used. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, etc. Chain carbonates such as ethyl methyl carbonate; Chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or its derivatives; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 , 4-Dibutoxyethane, ethers such as methyl diglime; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sulton or derivatives thereof, etc. alone or a mixture of two or more thereof. These can be mentioned, but are not limited to these.

本実施形態において、正極電解質又は負極電解質には、添加剤を含有させてもよい。添加剤としては、一般に非水電解質二次電池に使用される電解質添加剤が使用できる。例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の無水カルボン酸;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の含硫黄化合物;パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等を単独で又は二種以上混合して用いることができる。 In the present embodiment, the positive electrode electrolyte or the negative electrode electrolyte may contain an additive. As the additive, an electrolyte additive generally used for a non-aqueous electrolyte secondary battery can be used. For example, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partial hydride of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluorobenzene. , P-Cyclohexylfluorobenzene and other partially fluorinated products; fluoroanisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole and 3,5-difluoroanisole. Cyclic carbonates such as vinylene carbonate, methylvinylene carbonate, ethyl vinylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, trifluoropropylene carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydrous Anhydrous carboxylic acids such as itaconic acid and cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sulton, propensulton, butane sulton, methyl methanesulfonate, busulphan, methyl toluene sulfonate, dimethyl sulfate, ethylene sulfate, sulfolane , Dimethylsulfone, diethylsulfone, dimethylsulfoxide, diethylsulfoxide, tetramethylenesulfoxide, diphenylsulfide, thioanisol, diphenyldisulfide, dipyridinium disulfide and other sulfur-containing compounds; perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, titanium Tetraxtrimethylsilylate and the like can be used alone or in admixture of two or more.

正極電解質又は負極電解質が含有する電解質塩としては、公知の電解質塩を適宜用いることができる。例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n−CNClO、(n−CNI、(CN−maleate、(CN−benzoate、(CN−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。As the electrolyte salt contained in the positive electrode electrolyte or the negative electrode electrolyte, a known electrolyte salt can be appropriately used. For example, lithium (Li such as LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, etc. ), Inorganic ionic salt containing one of sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO) 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H) 5 ) 4 NClo 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NC Lo 4 , (n-C 4 H 9 ) 4 NI, (C 2) H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthate, lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate and other organic ionic salts Etc., and these ionic compounds can be used alone or in combination of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、電解質の粘度を下げることができるので、低温性能を高めることができ、また、自己放電を抑制することができ、より好ましい。Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be lowered, so that the temperature is low. It is more preferable because the performance can be improved and self-discharge can be suppressed.

非水電解質は、常温溶融塩やイオン液体を用いてもよい。 As the non-aqueous electrolyte, a molten salt at room temperature or an ionic liquid may be used.

本実施形態に係る非水電解質二次電池は、以下の方法により製造される。当該製造方法は、例えば、(1)正極を作製する工程、(2)負極を作製する工程、(3)正極電解質及び負極電解質を調製する工程、(4)カチオン交換樹脂層の第一面に粗面化処理を行う工程、(5)カチオン交換樹脂層を非水電解質又は非水溶媒に浸漬する工程、(6)正極とカチオン交換樹脂層との間に正極電解質を注入する工程、(7)負極とカチオン交換樹脂層との間に負極電解質を注入する工程、(8)正極及び負極を、カチオン交換樹脂層を介して積層又は巻回することにより交互に重畳された電極群を形成する工程、(9)正極及び負極(電極群)を電池容器(ケース)に収容する工程、並びに(10)上記電池容器の開口部を封止する工程を備えることができる。
上記(1)〜(4)の工程はどのような順序で行ってもよく、(6)〜(8)の工程は同時に行っても逐次行ってもよい。
The non-aqueous electrolyte secondary battery according to the present embodiment is manufactured by the following method. The manufacturing method includes, for example, (1) a step of producing a positive electrode, (2) a step of producing a negative electrode, (3) a step of preparing a positive electrode electrolyte and a negative electrode electrolyte, and (4) a first surface of a cation exchange resin layer. A step of roughening the surface, (5) a step of immersing the cation exchange resin layer in a non-aqueous electrolyte or a non-aqueous solvent, (6) a step of injecting a positive electrode electrolyte between the positive electrode and the cation exchange resin layer, (7). ) A step of injecting a negative electrode electrolyte between the negative electrode and the cation exchange resin layer, (8) The positive electrode and the negative electrode are laminated or wound through the cation exchange resin layer to form an alternately superimposed electrode group. The steps can include (9) a step of accommodating the positive electrode and the negative electrode (electrode group) in the battery container (case), and (10) a step of sealing the opening of the battery container.
The steps (1) to (4) may be performed in any order, and the steps (6) to (8) may be performed simultaneously or sequentially.

本実施形態の非水電解質二次電池としては、例えば、図1に示す非水電解質二次電池1(リチウムイオン二次電池)が挙げられる。 Examples of the non-aqueous electrolyte secondary battery of the present embodiment include the non-aqueous electrolyte secondary battery 1 (lithium ion secondary battery) shown in FIG.

図1に示すように、非水電解質二次電池1は、容器3と、正極端子4と、負極端子5とを備え、容器3は、電極群2等を収容する容器本体と上壁である蓋板とを備えている。また、容器本体内方には、電極群2と、正極リード4’と、負極リード5’とが配置されている。 As shown in FIG. 1, the non-aqueous electrolyte secondary battery 1 includes a container 3, a positive electrode terminal 4, and a negative electrode terminal 5, and the container 3 is a container body and an upper wall for accommodating an electrode group 2 and the like. It has a lid plate. Further, an electrode group 2, a positive electrode lead 4', and a negative electrode lead 5'are arranged inside the container body.

正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。なお、正極には正極電解質が含浸され、負極には負極電解質が含浸されているが、当該液体の図示は省略する。 The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'. Although the positive electrode is impregnated with the positive electrode electrolyte and the negative electrode is impregnated with the negative electrode electrolyte, the illustration of the liquid is omitted.

電極群2は、正極と、負極と、セパレータとを備え、電気を蓄えることができる。具体的には、電極群2は、図2に示すように、負極23と正極21との間にセパレータ25が挟み込まれるように層状に配置されて形成されている。 The electrode group 2 includes a positive electrode, a negative electrode, and a separator, and can store electricity. Specifically, as shown in FIG. 2, the electrode group 2 is formed so as to be arranged in layers so that the separator 25 is sandwiched between the negative electrode 23 and the positive electrode 21.

