JP6754459B2 - Method for producing amniotic mesenchymal cell composition, method for cryopreservation, and therapeutic agent - Google Patents

Method for producing amniotic mesenchymal cell composition, method for cryopreservation, and therapeutic agent Download PDF

Info

Publication number
JP6754459B2
JP6754459B2 JP2019038143A JP2019038143A JP6754459B2 JP 6754459 B2 JP6754459 B2 JP 6754459B2 JP 2019038143 A JP2019038143 A JP 2019038143A JP 2019038143 A JP2019038143 A JP 2019038143A JP 6754459 B2 JP6754459 B2 JP 6754459B2
Authority
JP
Japan
Prior art keywords
cells
cell
mesenchymal
collagenase
amniotic membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019038143A
Other languages
Japanese (ja)
Other versions
JP2019080580A (en
Inventor
研一 山原
研一 山原
明彦 田口
明彦 田口
俊裕 相馬
俊裕 相馬
俊介 大西
俊介 大西
小林 明
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Hyogo College of Medicine
Kaneka Corp
National Cerebral and Cardiovascular Center
Foundation for Biomedical Research and Innovation at Kobe
Original Assignee
Hokkaido University NUC
Hyogo College of Medicine
Kaneka Corp
National Cerebral and Cardiovascular Center
Foundation for Biomedical Research and Innovation at Kobe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66669265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6754459(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hokkaido University NUC, Hyogo College of Medicine, Kaneka Corp, National Cerebral and Cardiovascular Center, Foundation for Biomedical Research and Innovation at Kobe filed Critical Hokkaido University NUC
Publication of JP2019080580A publication Critical patent/JP2019080580A/en
Application granted granted Critical
Publication of JP6754459B2 publication Critical patent/JP6754459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、羊膜から、細胞治療応用に適した間葉系細胞(Mesenchymal stromal cell:MSC)を高純度かつ簡便に分離することによる間葉系細胞組成物の製造方法に関する。さらに本発明は、凍結保存された間葉系細胞組成物の製造方法、並びに間葉系細胞組成物を含む治療剤に関する。 The present invention relates to a method for producing a mesenchymal cell composition by separating mesenchymal stromal cells (MSCs) suitable for cell therapy application from the amniotic membrane with high purity and easily. Furthermore, the present invention relates to a method for producing a mesenchymal cell composition cryopreserved, and a therapeutic agent containing the mesenchymal cell composition.

間葉系幹細胞は、骨髄に存在することが指摘された体性幹細胞であり、幹細胞として骨、軟骨及び脂肪に分化する能力を有する。間葉系幹細胞は、細胞治療における有望な細胞ソースとして注目され、最近では、胎盤、臍帯、卵膜などの胎児付属物にも存在することが知られている。 Mesenchymal stem cells are somatic stem cells that have been pointed out to be present in the bone marrow, and have the ability to differentiate into bone, cartilage, and fat as stem cells. Mesenchymal stem cells have attracted attention as a promising cell source in cell therapy, and have recently been known to be present in fetal appendages such as placenta, umbilical cord, and egg membrane.

現在、間葉系幹細胞は、分化能以外に免疫抑制能を有することで注目されており、骨髄由来間葉系幹細胞を用い、造血幹細胞移植における急性移植片対宿主病(GVHD)、及び炎症性腸疾患のCrohn病に対する治験が進んでいる。本発明者らは胎児付属物由来間葉系幹細胞の免疫関連疾患に対する臨床応用を目指した研究を進めてきた。これまでに本発明者らは、胎児付属物由来間葉系幹細胞が骨髄由来間葉系幹細胞と同様の分化能を有すること(非特許文献6)、卵膜由来間葉系幹細胞がラット自己免疫性心筋炎モデルの病態を改善すること(非特許文献7)、並びに臍帯由来間葉系幹細胞がマウス急性移植片対宿主病(GVHD)モデルの救命率を改善すること(非特許文献8)を報告してきた。胎児付属物由来間葉系幹細胞は、骨髄由来間葉系幹細胞と比較し、一度に多くの間葉系幹細胞が得られ、大量培養が短期間・低コストに可能であり、非侵襲的に採取可能であり、免疫抑制効果も高い(非特許文献7)。これらのことから、胎児付属物由来間葉系幹細胞を含むMSCは、その著明な免疫抑制効果により、様々な免疫関連疾患を対象とした細胞治療に応用可能である。 Currently, mesenchymal stem cells are attracting attention because they have immunosuppressive ability in addition to differentiation ability. Using bone marrow-derived mesenchymal stem cells, acute graft-versus-host disease (GVHD) in hematopoietic stem cell transplantation and inflammatory Clinical trials for Crohn's disease, an intestinal disease, are underway. The present inventors have proceeded with research aimed at clinical application of mesenchymal stem cells derived from fetal appendages to immune-related diseases. So far, the present inventors have stated that fetal appendage-derived mesenchymal stem cells have the same differentiation potential as bone marrow-derived mesenchymal stem cells (Non-Patent Document 6), and that egg membrane-derived mesenchymal stem cells are rat autoimmune. Improving the pathophysiology of the sexual myocarditis model (Non-Patent Document 7), and improving the survival rate of umbilical cord-derived mesenchymal stem cells in the mouse acute graft-versus-host disease (GVHD) model (Non-Patent Document 8). I have reported. Compared to bone marrow-derived mesenchymal stem cells, fetal appendage-derived mesenchymal stem cells can obtain more mesenchymal stem cells at one time, can be mass-cultured in a short period of time and at low cost, and are collected non-invasively. It is possible and has a high immunosuppressive effect (Non-Patent Document 7). From these facts, MSC containing fetal appendage-derived mesenchymal stem cells can be applied to cell therapy for various immune-related diseases due to its remarkable immunosuppressive effect.

これまでに、胎児付属物である卵膜、胎盤および羊水から、多能性ヒト胎児由来幹細胞を取得する方法が報告されている(特許文献1)。特許文献1では、これら幹細胞をc-kit(CD117)陽性と位置づけ、フローサイトメトリーにより分離する方法が記載されている。また、胎盤および臍帯から、成人または小児の様々な細胞に分化する能力を有する幹細胞・前駆細胞を取得する方法も報告されている(特許文献2)。特許文献2では、様々な臓器や組織を構成する細胞に分化する能力を有する(=間葉系幹細胞以上の分化能力を有する)幹細胞・前駆細胞が胎盤および臍帯に含まれており、その分離に関する方法が記載されている。 So far, a method for obtaining pluripotent human fetal-derived stem cells from the egg membrane, placenta, and amniotic fluid, which are fetal appendages, has been reported (Patent Document 1). Patent Document 1 describes a method of positioning these stem cells as c-kit (CD117) positive and separating them by flow cytometry. In addition, a method for obtaining stem cells / progenitor cells capable of differentiating into various adult or pediatric cells from the placenta and umbilical cord has also been reported (Patent Document 2). In Patent Document 2, stem cells / progenitor cells having the ability to differentiate into cells constituting various organs and tissues (= having the ability to differentiate more than mesenchymal stem cells) are contained in the placenta and umbilical cord, and the separation thereof. The method is described.

これら胎児付属物由来の幹細胞および前駆細胞を含む細胞分離には、一般にトリプシン、コラゲナーゼ又はディスパーゼ等の分解酵素が用いられている(特許文献1及び2、非特許文献1〜4)。胎児付属物のうち卵膜は、羊水に接し最も胎児側に位置する羊膜と、その外側に位置する絨毛膜とに分けられ、卵膜(羊膜および絨毛膜)由来のMSCも分解酵素を用いて分離する方法が一般的である(非特許文献1及び4)。 Degrading enzymes such as trypsin, collagenase, and dispase are generally used for cell separation containing stem cells and progenitor cells derived from these fetal appendages (Patent Documents 1 and 2, Non-Patent Documents 1 to 4). Of the fetal appendages, the amniotic membrane is divided into the amniotic membrane located closest to the fetal side in contact with amniotic fluid and the chorion located outside it, and MSCs derived from the amniotic membrane (amniotic membrane and chorion) also use degrading enzymes. The method of separation is common (Non-Patent Documents 1 and 4).

胎児付属物の卵膜の一部である羊膜は、羊水に接する上皮細胞層と、その下にあるMSCを含む細胞外基質層とに分けられる(図1)。そのため、羊膜全体をトリプシンにて処理した場合、細胞外基質層のみならず上皮細胞層を支持する基底膜も消化され、結果、上皮細胞とMSCの混合物となるという問題があった。この問題の解決方法としては、非特許文献1〜3のように、羊膜からMSCを高純度に分離するために、分解酵素や用手的に上皮細胞を先に取り除き、残った細胞外基質層を再度分離酵素で処理し、MSCを回収する方法がある。しかし、これらの方法では、完全には上皮細胞を除去できない、又はMSCの回収量が下がるという問題があった。 The amniotic membrane, which is part of the egg membrane of the fetal appendage, is divided into an epithelial cell layer in contact with amniotic fluid and an extracellular matrix layer containing MSCs beneath it (Fig. 1). Therefore, when the entire amniotic membrane is treated with trypsin, not only the extracellular matrix layer but also the basement membrane supporting the epithelial cell layer is digested, resulting in a problem that a mixture of epithelial cells and MSC is formed. As a solution to this problem, as in Non-Patent Documents 1 to 3, in order to separate MSCs from the amniotic membrane with high purity, epithelial cells are first removed by degrading enzymes or manually, and the remaining extracellular matrix layer remains. There is a method of recovering the MSC by treating the MSC again with a separating enzyme. However, these methods have problems that epithelial cells cannot be completely removed or the amount of MSCs recovered is reduced.

更に、卵膜MSCをオンデマンドで細胞治療用に使用するには、凍結保存が必須である。研究レベルではジメチルスルホキシド(DMSO)をベースとした各種の細胞凍結保存液が市販され、骨髄MSCの臨床試験でもDMSOを10%含有した凍結保存液が用いられているが、解凍後の細胞の生存率が下がるという問題があった。 In addition, cryopreservation is essential for the on-demand use of egg membrane MSCs for cell therapy. At the research level, various cell cryopreservation solutions based on dimethyl sulfoxide (DMSO) are commercially available, and in clinical trials of bone marrow MSC, cryopreservation solutions containing 10% DMSO are used, but cell survival after thawing. There was a problem that the rate dropped.

特許第4330995号Patent No. 4330995 特許第3934539号Patent No. 3934539 特表第2010−518096号Special Table No. 2010-518906

Am J Obstet Gynecol. 2004;190(1):87-92.Am J Obstet Gynecol. 2004; 190 (1): 87-92. Am J Obstet Gynecol. 2006;194(3):664-73.Am J Obstet Gynecol. 2006; 194 (3): 664-73. Current Protocols in Stem Cell Biology 1E.5Current Protocols in Stem Cell Biology 1 E.5 J Tissue Eng Regen Med. 2007;1(4):296-305.J Tissue Eng Regen Med. 2007; 1 (4): 296-305. Cytotherapy. 2006;8(4):315-7.Cytotherapy. 2006; 8 (4): 315-7. Stem Cells. 2008;26(10):2625-33.Stem Cells. 2008; 26 (10): 2625-33. J Mol Cell Cardiol. 2012;53(3):420-8.J Mol Cell Cardiol. 2012; 53 (3): 420-8. Cytotherapy. 2012;14(4):441-50.Cytotherapy. 2012; 14 (4): 441-50. BMC Biotechnology 2012;12:49.BMC Biotechnology 2012; 12:49.

ヒト羊膜由来MSCの細胞製剤化を考えると、細菌・ウイルス等のコンタミネーションを排除するため、出来るだけ製造工程は簡便であることが好ましい。複数回の酵素処理は、途中、洗浄・遠心操作等による酵素除去が必要となり、MSC回収効率を下げる結果をもたらす。また、既知の方法では、分解酵素による工程で全ての上皮細胞が除去される訳ではなく(非特許文献3及び実施例3)、依然多くの上皮細胞が羊膜に接着している状態にある。 Considering the cell preparation of human amniotic membrane-derived MSCs, it is preferable that the production process is as simple as possible in order to eliminate contamination of bacteria, viruses and the like. Multiple enzyme treatments require enzyme removal by washing, centrifugation, etc., which results in a decrease in MSC recovery efficiency. Further, in the known method, not all epithelial cells are removed by the step of degrading enzyme (Non-Patent Document 3 and Example 3), and many epithelial cells are still adhered to the amniotic membrane.

また、細胞保存液に関しては、DMSOは細胞毒性を有することから、できるだけ濃度を下げることが望ましい。ラット骨髄由来MSCを用い、DMSO含有量を減らした凍結保存液の報告もなされている(非特許文献9)。 As for the cell preservation solution, DMSO is cytotoxic, so it is desirable to reduce the concentration as much as possible. There is also a report of a cryopreservation solution in which the DMSO content is reduced by using rat bone marrow-derived MSCs (Non-Patent Document 9).

本発明は、上記問題点に鑑みてなされたものであって、一回の酵素処理のみで、簡便かつ無菌的に高純度な羊膜由来MSCを分離することによる間葉系細胞組成物の製造方法を提供することを課題とする。更に本発明は、細胞凝集を抑制し、MSC移植に至適化されている凍結保存された間葉系細胞の製造方法を提供することを課題とする。さらに本発明は、上記方法で製造した羊膜由来MSCを含む細胞治療剤を提供することを課題とする。 The present invention has been made in view of the above problems, and is a method for producing a mesenchymal cell composition by simply and aseptically separating high-purity amniotic membrane-derived MSCs with only one enzyme treatment. The challenge is to provide. Another object of the present invention is to provide a method for producing cryopreserved mesenchymal cells, which suppresses cell aggregation and is optimized for MSC transplantation. Another object of the present invention is to provide a cell therapeutic agent containing an amnion-derived MSC produced by the above method.

本発明者らは上記課題を解決するために鋭意検討した結果、羊膜を、コラゲナーゼと、サーモリシン及び/又はディスパーゼとにより酵素処理し、酵素処理した羊膜をメッシュに通すことによって、間葉系細胞を高純度に分離できることを見出した。さらに本発明者らは、ジメチルスルホキシドを5〜10質量%含有し、ヒドロキシルエチルデンプンを5〜10質量%またはデキストランを1〜5質量%含有する溶液中に間葉系細胞を含む混合物を凍結保存することによって凍結保存された間葉系細胞をMSC移植に至適化した形で製造できることを見出した。さらに本発明者らは、上記の方法で得た間葉系細胞組成物が細胞治療剤として有用であることを実証した。本発明はこれらの知見に基づいて完成したものである。 As a result of diligent studies to solve the above problems, the present inventors treated the amniotic membrane with collagenase and thermolysin and / or dispase, and passed the enzyme-treated amniotic membrane through a mesh to obtain mesenchymal cells. It was found that it can be separated with high purity. Furthermore, the present inventors cryopreserve the mixture containing mesenchymal cells in a solution containing 5 to 10% by mass of dimethyl sulfoxide and 5 to 10% by mass of hydroxylethyl starch or 1 to 5% by mass of dextran. It was found that the cryopreserved mesenchymal cells can be produced in a form optimized for MSC transplantation. Furthermore, the present inventors have demonstrated that the mesenchymal cell composition obtained by the above method is useful as a cell therapeutic agent. The present invention has been completed based on these findings.

すなわち、本明細書によれば以下の発明が提供される。
(1)羊膜を、コラゲナーゼと、サーモリシン及び/又はディスパーゼとにより酵素処理する工程;及び
酵素処理した羊膜をメッシュに通す工程:
を含む、間葉系細胞組成物の製造方法。
(2)メッシュを通過した細胞を回収する工程;及び
回収した細胞を培養する工程:
をさらに含む、(1)に記載の間葉系細胞組成物の製造方法。
(3) 前記メッシュを通過した細胞を回収する工程が、倍量又はそれ以上の量の培地又は平衡塩溶液で濾液を希釈した後、遠心分離により間葉系細胞を回収する工程である、(2)に記載の間葉系細胞組成物の製造方法。
(4) コラゲナーゼの濃度が50CDU/ml〜1000CDU/mlであり、サーモリシンおよび/又はディスパーゼの濃度が100PU/ml〜800PU/mlである、(1)から(3)の何れかに記載の間葉系細胞組成物の製造方法。
(5) 酵素処理する工程が、30〜40℃で30分以上処理する工程である、(1)から(4)の何れかに記載の間葉系細胞組成物の製造方法。
(6) 酵素処理する工程が、スターラー又はシェーカーを用いて10rpm/分〜100rpm/分で30分以上撹拌する工程である、(1)から(5)の何れかに記載の間葉系細胞組成物の製造方法。
(7) 羊膜が帝王切開により得られたものである、(1)から(6)の何れかに記載の間葉系細胞組成物の製造方法。
(8) メッシュのポアサイズが40〜200μmである、(1)から(7)の何れかに記載の間葉系細胞組成物の製造方法。
(9) 羊膜をメッシュを通す工程が自然落下である、(1)から(8)の何れかに記載の間葉系細胞組成物の製造方法。
That is, according to the present specification, the following invention is provided.
(1) A step of enzymatically treating the amniotic membrane with collagenase and thermolysin and / or dispase; and a step of passing the enzyme-treated amniotic membrane through a mesh:
A method for producing a mesenchymal cell composition, which comprises.
(2) Step of collecting cells that have passed through the mesh; and step of culturing the collected cells:
The method for producing a mesenchymal cell composition according to (1), further comprising.
(3) The step of recovering the cells that have passed through the mesh is a step of recovering the mesenchymal cells by centrifugation after diluting the filtrate with a double amount or more of the medium or the balanced salt solution. The method for producing a mesenchymal cell composition according to 2).
(4) The mesenchyme according to any one of (1) to (3), wherein the collagenase concentration is 50 CDU / ml to 1000 CDU / ml, and the thermolysin and / or dispase concentration is 100 PU / ml to 800 PU / ml. A method for producing a system cell composition.
(5) The method for producing a mesenchymal cell composition according to any one of (1) to (4), wherein the enzyme treatment step is a step of treating at 30 to 40 ° C. for 30 minutes or more.
(6) The mesenchymal cell composition according to any one of (1) to (5), wherein the enzyme treatment step is a step of stirring at 10 rpm / min to 100 rpm / min for 30 minutes or more using a stirrer or a shaker. How to make things.
(7) The method for producing a mesenchymal cell composition according to any one of (1) to (6), wherein the amniotic membrane is obtained by caesarean section.
(8) The method for producing a mesenchymal cell composition according to any one of (1) to (7), wherein the pore size of the mesh is 40 to 200 μm.
(9) The method for producing a mesenchymal cell composition according to any one of (1) to (8), wherein the step of passing the amniotic membrane through the mesh is free fall.

(10) CD324及びCD326陽性上皮細胞の含有率が20%以下であり、CD90陽性細胞の含有率が75%以上であり、および生細胞率が80%以上である、間葉系細胞組成物。
(11) (1)から(9)の何れかに記載の間葉系細胞組成物の製造方法により得られる、(11)に記載の間葉系細胞組成物。
(12) (10)又は(11)に記載の間葉系細胞組成物を0.05質量%より多く5質量%以下のアルブミンを含有する培地にて培養することにより得られる、間葉系細胞培養組成物。
(10) A mesenchymal cell composition having a content of CD324 and CD326-positive epithelial cells of 20% or less, a content of CD90-positive cells of 75% or more, and a viable cell rate of 80% or more.
(11) The mesenchymal cell composition according to (11), which is obtained by the method for producing a mesenchymal cell composition according to any one of (1) to (9).
(12) Mesenchymal cells obtained by culturing the mesenchymal cell composition according to (10) or (11) in a medium containing more than 0.05% by mass and 5% by mass or less of albumin. Culture composition.

(13) ジメチルスルホキシドを5〜10質量%含有し、ヒドロキシルエチルデンプンを5〜10質量%またはデキストランを1〜5質量%含有する溶液中に間葉系細胞を含む混合物を凍結保存する工程を含む、凍結保存された間葉系細胞の製造方法。
(14) 前記溶液が、さらにヒトアルブミンを0質量%より多く5質量%以下含有する溶液である、(13)に記載の凍結保存された間葉系細胞の製造方法。
(15) 前記間葉系細胞が、(1)から(9)の何れかに記載の方法により製造された間葉系細胞組成物に含まれる間葉系細胞、請求(10)又は(11)に記載の間葉系細胞組成物に含まれる間葉系細胞、又は(12)に記載の間葉系細胞培養組成物に含まれる間葉系細胞である、(13)又は(14)に記載の凍結保存された間葉系細胞の製造方法。
(16) (13)から(15)の何れかに記載の方法により得られる凍結保存された間葉系細胞を解凍後、輸液製剤により2倍以上に希釈する工程を含む、間葉系細胞投与用組成物を製造する方法。
(13) Including a step of cryopreserving a mixture containing mesenchymal cells in a solution containing 5 to 10% by mass of dimethyl sulfoxide and 5 to 10% by mass of hydroxylethyl starch or 1 to 5% by mass of dextran. , A method for producing cryopreserved mesenchymal cells.
(14) The method for producing a cryopreserved mesenchymal cell according to (13), wherein the solution is a solution further containing human albumin in an amount of more than 0% by mass and 5% by mass or less.
(15) The mesenchymal cell, claim (10) or (11), wherein the mesenchymal cell is contained in the mesenchymal cell composition produced by the method according to any one of (1) to (9). (13) or (14), wherein the mesenchymal cells contained in the mesenchymal cell composition according to (12) or the mesenchymal cells contained in the mesenchymal cell culture composition according to (12). A method for producing cryopreserved mesenchymal cells.
(16) Administration of mesenchymal cells, which comprises a step of thawing the cryopreserved mesenchymal cells obtained by the method according to any one of (13) to (15) and then diluting the mesenchymal cells with an infusion preparation at least 2-fold. A method for producing a composition for use.

(17) (10)又は(11)に記載の間葉系細胞組成物、および/又は(12)に記載の間葉系細胞培養組成物、および/又は(16)に記載の方法により製造される間葉系細胞投与用組成物を有効成分として含む、細胞治療剤。
(18) 注射用製剤である、(17)に記載の細胞治療剤。
(19) 細胞塊又はシート状構造の移植用製剤である、(17)に記載の細胞治療剤。
(20) 移植片対宿主病、炎症性腸疾患、全身性エリテマトーデス、肝硬変、又は放射線腸炎から選択される疾患の治療剤である、(17)から(19)の何れかに記載の治療剤。
(17) The mesenchymal cell composition according to (10) or (11) and / or the mesenchymal cell culture composition according to (12), and / or produced by the method according to (16). A cell therapeutic agent containing a composition for administration of mesenchymal cells as an active ingredient.
(18) The cell therapeutic agent according to (17), which is an injectable preparation.
(19) The cell therapeutic agent according to (17), which is a preparation for transplantation of a cell mass or a sheet-like structure.
(20) The therapeutic agent according to any one of (17) to (19), which is a therapeutic agent for a disease selected from graft-versus-host disease, inflammatory bowel disease, systemic lupus erythematosus, liver cirrhosis, or radiation enteritis.

本発明によれば、ヒト羊膜由来MSCを簡易且つ精度良く分離することができる。従って、本発明は再生医療分野において有効性が示されているMSCの産業利用促進につながることが期待できる。 According to the present invention, human amniotic membrane-derived MSCs can be separated easily and accurately. Therefore, the present invention can be expected to lead to the promotion of industrial use of MSCs, which have been shown to be effective in the field of regenerative medicine.

ヒト羊膜の組織図である。It is a tissue diagram of a human amniotic membrane. 本実施形態にかかる羊膜由来MSC分離法の概観を説明する図である。It is a figure explaining the overview of the amniotic membrane-derived MSC separation method concerning this embodiment. コラゲナーゼの濃度を一定にし、サーモリシンの濃度を変更した場合の、ヒト羊膜の酵素処理から得られた細胞に関する表面抗原マーカー発現解析である。It is a surface antigen marker expression analysis on cells obtained by enzyme treatment of human amniotic membrane when the concentration of collagenase is constant and the concentration of thermolysin is changed. コラゲナーゼの濃度を一定にし、サーモリシンの濃度を変更した場合の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is a HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the concentration of collagenase is kept constant and the concentration of thermolysin is changed. コラゲナーゼを全く含有せず、サーモリシンの濃度を変更した場合の、ヒト羊膜の酵素処理から得られた細胞に関する表面抗原マーカー発現解析である。It is a surface antigen marker expression analysis on cells obtained by enzyme treatment of human amniotic membrane when the concentration of thermolysin was changed without containing collagenase at all. コラゲナーゼを全く含有せず、サーモリシンの濃度を変更した場合の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is an HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the concentration of thermolysin was changed without containing collagenase at all. トリプシンを用いた場合の、ヒト羊膜の酵素処理から得られた細胞に関する表面抗原マーカー発現解析である。This is a surface antigen marker expression analysis on cells obtained from enzyme treatment of human amniotic membrane when trypsin was used. トリプシンを用いた場合の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is a HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when trypsin was used. サーモリシン濃度を250PU/mlに固定し、コラゲナーゼ濃度を振った際の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is an HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the thermolysin concentration was fixed at 250 PU / ml and the collagenase concentration was shaken. サーモリシン濃度を500PU/mlに固定し、コラゲナーゼ濃度を振った際の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is an HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the thermolysin concentration was fixed at 500 PU / ml and the collagenase concentration was shaken. コラゲナーゼの濃度を一定にし、ディスパーゼの濃度を変更した場合の、ヒト羊膜の酵素処理から得られた細胞に関する表面抗原マーカー発現解析である。It is a surface antigen marker expression analysis on cells obtained by enzyme treatment of human amniotic membrane when the concentration of collagenase is constant and the concentration of dispase is changed. コラゲナーゼの濃度を一定にし、ディスパーゼの濃度を変更した場合の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is an HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the collagenase concentration was kept constant and the dispase concentration was changed. コラゲナーゼを全く含有せず、ディスパーゼの濃度を変更した場合の、ヒト羊膜の酵素処理から得られた細胞に関する表面抗原マーカー発現解析である。This is a surface antigen marker expression analysis on cells obtained by enzyme treatment of human amniotic membrane when the concentration of dispase was changed without containing collagenase at all. コラゲナーゼを全く含有せず、ディスパーゼの濃度を変更した場合の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is an HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the concentration of dispase was changed without containing collagenase at all. ディスパーゼ濃度を250PU/mlに固定し、コラゲナーゼ濃度を振った際の、ヒト羊膜の酵素処理後、フィルター上に残存する組織のHE染色像である。It is a HE-stained image of the tissue remaining on the filter after the enzyme treatment of the human amniotic membrane when the dispase concentration was fixed at 250 PU / ml and the collagenase concentration was shaken. 各種凍結保存液から急速解凍した羊膜由来MSCをプラスチックウェルに播種後、24時間経過した写真である。It is a photograph 24 hours after sowing the amniotic membrane-derived MSC rapidly thawed from various cryopreservation solutions in a plastic well. 各種凍結保存液から急速解凍した羊膜由来MSCをプラスチックウェルに播種後、48時間経過した写真である。It is a photograph 48 hours after sowing amniotic membrane-derived MSCs rapidly thawed from various cryopreservation solutions in plastic wells. マウス急性GVHDモデルにおける羊膜由来MSC移植による治療効果を、経時的な体重変化率で見たものである。The therapeutic effect of amniotic membrane-derived MSC transplantation in a mouse acute GVHD model is examined by the rate of change in body weight over time. ラット炎症性腸疾患モデルにおける羊膜由来MSC移植による治療効果を、経時的な疾患活動性の変化、および治療5日目における大腸の長さで見たものである。The therapeutic effect of amniotic membrane-derived MSC transplantation in a rat inflammatory bowel disease model was observed in terms of changes in disease activity over time and the length of the large intestine on day 5 of treatment. マウス全身性エリテマトーデスモデルにおける羊膜由来MSC移植による治療効果を、経時的な尿蛋白の変化で見たものである。The therapeutic effect of amniotic membrane-derived MSC transplantation in a mouse systemic lupus erythematosus model was observed by changes in urinary protein over time. ラット肝硬変モデルにおける羊膜由来MSC移植による治療効果を、肝臓の繊維化面積率で見たものである。The therapeutic effect of amnion-derived MSC transplantation in a rat liver cirrhosis model is examined by the fibrotic area ratio of the liver. ラット放射線腸炎モデルにおける羊膜由来MSC移植による治療効果を、直腸のPAS染色によるPAS陽性杯細胞数で見たものである。The therapeutic effect of amnion-derived MSC transplantation in a rat radiation enteritis model was examined by the number of PAS-positive goblet cells by PAS staining of the rectum.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are for facilitating understanding of the principles of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiment, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

[1]用語の説明
本明細書において「胎児付属物」は、卵膜、胎盤、臍帯および羊水を指す。さらに「卵膜」は、胎児の羊水を含む胎嚢であり、内側から羊膜、絨毛膜および脱落膜からなる。このうち、羊膜と絨毛膜は胎児を起源とする。「羊膜」は、卵膜の最内層にある血管に乏しい透明薄膜で、内壁は分泌機能のある一層の上皮細胞で覆われ羊水を分泌する。
[1] Explanation of terms As used herein, the term "fetal appendage" refers to the egg membrane, placenta, umbilical cord, and amniotic fluid. Further, the "egg membrane" is a fetal sac containing fetal amniotic fluid, which is composed of amniotic membrane, chorioamnionitis and decidua from the inside. Of these, the amniotic membrane and chorion originate from the fetus. The "amniotic membrane" is a transparent thin film with few blood vessels in the innermost layer of the egg membrane, and the inner wall is covered with a single layer of epithelial cells having a secretory function to secrete amniotic fluid.