電極群2の局所的な模式断面図を図2に示す。電極群2は、正極21とセパレータ25との間に正極電解質22を備え、負極23とセパレータ25との間に負極電解質24を備える。正極電解質22と負極電解質24は、同じでも異なっていてもよい。セパレータ25は、第一面25c及び第二面25dを有するカチオン交換樹脂層25aと多孔質層25bとを備え、第一面25cと多孔質層25bとが接している。カチオン交換樹脂層25aの第一面25cのラフネスファクターが3以上である。
なお、図2では、正極21と多孔質層25bとの間に正極電解質22が配置され、負極23とカチオン交換樹脂層25aとの間に負極電解質24が配置されている。しかしながら、正極電解質22は、正極21及び多孔質層25bに含浸されており、負極電解質24は負極23に含浸されているため、通常の電池では正極21は多孔質層25bに接し、負極23はカチオン交換樹脂層25aに接している。すなわち、電池内では、正極21、多孔質層25b、カチオン交換樹脂層25a、負極23の順に積層されて配置されている。
A local schematic cross-sectional view of the electrode group 2 is shown in FIG. The electrode group 2 includes a positive electrode electrolyte 22 between the positive electrode 21 and the separator 25, and a negative electrode electrolyte 24 between the negative electrode 23 and the separator 25. The positive electrode electrolyte 22 and the negative electrode electrolyte 24 may be the same or different. The separator 25 includes a cation exchange resin layer 25a having a first surface 25c and a second surface 25d and a porous layer 25b, and the first surface 25c and the porous layer 25b are in contact with each other. The roughness factor of the first surface 25c of the cation exchange resin layer 25a is 3 or more.
In FIG. 2, the positive electrode electrolyte 22 is arranged between the positive electrode 21 and the porous layer 25b, and the negative electrode electrolyte 24 is arranged between the negative electrode 23 and the cation exchange resin layer 25a. However, since the positive electrode electrolyte 22 is impregnated in the positive electrode 21 and the porous layer 25b and the negative electrode electrolyte 24 is impregnated in the negative electrode 23, the positive electrode 21 is in contact with the porous layer 25b in a normal battery, and the negative electrode 23 is in contact with the negative electrode 23. It is in contact with the cation exchange resin layer 25a. That is, in the battery, the positive electrode 21, the porous layer 25b, the cation exchange resin layer 25a, and the negative electrode 23 are stacked and arranged in this order.

セパレータ25は、第一面25cを有するカチオン交換樹脂層25aと多孔質層25bとが積層された構造を有する。第一面25cは、多孔質層25bと接している。カチオン交換樹脂層25aはカチオン交換樹脂を含み、正極21で生成する、及び/又は正極電解質22に含まれるリチウム多硫化物Li(4≦x≦8)が負極に到達することを抑制する。このため、正極21で生成する、及び/又は正極電解質22に含まれるリチウム多硫化物は負極に到達することが妨げられ、シャトル現象が抑制される。The separator 25 has a structure in which a cation exchange resin layer 25a having a first surface 25c and a porous layer 25b are laminated. The first surface 25c is in contact with the porous layer 25b. The cation exchange resin layer 25a contains a cation exchange resin and suppresses the lithium polysulfide Li 2 S x (4 ≦ x ≦ 8) generated in the positive electrode 21 and / or contained in the positive electrode electrolyte 22 from reaching the negative electrode. To do. Therefore, the lithium polysulfide produced at the positive electrode 21 and / or contained in the positive electrode electrolyte 22 is prevented from reaching the negative electrode, and the shuttle phenomenon is suppressed.

図2、及び後述する実施例においては、正極、多孔質層、カチオン交換樹脂層及び負極を、この順に配置し、カチオン交換樹脂層の第一面である、多孔質層に接する表面のラフネスファクターを3以上としたが、第二面である、負極に接する表面のラフネスファクターも3以上としてもよい。すなわち、カチオン交換樹脂層の第一面及び第二面のラフネスファクターを、それぞれ3以上としてもよい。カチオン交換樹脂層の両面のラフネスファクターを、それぞれ3以上とすることにより、カチオン交換樹脂層の界面抵抗を低くすることができ、電池の高率放電性能を向上させることができる。 In FIG. 2 and the examples described later, the positive electrode, the porous layer, the cation exchange resin layer and the negative electrode are arranged in this order, and the roughness factor of the surface in contact with the porous layer, which is the first surface of the cation exchange resin layer. Is 3 or more, but the roughness factor of the surface in contact with the negative electrode, which is the second surface, may also be 3 or more. That is, the roughness factors of the first surface and the second surface of the cation exchange resin layer may be 3 or more, respectively. By setting the roughness factors on both sides of the cation exchange resin layer to 3 or more, the interfacial resistance of the cation exchange resin layer can be lowered, and the high rate discharge performance of the battery can be improved.

正極、カチオン交換樹脂層、多孔質層、負極という順に配置し、カチオン交換樹脂層の、多孔質層に接する表面のラフネスファクターが3以上としてもよい。これにより、カチオン交換樹脂層と多孔質層の界面抵抗を低いものとすることができる。また、正極、多孔質層、カチオン交換樹脂層、多孔質層、負極という順に配置してもよい。この場合、カチオン交換樹脂層の両面のラフネスファクターが、それぞれ3以上であることが好ましい。これにより、カチオン交換樹脂層と多孔質層の界面抵抗を低いものとすることができ、電池の高率放電性能を向上させることができる。 The positive electrode, the cation exchange resin layer, the porous layer, and the negative electrode may be arranged in this order, and the roughness factor of the surface of the cation exchange resin layer in contact with the porous layer may be 3 or more. As a result, the interfacial resistance between the cation exchange resin layer and the porous layer can be reduced. Further, the positive electrode, the porous layer, the cation exchange resin layer, the porous layer, and the negative electrode may be arranged in this order. In this case, it is preferable that the roughness factors on both sides of the cation exchange resin layer are 3 or more. As a result, the interfacial resistance between the cation exchange resin layer and the porous layer can be made low, and the high rate discharge performance of the battery can be improved.

図2、及び後述する実施例においては、カチオン交換樹脂層及び多孔質層をそれぞれ一層としたが、カチオン交換樹脂層又は多孔質層が複数備えられていてもよい。この場合、ラフネスファクターが3以上である第一面は、すべてのカチオン交換樹脂層に設けられていてもよいが、少なくとも一つのカチオン交換樹脂層に設けられていればよい。カチオン交換樹脂層の界面抵抗を低いものとし、電池の高率放電性能を向上させることができるからである。 In FIG. 2 and the examples described later, the cation exchange resin layer and the porous layer are each made into one layer, but a plurality of cation exchange resin layers or porous layers may be provided. In this case, the first surface having a roughness factor of 3 or more may be provided on all the cation exchange resin layers, but may be provided on at least one cation exchange resin layer. This is because the interfacial resistance of the cation exchange resin layer can be made low and the high rate discharge performance of the battery can be improved.

本発明に係る非水電解質二次電池の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。上記の非水電解質二次電池を複数備える蓄電装置としてもよい。蓄電装置の一実施形態を図3に示す。図3において、蓄電装置100は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。上記蓄電装置100は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。 The configuration of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery. A power storage device including a plurality of the above-mentioned non-aqueous electrolyte secondary batteries may be used. An embodiment of the power storage device is shown in FIG. In FIG. 3, the power storage device 100 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1. The power storage device 100 can be mounted as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV).

(実施例1−1)
カチオン交換膜として、厚み50μmのナフィオン膜(シグマアルドリッチ社製)の両面を、JIS R 6010:2000に規定される研磨布紙用研磨材の粒度が320μmであるP320番のサンドペーパーを用いて粗面化処理した。サンドペーパーによる研磨回数は片面あたり80回とした。この膜を実施例1−1のカチオン交換膜とする。
(Example 1-1)
As a cation exchange membrane, both sides of a Nafion membrane (manufactured by Sigma Aldrich) having a thickness of 50 μm are coarsely coated with sandpaper No. P320 having a particle size of a polishing material for abrasive cloth specified in JIS R 6010: 2000 of 320 μm. Surfaced. The number of times of polishing with sandpaper was 80 times per side. This membrane is used as the cation exchange membrane of Example 1-1.