本明細書における「間葉系細胞(Mesenchymal stromal cell:MSC)」は、間葉系および前駆細胞(1つ又は複数の様々な臓器又は組織を構成する細胞に分化する能力を有する細胞を意味)を含有し、The International Society for Cellular Therapyが提唱する多能性間葉系細胞(Mesenchymal stromal cell:MSC)の定義を満たす細胞を指す(非特許文献5、下記参照)。 As used herein, "Mesenchymal stromal cell (MSC)" means a mesenchymal stromal cell (MSC) (meaning a cell capable of differentiating into cells constituting one or more various organs or tissues). Refers to cells that contain the above and meet the definition of pluripotent mesenchymal stromal cells (MSCs) advocated by The International Society for Cellular Therapy (Non-Patent Document 5, see below).

多能性間葉系細胞の定義
i)標準培地での培養条件で、プラスチックに接着性を示す。
ii)表面抗原CD105, CD73, CD90が陽性であり、CD45, CD34, CD14, CD11b, CD79alpha, CD19, HLA-DRが陰性。
iii)培養条件にて骨細胞、脂肪細胞、軟骨細胞に分化可能。
Definition of pluripotent mesenchymal cells
i) Adhesive to plastic under culture conditions in standard medium.
ii) The surface antigens CD105, CD73, and CD90 are positive, and CD45, CD34, CD14, CD11b, CD79alpha, CD19, and HLA-DR are negative.
iii) Can differentiate into bone cells, adipocytes, and chondrocytes under culture conditions.

本明細書における「間葉系細胞組成物」は、間葉系細胞を含む任意の組成物を意味し、特に限定されないが、例えば、羊膜を分解酵素にて処理した後の間葉系細胞を含有する細胞浮遊液などを意味する。
本明細書における「間葉系細胞培養組成物」とは、上記の間葉系細胞組成物を培養することにより得られる細胞浮遊液などを意味する。
本明細書における「間葉系細胞投与用組成物」とは、上記の間葉系細胞組成物を用いて投与に適した形に調製した任意の組成物を意味し、特には限定されないが、例えば、ジメチルスルホキシドを5〜10質量%含有し、ヒドロキシルエチルデンプンを5〜10質量%またはデキストランを1〜5質量%含有する溶液中に間葉系細胞を含む混合物に輸液製剤を2倍量以上加えて得られる細胞浮遊液などを意味する。
As used herein, the term "mesenchymal cell composition" means any composition including mesenchymal cells, and is not particularly limited, but for example, mesenchymal cells after treatment of sheep membrane with a degrading enzyme. It means a cell suspension containing the cells.
The term "mesenchymal cell culture composition" as used herein means a cell suspension obtained by culturing the above-mentioned mesenchymal cell composition.
The term "composition for administration of mesenchymal cells" as used herein means any composition prepared in a form suitable for administration using the above-mentioned composition for mesenchymal cell administration, and is not particularly limited. For example, more than twice the amount of an infusion preparation in a mixture containing mesenchymal cells in a solution containing 5-10% by mass of dimethyl sulfoxide and 5-10% by mass of hydroxylethyl starch or 1-5% by mass of dextran. In addition, it means a cell suspension obtained.

[2]間葉系細胞組成物の製造方法
本発明の間葉系細胞組成物の製造方法は、羊膜を、コラゲナーゼと、サーモリシン及び/又はディスパーゼとにより酵素処理する工程;及び酵素処理した羊膜をメッシュに通す工程を含む方法である。
[2] Method for producing mesenchymal cell composition The method for producing a mesenchymal cell composition of the present invention is a step of enzyme-treating amniotic membrane with collagenase and thermolysin and / or dispase; and enzyme-treated amniotic membrane. It is a method including a step of passing through a mesh.

本発明による間葉系細胞組成物の製造方法の一例においては、ヒト羊膜を、至適濃度に調整したコラゲナーゼとサーモリシン及び/又はディスパーゼとを含有する酵素液で一回のみ処理し、酵素処理後の羊膜消化液をメッシュに通すことができる。至適濃度に調整したコラゲナーゼとサーモリシン及び/又はディスパーゼでは消化されない基底膜を含む上皮細胞層はメッシュに残り、至適濃度に調整したコラゲナーゼとサーモリシン及び/又はディスパーゼでは消化される細胞外基質層に含まれるMSCはメッシュを通過することから、メッシュを通過した細胞を回収することにより、MSCを回収することができる。さらに、回収した細胞を培養することによって間葉系細胞組成物を製造してもよい。 In an example of the method for producing a mesenchymal cell composition according to the present invention, human amniotic membrane is treated with an enzyme solution containing collagenase adjusted to an optimum concentration and thermolysin and / or dispase only once, and after the enzyme treatment. The amniotic membrane digestive juice can be passed through the mesh. The epithelial cell layer containing the basement membrane that is not digested by collagenase and thermolysin and / or dispase adjusted to the optimum concentration remains in the mesh, and becomes the extracellular matrix layer that is digested by collagenase and thermolicin and / or dispase adjusted to the optimum concentration. Since the contained MSC passes through the mesh, the MSC can be recovered by collecting the cells that have passed through the mesh. Furthermore, the mesenchymal cell composition may be produced by culturing the collected cells.

図1は、ヒト羊膜の組織図である。図1に示されるように、羊膜は表層の上皮細胞層とその下にある細胞外基質層からなり、後者にはMSCが含まれている。羊膜上皮細胞は、他の上皮細胞同様、特徴として上皮カドヘリン(E-cadherin:CD324)および上皮接着因子(EpCAM:CD326)を発現しているのに対し、MSCはこれら上皮特異的表面抗原マーカーを発現しておらず、FACSで容易に区別可能である(図3)。 FIG. 1 is a tissue diagram of human amniotic membrane. As shown in FIG. 1, the amniotic membrane consists of a superficial epithelial cell layer and an underlying extracellular matrix layer, the latter containing MSC. Amortic epithelial cells, like other epithelial cells, characteristically express epithelial cadherin (E-cadherin: CD324) and epithelial adhesion factor (EpCAM: CD326), whereas MSCs use these epithelial-specific surface antigen markers. It is not expressed and can be easily distinguished by FACS (Fig. 3).

図2は、本実施形態にかかる羊膜由来MSC分離法の概要を説明する図である。ヒト胎児付属物から羊膜を物理的に採取する(A)。羊膜を生理食塩水等の等張液にて洗浄し(B)、至適濃度のコラゲナーゼとサーモリシン及び/又はディスパーゼとを含有する酵素を含有する溶液に羊膜を浸して、適温にて震盪攪拌する(C)。上皮細胞層は細胞外基質のみを標的とする酵素処理では個々の細胞に分離されず層構造のままであるため、得られた羊膜消化液をメッシュに通すと(D)、上皮細胞層はメッシュ上に残り、細胞外基質層に含まれるMSCはメッシュを通過し、回収することが可能となる。Eは遠心管、Fは培養皿、Gは培養細胞の写真である。 FIG. 2 is a diagram illustrating an outline of the amniotic membrane-derived MSC separation method according to the present embodiment. Physical collection of amniotic membrane from human fetal appendages (A). The amniotic membrane is washed with an isotonic solution such as physiological saline (B), the amniotic membrane is immersed in a solution containing an enzyme containing collagenase at an optimum concentration and thermolysin and / or dispase, and the amniotic membrane is shaken and stirred at an appropriate temperature. (C). Since the epithelial cell layer is not separated into individual cells by enzyme treatment targeting only extracellular matrix and remains in a layered structure, when the obtained sheep membrane digestive juice is passed through a mesh (D), the epithelial cell layer becomes a mesh. The MSC that remains on top and is contained in the extracellular matrix layer can pass through the mesh and be recovered. E is a centrifuge tube, F is a culture dish, and G is a photograph of cultured cells.

本発明における実施形態を一例として詳細に述べる。
1.手術室にて待機的帝王切開例からヒト胎児付属物を無菌的に採取する。
2.胎児付属物から羊膜を無菌的且つ用手的に剥離する。
3.羊膜を滅菌容器(ディスポーザブルカップ)に移し、生理食塩水等の等張液を用いて数回洗浄し、付着した血液等を取り除く。
4.羊膜を、メス・ハサミ等にて大まかに切る(このステップは省略しても良い)。また、羊膜は、培地中で2〜8℃、24〜48時間保存してから使用してもよい。
5.羊膜を至適濃度に調整したコラゲナーゼと、サーモリシン及び/又はディスパーゼとを含有する溶液に浸し、恒温振盪機を用いて37℃90分間60rpm震盪攪拌する。
6.その結果、上皮細胞層は一層のままとなり、細胞外基質層に含まれるMSCは酵素含有溶液に浮遊する。
7. Falconセルストレーナー(100mmメッシュ)を滅菌チューブ(Falcon50mlチューブ)にセットし、自由落下にて羊膜消化後の細胞含有液をろ過することで、上皮細胞層はメッシュ上に残り、MSCのみがメッシュを通過する。
8.メッシュを通過したMSC含有溶液をハンクス平衡塩液で希釈後、400×g、5分遠心操作にて間葉系細胞をペレットにする。
9. 10%FBS添加aMEMにて希釈し、プラスチックフラスコに播種し、培養する。
An embodiment of the present invention will be described in detail as an example.
1. Aseptically collect human fetal appendages from elective caesarean section cases in the operating room.
2. Aseptically and manually remove the amniotic membrane from the fetal appendages.
3. Transfer the amniotic membrane to a sterilizing container (disposable cup) and wash it several times with an isotonic solution such as physiological saline to remove the attached blood.
4. Roughly cut the amniotic membrane with a scalpel or scissors (this step may be omitted). In addition, the amniotic membrane may be stored in a medium at 2 to 8 ° C. for 24 to 48 hours before use.
5. Immerse the amniotic membrane in a solution containing collagenase adjusted to the optimum concentration and thermolysin and / or dispase, and stir with a constant temperature shaker at 37 ° C. for 90 minutes at 60 rpm.
6. As a result, the epithelial cell layer remains one layer, and the MSCs contained in the extracellular matrix layer float in the enzyme-containing solution.
7. Set the Falcon cell strainer (100 mm mesh) in a sterile tube (Falcon 50 ml tube) and filter the cell-containing solution after amniotic membrane digestion by free fall, so that the epithelial cell layer remains on the mesh and only the MSC meshes. Pass through.
8. After diluting the MSC-containing solution that has passed through the mesh with Hanks equilibrium salt solution, pellet the mesenchymal cells by centrifugation at 400 xg for 5 minutes.
9. Dilute with aMEM supplemented with 10% FBS, sow in a plastic flask and incubate.

本発明によれば、従来のように、酵素処理を複数回行い、処理する度に遠心分離や洗浄を繰り返すことによる回収率の低下や微生物等の汚染を防止し、また、フィコール密度勾配遠心等の精製操作も不要で、容易に短時間で大量の均質なMSCを調製できる。 According to the present invention, as in the prior art, enzyme treatment is performed a plurality of times, and each treatment is repeated for centrifugation and washing to prevent a decrease in recovery rate and contamination with microorganisms, and also for Ficoll density gradient centrifugation and the like. A large amount of homogeneous MSC can be easily prepared in a short time without the need for purification operation.

本発明にかかる羊膜由来MSCの分離に用いられる酵素の組み合わせは、コラーゲンのみを消化するコラゲナーゼと、非極性アミノ酸のN末端側を切断する金属プロテイナーゼであるサーモリシン及び/又はディスパーゼである。
本発明では、コラゲナーゼ、サーモリシンおよび/又はディスパーゼの組合せを用いているが、MSCを遊離し、上皮細胞層を分解しない酵素(又はその組み合わせ)を使用することもできる。コラゲナーゼ、サーモリシンおよび/又はディスパーゼの好ましい濃度の組合せは、酵素処理後顕微鏡観察やFACSにより決定することができる。上皮細胞層が分解されず、細胞外基質層に含まれるMSCが遊離する濃度条件であることが好ましい。
The combination of enzymes used to separate the amniotic membrane-derived MSC according to the present invention is collagenase, which digests only collagen, and thermolysin and / or dispase, which is a metal proteinase that cleaves the N-terminal side of non-polar amino acids.
In the present invention, a combination of collagenase, thermolysin and / or dispase is used, but an enzyme (or a combination thereof) that releases MSCs and does not decompose the epithelial cell layer can also be used. The preferred combination of collagenase, thermolysin and / or dispase concentrations can be determined by post-enzymatic microscopic observation or FACS. It is preferable that the concentration condition is such that the epithelial cell layer is not decomposed and the MSC contained in the extracellular matrix layer is released.

コラゲナーゼの濃度は好ましくは50CDU/ml〜1000CDU/mlであり、サーモリシンおよび/又はディスパーゼの濃度は好ましくは100PU/ml〜800PU/mlである。 The concentration of collagenase is preferably 50 CDU / ml to 1000 CDU / ml, and the concentration of thermolysin and / or dispase is preferably 100 PU / ml to 800 PU / ml.

コラゲナーゼ300CDU/ml単独処理では生細胞数は0.29×106個だったが、サーモリシンを添加すると濃度依存的に生細胞数が増加し、サーモリシン400PU/mlでは生細胞数が1.99×106個と約7倍まで増加し、生細胞率も91.7%であった(実施例1、表1)。
同様に、コラゲナーゼ300CDU/mlにディスパーゼを添加すると濃度依存的に生細胞数は増加し、ディスパーゼ200PU/mlでは生細胞数が3.02×106個まで増加し、生細胞率も83.7%であった(実施例6、表8)。したがって、コラゲナーゼのみでなく、サーモリシン又はディスパーゼを混合して同時に酵素処理することにより、より多くの生細胞が得られる。
コラゲナーゼ300CDU/mlの場合、最適なサーモリシン濃度は400PU/mlであった。この場合のCD90陽性MSC含有率は83.3%、CD324陽性上皮細胞は12.8%であった(実施例1、表2)。また、コラゲナーゼ300CDU/mlに添加する最適なディスパーゼ濃度は200PU/mlであり、この場合のCD90陽性MSC含有率は83.3%、CD324陽性上皮細胞は12.8%であった(実施例6、表9)。
Although collagenase 300CDU / ml alone treated viable cell count was 0.29 × 10 6 cells, the addition of thermolysin increased concentration-dependently the number of viable cells, and the thermolysin 400PU / ml viable cells 1.99 × 10 6 cells It increased up to about 7 times, and the viable cell rate was 91.7% (Example 1, Table 1).
Similarly, the addition of dispase to collagenase 300 CDU / ml increased the number of viable cells in a concentration-dependent manner, and with dispase 200 PU / ml, the number of viable cells increased to 3.02 × 10 6 and the viable cell rate was 83.7%. (Example 6, Table 8). Therefore, more viable cells can be obtained by mixing not only collagenase but also thermolysin or dispase and simultaneously enzymatically treating them.
For collagenase 300 CDU / ml, the optimal thermolysin concentration was 400 PU / ml. In this case, the CD90-positive MSC content was 83.3% and the CD324-positive epithelial cells were 12.8% (Example 1, Table 2). The optimum dispase concentration added to collagenase 300 CDU / ml was 200 PU / ml, and in this case, the CD90-positive MSC content was 83.3% and the CD324-positive epithelial cells were 12.8% (Example 6, Table 9). ..

サーモリシンおよびディスパーゼを単独で400PU/mlよりも高濃度で添加すると、上皮細胞が破綻する現象が観察された(実施例2、図6、実施例7、図14)。 When thermolysin and dispase were added alone at a concentration higher than 400 PU / ml, a phenomenon in which epithelial cells were disrupted was observed (Example 2, FIG. 6, Example 7, FIG. 14).

コラゲナーゼ300CDU/ml、サーモリシン250PU/mlの場合、CD90陽性MSCの含有率は93.3%であり、CD90陽性MSCの細胞数は1.43×106個であった(実施例4、表6)。また、コラゲナーゼ300CDU/ml、ディスパーゼ250PU/mlの場合、CD90陽性MSCの含有率は91.5%であり、CD90陽性MSCの細胞数は1.49×106個であった(実施例8、表11)。 In the case of collagenase 300 CDU / ml and thermolysin 250 PU / ml, the content of CD90-positive MSCs was 93.3%, and the number of CD90-positive MSC cells was 1.43 × 10 6 (Example 4, Table 6). In the case of collagenase 300 CDU / ml and dispase 250 PU / ml, the content of CD90-positive MSCs was 91.5%, and the number of CD90-positive MSC cells was 1.49 × 10 6 (Example 8, Table 11).

酵素処理は、生理食塩水等で洗浄した羊膜を酵素液に浸漬し、スターラー又はシェーカーで撹拌しながら処理することが好ましいがこれ以外の撹拌手段でもよく、要は効率よくMSCが遊離すればよい。これにより細胞外基質層に含まれるMSCが遊離する。酵素処理は、好ましくはスターラー又はシェーカーを用いて10rpm/分〜100rpm/分で30分以上撹拌することにより行うことができる。なお、酵素処理時間の上限は特に限定されないが、一般的には6時間以内、好ましくは3時間以内、例えば、90分以内行うことができる。また、酵素処理温度は、本発明の目的が達成できる限り特に限定されないが、好ましくは30〜40℃であり、より好ましくは30〜37℃である。 For the enzyme treatment, it is preferable to immerse the amniotic membrane washed with physiological saline or the like in an enzyme solution and treat it while stirring with a stirrer or a shaker, but other stirring means may be used, in short, the MSC may be released efficiently. .. This releases the MSC contained in the extracellular matrix layer. The enzyme treatment can be carried out by stirring at 10 rpm / min to 100 rpm / min for 30 minutes or more, preferably using a stirrer or a shaker. The upper limit of the enzyme treatment time is not particularly limited, but it can be generally performed within 6 hours, preferably within 3 hours, for example, within 90 minutes. The enzyme treatment temperature is not particularly limited as long as the object of the present invention can be achieved, but is preferably 30 to 40 ° C, more preferably 30 to 37 ° C.

この際、上皮細胞層が分解しない濃度の組合せにすることが重要である。上皮細胞が混入すると相対的にMSCの含有率が落ちるためである。 At this time, it is important to make a combination of concentrations that do not decompose the epithelial cell layer. This is because the MSC content decreases relatively when epithelial cells are mixed.

遊離したMSCを含む酵素溶液をメッシュを通してろ過することにより、遊離した細胞のみがメッシュを通過し、分解されなかった上皮細胞層はメッシュを通過できずにメッシュ状に残るため、遊離したMSCを容易に回収することができる。この際、メッシュのポアサイズ(大きさ)は本発明の目的に反しない限り特に限定されないが、好ましくは40〜200μmであり、より好ましくは40〜150μmであり、さらに好ましくは70〜150μmであり、特に好ましくは100〜150μmである。メッシュのポアサイズ(大きさ)を上記の範囲とすることにより、圧力を加えず、自然落下により落下させることで細胞の生存率が下がるのを防止することができる。 By filtering the enzyme solution containing the free MSCs through the mesh, only the free cells pass through the mesh, and the undegraded epithelial cell layer cannot pass through the mesh and remains in a mesh shape, facilitating free MSCs. Can be collected in. At this time, the pore size (size) of the mesh is not particularly limited as long as it does not contradict the object of the present invention, but is preferably 40 to 200 μm, more preferably 40 to 150 μm, and further preferably 70 to 150 μm. Particularly preferably, it is 100 to 150 μm. By setting the pore size (size) of the mesh to the above range, it is possible to prevent the cell viability from being lowered by dropping the mesh by free fall without applying pressure.

メッシュの材質としては、ナイロンメッシュが好ましく用いられる。研究用として汎用されるFalconセルストレーナーなどの40mm、70mm、100mmのナイロンメッシュを含有するチューブが利用可能である。また、血液透析などで使用されている医療用メッシュクロス(ナイロンおよびポリエステル)が利用できる。更に、体外循環時に使用される動脈フィルター(ポリエステルメッシュ、40mm〜120mm)も利用可能である。他の材質、例えば、ステンレスメッシュ(金網)等も用いることが可能である。 Nylon mesh is preferably used as the material of the mesh. Tubes containing 40 mm, 70 mm, and 100 mm nylon mesh, such as the Falcon cell strainer, which is commonly used for research, are available. In addition, medical mesh cloths (nylon and polyester) used in hemodialysis and the like can be used. In addition, arterial filters (polyester mesh, 40 mm to 120 mm) used during extracorporeal circulation are also available. Other materials, such as stainless steel mesh (wire mesh), can also be used.

MSCをメッシュ通過させる場合、自然落下(自由落下)が好ましい。ポンプ等を用いた吸引など強制的なメッシュ通過も可能であるが、細胞にダメージを与える事を避けるため、できるだけ弱い圧力が望ましい。 When passing the MSC through the mesh, natural fall (free fall) is preferable. Forced mesh passage such as suction using a pump is possible, but it is desirable to use as weak a pressure as possible to avoid damaging the cells.

メッシュを通したMSCは、倍量又はそれ以上の培地又は平衡塩緩衝液で濾液を希釈した後、遠心分離により回収することができる。回収した細胞は、所望により、培養により増殖させることによって間葉系細胞培養組成物を製造することができる。培地は、0.05%より多く5%以下のアルブミンを含有するαMEM・M199あるいはこれらを基礎とする培地であり、DMEM・F12・RPMI1640あるいはこれらを基礎とする培地は増殖性が低下する。望ましくは10%以上のウシ・ヒト血清を含有するαMEM培地であり、プラスチックデッシュ・フラスコにて5%CO、37℃環境にて培養を行う。平衡塩緩衝液としては、ダルベッコリン酸バッファー(DPBS)、アール平行塩(EBSS)、ハンクス平衡塩(HBSS)、リン酸バッファー(PBS)等の緩衝液を用いることができる。 The meshed MSCs can be recovered by centrifugation after diluting the filtrate with double or more medium or equilibrium salt buffer. If desired, the recovered cells can be grown by culturing to produce a mesenchymal cell culture composition. The medium is αMEM / M199 or a medium based on them containing albumin of more than 0.05% and 5% or less, and DMEM / F12 / RPMI1640 or a medium based on these has reduced proliferative properties. It is preferably an αMEM medium containing 10% or more bovine / human serum, and is cultured in a plastic dish flask at 5% CO 2 in an environment of 37 ° C. As the equilibrium salt buffer solution, a buffer solution such as darbecolinic acid buffer (DPBS), Earl parallel salt (EBSS), Hanks equilibrium salt (HBSS), and phosphate buffer (PBS) can be used.

上記した本発明の方法によれば、CD324及びCD326陽性上皮細胞の含有率が20%以下であり、CD90陽性細胞の含有率が75%以上であり、および生細胞率が80%以上である間葉系細胞組成物を製造することができ、前記間葉系細胞組成物も本発明の範囲内のものである。 According to the method of the present invention described above, while the content of CD324 and CD326-positive epithelial cells is 20% or less, the content of CD90-positive cells is 75% or more, and the viable cell rate is 80% or more. A mesenchymal cell composition can be produced, and the mesenchymal cell composition is also within the scope of the present invention.

[3]凍結保存された間葉系細胞の製造方法
本発明による凍結保存された間葉系細胞の製造方法は、ジメチルスルホキシド(DMSO)を5〜10質量%含有し、ヒドロキシルエチルデンプンを5〜10質量%またはデキストランを1〜5質量%含有する溶液中に間葉系細胞を含む混合物を凍結保存する工程を含む方法である。
[3] Method for producing cryopreserved mesenchymal cells The method for producing cryopreserved mesenchymal cells according to the present invention contains 5 to 10% by mass of dimethyl sulfoxide (DMSO) and contains 5 to 5 to 10% by mass of hydroxylethyl starch. The method comprises the step of cryopreserving the mixture containing mesenchymal cells in a solution containing 10% by mass or 1 to 5% by mass of dextran.

本発明者らは鋭意研究を重ねた結果、高濃度DMSOによる細胞毒性が原因と思われる解凍後のMSCの生存率減少を見いだした(実施例)。凍結保存液におけるDMSO含有量を減らすことは、細胞死の抑制という観点から、細胞移植用ヒトMSCの凍結保存液として好ましいことが判明した。本発明の方法で用いるMSCの凍結保存液は、DMSO含有量を減らし、代わりにヒドロキシルエチルデンプン(HES)又はデキストラン(Dextran40など)を添加したことを特徴とするものである。凍結保存液は、さらにヒトアルブミンを0質量%より多く5質量%以下含有するものでもよい。凍結保存液の一例としては、DMSO5質量%、HES6質量%、ヒトアルブミン4質量%の組成の凍結保存液を用いることができる。
上記した凍結保存液を用いて、プログラムフリーザーを用い、例えば、-1〜-2℃/分の凍結速度で-30℃〜-50℃の間の温度(例えば、-40℃)まで温度を下げ、更に-10℃/分の凍結速度で-80℃〜-100℃の間の温度(例えば、-90℃)まで温度を下げることによって、凍結保存された間葉系細胞を製造することができる。
上記の方法により得られた凍結保存された間葉系細胞は、解凍後、輸液製剤により2倍以上に希釈することによって、間葉系細胞投与用組成物を製造することができる。
As a result of intensive studies, the present inventors have found a decrease in the survival rate of MSCs after thawing, which is considered to be caused by cytotoxicity due to high concentration DMSO (Example). It has been found that reducing the DMSO content in the cryopreservation solution is preferable as a cryopreservation solution for human MSCs for cell transplantation from the viewpoint of suppressing cell death. The MSC cryopreservation solution used in the method of the present invention is characterized in that the DMSO content is reduced and instead hydroxylethyl starch (HES) or dextran (such as Dextran40) is added. The cryopreservation solution may further contain human albumin in an amount of more than 0% by mass and 5% by mass or less. As an example of the cryopreservation solution, a cryopreservation solution having a composition of DMSO 5% by mass, HES 6% by mass, and human albumin 4% by mass can be used.
Using the cryopreservation solution described above and using a program freezer, for example, the temperature is lowered to a temperature between -30 ° C and -50 ° C (for example, -40 ° C) at a freezing rate of -1 to -2 ° C / min. The cryopreserved mesenchymal cells can be produced by further lowering the temperature to a temperature between -80 ° C and -100 ° C (for example, -90 ° C) at a freezing rate of -10 ° C / min. ..
The cryopreserved mesenchymal cells obtained by the above method can be thawed and then diluted 2-fold or more with an infusion preparation to produce a composition for mesenchymal cell administration.

[4]細胞治療剤
上記で調製したMSC(増殖させたMSCも含む)は難治性疾患の治療剤として利用が可能である。
即ち、本発明によれば、上記した間葉系細胞組成物および/又は間葉系細胞培養組成物および/又は間葉系細胞投与用組成物を有効成分として含む細胞治療剤が提供される。さらに本発明によれば、細胞移植治療のために使用される、上記した間葉系細胞組成物および/又は間葉系細胞培養組成物および/又は間葉系細胞投与用組成物が提供される。更に本発明によれば、被験者に、上記の間葉系細胞組成物および/又は間葉系細胞培養組成物および/又は間葉系細胞投与用組成物の治療有効量を投与する工程を含む、被験者に細胞を移植する方法、並びに被験者の疾患の治療方法が提供される。
[4] Cell Therapeutic Agents The MSCs (including grown MSCs) prepared above can be used as therapeutic agents for intractable diseases.
That is, according to the present invention, there is provided a cell therapy agent containing the above-mentioned mesenchymal cell composition and / or mesenchymal cell culture composition and / or mesenchymal cell administration composition as an active ingredient. Further, according to the present invention, the above-mentioned mesenchymal cell composition and / or mesenchymal cell culture composition and / or mesenchymal cell administration composition used for cell transplantation therapy is provided. .. Further, according to the present invention, a step of administering to a subject a therapeutically effective amount of the above-mentioned mesenchymal cell composition and / or mesenchymal cell culture composition and / or mesenchymal cell administration composition. A method of transplanting cells into a subject and a method of treating a subject's disease are provided.

本発明の細胞治療剤、間葉系細胞組成物および/又は間葉系細胞培養組成物および/又は間葉系細胞投与用組成物は、例えば移植片対宿主病(GVHD、実施例10)、クローン病(実施例11)や潰瘍性大腸炎を含む炎症性腸疾患、全身性エリテマトーデス(実施例12)を含む膠原病、肝硬変(実施例13)、放射線腸炎(実施例14)、アトピー性皮膚炎等に適用することができる。本発明の製造法により調製したMSCを治療部位に効果が計測できる量投与することで、炎症を抑制することができる。 The cell therapeutic agent of the present invention, the mesenchymal cell composition and / or the mesenchymal cell culture composition and / or the composition for administration of the mesenchymal cell is described in, for example, graft-versus-host disease (GVHD, Example 10). Inflammatory bowel disease including Crohn's disease (Example 11) and ulcerative colitis, collagen disease including systemic lupus erythematosus (Example 12), liver cirrhosis (Example 13), radiation enteritis (Example 14), atopic skin It can be applied to flames and the like. Inflammation can be suppressed by administering the MSC prepared by the production method of the present invention to the treatment site in an amount whose effect can be measured.