(実施例1−2)
P400番のサンドペーパーを用いたこと以外は、実施例1−1と同様にしてナフィオン膜の粗面化処理を行った。この膜を実施例1−2のカチオン交換膜とする。
(Example 1-2)
The surface of the naphthion membrane was roughened in the same manner as in Example 1-1 except that P400 sandpaper was used. This membrane is used as the cation exchange membrane of Example 1-2.

(実施例1−3)
P1000番のサンドペーパーを用いたこと以外は、実施例1−1と同様にしてナフィオン膜の粗面化処理を行った。この膜を実施例1−3のカチオン交換膜とする。
(Example 1-3)
The surface of the Nafion membrane was roughened in the same manner as in Example 1-1 except that P1000 sandpaper was used. This membrane is used as the cation exchange membrane of Example 1-3.

(実施例1−4)〜(実施例1−6)
サンドペーパーによる研磨回数を変更し、ラフネスファクター、算術平均粗さRa及び最大高さ粗さRzを表1に示す値としたこと以外は、実施例1−3と同様にして実施例1−4〜1−6のカチオン交換膜を作製した。
(Examples 1-4) to (Examples 1-6)
Examples 1-4 in the same manner as in Examples 1-3, except that the number of times of polishing with sandpaper was changed and the roughness factor, arithmetic mean roughness Ra, and maximum height roughness Rz were set to the values shown in Table 1. A cation exchange membrane of ~ 1-6 was prepared.

(比較例1−1)
粗面化処理を行わなかったナフィオン膜を、比較例1−1のカチオン交換膜とする。
(Comparative Example 1-1)
The naphthion membrane that has not been roughened is used as the cation exchange membrane of Comparative Example 1-1.

[1.表面形態観察]
次の条件で、実施例1−1〜1−6、及び比較例1−1のカチオン交換膜の表面形態観察を行い、ラフネスファクター、算術平均粗さRa、及び最大高さ粗さRzを算出した。
・測定機器:超深度形状測定顕微鏡VK−8500(キーエンス社製)
・測定範囲:1.04×10−3 cm
・形状解析アプリケーション:VK−H1A9(キーエンス社製)
[1. Surface morphology observation]
Under the following conditions, the surface morphology of the cation exchange membranes of Examples 1-1 to 1-6 and Comparative Example 1-1 was observed, and the roughness factor, the arithmetic mean roughness Ra, and the maximum height roughness Rz were calculated. did.
-Measuring equipment: Ultra-depth shape measuring microscope VK-8500 (manufactured by KEYENCE)
-Measurement range: 1.04 x 10 -3 cm 2
-Shape analysis application: VK-H1A9 (manufactured by KEYENCE)

[2.界面抵抗測定]
[2−1.カチオン交換膜の含浸処理]
実施例1−1〜1−6、及び比較例1−1のカチオン交換膜を、1mol/lの水酸化リチウムの水/アルコール溶液に浸漬し、80℃で12時間撹拌することにより、カチオン交換膜中のプロトンをリチウムイオンに交換した。撹拌後の各実施例及び比較例のカチオン交換膜は、脱イオン水で洗浄し、120℃の脱気下で乾燥することにより、水酸化リチウム及び溶媒の除去を行った。
得られたLi型カチオン交換膜を、1,2−ジメトキシエタン(DME)と1,3−ジオキソラン(DOL)とを体積比50:50で混合した混合溶媒に、25℃環境下で12時間浸漬することにより、含浸処理を行った。この処理により、含浸処理後のカチオン交換膜には、含浸処理前のカチオン交換膜の質量に対して20質量%の混合溶媒が含浸された。含浸処理前後のカチオン交換膜の厚みは、それぞれ50μm、64μmであった。
[2. Interface resistance measurement]
[2-1. Impregnation treatment of cation exchange membrane]
The cation exchange membranes of Examples 1-1 to 1-6 and Comparative Example 1-1 are immersed in a 1 mol / l lithium hydroxide water / alcohol solution and stirred at 80 ° C. for 12 hours to exchange cations. The protons in the membrane were exchanged for lithium ions. The cation exchange membranes of each Example and Comparative Example after stirring were washed with deionized water and dried under degassing at 120 ° C. to remove lithium hydroxide and a solvent.
The obtained Li + type cation exchange membrane was mixed with 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 50:50 in a mixed solvent at 25 ° C. for 12 hours. The impregnation treatment was performed by immersing. By this treatment, the cation exchange membrane after the impregnation treatment was impregnated with a mixed solvent in an amount of 20% by mass based on the mass of the cation exchange membrane before the impregnation treatment. The thickness of the cation exchange membrane before and after the impregnation treatment was 50 μm and 64 μm, respectively.

[2−2.電解質層抵抗Rの測定]
含浸処理後の各実施例及び比較例のカチオン交換膜、及び図4に示すような電気化学測定用セル31(日本トムセル社製)を用いて、抵抗測定用セル30を作製した。ステンレス鋼板製支持体31aに設けられた内径26mm、外径34mmのO−リング31fの内側に、ステンレス鋼板製電極31e及び多孔質膜(多孔質層)36が、カチオン交換樹脂層35を挟み込む形で積層した。積層体上に、ステンレス鋼板製蓋体31bを重ねてボルト31cとナット31dとを締結することにより、抵抗測定用セル30を組み立てた。なお、ポリエチレン製微多孔膜36には、0.3mol/lのリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を含み、DMEとDOLとを50:50(体積比)で混合した非水電解質が含浸されている。
[2-2. Measurement of electrolyte layer resistance R]
A resistance measurement cell 30 was prepared using the cation exchange membranes of the examples and comparative examples after the impregnation treatment and the electrochemical measurement cell 31 (manufactured by Tomcell Japan) as shown in FIG. A stainless steel plate electrode 31e and a porous film (porous layer) 36 sandwich a cation exchange resin layer 35 inside an O-ring 31f having an inner diameter of 26 mm and an outer diameter of 34 mm provided on a stainless steel plate support 31a. Laminated with. The resistance measurement cell 30 was assembled by stacking the stainless steel plate lid 31b on the laminated body and fastening the bolt 31c and the nut 31d. The polyethylene microporous membrane 36 contains 0.3 mol / l lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), and contains a non-aqueous electrolyte in which DME and DOL are mixed at a ratio of 50:50 (volume ratio). It is impregnated.

上記抵抗測定用セルを用いて、交流インピーダンス測定により電解質層抵抗Rを測定した。交流インピーダンス測定は、印加電圧振幅5mV、周波数1MHz〜100mHzにて行った。測定結果のナイキスト線図を作製し、等価回路を用いてフィッティングを行った。最も高周波数側に表れる円弧をフィッティングした曲線と実軸との交点のうち、低周波数側の値を読み取り、電解質抵抗Rとした。電解質層抵抗Rは、ポリエチレン製微多孔膜36の抵抗である多孔質層抵抗Re、ポリエチレン製微多孔膜36と含浸処理後のカチオン交換膜35との界面の抵抗である界面抵抗Ri、含浸処理後のカチオン交換膜35の抵抗であるカチオン交換樹脂層抵抗Rcが含まれており、次式(1)で表される。
R=2Re+2Ri+Rc (1)
The electrolyte layer resistance R was measured by AC impedance measurement using the resistance measurement cell. The AC impedance measurement was performed at an applied voltage amplitude of 5 mV and a frequency of 1 MHz to 100 MHz. A Nyquist diagram of the measurement results was prepared and fitted using an equivalent circuit. Of the intersections of the curve fitted with the arc that appears on the highest frequency side and the actual axis, the value on the low frequency side was read and used as the electrolyte resistance R. The electrolyte layer resistance R is the porous layer resistance Re, which is the resistance of the polyethylene microporous membrane 36, the interface resistance Ri, which is the interface resistance between the polyethylene microporous membrane 36 and the cation exchange membrane 35 after the impregnation treatment, and the impregnation treatment. The cation exchange resin layer resistance Rc, which is the resistance of the cation exchange membrane 35 later, is included and is represented by the following formula (1).
R = 2Re + 2Ri + Rc (1)

[2−3.カチオン交換樹脂層抵抗Rcの測定]
0.3mol/lのLiTFSIを含むDME:DOL=50:50(体積比)の電解液が含浸されたポリエチレン製微多孔膜を配置しないこと以外は[2−2.電解質層抵抗Rの測定]と同様にして、交流インピーダンス測定を行った。この測定により求められた抵抗を、カチオン交換樹脂層抵抗Rcとした。
[2-3. Measurement of cation exchange resin layer resistance Rc]
Except for the absence of a polyethylene microporous membrane impregnated with an electrolytic solution containing DME: DOL = 50: 50 (volume ratio) containing 0.3 mol / l LiTFSI [2-2. The AC impedance was measured in the same manner as in the measurement of the electrolyte layer resistance R]. The resistance obtained by this measurement was defined as the cation exchange resin layer resistance Rc.

[2−4.多孔質層抵抗Reの測定]
含浸処理後のカチオン交換膜を配置せずに、0.3mol/lのLiTFSIを含むDME:DOL=50:50(体積比)の電解液が含浸されたポリエチレン製微多孔膜1枚のみを配置したこと以外は[2−3.カチオン交換樹脂層抵抗Rcの測定]と同様にして、交流インピーダンス測定を行った。この測定により求められた抵抗を、多孔質層抵抗Reとした。
[2-4. Measurement of porous layer resistance Re]
Without arranging the cation exchange membrane after the impregnation treatment, only one polyethylene microporous membrane impregnated with the electrolytic solution containing DME: DOL = 50: 50 (volume ratio) containing 0.3 mol / l LiTFSI was arranged. Other than what you did [2-3. Measurement of cation exchange resin layer resistance Rc], AC impedance measurement was performed. The resistance obtained by this measurement was defined as the porous layer resistance Re.

交流インピーダンス測定により求めた電解質層抵抗R、カチオン交換樹脂層抵抗Rc、多孔質層抵抗Reの値から、式(1)を用いて界面抵抗Riを算出した。 The interface resistance Ri was calculated using the formula (1) from the values of the electrolyte layer resistance R, the cation exchange resin layer resistance Rc, and the porous layer resistance Re obtained by the AC impedance measurement.

ポリエチレン製微多孔膜に含浸した電解液中のLiTFSIの濃度を表2に示す値に変更し、含浸処理後の各実施例及び比較例のカチオン交換膜を用いて、交流インピーダンス測定を行い、界面抵抗Riを算出した。なお、LiTFSIの濃度が0.5mol/lの場合は、実施例1−1〜1−3及び比較例1−1のみ測定を行った。 The concentration of LiTFSI in the electrolytic solution impregnated in the polyethylene microporous membrane was changed to the value shown in Table 2, and the AC impedance was measured using the cation exchange membranes of each Example and Comparative Example after the impregnation treatment, and the interface was measured. The resistance Ri was calculated. When the concentration of LiTFSI was 0.5 mol / l, only Examples 1-1 to 1-3 and Comparative Example 1-1 were measured.

実施例1−2及び比較例1−1のカチオン交換膜を用い、ポリエチレン製微多孔膜に含浸した電解液中のリチウム多硫化物の硫黄換算濃度を3.0mol/lとし、LiTFSIの濃度を表3に示す値に変更して、交流インピーダンス測定を行い、界面抵抗Riを算出した。
なお、リチウム多硫化物を含む電解液は次のようにして作製した。露点−50℃以下のグローブボックス内で、リチウム多硫化物(LiS)と硫黄(S)をLiが生成し得る量論比(モル比8:5)にて、DMEとDOLとを体積比50:50で混合した非水溶媒に投入し、撹拌した。この溶液を密閉容器に封入し、80℃の恒温槽内に4日間静置することにより、LiSとSとを反応させ、リチウム多硫化物を含む溶液を作製した。このリチウム多硫化物溶液には、硫黄に換算した場合3.0mol/lに相当するリチウム多硫化物が溶解している。この溶液に、LiTFSIの濃度が0、0.3、0.5又は1.0mol/lとなるようにLiTFSIを溶解させて、リチウム多硫化物を含む電解液を作製した。
Using the cation exchange membranes of Examples 1-2 and Comparative Example 1-1, the sulfur conversion concentration of lithium polysulfide in the electrolytic solution impregnated in the polyethylene microporous membrane was set to 3.0 mol / l, and the concentration of LiTFSI was adjusted. After changing to the values shown in Table 3, the AC impedance was measured and the interfacial resistance Ri was calculated.
The electrolytic solution containing lithium polysulfide was prepared as follows. In a glove box with a dew point of -50 ° C or lower, lithium polysulfide (Li 2 S) and sulfur (S 8 ) are combined with DME in a stoichiometric ratio (molar ratio 8: 5) that Li 2 S 6 can produce. DOL was put into a non-aqueous solvent mixed at a volume ratio of 50:50, and the mixture was stirred. This solution was sealed in a closed container and allowed to stand in a constant temperature bath at 80 ° C. for 4 days to react Li 2 S and S 8 to prepare a solution containing lithium polysulfide. In this lithium polysulfide solution, lithium polysulfide corresponding to 3.0 mol / l in terms of sulfur is dissolved. LiTFSI was dissolved in this solution so that the concentration of LiTFSI was 0, 0.3, 0.5 or 1.0 mol / l to prepare an electrolytic solution containing lithium polysulfide.

各実施例及び比較例のカチオン交換膜のラフネスファクター、算術平均粗さRa、最大高さ粗さRzを表1に、含浸処理後のカチオン交換膜とLiTFSI及びリチウム多硫化物の濃度を変更した時の、電解液を含むポリエチレン製微多孔膜との界面抵抗Riを表2、表3に示す。実施例1−1〜1−6の界面抵抗を比較例1−1の界面抵抗で除した値を、ラフネスファクター、算術平均粗さRa及び最大高さ粗さRzに対してプロットしたグラフを図6〜8に示す。 Table 1 shows the roughness factor, arithmetic mean roughness Ra, and maximum height roughness Rz of the cation exchange membranes of each example and comparative example, and the concentrations of the cation exchange membrane after impregnation treatment, LiTFSI, and lithium polysulfide were changed. Tables 2 and 3 show the interfacial resistance Ri with the polyethylene microporous membrane containing the electrolytic solution at that time. A graph obtained by plotting the value obtained by dividing the interfacial resistance of Examples 1-1 to 1-6 by the interfacial resistance of Comparative Example 1-1 with respect to the roughness factor, the arithmetic mean roughness Ra, and the maximum height roughness Rz. It is shown in 6-8.