なお、凍結保存したMSCは、細胞生存率を維持するため、急速解凍後、生理食塩水等の輸液製剤で希釈後、できるだけ早く使用することが必要である。これは凍結保存液に含まれるDMSOに細胞毒性があるためである。上記輸液製剤にて希釈した間葉系細胞投与組成物も、移植片対宿主病、クローン病を含む炎症性腸炎、全身性エリテマトーデスを含む膠原病、肝硬変、放射線腸炎、アトピー性皮膚炎等の患者の静脈に投与し、治療することができる。 In order to maintain the cell viability, the cryopreserved MSCs need to be used as soon as possible after rapid thawing and dilution with infusion preparations such as physiological saline. This is because DMSO contained in the cryopreservation solution is cytotoxic. The mesenchymal cell administration composition diluted with the above infusion preparation is also used for patients with graft-versus-host disease, inflammatory enteritis including Crohn's disease, collagen disease including systemic lupus erythematosus, liver cirrhosis, radiation enteritis, atopic dermatitis, etc. Can be administered intravenously and treated.

本明細書における「輸液製剤」としては、ヒトの治療の際に用いられる溶液であれば特に限定されないが、たとえば、生理食塩水、5%ブドウ糖液、リンゲル液、乳酸リンゲル液、酢酸リンゲル液、1号液、2号液、3号液、4号液等が挙げられる。 The "infusion preparation" in the present specification is not particularly limited as long as it is a solution used for human treatment, but for example, physiological saline, 5% glucose solution, Ringer's solution, Ringer's lactate, Ringer's acetate solution, No. 1 solution. , No. 2 solution, No. 3 solution, No. 4 solution, etc.

本発明の細胞治療剤の投与方法は、特に限定されないが、例えば、皮下注射、リンパ節内注射、静脈内注射、腹腔内注射、胸腔内注射又は局所への直接注射、又は局所に直接移植することなどが挙げられるが、これらに限定されない。 The method for administering the cytotherapeutic agent of the present invention is not particularly limited, but for example, subcutaneous injection, intralymph node injection, intravenous injection, intraperitoneal injection, intrathoracic injection or local direct injection, or local direct transplantation. However, it is not limited to these.

本発明の細胞治療剤は、骨髄MSC製剤同様、他の疾患治療目的に注射用製剤、あるいは細胞塊又はシート状構造の移植用製剤として用いることも可能である。 Similar to the bone marrow MSC preparation, the cell therapeutic agent of the present invention can also be used as an injection preparation for the purpose of treating other diseases, or as a transplant preparation having a cell mass or a sheet-like structure.

本発明の細胞治療剤の投与量としては、被験者に投与した場合に、投与していない被験者と比較して疾患に対して治療効果を得ることができるような細胞の量である。具体的な投与量は、投与形態、投与方法、使用目的および被験者の年齢、体重及び症状等によって適宜決定することができるが、一例としては、間葉系細胞数で、ヒト(例えば成人)の1回の投与当たり10〜10個/kg体重が好ましく、10〜10個/kg体重がより好ましい。 The dose of the cell therapy agent of the present invention is an amount of cells that, when administered to a subject, can obtain a therapeutic effect on a disease as compared with a subject not administered. The specific dose can be appropriately determined depending on the administration form, administration method, purpose of use, age, body weight, symptom, etc. of the subject, and one example is the number of mesenchymal cells of a human (for example, an adult). 105 to 109 pieces / kg body weight are preferred per administration, 105 to 8 / kg body weight being more preferred.

以下の実施例にて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the examples.

(実施例1)
インフォームドコンセントを得た待機的帝王切開症例の妊婦由来ヒト胎児付属物から、羊膜を用手的に分離した。ハンクス平衡塩液(Ca・Mg不含有)にて2回洗浄後、得られた羊膜の内1gを容器に取り、精製コラゲナーゼ (CLSPA, Worthington社, 規格>500CDU/mg)300CDU/ml (=<600μg/ml)及びサーモリシン(和光純薬、規格>7000PU/mg)0〜400PU/ml(=<60μg/ml) (No.1:0PU/ml、No.2:100PU/ml、No.3:200PU/ml、No.4:400PU/mlの4種類)を含有するハンクス平衡塩液(Ca・Mg含有)計5mlを添加し、37℃にて90分間、60rpmにてシェーカーにより震盪攪拌を行った。得られた混合物に2倍量の10%ウシ胎児血清(FBS)添加αMEM(Alpha Modification of Minimum Essential Medium Eagle)を添加後、ナイロンネットフィルター(ポアサイズ:100μm)で濾過した。フィルターに残った組織をヘマトキシリン・エオジン(HE)染色にて評価した。濾液は400 x gにて5分遠心操作を行い、上清を破棄後、10%FBS添加αMEMにて細胞を再懸濁し、細胞数をトリパンブルー染色後に測定した。得られた細胞は間葉系マーカー抗CD90-FITC抗体及び上皮系マーカー抗CD324-APC抗体(BD Bioscience社)にて4℃にて15分染色後、死細胞除去のため7-AAD色素を添加し、フローサイトメーター(FACSCanto:BD社)にて表面抗原マーカー解析を行った。結果を表1、表2,図3及び図4に示す。
(Example 1)
The amniotic membrane was manually separated from the human fetal appendages derived from a pregnant woman in a case of elective caesarean section with informed consent. After washing twice with Hanks equilibrium salt solution (without Ca / Mg), take 1 g of the obtained sheep membrane in a container and purify collagenase (CLSPA, Worthington, standard> 500 CDU / mg) 300 CDU / ml (= < 600 μg / ml) and thermolysine (Wako Pure Chemical, standard> 7000 PU / mg) 0 to 400 PU / ml (= <60 μg / ml) (No.1: 0PU / ml, No.2: 100PU / ml, No.3: Add a total of 5 ml of Hanks equilibrium salt solution (containing Ca / Mg) containing 200 PU / ml and No. 4: 400 PU / ml), and shake and stir at 37 ° C for 90 minutes at 60 rpm with a shaker. It was. A double amount of 10% fetal bovine serum (FBS) added αMEM (Alpha Modification of Minimum Essential Medium Eagle) was added to the obtained mixture, and the mixture was filtered through a nylon net filter (pore size: 100 μm). The tissue remaining on the filter was evaluated by hematoxylin and eosin (HE) staining. The filtrate was centrifuged at 400 xg for 5 minutes, the supernatant was discarded, cells were resuspended in αMEM supplemented with 10% FBS, and the number of cells was measured after staining with trypan blue. The obtained cells were stained with the mesenchymal marker anti-CD90-FITC antibody and the epithelial marker anti-CD324-APC antibody (BD Bioscience) at 4 ° C. for 15 minutes, and then 7-AAD dye was added to remove dead cells. Then, surface antigen marker analysis was performed with a flow cytometer (FACSCanto: BD). The results are shown in Table 1, Table 2, FIG. 3 and FIG.

CDU(=collagen digestion unit):コラーゲンを基質として、37℃、pH7.5において5時間に1μmolのロイシンに相当するアミノ酸およびペプチドを生成する酵素量。
PU(=protease unit): 乳酸カゼインを基質として35℃、pH7.2において1分間に1μgのチロシンに相当するアミノ酸及びペプチドを生成する酵素量。
CDU (= collagen digestion unit): The amount of enzyme that produces 1 μmol of leucine-equivalent amino acid and peptide in 5 hours at 37 ° C and pH 7.5 using collagen as a substrate.
PU (= protease unit): The amount of enzyme that produces 1 μg of tyrosine-equivalent amino acid and peptide per minute at 35 ° C and pH 7.2 using lactic acid casein as a substrate.

表1に示すように、コラゲナーゼのみ(No.1)で得られるトリパンブルー染色陰性の生細胞数は0.29x106個であったのに対し、サーモリシンを加えることで生細胞数は増加し、サーモリシン400PU/ml(No.4)では1.99x106個と、約7倍まで増加した。一方トリパンブルー陽性の死細胞数に大きな変化はなく、どのサンプルでも80%以上の生細胞率が得られた。 As shown in Table 1, the number of trypan blue staining-negative viable cells obtained with collagenase alone (No. 1) was 0.29x10 6 , whereas the number of viable cells increased with the addition of thermolysin, and thermolysin was added. At 400 PU / ml (No. 4), it increased to 1.99x10 6 pieces, about 7 times. On the other hand, there was no significant change in the number of trypan blue-positive dead cells, and a viable cell rate of 80% or more was obtained in all samples.

図3に示すように、フローサイトメーターによる結果から、コラゲナーゼのみ(No.1)のサンプルでは、目的とするCD90陽性MSCは34.6%のみであり、不要なCD324陽性上皮細胞は8.6%、それ以外の赤血球と思われる細胞が56.8%であった。表1同様、サーモリシンを添加することでCD90陽性MSCの割合は増加し、サーモリシン400PU/ml(No.4)ではCD90陽性MSC83.3%、CD324陽性上皮細胞12.8%、その他が3.9%であった。 As shown in FIG. 3, from the results of the flow cytometer, in the collagenase-only (No. 1) sample, only 34.6% of the target CD90-positive MSCs, 8.6% of unnecessary CD324-positive epithelial cells, and others. The number of cells that appeared to be red blood cells was 56.8%. As shown in Table 1, the proportion of CD90-positive MSCs increased with the addition of thermolysin, with thermolysin 400 PU / ml (No. 4) having CD90-positive MSCs of 83.3%, CD324-positive epithelial cells of 12.8%, and others of 3.9%. ..

表2に示すように、各サンプルから得られるMSC数は、コラゲナーゼのみ(No.1)では0.1x106個であったが、サーモリシン添加により得られるMSCは増加し、400PU/ml(No.4)では1.66x106個と、No.1の約16倍のMSCが得られた。
図4に示すように、酵素処理後のフィルター上に残留した組織をHE染色により検討を行ったところ、コラゲナーゼのみ(No.1)では細胞外基質層の構造が保たれ、消化不十分であった。サーモリシンを添加することで細胞外基質層の消化が認められ、400PU/ml(No.4)では完全に消化された。
As shown in Table 2, the number of MSCs obtained from each sample was 0.1x10 6 with collagenase alone (No. 1), but the number of MSCs obtained with the addition of thermolysin increased to 400 PU / ml (No. 4). ) and the 1.66X10 6, about 16 times the MSC of No.1 was obtained.
As shown in FIG. 4, when the tissue remaining on the filter after the enzyme treatment was examined by HE staining, the structure of the extracellular matrix layer was maintained with collagenase alone (No. 1), and digestion was insufficient. It was. Digestion of the extracellular matrix layer was observed by adding thermolysin, and it was completely digested at 400 PU / ml (No. 4).

これら実施例1の結果から、コラゲナーゼ単独では羊膜を消化できないこと、コラゲナーゼにサーモリシンを加えることで、濃度依存的に羊膜は消化され、400PU/mlのサーモリシンでは、MSCを含む細胞外基質層が完全に消化されていたことが分かった。 From the results of Example 1, the amniotic membrane cannot be digested by collagenase alone, and by adding thermolysin to collagenase, the amniotic membrane is digested in a concentration-dependent manner, and with 400 PU / ml thermolysin, the extracellular matrix layer containing MSC is completely digested. It turned out that it had been digested.

(実施例2)
上記実施例1を踏まえ、同様の方法にて、コラゲナーゼを除きサーモリシンのみを用いた検討を行った。
結果を表3,図5及び図6に示す。
(Example 2)
Based on Example 1 above, a study was conducted using only thermolysin, excluding collagenase, by the same method.
The results are shown in Tables 3, 5 and 6.

表3に示すように、サーモリシンのみの消化により得られる、ヒト羊膜1g当たりの細胞数はサーモリシンの濃度依存的に増加した。
しかしながら、図5に示すように、サーモリシンのみの酵素処理液に含有する細胞のフローサイトメーターによる結果からは、どの濃度においても得られる細胞はほぼ100%CD324陽性上皮細胞であり、目的とするCD90陽性MSCは得られなかった。
図6に示すように、酵素処理後のフィルター上に残留した組織のHE染色による検討では、MSCを含む細胞外基質層は全く消化されておらず、また、上皮細胞層の破綻がサーモリシンの濃度依存的に存在した。
As shown in Table 3, the number of cells per 1 g of human amniotic membrane obtained by digestion of thermolysin alone increased in a thermolysin concentration-dependent manner.
However, as shown in FIG. 5, from the results of the flow cytometer of the cells contained in the enzyme treatment solution containing only thermolysin, the cells obtained at any concentration were almost 100% CD324-positive epithelial cells, and the target CD90. No positive MSC was obtained.
As shown in FIG. 6, in the examination by HE staining of the tissue remaining on the filter after the enzyme treatment, the extracellular matrix layer containing MSC was not digested at all, and the disruption of the epithelial cell layer was the concentration of thermolysin. It existed dependently.

これら実施例2の結果から、サーモリシンのみでは、目的とするMSCは全く得られないこと、サーモリシンの濃度が800PU/ml以上の場合、上皮細胞層の破綻が認められることが分かった。 From the results of Example 2, it was found that the desired MSC could not be obtained with thermolysin alone, and that the epithelial cell layer was disrupted when the thermolysin concentration was 800 PU / ml or more.