Figure 0006757504
Figure 0006757504

Figure 0006757504
Figure 0006757504

Figure 0006757504
Figure 0006757504

表1に示すように、サンドペーパーによる粗面化処理を行うことにより、ラフネスファクター、算術平均粗さRa、最大高さ粗さRzのいずれもが増加することがわかった。また、表2、表3及び図4〜6に示すように、LiTFSIの濃度又はリチウム多硫化物の有無によらず、粗面化処理を行った実施例1−1〜1−6のカチオン交換膜は、粗面化処理を行っていない比較例1−1のカチオン交換膜に比べて、界面抵抗Riが減少することが明らかとなった。さらに、LiTFSIの濃度が0.3mol/lと低い場合には、カチオン交換膜表面の最大高さ粗さが10μm以上である実施例1−1〜1−4では、最大高さ粗さが10μm未満である実施例1−5、1−6に比べて、界面抵抗が低下することがわかった。また、LiTFSIの濃度が1.0mol/lと高い場合には、算術平均粗さRaが0.5μm以上である実施例1−1〜1−3及び実施例1−5、1−6は、算術平均粗さRaが0.5μm未満である実施例1−4に比べて、低い界面抵抗を示した。
表3に示した通り、リチウム多硫化物を含む場合であっても、カチオン交換膜表面を粗面化することにより、界面抵抗は低下することがわかった。
As shown in Table 1, it was found that the roughness factor, the arithmetic mean roughness Ra, and the maximum height roughness Rz were all increased by performing the roughening treatment with sandpaper. Further, as shown in Tables 2, 3 and 4 to 6, the cation exchange of Examples 1-1 to 1-6 in which the roughening treatment was performed was performed regardless of the concentration of LiTFSI or the presence or absence of lithium polysulfide. It was clarified that the interfacial resistance Ri of the film was reduced as compared with the cation exchange membrane of Comparative Example 1-1 which had not been roughened. Further, in Examples 1-1 to 1-4 in which the maximum height roughness of the surface of the cation exchange membrane is 10 μm or more when the concentration of LiTFSI is as low as 0.3 mol / l, the maximum height roughness is 10 μm. It was found that the interfacial resistance was lower than that of Examples 1-5 and 1-6, which were less than. Further, when the concentration of LiTFSI is as high as 1.0 mol / l, Examples 1-1 to 1-3 and Examples 1-5 and 1-6 having an arithmetic mean roughness Ra of 0.5 μm or more are It showed lower interfacial resistance as compared with Examples 1-4 in which the arithmetic mean roughness Ra was less than 0.5 μm.
As shown in Table 3, it was found that the interfacial resistance is reduced by roughening the surface of the cation exchange membrane even when lithium polysulfide is contained.

[3.高率放電試験]
(実施例2−1)
クエン酸マグネシウムを900℃、アルゴン雰囲気下で1時間炭化処理したのち、1mol/lの硫酸水溶液中に浸漬することによって、MgOを抽出した。続いて、洗浄及び乾燥して、多孔性カーボンを得た。この多孔性カーボンと硫黄とを質量比30:70で混合した。この混合物を、アルゴン雰囲気下で密閉容器に封入し、昇温速度5℃/分で150℃まで昇温し、5時間保持した後、80℃まで放冷した。その後、再び昇温速度5℃/分で300℃まで昇温し、2時間保持する熱処理を行い、カーボン−硫黄複合体(以下、「SPC複合体」ともいう)を得た。
[3. High rate discharge test]
(Example 2-1)
Magnesium citrate was carbonized at 900 ° C. in an argon atmosphere for 1 hour, and then immersed in a 1 mol / l sulfuric acid aqueous solution to extract MgO. Subsequently, it was washed and dried to obtain porous carbon. The porous carbon and sulfur were mixed at a mass ratio of 30:70. This mixture was sealed in a closed container under an argon atmosphere, heated to 150 ° C. at a heating rate of 5 ° C./min, held for 5 hours, and then allowed to cool to 80 ° C. Then, the temperature was raised again to 300 ° C. at a heating rate of 5 ° C./min and heat treatment was performed to hold the temperature for 2 hours to obtain a carbon-sulfur composite (hereinafter, also referred to as “SPC composite”).

正極活物質としてSPC複合体、導電剤としてアセチレンブラック、及び結着剤としてポリフッ化ビニリデン(PVDF)を質量比85:5:10で含み、溶媒としてN−メチルピロリドン(NMP)を用いた正極ペーストを作製した。得られた正極ペーストをニッケルメッシュ集電体に充填したのち、乾燥することにより、正極板を作製した。なお、正極ペーストの塗工量は、1.2mg/cmとした。A positive electrode paste containing SPC composite as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder at a mass ratio of 85: 5:10, and N-methylpyrrolidone (NMP) as a solvent. Was produced. The obtained positive electrode paste was filled in a nickel mesh current collector and then dried to prepare a positive electrode plate. The amount of the positive electrode paste applied was 1.2 mg / cm 2 .

負極板には、厚さ10μmの銅箔に金属Liを貼り付けて、負極全体の厚みを310μmとしたものを用いた。 As the negative electrode plate, a copper foil having a thickness of 10 μm was attached with metal Li to make the entire negative electrode thickness 310 μm.

カチオン交換膜としては、P400番のサンドペーパーを用いて、片面のみ粗面化処理を行ったナフィオン膜を用いた。 As the cation exchange membrane, a P400 sandpaper was used, and a Nafion membrane obtained by roughening only one side was used.

正極電解液は、リチウム多硫化物を硫黄換算濃度で3.0mol/l含み、DMEとDOLとを体積比50:50で混合した溶液を用いた。 As the positive electrode electrolytic solution, a solution containing lithium polysulfide at a sulfur equivalent concentration of 3.0 mol / l and mixing DME and DOL at a volume ratio of 50:50 was used.

負極電解液としては、DMEとDOLとを体積比50:50で混合した溶媒を用いた。 As the negative electrode electrolyte, a solvent in which DME and DOL were mixed at a volume ratio of 50:50 was used.

図5に示すような電気化学測定用セル41(日本トムセル社製)を用いて、試験用セル40を作製した。まず、ステンレス鋼板製支持体41aに設けられた内径26mm、外径34mmのO−リング41fの内側に、上記のようにして作製した正極43を配置する。正極電解質を含浸させた多孔質膜(多孔質層)46を積層したのち、O−リングの内径よりも大きなサイズとしたカチオン交換樹脂層45を配置した。このとき、上記粗面化処理を行った第一面45aが、多孔質膜46と接するようにカチオン交換樹脂層45を配置した。その上に、負極電解質を含浸させた負極44を積層した。ステンレス鋼板製の電極41eを負極44上に配置し、ステンレス鋼板製蓋体41bを重ねてボルト41cとナット41dとを締結することにより、試験用セル40(以下、「電池」ともいう。)を組み立てた。これを、実施例電池2−1とする。 A test cell 40 was produced using an electrochemical measurement cell 41 (manufactured by Tomcell Japan, Inc.) as shown in FIG. First, the positive electrode 43 produced as described above is arranged inside the O-ring 41f having an inner diameter of 26 mm and an outer diameter of 34 mm provided on the stainless steel plate support 41a. After laminating the porous film (porous layer) 46 impregnated with the positive electrode electrolyte, the cation exchange resin layer 45 having a size larger than the inner diameter of the O-ring was arranged. At this time, the cation exchange resin layer 45 was arranged so that the first surface 45a subjected to the roughening treatment was in contact with the porous film 46. A negative electrode 44 impregnated with a negative electrode electrolyte was laminated on the negative electrode 44. The test cell 40 (hereinafter, also referred to as “battery”) is formed by arranging the stainless steel plate electrode 41e on the negative electrode 44, overlapping the stainless steel plate lid 41b, and fastening the bolt 41c and the nut 41d. Assembled. This is referred to as Example Battery 2-1.