(実施例3)
更に、従来法であるトリプシンを用いた方法との比較検討を行った(非特許文献3)。ヒト羊膜1gを容器に取り、No.41)0.05%トリプシン(0.53 mM EDTA含有)5mlにて37℃90分60rpm震盪攪拌(シェーカーにより)、No.42)0.05%トリプシン(0.53 mM EDTA含有、Invitrogen社)5mlにて37℃90分60rpm震盪攪拌(シェーカーにより)後、ナイロンネットフィルター(ポアサイズ:100μm)濾過にて残存した組織を、更に精製コラゲナーゼ (300CDU/ml)含有ハンクス平衡塩液(Ca・Mg含有)にて37℃90分60rpm震盪攪拌(シェーカーにより)、No.43)精製コラゲナーゼ(300CDU/ml)+サーモリシン(250PU/ml)含を有するハンクス平衡塩液(Ca・Mg含有)5mlにて、37℃90分震盪攪拌(シェーカーにより)を行った。以下は実施例1と同様とした。結果を表4、表5、図7及び図8に示す。
(Example 3)
Furthermore, a comparative study with the conventional method using trypsin was carried out (Non-Patent Document 3). Take 1 g of human sheep membrane in a container and stir with 5 ml of No. 41) 0.05% trypsin (containing 0.53 mM EDTA) at 37 ° C for 90 minutes 60 rpm with shaking (by shaker), No. 42) 0.05% trypsin (containing 0.53 mM EDTA, Invitrogen). After stirring (with a shaker) at 37 ° C for 90 minutes at 60 rpm in 5 ml, the tissue remaining by filtering with a nylon net filter (pore size: 100 μm) is further refined with collagenase (300 CDU / ml) -containing Hanks equilibrium salt solution (Ca. (Mg-containing) at 37 ° C for 90 minutes 60 rpm with shaking (with a shaker), No. 43) Hanks equilibrium salt solution (containing Ca / Mg) containing purified collagenase (300 CDU / ml) + thermolysin (250 PU / ml) to 5 ml Then, shaking and stirring (with a shaker) at 37 ° C. for 90 minutes was performed. The following was the same as in Example 1. The results are shown in Table 4, Table 5, FIG. 7 and FIG.

表4のように、トリプシン処理に加え、残った羊膜を更にコラゲナーゼ処理を行ったサンプル(No.42)から最も多くの細胞を得ることが出来た。
しかしながら、図7に示すように、各酵素処理液に含有する細胞のフローサイトメーターによる結果からは、トリプシンのみ(No.41)だと、目的とするCD90陽性MSCは0.6%と全く得られない、トリプシン処理後、更にコラゲナーゼ処理を加えた2段階処理(No.42)の場合、目的とするCD90陽性細胞は32.6%得られたが、不要なCD324陽性上皮細胞も65.6%含有している、コラゲナーゼ+サーモリシンの一回の処理(No.43)では、CD90陽性MSCは90.3%、CD324陽性上皮細胞は8.0%であった。
As shown in Table 4, the largest number of cells could be obtained from the sample (No. 42) in which the remaining amniotic membrane was further treated with collagenase in addition to the trypsin treatment.
However, as shown in FIG. 7, from the results of the flow cytometer of the cells contained in each enzyme treatment solution, the target CD90-positive MSC of 0.6% cannot be obtained with trypsin alone (No. 41) at all. In the case of two-step treatment (No. 42), which was treated with trypsin and then further treated with collagenase, 32.6% of the target CD90-positive cells were obtained, but 65.6% of unnecessary CD324-positive epithelial cells were also contained. In a single treatment of collagenase + thermolysin (No. 43), CD90-positive MSC was 90.3% and CD324-positive epithelial cells were 8.0%.

図8に示すように、酵素処理後のフィルター上に残留した組織のHE染色による検討では、41トリプシン処理のみでは、上皮細胞層の基底膜の破壊に加え、上皮細胞が球状かつばらばらになっているのに対し、細胞外基質層の構造は保たれていた、トリプシン処理後、コラゲナーゼ処理(No.42)をすることで、羊膜は完全に消化された、コラゲナーゼ+サーモリシンの一括処理(No.43)によって、細胞外基質層は完全に消化されているにもかかわらず、上皮細胞層はその構造が基底膜を含め保たれていた。 As shown in FIG. 8, in the examination by HE staining of the tissue remaining on the filter after the enzyme treatment, in addition to the destruction of the basement membrane of the epithelial cell layer, the epithelial cells became spherical and disjointed only by the 41 trypsin treatment. On the other hand, the structure of the extracellular matrix layer was maintained. After the trypsin treatment, the sheep membrane was completely digested by the collagenase treatment (No. 42), and the batch treatment of collagenase + thermolysin (No. 42) was performed. According to 43), the structure of the epithelial cell layer, including the basement membrane, was maintained even though the extracellular matrix layer was completely digested.

表5に示すように、各サンプルから得られるMSCは、トリプシンのみ(No.51)ではほとんどないこと、トリプシン後コラゲナーゼ処理(No.52)をした場合は、5.39 x106個と非常に多く得られること、コラゲナーゼ+サーモリシンの一括処理(No.53)では、3.25 x106個得られることが分かった。一方不要なCD324陽性上皮細胞に関しては、トリプシンのみ(No.51)では、2.25 x106個の上皮細胞が得られること、トリプシン+コラゲナーゼの一括処理(No.52)では、13.07 x106個と、必要なMSC以上の細胞数が得られてしまうこと、コラゲナーゼ+サーモリシンの一括処理(No.53)では、0.29 x106個とMSCに比べると少ない細胞数であること、が明らかとなった。 As shown in Table 5, MSC obtained from each sample, trypsin only (No.51) the hardly, if you trypsin after collagenase treatment of (No.52), 5.39 x10 6 cells and numerous give It was found that 3.25 x 10 6 pieces were obtained by batch treatment of collagenase + thermolysin (No.53). On the other hand, regarding unnecessary CD324-positive epithelial cells, 2.25 x 10 6 epithelial cells can be obtained with trypsin alone (No. 51), and 13.07 x 10 6 with trypsin + collagenase batch treatment (No. 52). It was clarified that the number of cells exceeding the required MSC was obtained, and that the number of cells was 0.29 x 10 6 in the batch treatment of collagenase + thermolysin (No. 53), which was smaller than that of MSC.

以上のことから、従来のトリプシン処理後にコラゲナーゼにより処理する方法は、メリットとして、多くの細胞数が得られる反面、上皮細胞の混入が多く、高純度のMSCを得るには比重遠心等の手法により細胞を選別する操作が必要となること、工程がトリプシン処理に加えコラゲナーゼ処理の2段階になり、操作が煩雑になること、がデメリットとしてあげられる。特に後者のデメリットに関しては、トリプシンがCaにより不活化される反面、コラゲナーゼはCa要求性があるため、同時処理することが不可能であることがその原因である。 From the above, the conventional method of treating with collagenase after trypsin treatment has a merit that a large number of cells can be obtained, but a large amount of epithelial cells are contaminated, and a method such as specific gravity centrifugation is used to obtain high-purity MSC. Disadvantages include the need for an operation to select cells and the complicated operation due to the two steps of collagenase treatment in addition to trypsin treatment. In particular, the latter disadvantage is that trypsin is inactivated by Ca, but collagenase is Ca-requiring, so that simultaneous treatment is not possible.

(実施例4)
上記実施例1〜3を踏まえ、サーモリシン濃度を250PU/mlに固定した場合の、羊膜間葉系細胞分離に最小限必要なコラゲナーゼ濃度の検討を行った。結果を表6及び図9に示す。
(Example 4)
Based on Examples 1 to 3 above, the minimum collagenase concentration required for amnion mesenchymal cell separation when the thermolysin concentration was fixed at 250 PU / ml was examined. The results are shown in Table 6 and FIG.

表6に示すように、コラゲナーゼ300CDU/ml(No.63)で得られるトリパンブルー染色陰性の生細胞数は1.53x106個であったのに対し、コラゲナーゼ濃度がその1/4の75CDU/ml(No.61)の場合、生細胞数は1.16 x106個に減少した。トリパンブルー陽性の死細胞数に大きな変化はなく、どのサンプルでも80%以上の生細胞率が得られた。また、フローサイトメーターによる結果からはどのサンプルもCD90陽性間葉系細胞は90%以上であった。 As shown in Table 6, the number of trypan blue-staining-negative living cells obtained with collagenase 300 CDU / ml (No. 63) was 1.53 x 10 6 , whereas the collagenase concentration was 75 CDU / ml, which was 1/4 of that. In the case of (No. 61), the number of living cells decreased to 1.16 x 10 6 . There was no significant change in the number of trypan blue-positive dead cells, and a viable cell rate of 80% or more was obtained in all samples. In addition, from the results by the flow cytometer, 90% or more of the CD90-positive mesenchymal cells were found in all the samples.

図9に示すように、酵素処理後のフィルター上に残留した組織をHE染色により検討を行ったところ、コラゲナーゼ濃度が300および150 CDU/ml(No.63および62)では上皮細胞層のみであったのに対し、コラゲナーゼ濃度が75 CDU/ml(No.61)の場合、ごく一部であるが細胞外基質層が観察され、消化不十分であった。
これら実施例4の結果から、サーモリシン濃度を250PU/mlに固定した場合、細胞外基質層を十分に消化するには、コラゲナーゼ濃度は、好ましくは少なくとも75 CDU/ml以上であり、より好ましくは150CDU/ml以上にする必要性が分かった。
As shown in FIG. 9, when the tissue remaining on the filter after the enzyme treatment was examined by HE staining, only the epithelial cell layer was found at collagenase concentrations of 300 and 150 CDU / ml (No. 63 and 62). On the other hand, when the collagenase concentration was 75 CDU / ml (No. 61), an extracellular matrix layer was observed although it was a small part, and digestion was insufficient.
From the results of Example 4, when the thermolysin concentration was fixed at 250 PU / ml, the collagenase concentration was preferably at least 75 CDU / ml, more preferably 150 CDU, in order to sufficiently digest the extracellular matrix layer. I found it necessary to make it more than / ml.

(実施例5)
更にサーモリシン濃度を実施例3の倍である500PU/mlに固定した場合の、羊膜間葉系細胞分離に最小限必要なコラゲナーゼ濃度の検討を行った。結果を表7及び図10に示す。
(Example 5)
Furthermore, when the thermolysin concentration was fixed at 500 PU / ml, which was twice that of Example 3, the minimum collagenase concentration required for amnion mesenchymal cell separation was examined. The results are shown in Table 7 and FIG.

表7に示すように、コラゲナーゼ150CDU/ml(No.73)で得られるトリパンブルー染色陰性の生細胞数は2.05x106個であったのに対し、コラゲナーゼ濃度がその1/4の37.5CDU/ml(No.71)の場合、生細胞数は0.82x106個に減少した。トリパンブルー陽性の死細胞数に大きな変化はなく、どのサンプルでも80%以上の生細胞率が得られた。また、フローサイトメーターによる結果からはどのサンプルもCD90陽性間葉系細胞は90%以上であった。 As shown in Table 7, the number of trypan blue-stained-negative living cells obtained with collagenase 150 CDU / ml (No. 73) was 2.05x10 6 , whereas the collagenase concentration was 1/4 of that, 37.5 CDU /. In the case of ml (No. 71), the number of viable cells decreased to 0.82x10 6 . There was no significant change in the number of trypan blue-positive dead cells, and a viable cell rate of 80% or more was obtained in all samples. In addition, from the results by the flow cytometer, 90% or more of the CD90-positive mesenchymal cells were found in all the samples.

図10に示すように、酵素処理後のフィルター上に残留した組織をHE染色により検討を行ったところ、コラゲナーゼ濃度が150および75 CDU/ml(No.73および72)では上皮細胞層のみであったのに対し、コラゲナーゼ濃度が37.5 CDU/ml(No.71)の場合、多くの細胞外基質層が観察され、消化不十分であった。
これら実施例5の結果から、サーモリシン濃度を500PU/mlに固定した場合、細胞外基質層を十分に消化するには、コラゲナーゼ濃度は、好ましくは少なくとも37.5CDU/ml以上であり、より好ましくは75CDU/ml以上にする必要性が分かった。
As shown in FIG. 10, when the tissue remaining on the filter after the enzyme treatment was examined by HE staining, only the epithelial cell layer was found at collagenase concentrations of 150 and 75 CDU / ml (No. 73 and 72). On the other hand, when the collagenase concentration was 37.5 CDU / ml (No. 71), many extracellular matrix layers were observed and digestion was inadequate.
From the results of Example 5, when the thermolysin concentration was fixed at 500 PU / ml, the collagenase concentration was preferably at least 37.5 CDU / ml, more preferably 75 CDU, in order to sufficiently digest the extracellular matrix layer. I found it necessary to make it more than / ml.

(実施例6)
上記実施例1に関し、サーモリシンに代えて、同様に非極性アミノ酸のN末端側を切断する金属プロテイナーゼであるディスパーゼを用い、これにコラゲナーゼを添加した検討を行った。
インフォームドコンセントを得た妊婦由来のヒト胎児付属物から、羊膜を用手的に分離した。ハンクス平衡塩液(Ca・Mg不含有)にて2回洗浄後、得られた羊膜の内1gを容器に取り、コラゲナーゼ (Brightase-C, ニッピ社, 規格>20万CDU/バイアル)300CDU/ml及びディスパーゼI(和光純薬、規格10000〜13000PU/バイアル)0〜400PU/ml (No.1:0PU/ml、No.2:100PU/ml、No.3:200PU/ml、No.4:400PU/mlの4種類)を含有するハンクス平衡塩液(Ca・Mg含有)計5ml添加し、37℃にて90分、60rpmにてシェーカーにより震盪攪拌を行った。得られた混合物に2倍量の10%ウシ胎児血清(FBS)添加αMEM(Alpha Modification of Minimum Essential Medium Eagle)を添加後、ナイロンネットフィルター(ポアサイズ:100μm)で濾過した。フィルターに残った組織をヘマトキシリン・エオジン(HE)染色にて評価した。濾液は400 x gにて5分遠心操作を行い、上清を破棄後、10%FBS添加αMEMにて細胞を再懸濁し、細胞数をトリパンブルー染色後、測定した。得られた細胞は間葉系マーカー抗CD90-FITC抗体及び上皮系マーカー抗CD324-APC抗体(BD Bioscience社)にて4℃にて15分染色後、死細胞除去のため7-AAD色素を添加し、フローサイトメーター(FACSCanto:BD社)にて表面抗原マーカー解析を行った。結果を表8、表9、図11及び図12に示す。
(Example 6)
Regarding Example 1 above, instead of thermolysin, dispase, which is a metal proteinase that similarly cleaves the N-terminal side of a non-polar amino acid, was used, and a study was conducted in which collagenase was added thereto.
The amniotic membrane was manually separated from the human fetal appendages derived from pregnant women who gave informed consent. After washing twice with Hanks equilibrium salt solution (without Ca / Mg), take 1 g of the obtained sheep membrane into a container and take collagenase (Brightase-C, Nippi, standard> 200,000 CDU / vial) 300 CDU / ml. And Dispase I (Wako Pure Medicine, Standard 10000 ~ 13000PU / Vial) 0 ~ 400PU / ml (No.1: 0PU / ml, No.2: 100PU / ml, No.3: 200PU / ml, No.4: 400PU A total of 5 ml of Hanks equilibrium salt solution (containing Ca / Mg) containing (4 types of / ml) was added, and shaking was stirred at 37 ° C. for 90 minutes and at 60 rpm with a shaker. A double amount of 10% fetal bovine serum (FBS) added αMEM (Alpha Modification of Minimum Essential Medium Eagle) was added to the obtained mixture, and the mixture was filtered through a nylon net filter (pore size: 100 μm). The tissue remaining on the filter was evaluated by hematoxylin and eosin (HE) staining. The filtrate was centrifuged at 400 xg for 5 minutes, the supernatant was discarded, cells were resuspended in αMEM supplemented with 10% FBS, and the number of cells was measured after staining with trypan blue. The obtained cells were stained with the mesenchymal marker anti-CD90-FITC antibody and the epithelial marker anti-CD324-APC antibody (BD Bioscience) at 4 ° C. for 15 minutes, and then 7-AAD dye was added to remove dead cells. Then, surface antigen marker analysis was performed with a flow cytometer (FACSCanto: BD). The results are shown in Table 8, Table 9, FIG. 11 and FIG.

表8に示すように、コラゲナーゼのみ(No.81)で得られるトリパンブルー染色陰性の生細胞数は0.42x106個であったのに対し、ディスパーゼを加えることで生細胞数は増加し、ディスパーゼ200PU/ml(No.83)では3.02x106個と、約7倍まで増加した。一方トリパンブルー陽性の死細胞数に大きな変化はなく、ディスパーゼを入れたどのサンプルでも80%以上の生細胞率が得られた。 As shown in Table 8, the number of trypan blue staining-negative viable cells obtained with collagenase alone (No. 81) was 0.42x10 6 , whereas the number of viable cells increased with the addition of dispase, and dispase. At 200 PU / ml (No. 83), it increased to 3.02x10 6 pieces, about 7 times. On the other hand, there was no significant change in the number of trypan blue-positive dead cells, and a viable cell rate of 80% or more was obtained in any sample containing dispase.

図11に示すように、フローサイトメーターによる結果では、コラゲナーゼのみ(No.81)であっても、ディスパーゼを加えても(No.82-84)、目的とするCD90陽性MSCは90%以上であり、不要なCD324陽性上皮細胞はいずれも10%以下であった。コラゲナーゼのみ(No.81)の結果が、実施例1(図3)でのコラゲナーゼのみ(No.1)のそれと異なるが、これは用いたコラゲナーゼのメーカーが異なるためと考えられた。 As shown in FIG. 11, according to the results by the flow cytometer, the target CD90-positive MSC was 90% or more regardless of whether collagenase alone (No. 81) or dispase was added (No. 82-84). There were less than 10% of all unnecessary CD324-positive epithelial cells. The result of collagenase alone (No. 81) was different from that of collagenase alone (No. 1) in Example 1 (Fig. 3), which was considered to be due to the difference in the manufacturer of collagenase used.

表9に示すように、各サンプルから得られるMSC数は、コラゲナーゼのみ(No.81)では0.39x106個であったが、ディスパーゼ添加により得られるMSCは増加し、200PU/ml(No.83)では2.86x106個と、No.81の約7倍のMSCが得られた。
図12に示すように、酵素処理後のフィルター上に残留した組織をHE染色により検討を行ったところ、コラゲナーゼのみ(No.81)では細胞外基質層の構造が保たれ、消化不十分であった。ディスパーゼを添加することで細胞外基質層の消化が認められ、200PU/ml(No.83)、400PU/ml(No.84)では完全に消化された。
As shown in Table 9, the number of MSCs obtained from each sample was 0.39x10 6 with collagenase alone (No. 81), but the number of MSCs obtained with the addition of dispase increased to 200 PU / ml (No. 83). In), 2.86x10 6 pieces, about 7 times as many MSCs as No.81 were obtained.
As shown in FIG. 12, when the tissue remaining on the filter after the enzyme treatment was examined by HE staining, the structure of the extracellular matrix layer was maintained with collagenase alone (No. 81), and digestion was insufficient. It was. Digestion of the extracellular matrix layer was observed by adding dispase, and it was completely digested at 200 PU / ml (No. 83) and 400 PU / ml (No. 84).

これら実施例6の結果から、コラゲナーゼ単独では羊膜消化が不十分であること、コラゲナーゼにディスパーゼを加えることで、濃度依存的に羊膜は消化され、2000PU/ml以上のディスパーゼでは、MSCを含む細胞外基質層が完全に消化されていた。 From the results of Example 6, the amniotic membrane digestion was insufficient with collagenase alone, and the amniotic membrane was digested in a concentration-dependent manner by adding dispase to collagenase, and the extracellular matrix containing MSC was used for dispase of 2000 PU / ml or more. The matrix layer was completely digested.

(実施例7)
上記実施例6を踏まえ、同様の方法にて、コラゲナーゼを除きディスパーゼのみを用いた検討を行った。
結果を表10,図13及び図14に示す。
(Example 7)
Based on Example 6 above, a study was conducted using only dispase excluding collagenase by the same method.
The results are shown in Table 10, FIG. 13 and FIG.

表10に示すように、ディスパーゼのみの消化により得られる、ヒト羊膜1g当たりの細胞数はサーモリシンの濃度依存的に増加した。
しかしながら、図13に示すように、ディスパーゼのみの酵素処理液に含有する細胞のフローサイトメーターによる結果からは、どの濃度においても目的とするCD90陽性MSC数%と非常に少なかった。
図14に示すように、酵素処理後のフィルター上に残留した組織のHE染色による検討では、MSCを含む細胞外基質層は全く消化されておらず、また、上皮細胞層の破綻がディスパーゼの濃度依存的に存在した。
As shown in Table 10, the number of cells per 1 g of human amniotic membrane obtained by digestion of dispase alone increased in a thermolysin concentration-dependent manner.
However, as shown in FIG. 13, the results of the flow cytometer of the cells contained in the enzyme-treated solution containing only dispase showed that the target CD90-positive MSCs were very few% at any concentration.
As shown in FIG. 14, in the examination by HE staining of the tissue remaining on the filter after the enzyme treatment, the extracellular matrix layer containing MSC was not digested at all, and the disruption of the epithelial cell layer was the concentration of dispase. It existed dependently.

これら実施例7の結果から、ディスパーゼのみでは、目的とするMSCは全く得られない、ディスパーゼの濃度が800PU/ml以上の場合、上皮細胞層の破綻が認められることが分かった。 From the results of Example 7, it was found that the desired MSCs could not be obtained by dispase alone, and that the epithelial cell layer was disrupted when the dispase concentration was 800 PU / ml or more.

(実施例8)
上記実施例6〜7を踏まえ、ディスパーゼ濃度を250PU/mlに固定した場合の、羊膜間葉系細胞分離に最小限必要なコラゲナーゼ濃度の検討を行った。結果を表11及び図15に示す。
(Example 8)
Based on Examples 6 to 7 above, the minimum collagenase concentration required for amnion mesenchymal cell separation when the dispase concentration was fixed at 250 PU / ml was examined. The results are shown in Table 11 and FIG.

表11に示すように、コラゲナーゼ300CDU/ml(No.113)で得られるトリパンブルー染色陰性の生細胞数は1.57x106個であったのに対し、コラゲナーゼ濃度がその1/4の75CDU/ml(No.113)の場合、生細胞数は1.34 x106個に減少した。トリパンブルー陽性の死細胞数に大きな変化はなく、どのサンプルでも80%以上の生細胞率が得られた。また、フローサイトメーターによる結果からはどのサンプルもCD90陽性間葉系細胞は90%以上であった。 As shown in Table 11, the number of trypan blue-staining-negative living cells obtained with collagenase 300 CDU / ml (No. 113) was 1.57x10 6 , whereas the collagenase concentration was 75 CDU / ml, which was 1/4 of that. In the case of (No.113), the number of living cells decreased to 1.34 x 10 6 . There was no significant change in the number of trypan blue-positive dead cells, and a viable cell rate of 80% or more was obtained in all samples. In addition, from the results by the flow cytometer, 90% or more of the CD90-positive mesenchymal cells were found in all the samples.

図15に示すように、酵素処理後のフィルター上に残留した組織をHE染色により検討を行ったところ、コラゲナーゼ濃度が300CDU/ml(No.113)では上皮細胞層のみであったのに対し、コラゲナーゼ濃度が75 および150CDU/ml(No.111および112)の場合、細胞外基質層が観察され、消化不十分であった。
これら実施例8の結果から、ディスパーゼ濃度を250PU/mlに固定した場合、細胞外基質層を十分に消化するには、コラゲナーゼ濃度は少なくとも75CDU/ml以上、より好ましくは150CDU/ml以上、さらに好ましくは300CDU/ml以上にする必要性が分かった。
As shown in FIG. 15, when the tissue remaining on the filter after the enzyme treatment was examined by HE staining, the collagenase concentration was 300 CDU / ml (No. 113), whereas only the epithelial cell layer was found. At collagenase concentrations of 75 and 150 CDU / ml (No. 111 and 112), extracellular matrix layers were observed and were poorly digested.
From the results of Example 8, when the dispase concentration was fixed at 250 PU / ml, the collagenase concentration was at least 75 CDU / ml or more, more preferably 150 CDU / ml or more, still more preferable, in order to sufficiently digest the extracellular matrix layer. Found the need for more than 300 CDU / ml.

(実施例9)
実施例1にて得られた細胞を10%FBS添加αMEM培養液にて希釈後、プラスチックデッシュ上に播種し、羊膜由来MSCを接着培養させた。トリプシン処理にて細胞剥離後、10%FBS添加αMEM培養液にてトリプシン中和し、遠心後上清を捨て、得られた細胞ペレットをRPMI1640にて再懸濁し、羊膜由来MSC懸濁液を作成した。得られた懸濁液に対し、最終組成が表12となるように凍結保存液を調整した。
(Example 9)
The cells obtained in Example 1 were diluted with a 10% FBS-added αMEM culture solution, seeded on a plastic dish, and amnion-derived MSCs were adherently cultured. After cell detachment by trypsin treatment, trypsin is neutralized with αMEM culture medium containing 10% FBS, the supernatant is discarded after centrifugation, and the obtained cell pellet is resuspended in RPMI1640 to prepare an amniotic membrane-derived MSC suspension. did. The cryopreservation solution was adjusted with respect to the obtained suspension so that the final composition was shown in Table 12.

DMSO:Simga-Aldrich社製、品番D2650
HES:ニプロ社製、品番HES40
ヒトアルブミン(Alb):ベネシス社製、献血アルブミン25%静注12.5g/50ml
デキストラン40:大塚製薬工場社製、低分子デキストラン糖注
生理食塩水:大塚製薬工場社製:上記の希釈調整用液とした。
DMSO: Simga-Aldrich, part number D2650
HES: Made by Nipro, part number HES40
Human albumin (Alb): Made by Benesis, 25% blood donated albumin IV 12.5g / 50ml
Dextran 40: manufactured by Otsuka Pharmaceutical Factory, low molecular weight dextran sugar injection physiological saline: manufactured by Otsuka Pharmaceutical Factory: The above dilution adjustment solution was used.

凍結保存液は羊膜由来MSCが106細胞/mlとなるように調整し、それぞれ1mlをクライオチューブに移し、プログラムフリーザーにて、−1〜−2℃/分の凍結速度で−40℃まで温度を下げ、更に−90℃まで−10℃/分の速度で下げ、−150℃の超低温冷凍庫に保存した。翌日、クライオチューブを37℃恒温槽に浸して急速融解した。表13に急速解凍した細胞のトリパンブルー陰性生細胞割合を示す。 Cryopreservation solution is adjusted to amnion-derived MSC of 10 6 cells / ml, respectively were transferred to 1ml in cryotubes at program freezer, to -40 ℃ at a freezing rate of -1 to-2 ° C. / min Temperature Was further lowered to −90 ° C. at a rate of −10 ° C./min and stored in an ultra-low temperature freezer at −150 ° C. The next day, the cryotube was immersed in a constant temperature bath at 37 ° C. and rapidly thawed. Table 13 shows the percentage of trypan blue-negative living cells of rapidly thawed cells.

この結果から、IIIのDMSOのみでは生細胞が少ないこと、HESやデキストラン、アルブミンを添加することで生細胞割合は増加することが明らかとなった。
更に、解凍した細胞懸濁液100μLを24wellプレート4ウェルに播種し、3mlの10%FBS添加αMEM培養液を添加し、24時間後および48時間後に写真撮影後、一視野当たりの細胞数の平均値を測定した。表14、図16及び図17に結果を示す。
From this result, it was clarified that the number of living cells is small only with DMSO of III, and that the proportion of living cells is increased by adding HES, dextran, and albumin.
Furthermore, 100 μL of the thawed cell suspension was seeded in 4 wells of a 24-well plate, 3 ml of αMEM culture medium containing 10% FBS was added, and after 24 hours and 48 hours after photography, the average number of cells per field of view was average. The value was measured. The results are shown in Table 14, FIG. 16 and FIG.

表13の結果同様、IIIのDMSOのみ、あるいはIVのDMSO+Albでは細胞増殖が遅かったが、HESやデキストランの添加により細胞増殖は促進した。特にDMSOの濃度を減らしたI、II、IVにおいて著明な細胞増殖を認めた。 Similar to the results in Table 13, cell proliferation was slow with DMSO III alone or DMSO + Alb IV, but cell proliferation was promoted by the addition of HES and dextran. In particular, remarkable cell proliferation was observed in I, II, and IV in which the concentration of DMSO was reduced.

(実施例10)
マウスにおいて、同種他家骨髄移植および脾細胞移植を行い、急性移植片対宿主病(GVHD)を発症させ、ヒト羊膜由来MSC移植による治療効果を検討した。7-8週齢の雌B6C3F1マウスに対して、15GyのX線照射の後、同種他家であるBDF1マウス由来骨髄細胞1.0×107細胞および同脾細胞3×107細胞を経静脈的に移植した。骨髄細胞移植14日目、17日目、21日目、15日目に、実施例1と同様の手法(コラゲナーゼ300CDU/ml+サーモリシン250PU/mlの条件下)にて得られたヒト羊膜由来MSC(1×105細胞 )を経静脈的に移植し、体重を経時的に観察した。図18に、骨髄細胞移植日からの体重変化率を示す。
この結果から、急性移植片対宿主病(GVHD)に伴う体重増加の遅延がヒト羊膜由来MSC移植により改善していることが明らかとなった。
(Example 10)
Allogeneic bone marrow transplantation and splenocyte transplantation were performed in mice to develop acute graft-versus-host disease (GVHD), and the therapeutic effect of human amnion-derived MSC transplantation was investigated. After 15 Gy X-ray irradiation of 7-8 week old female B6C3F1 mice, allogeneic BDF1 mouse-derived bone marrow cells 1.0 × 10 7 cells and same splenocytes 3 × 10 7 cells were intravenously administered. I transplanted it. Human amniotic membrane-derived MSCs obtained on the 14th, 17th, 21st, and 15th days of bone marrow cell transplantation by the same method as in Example 1 (under the conditions of collagenase 300 CDU / ml + thermolysin 250 PU / ml). 1 × 10 5 cells) were transplanted intravenously, and the body weight was observed over time. FIG. 18 shows the rate of change in body weight from the day of bone marrow cell transplantation.
From this result, it was clarified that the delay in weight gain associated with acute graft-versus-host disease (GVHD) was improved by MSC transplantation derived from human amniotic membrane.