(比較例2−1)
カチオン交換膜として粗面化処理を行っていないナフィオン膜を用いたこと以外は、実施例2−1と同様にして比較例2−1に係る試験用セル30を作製した。これを、比較例電池2−1とする。
(Comparative Example 2-1)
A test cell 30 according to Comparative Example 2-1 was prepared in the same manner as in Example 2-1 except that a Nafion membrane which had not been roughened was used as the cation exchange membrane. This is referred to as Comparative Example Battery 2-1.

次の方法で、実施例電池2−1及び比較例電池2−1の0.1C放電容量、及び0.2C放電容量を測定し、0.2C放電容量を0.1C放電容量で除することにより、0.2C/0.1C比(%)を算出した。
25℃で1.5Vまでの0.1C定電流放電、及び3.0Vまでの0.1C定電流充電を行った。充電及び放電の終止条件は、設定電圧に到達するか10時間経過するまでとした。上記0.1Cの放電及び充電の工程を1サイクルとして、このサイクルを3サイクル繰り返した。3サイクル目の放電容量をSPC複合体の質量で除した値を、0.1C放電容量(mAh/g)とした。
なお、1Cは、正極活物質として用いたSPC複合体の質量あたりの容量を、理論容量である1675mAh/gとしたときに、正極活物質の容量を1時間で放電する電流値とした。
次に、25℃で1.5Vまでの0.2C定電流放電、及び3.0Vまでの0.2C定電流充電を行った。充電及び放電の終止条件は、設定電圧に到達するか5時間経過するまでとした。上記0.2Cの放電及び充電の工程を1サイクルとして、このサイクルを3サイクル繰り返した。3サイクル目の放電容量をSPC複合体の質量で除した値を、0.2C放電容量(mAh/g)とした。0.2C放電容量を0.1C放電容量で除することにより、0.2C/0.1C比(%)を算出した。
The 0.1C discharge capacity and the 0.2C discharge capacity of the Example battery 2-1 and the Comparative Example battery 2-1 are measured by the following method, and the 0.2C discharge capacity is divided by the 0.1C discharge capacity. The 0.2C / 0.1C ratio (%) was calculated.
0.1C constant current discharge up to 1.5V and 0.1C constant current charge up to 3.0V were performed at 25 ° C. The charging and discharging termination conditions were set until the set voltage was reached or 10 hours had passed. This cycle was repeated 3 cycles, with the process of discharging and charging 0.1C as one cycle. The value obtained by dividing the discharge capacity in the third cycle by the mass of the SPC composite was defined as 0.1C discharge capacity (mAh / g).
In 1C, when the capacity per mass of the SPC composite used as the positive electrode active material was set to the theoretical capacity of 1675 mAh / g, the capacity of the positive electrode active material was set to the current value for discharging in 1 hour.
Next, 0.2C constant current discharge up to 1.5V and 0.2C constant current charge up to 3.0V were performed at 25 ° C. The charging and discharging termination conditions were set until the set voltage was reached or 5 hours had passed. This cycle was repeated 3 cycles, with the process of discharging and charging 0.2C as one cycle. The value obtained by dividing the discharge capacity in the third cycle by the mass of the SPC composite was defined as 0.2C discharge capacity (mAh / g). The 0.2C / 0.1C ratio (%) was calculated by dividing the 0.2C discharge capacity by the 0.1C discharge capacity.

実施例電池2−1及び比較例電池2−1の0.1C放電容量、0.2C放電容量及び0.2C/0.1C比(%)を表4に示す。また、実施例電池2−1及び比較例電池2−1の0.1C及び0.2Cの放電カーブを図9に示す。 Table 4 shows the 0.1C discharge capacity, the 0.2C discharge capacity, and the 0.2C / 0.1C ratio (%) of the Example Battery 2-1 and the Comparative Example Battery 2-1. Further, the discharge curves of 0.1C and 0.2C of the example battery 2-1 and the comparative example battery 2-1 are shown in FIG.

Figure 0006757504
Figure 0006757504

実施例電池2−1は、0.1C、0.2Cどちらの放電電流でも1150mAh/gという高い放電容量を示し、0.2C/0.1C比は100%であった。一方、比較例電池2−1は、0.1C放電容量は、実施例電池2−1と同等であったものの、0.2C放電容量は低く、0.2C/0.1C比は71.7%であった。これは、実施例電池2−1では、カチオン交換樹脂層として、表面を粗面化処理したカチオン交換膜を用いたために、界面抵抗が低下し、高率放電性能が向上したものと考えられる。
なお、実施例電池2−1では、図9(a)に示したように、正極活物質層中の硫黄の容量に相当する1150mAh/g放電後にも、放電電位は低下しなかった。一方、比較例電池2−1では、図9(b)に示したように、放電末期に放電電位が低下する現象が観測された。これは、粗面化処理によってカチオン交換樹脂層の界面抵抗が低下したことに起因して、正極表面の電流分布がより均一になったためと考えられる。また、粗面化処理により、正極表面でのリチウム多硫化物の保持性が向上したことに起因して、正極電解液中に含有されるリチウム多硫化物の充放電反応への寄与が高まったためと考えられる。
The battery 2-1 of Example showed a high discharge capacity of 1150 mAh / g at both 0.1C and 0.2C discharge currents, and the 0.2C / 0.1C ratio was 100%. On the other hand, the comparative example battery 2-1 had a 0.1C discharge capacity equivalent to that of the example battery 2-1 but a low 0.2C discharge capacity and a 0.2C / 0.1C ratio of 71.7. %Met. It is considered that this is because in the battery 2-1 example, since the cation exchange membrane whose surface was roughened was used as the cation exchange resin layer, the interfacial resistance was lowered and the high rate discharge performance was improved.
In the battery 2-1 of the example, as shown in FIG. 9A, the discharge potential did not decrease even after 1150 mAh / g discharge corresponding to the capacity of sulfur in the positive electrode active material layer. On the other hand, in Comparative Example Battery 2-1 as shown in FIG. 9B, a phenomenon in which the discharge potential decreased at the end of discharge was observed. It is considered that this is because the interfacial resistance of the cation exchange resin layer was lowered by the roughening treatment, and the current distribution on the positive electrode surface became more uniform. In addition, the roughening treatment improved the retention of lithium polysulfide on the surface of the positive electrode, which increased the contribution of lithium polysulfide contained in the positive electrode electrolyte to the charge / discharge reaction. it is conceivable that.

本実施形態によると、高率放電性能に優れた非水電解質二次電池が得られるため、車載用・定置用などの幅広い用途の二次電池として有用である。 According to this embodiment, since a non-aqueous electrolyte secondary battery having excellent high rate discharge performance can be obtained, it is useful as a secondary battery for a wide range of applications such as in-vehicle use and stationary use.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
21、43 正極
22 正極電解液
23、44 負極
24 負極電解液
25 セパレータ
25a、35、45 カチオン交換樹脂層
25b、36、46 多孔質層(多孔質膜)
25c、45a 第一面
25d 第二面
30 抵抗測定用セル
31、41 電気化学測定用セル
31a、41a 支持体
31b、41b 蓋体
31c、41c ボルト
31d、41d ナット
31e、41e 電極
31f、41f O−リング
40 試験用セル
100 蓄電装置
1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4'Positive lead 5 Negative terminal 5'Negative lead 20 Power storage unit 21, 43 Positive electrode 22 Positive electrode electrolyte 23, 44 Negative electrode 24 Negative electrolyte 25 Separator 25a, 35, 45 Cationic exchange resin layer 25b, 36, 46 Porous layer (porous film)
25c, 45a First surface 25d Second surface 30 Resistance measurement cell 31, 41 Electrochemical measurement cell 31a, 41a Support 31b, 41b Lid 31c, 41c Bolt 31d, 41d Nut 31e, 41e Electrode 31f, 41f O- Ring 40 Test cell 100 Power storage device

Claims (12)

硫黄を含む正極と、
負極と、
非水電解質と、
正極と負極との間に配され、ラフネスファクターが3m/m以上である第一面を有するカチオン交換樹脂層と、を備える
非水電解質二次電池。
With a positive electrode containing sulfur,
With the negative electrode
With non-aqueous electrolyte
A non-aqueous electrolyte secondary battery comprising a cation exchange resin layer arranged between a positive electrode and a negative electrode and having a first surface having a roughness factor of 3 m 2 / m 2 or more.
カチオン交換樹脂層の第一面の算術平均粗さRaが0.5μm以上である
請求項1の非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to claim 1, wherein the arithmetic average roughness Ra of the first surface of the cation exchange resin layer is 0.5 μm or more.
カチオン交換樹脂層の第一面の最大高さ粗さRzが5μm以上である
請求項1又は2の非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the maximum height roughness Rz of the first surface of the cation exchange resin layer is 5 μm or more.
さらに多孔質層を備え、多孔質層はカチオン交換樹脂層の第一面に接している、
請求項1〜3のいずれかの非水電解質二次電池。
Further, a porous layer is provided, and the porous layer is in contact with the first surface of the cation exchange resin layer.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3.
非水電解質は、正極電解質と負極電解質とを備え、
正極電解質はリチウム多硫化物を含み、
正極電解質の硫黄換算濃度が負極電解質の硫黄換算濃度よりも高い
請求項1〜4のいずれかの非水電解質二次電池。
The non-aqueous electrolyte includes a positive electrode electrolyte and a negative electrode electrolyte.
Positive electrode electrolyte contains lithium polysulfide
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the sulfur equivalent concentration of the positive electrode electrolyte is higher than the sulfur equivalent concentration of the negative electrode electrolyte.
正極電解質の硫黄換算濃度が、1.2mol/l以上である
請求項5の非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to claim 5, wherein the sulfur equivalent concentration of the positive electrode electrolyte is 1.2 mol / l or more.
正極電解質の硫黄換算濃度が、3.0mol/l以上である
請求項6の非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to claim 6, wherein the sulfur equivalent concentration of the positive electrode electrolyte is 3.0 mol / l or more.
正極電解質の硫黄換算濃度が、18mol/l以下である
請求項5〜7のいずれかの非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to any one of claims 5 to 7, wherein the sulfur equivalent concentration of the positive electrode electrolyte is 18 mol / l or less.
正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度が0.7mol/l以下である
請求項5〜8のいずれかの非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to any one of claims 5 to 8, wherein the concentration of anions contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte is 0.7 mol / l or less.
正極電解質に含まれるアニオンの濃度が0.3mol/l以下である
請求項5〜9のいずれかの非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to any one of claims 5 to 9, wherein the concentration of the anion contained in the positive electrode electrolyte is 0.3 mol / l or less.
正極及び負極の少なくとも一方がカチオン交換樹脂を備え、
非水電解質に含まれるアニオンの濃度が0.7mol/l以下である
請求項1〜4のいずれかの非水電解質二次電池。
At least one of the positive electrode and the negative electrode is provided with a cation exchange resin,
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the concentration of anions contained in the non-aqueous electrolyte is 0.7 mol / l or less.
硫黄を含む正極と、負極と、正極と負極との間に介在し、ラフネスファクターが3以上である第一面を備えるカチオン交換樹脂層を備えた非水電解質二次電池の製造方法であって、
正極とカチオン交換樹脂層との間に、リチウム多硫化物を含む正極電解質を注入し、負極とカチオン交換樹脂層との間に、正極電解質よりもリチウム多硫化物の濃度が低い負極電解質を注入することを含む
非水電解質二次電池の製造方法。

A method for manufacturing a non-aqueous electrolyte secondary battery, which comprises a positive electrode containing sulfur, a negative electrode, and a cation exchange resin layer having a first surface having a roughness factor of 3 or more, which is interposed between the positive electrode and the negative electrode. ,
A positive electrode containing lithium polysulfide is injected between the positive electrode and the cation exchange resin layer, and a negative electrode having a lower concentration of lithium polysulfide than the positive electrode is injected between the negative electrode and the cation exchange resin layer. A method of manufacturing a non-aqueous electrolyte secondary battery, including

JP2017545088A 2015-10-14 2016-09-30 Non-aqueous electrolyte secondary battery Active JP6757504B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2015202630 2015-10-14
JP2015202630 2015-10-14
JP2015218141 2015-11-06
JP2015218141 2015-11-06
JP2016109738 2016-06-01
JP2016109738 2016-06-01
PCT/JP2016/004426 WO2017064843A1 (en) 2015-10-14 2016-09-30 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPWO2017064843A1 JPWO2017064843A1 (en) 2018-08-02
JP6757504B2 true JP6757504B2 (en) 2020-09-23

Family

ID=58517178

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017545088A Active JP6757504B2 (en) 2015-10-14 2016-09-30 Non-aqueous electrolyte secondary battery
JP2017545087A Active JP6856027B2 (en) 2015-10-14 2016-09-30 Non-aqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017545087A Active JP6856027B2 (en) 2015-10-14 2016-09-30 Non-aqueous electrolyte secondary battery

Country Status (5)