(実施例11)
ラットにおいて、デキストラン硫酸(DSS)を経口摂取させることで炎症性腸疾患を発症させ、ヒト羊膜由来MSC移植による治療効果を検討した。8週齢の雄SDラットに対し8%DSSの自由飲水での投与を開始した。DSS投与開始の翌日、実施例1と同様の手法(コラゲナーゼ300CDU/ml+サーモリシン250PU/mlの条件下)にて得られたヒト羊膜由来MSC(1×106細胞 )を経静脈的に移植し、DSSを計5日間投与した。
図19に疾患活動性(Disease activity index(DAI):体重の減少、便の固さ、直腸出血を観察、測定し、点数化)および相対的体重変化を示す。この結果から、腸炎の病態がヒト羊膜由来MSC移植により改善していることが明らかとなった。
尚、DAIの点数化は、下記の文献の方法に従った。Cooper, H. S.; Murthy, S. N.; Shah, R. S.; Sedergran, D. J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69:238-249; 1993.
(Example 11)
Inflammatory bowel disease was caused by oral ingestion of dextran sulfate (DSS) in rats, and the therapeutic effect of MSC transplantation derived from human amniotic membrane was investigated. Administration of 8% DSS in free drinking water was started in 8-week-old male SD rats. The day after the start of DSS administration, human amniotic membrane-derived MSC (1 × 10 6 cells) obtained by the same method as in Example 1 (under the conditions of collagenase 300 CDU / ml + thermolysin 250 PU / ml) was intravenously transplanted. DSS was administered for a total of 5 days.
FIG. 19 shows Disease activity index (DAI): weight loss, stool stiffness, rectal bleeding observed, measured and scored) and relative weight changes. From this result, it was clarified that the pathological condition of enteritis was improved by MSC transplantation derived from human amniotic membrane.
The DAI was scored according to the method in the following literature. Cooper, HS; Murthy, SN; Shah, RS; Sedergran, DJ Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69: 238-249; 1993.

(実施例12)
マウスにおいて、プリスタン(Pristane; 2,6,10,14-tetramethyl-pentadecane)を投与することで全身性エリテマトーデスを発症させ、ヒト羊膜由来MSC移植による治療効果を検討した。13週齢雄BALB/cマウスに対しプリスタンを500μl腹腔内に投与した。同時に実施例1と同様の手法(コラゲナーゼ300CDU/ml+サーモリシン250PU/mlの条件下)にて得られたヒト羊膜由来MSC(1×105細胞/10g)を尾静脈に投与し、以後隔週で同数のヒト羊膜由来MSCを投与し、20週経過後に生化学的評価を行った。
図20に尿蛋白の経過を示す。この結果から、全身性エリテマトーデスに伴う蛋白尿がヒト羊膜由来MSC移植により改善していることが明らかとなった。
(Example 12)
Systemic lupus erythematosus was caused by administration of Pristane (2,6,10,14-tetramethyl-pentadecane) in mice, and the therapeutic effect of MSC transplantation derived from human amniotic membrane was investigated. Pristane was intraperitoneally administered in 500 μl to 13-week-old male BALB / c mice. At the same time, human amniotic membrane-derived MSC (1 × 10 5 cells / 10 g) obtained by the same method as in Example 1 (under the conditions of collagenase 300 CDU / ml + thermolysin 250 PU / ml) was administered to the tail vein, and the same number was administered every other week thereafter. MSC derived from human amniotic membrane was administered, and biochemical evaluation was performed after 20 weeks.
FIG. 20 shows the course of urinary protein. From this result, it was clarified that proteinuria associated with systemic lupus erythematosus was improved by MSC transplantation derived from human amniotic membrane.

(実施例13)
ラットにおいて、四塩化炭素(CCl4)を繰り返し投与することで肝硬変を発症させ、ヒト羊膜由来MSC移植による治療効果を検討した。6週齢の雄SDラットに対し2ml/kgのCCl4を週2回の頻度で腹腔内投与を開始した。CCl4投与開始から3週目に実施例1と同様の手法(コラゲナーゼ300CDU/ml+サーモリシン250PU/mlの条件下)にて得られたヒト羊膜由来MSC(1×106細胞 )を経静脈的に移植し、CCl4を計7週間投与し、肝臓の組織学的評価を行った。
図21に肝臓のMasson trichrome染色の結果から得られた繊維化面積率(膠原線維陽性割合)を示す。この結果から、肝硬変に伴う肝線維化がヒト羊膜由来MSC移植により改善していることが明らかとなった。
(Example 13)
In rats, repeated administration of carbon tetrachloride (CCl 4 ) caused liver cirrhosis, and the therapeutic effect of MSC transplantation derived from human amniotic membrane was investigated. Intraperitoneal administration of 2 ml / kg of CCl 4 was started twice a week for 6-week-old male SD rats. Human amniotic membrane-derived MSC (1 × 10 6 cells) obtained by the same method as in Example 1 (under the conditions of collagenase 300 CDU / ml + thermolysin 250 PU / ml) 3 weeks after the start of CCl 4 administration was intravenously administered. After transplantation, CCl 4 was administered for a total of 7 weeks, and histological evaluation of the liver was performed.
FIG. 21 shows the fibrotic area ratio (collagen fiber positive ratio) obtained from the result of Masson trichrome staining of the liver. From this result, it was clarified that the liver fibrosis associated with cirrhosis was improved by MSC transplantation derived from human amnion.

(実施例14)
ラットにおいて、直腸に放射線照射することで放射線腸炎を発症させ、ヒト羊膜由来MSCによる治療効果を検討した。8週齢の雄SDラットに対し5Gy/日の放射線を5日間連日で下腹部に照射した。最終照射日に実施例1と同様の手法(コラゲナーゼ300CDU/ml+サーモリシン250PU/mlの条件下)にて得られたヒト羊膜由来MSC(1×106細胞 )を経静脈的に移植し、その3日後に直腸の組織学的評価を行った。
図22に直腸のPAS染色の結果から得られたPAS陽性杯細胞数(/HPF:強拡大視野当たり)の変化を示す。この結果から、放射線腸炎に伴う杯細胞の減少がヒト羊膜由来MSC移植により改善していることが明らかとなった。
(Example 14)
Radiation enteritis was caused by irradiation of the rectum in rats, and the therapeutic effect of human amniotic membrane-derived MSCs was investigated. 8-week-old male SD rats were irradiated with 5 Gy / day of radiation to the lower abdomen every day for 5 days. Human amniotic membrane-derived MSCs (1 × 10 6 cells) obtained by the same method as in Example 1 (under the conditions of collagenase 300 CDU / ml + thermolysin 250 PU / ml) were intravenously transplanted on the final irradiation day, and the third A histological evaluation of the rectum was performed one day later.
FIG. 22 shows changes in the number of PAS-positive goblet cells (/ HPF: per strongly magnified visual field) obtained from the results of PAS staining of the rectum. From this result, it was clarified that the decrease of goblet cells associated with radiation enteritis was improved by MSC transplantation derived from human amnion.

1 間葉系幹細胞
2 上皮細胞層
3 細胞外基質層
1 mesenchymal stem cell 2 epithelial cell layer 3 extracellular matrix layer

Claims (10)

ジメチルスルホキシドを5〜10質量%、ヒドロキシエチルデンプンを4〜10質量%、及びヒトアルブミンを5質量%以下で含有し、間葉系細胞組成物を含む混合物を凍結保存し、次いで前記凍結保存した混合物を解凍した後に培養する工程を含み、
前記間葉系細胞組成物は、CD324及び/又はCD326陽性上皮細胞の含有率が20%以下であり、CD90陽性細胞の含有率が75%以上である、間葉系細胞組成物の製造方法。
A mixture containing 5 to 10% by mass of dimethyl sulfoxide, 4 to 10% by mass of hydroxyethyl starch , and 5% by mass or less of human albumin and containing a mesenchymal cell composition was cryopreserved and then cryopreserved. Including the step of thawing the mixture and then culturing
The method for producing a mesenchymal cell composition, wherein the mesenchymal cell composition has a content of CD324 and / or CD326-positive epithelial cells of 20% or less and a content of CD90-positive cells of 75% or more.
前記間葉系細胞組成物中における生細胞率が80%以上である、請求項1記載の製造方法。 The production method according to claim 1 , wherein the viable cell ratio in the mesenchymal cell composition is 80% or more. 前記CD90陽性細胞が、CD90陽性間葉系細胞である請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2 , wherein the CD90-positive cell is a CD90-positive mesenchymal cell. 前記間葉系細胞が羊膜由来である、請求項1からのいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3 , wherein the mesenchymal cells are derived from amniotic membrane. 請求項1からのいずれか一項に記載の方法により得られる間葉系細胞を、輸液製剤により2以上に希釈する工程を含む、間葉系細胞投与用組成物を製造する方法。 A method for producing a composition for mesenchymal cell administration, which comprises a step of diluting the mesenchymal cells obtained by the method according to any one of claims 1 to 4 to 2 or more with an infusion preparation. 請求項1からのいずれか一項に記載の方法により得られる間葉系細胞を有効成分として含む細胞治療剤。 A cell therapeutic agent containing mesenchymal cells as an active ingredient obtained by the method according to any one of claims 1 to 5 . 請求項に記載の方法により得られる間葉系細胞投与用組成物を有効成分として含む細胞治療剤。 A cell therapeutic agent containing the composition for mesenchymal cell administration obtained by the method according to claim 6 as an active ingredient. 注射用製剤である、請求項6又は7に記載の細胞治療剤。 The cell therapeutic agent according to claim 6 or 7 , which is an injectable preparation. 細胞塊又はシート状構造の移植用製剤である、請求項6又は7に記載の細胞治療剤。 The cell therapeutic agent according to claim 6 or 7 , which is a preparation for transplantation of a cell mass or a sheet-like structure. 移植片対宿主病、炎症性腸疾患、全身性エリテマトーデス、肝硬変、又は放射線腸炎から選択される疾患の治療剤である、請求項からのいずれか一項に記載の細胞治療剤。 The cell therapeutic agent according to any one of claims 7 to 9 , which is a therapeutic agent for a disease selected from graft-versus-host disease, inflammatory bowel disease, systemic lupus erythematosus, liver cirrhosis, or radiation enteritis.
JP2019038143A 2013-08-19 2019-03-04 Method for producing amniotic mesenchymal cell composition, method for cryopreservation, and therapeutic agent Active JP6754459B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170008 2013-08-19
JP2013170008 2013-08-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014130142A Division JP6512759B2 (en) 2013-08-19 2014-06-25 Method of producing amniotic mesenchymal cell composition, method of cryopreservation, and therapeutic agent

Publications (2)

Publication Number Publication Date
JP2019080580A JP2019080580A (en) 2019-05-30
JP6754459B2 true JP6754459B2 (en) 2020-09-09

Family

ID=66669265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038143A Active JP6754459B2 (en) 2013-08-19 2019-03-04 Method for producing amniotic mesenchymal cell composition, method for cryopreservation, and therapeutic agent

Country Status (1)

Country Link
JP (1) JP6754459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993527A (en) * 2019-06-14 2022-01-28 株式会社钟化 Cell population comprising mesenchymal cells, pharmaceutical composition comprising the same, and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176022B2 (en) * 2002-12-20 2007-02-13 Cell Genesys, Inc. Directly injectable formulations which provide enhanced cryoprotection of cell products
CA2714777A1 (en) * 2007-10-31 2009-05-07 Cryo-Cell International, Inc. Methods for co-culturing cord blood derived cells with menstrual stem cells
NZ591292A (en) * 2008-08-20 2012-10-26 Anthrogenesis Corp Improved cell composition and methods of making the same
KR20120051737A (en) * 2009-08-19 2012-05-22 다카라 바이오 가부시키가이샤 Cell preservation method
CN104470529A (en) * 2011-07-15 2015-03-25 人类起源公司 Treatment of radiation injury using amnion derived adherent cells

Also Published As

Publication number Publication date
JP2019080580A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US11389486B2 (en) Method for producing amniotic mesenchymal stromal cell composition, method for cryopreserving the same, and therapeutic agent
JP5341059B2 (en) Stem cell suspension
EP2569422B1 (en) Cell-culture-bag
JP2022060520A (en) Method for producing cell population including mesenchymal stem cells, mesenchymal stem cells, cell populations, and pharmaceutical compositions
WO2019161591A1 (en) Isolation and cultivation method for mesenchymal stem cells, as well as cryopreservation and resuscitation method for same
JP2019017393A5 (en)
JP2004523220A (en) How to collect placental stem cells
CN114134114A (en) Method for amplifying natural killer cells from placenta tissue
WO2020251020A1 (en) Cell population including mesenchymal cells, pharmaceutical composition including same, and method for producing same
JPWO2019132025A1 (en) Cell population containing adherent stem cells, method for producing the same, and pharmaceutical composition
WO2018186419A1 (en) Cell population including mesenchymal stem cells, production method therefor, and pharmaceutical composition
JP6754459B2 (en) Method for producing amniotic mesenchymal cell composition, method for cryopreservation, and therapeutic agent
WO2011111386A1 (en) Method for concentrating/recovering cells and cell eluting liquid
CN103451150B (en) A kind of preparation method of placenta source matrix mesenchymal stem cell
JP5753874B2 (en) Cell viability decline inhibitor
JP7152389B2 (en) Cell population containing mesenchymal stem cells, method for producing the same, mesenchymal stem cells, and pharmaceutical composition
CN110373381A (en) A kind of preparation method by the efficient placenta mesenchyma stem cell of homogenizer
WO2022210574A1 (en) Agent for treating muscular dystrophy
JP7018527B1 (en) Cell storage method and cell suspension
JP2022120698A (en) Pharmaceutical composition for regeneration of soft tissue that contains cell population containing mesenchymal stem cell
JP7140752B2 (en) Cell population containing fetal appendage-derived adhesive cells, method for producing the same, and pharmaceutical composition
JP2023147910A (en) Spinal cord injury treatment agent
CN114231487A (en) Method for culturing placenta-derived natural killer cells
Smith Methods for isolating, expanding, and characterizing umbilical cord mesenchymal stromal cells and their in vitro metabolism
CN106692951A (en) Composition and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250