Country Link
US (3) US11196078B2 (en)
EP (2) EP3364490B1 (en)
JP (2) JP6757504B2 (en)
CN (2) CN108140875B (en)
WO (2) WO2017064842A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268181B1 (en) * 2017-11-21 2021-06-22 주식회사 엘지화학 Manufacturing method of carbon -surfur complex
CN111902990A (en) * 2018-03-29 2020-11-06 松下知识产权经营株式会社 Electrochemical device
CN108878747B (en) * 2018-06-13 2021-12-03 力源(广州)新能源科技有限公司 Functional diaphragm for improving performance of lithium-sulfur battery and lithium-sulfur battery comprising same
JP6992692B2 (en) * 2018-07-19 2022-01-13 ブラザー工業株式会社 Lithium-sulfur battery and method for manufacturing lithium-sulfur battery
EP3866228A4 (en) * 2018-11-01 2022-08-03 GS Yuasa International Ltd. Rechargeable battery with nonaqueous electrolyte
FR3094574B1 (en) * 2019-03-26 2023-10-06 Armor Current collector, assembly and associated storage device
CN110379986A (en) * 2019-07-11 2019-10-25 郭建中 A kind of lithium-sulfur rechargeable battery new types of diaphragm material and preparation method
CN110416477A (en) * 2019-07-19 2019-11-05 田韬 A kind of lithium-sulphur cell positive electrode ion infiltration type cladding membrane material
JP7388157B2 (en) * 2019-11-28 2023-11-29 トヨタ紡織株式会社 Separator for secondary batteries
JP6950855B1 (en) * 2020-08-28 2021-10-13 昭和電工マテリアルズ株式会社 Lithium-ion secondary batteries, separation membranes and methods for manufacturing them
CN112216890B (en) * 2020-11-19 2021-11-02 江西海量动力新能源有限公司 Formation method of lithium manganate battery
CN112886140A (en) * 2021-01-29 2021-06-01 苏州科技大学 Modified diaphragm of lithium-sulfur battery and preparation method and application thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707422A (en) * 1983-06-27 1987-11-17 Voltaix, Inc. Composite coating for electrochemical electrode and method
JPH08130034A (en) 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd Lithium secondary battery and separator
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
JPH11339808A (en) 1998-05-29 1999-12-10 Fujikura Ltd Electrode
JP2000215916A (en) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd Polymer electrolyte battery
JP2001200079A (en) 2000-01-17 2001-07-24 Tokuyama Corp Bipolar film and its production method
KR100326466B1 (en) 2000-07-25 2002-02-28 김순택 A Electrolyte for Lithium Sulfur batteries
CN1186391C (en) 2001-04-26 2005-01-26 三星Sdi株式会社 Polymer gel electrolyte and lithium cell using same
CN1412882A (en) * 2001-10-15 2003-04-23 三星Sdi株式会社 Electrolyte for lithium-sulphur cell and lithium-sulphur cell containing said electrolyte
JP2008152985A (en) 2006-12-15 2008-07-03 Toyota Motor Corp Lithium ion cell and its manufacturing method
EP2381510A4 (en) * 2008-12-24 2016-04-20 Mitsubishi Plastics Inc Separator for battery, and non-aqueous lithium battery
KR20100084326A (en) * 2009-01-16 2010-07-26 도레이첨단소재 주식회사 Separator film for lithium secondary battery and lithium secondary battery with the same
JP2010192385A (en) * 2009-02-20 2010-09-02 Toyota Central R&D Labs Inc Sulfur battery
WO2011016342A1 (en) 2009-08-07 2011-02-10 コニカミノルタホールディングス株式会社 Solid electrolyte and lithium secondary battery comprising solid electrolyte
JP6058874B2 (en) * 2010-08-19 2017-01-11 株式会社アストム Ion exchange membrane and method for producing the same
US9093710B2 (en) 2012-01-18 2015-07-28 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
JP2015511391A (en) 2012-02-23 2015-04-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Composition, laminate, electrode, and production method
US8889300B2 (en) * 2012-02-27 2014-11-18 California Institute Of Technology Lithium-based high energy density flow batteries
JP2015520502A (en) 2012-06-19 2015-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company ELECTROCHEMICAL CELL CONTAINING ELECTROLYTE ADDITIVE AND IONOMER ARTICLE, METHOD FOR PRODUCING THE SAME
CN103682414B (en) * 2012-08-30 2016-01-13 中国科学院大连化学物理研究所 Lithium sulphur flow battery and lithium sulphur flow battery anode electrolyte and preparation thereof
DE102012018621A1 (en) 2012-09-14 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Alkaline-chalcogen battery with low self-discharge and high cycle stability and performance
CN103474603B (en) * 2013-09-11 2016-11-02 清华大学 Ion selective separator and preparation and application method thereof for lithium-sulfur rechargeable battery
CN203725158U (en) * 2013-10-28 2014-07-23 上海长翊科技股份有限公司 Microstructure-optimized gallium ion exchange resin particle
KR20160093699A (en) 2013-12-03 2016-08-08 가부시키가이샤 알박 Lithium sulfur secondary battery
KR101610446B1 (en) 2013-12-30 2016-04-07 현대자동차주식회사 A separator of lithium sulfur secondary battery
US20150188109A1 (en) * 2013-12-30 2015-07-02 Hyundai Motor Company Separator for lithium-sulfur secondary battery
WO2015141952A1 (en) 2014-03-19 2015-09-24 (주)오렌지파워 Lithium sulfur battery
US10164289B2 (en) * 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods

Also Published As

Publication number Publication date
EP3364490A1 (en) 2018-08-22
EP3364486B1 (en) 2021-02-17
EP3364490A4 (en) 2019-06-05
US20180287120A1 (en) 2018-10-04
JP6856027B2 (en) 2021-04-07
WO2017064842A1 (en) 2017-04-20
CN108140899A (en) 2018-06-08
CN108140899B (en) 2021-11-09
US11196078B2 (en) 2021-12-07
CN114122387A (en) 2022-03-01
JPWO2017064843A1 (en) 2018-08-02
CN108140875B (en) 2021-02-26
EP3364490B1 (en) 2021-03-03
US20220131177A1 (en) 2022-04-28
US20180294506A1 (en) 2018-10-11
CN108140875A (en) 2018-06-08
JPWO2017064842A1 (en) 2018-08-02
WO2017064843A1 (en) 2017-04-20
EP3364486A4 (en) 2019-05-22
US10892513B2 (en) 2021-01-12
EP3364486A1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6757504B2 (en) Non-aqueous electrolyte secondary battery
JP6156939B2 (en) Lithium ion secondary battery
CN105794035B (en) Secondary cell electrolyte and the secondary cell for using it
JP6848330B2 (en) Non-aqueous electrolyte power storage element
JPWO2019077919A1 (en) Manufacturing method of non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
KR20130116038A (en) Multi layered electrode and the method of the same
JP6702338B2 (en) Non-aqueous electrolyte storage element and method for manufacturing the same
EP3404763B1 (en) Electricity storage element
JP2018049821A (en) Nonaqueous electrolyte for power storage element, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
WO2020067370A1 (en) Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element
JP2020021596A (en) Nonaqueous electrolyte power storage element and method of manufacturing nonaqueous electrolyte power storage element
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
JP7205484B2 (en) Positive Electrode, Non-Aqueous Electrolyte Storage Element, Method for Manufacturing Positive Electrode, and Method for Manufacturing Non-Aqueous Electrolyte Storage Element
KR101493255B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
JP6922242B2 (en) Manufacturing method of non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
CN114122387B (en) Nonaqueous electrolyte secondary battery
JP2020173998A (en) Non-aqueous electrolyte storage element and manufacturing method thereof
JP2016081706A (en) Negative electrode and lithium ion secondary battery arranged by use thereof
CN116982187A (en) Nonaqueous electrolyte storage element
JP2023076354A (en) Non-aqueous electrolyte storage element, device, and method for manufacturing non-aqueous electrolyte storage element
JP2021111583A (en) Power storage device
CN116830227A (en) Nonaqueous electrolyte power storage element, electronic device, and automobile
CN117716556A (en) Nonaqueous electrolyte storage element
JP2018125210A (en) Nonaqueous electrolyte storage device and manufacturing method thereof
KR20130116809A (en) Electrode active material for secondary battery and the method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6757504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150