JP6707992B2 - Damper structure and damper manufacturing method - Google Patents

Damper structure and damper manufacturing method Download PDF

Info

Publication number
JP6707992B2
JP6707992B2 JP2016108529A JP2016108529A JP6707992B2 JP 6707992 B2 JP6707992 B2 JP 6707992B2 JP 2016108529 A JP2016108529 A JP 2016108529A JP 2016108529 A JP2016108529 A JP 2016108529A JP 6707992 B2 JP6707992 B2 JP 6707992B2
Authority
JP
Japan
Prior art keywords
axial direction
energy absorbing
damper
bent
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016108529A
Other languages
Japanese (ja)
Other versions
JP2017214748A (en
Inventor
綾那 伊藤
綾那 伊藤
清水 信孝
信孝 清水
佐藤 圭一
圭一 佐藤
妙中 真治
真治 妙中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016108529A priority Critical patent/JP6707992B2/en
Publication of JP2017214748A publication Critical patent/JP2017214748A/en
Application granted granted Critical
Publication of JP6707992B2 publication Critical patent/JP6707992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパー構造、及び、引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパーの製造方法に関する。 The present invention relates to a damper structure provided on an axial force member on which a tensile load or a compressive load acts, and a method for manufacturing a damper provided on an axial force member on which a tensile load or a compressive load acts.

従来から、対向する方向に相対変位を生ずる構造部材間で効果的にエネルギー吸収して、また、構造部材間の偏心に伴う機能低下を解決等するものとして、例えば、特許文献1〜3に開示される鋼材ダンパー等が提案されている。 Conventionally, for example, as disclosed in Patent Documents 1 to 3, as a means for effectively absorbing energy between structural members that cause relative displacement in opposite directions, and for solving the functional deterioration due to eccentricity between the structural members. There are proposed steel dampers and the like.

特許文献1に開示された鋼材ダンパーは、互いに切り離されて対向する方向に相対変位を生ずる構造部材間に跨設されて、構造部材間の相対変位時に軸方向力を受けて曲げ降伏するものである。特許文献1に開示された鋼材ダンパーは、各構造部材に接続されて同一軸線上で距離をおいて対向する軸部と、両軸部間にその軸線を迂回して跨ってその両端が各軸部に接合されて曲げモーメントを負担する曲げ材とからなる。 The steel damper disclosed in Patent Document 1 is straddled between structural members that are separated from each other and generate relative displacement in opposite directions, and receives a bending force due to an axial force when the structural members are relatively displaced. is there. The steel damper disclosed in Patent Document 1 has a shaft portion connected to each structural member and facing each other with a distance on the same axis line, and both ends of the shaft portion that cross over the shaft line while bypassing the axis line. The bending member is joined to the portion and bears a bending moment.

特許文献2に開示された三重管制震ブレースは、軸力管の内側及び外側の各々に、該軸力管の座屈を阻止する補剛管が同心状に配設されてなる。特許文献2に開示された三重管制震ブレースは、該軸力管の三重管構造部に軸方向に延びる複数の長孔又は凹状窪み溝を形成して、軸力管の断面を意図的に小さくする形状としたことを特徴とする。 The triple-tube vibration control brace disclosed in Patent Document 2 is configured such that stiffening tubes that prevent buckling of the axial force tube are concentrically arranged inside and outside the axial force tube, respectively. The triple pipe damping brace disclosed in Patent Document 2 has a plurality of elongated holes or concave recessed grooves extending in the axial direction formed in the triple pipe structure portion of the axial force pipe to intentionally reduce the cross section of the axial force pipe. It is characterized in that it is formed into a shape.

特許文献3に開示されたフードストッパ構造は、自動車のボンネットフード等のフードを閉じた位置でフードが当接するようにストッパ部材を配設したものである。特許文献3に開示されたフードストッパ構造は、ストッパ部材となるケース部材の周壁部にスリットが設けられて、所定値以上の荷重が負荷された時に上下方向に塑性変形するケース部材内にエネルギー吸収部材を備えていることを特徴とする。 The hood stopper structure disclosed in Patent Document 3 is provided with a stopper member so that the hood comes into contact with the hood such as an automobile hood in a closed position. In the hood stopper structure disclosed in Patent Document 3, a slit is provided in a peripheral wall portion of a case member that serves as a stopper member, and energy is absorbed in the case member that vertically plastically deforms when a load of a predetermined value or more is applied. It is characterized by having a member.

特開平5−263549号公報JP-A-5-263549 特開2006−299576号公報JP, 2006-299576, A 特開2003−285717号公報JP, 2003-285717, A

ここで、特許文献1に開示された鋼材ダンパーは、特に、軸力部材となる構造部材間に跨設されて、各々の構造部材の互いに対向する端面に、鋼材ダンパーの両軸部を接続することで設けられる。このとき、特許文献1に開示された鋼材ダンパーは、構造部材に接続するための軸部と曲げモーメントを負担する曲げ材とが別部材で構成されるため、各々の部材の製作コストや、軸部と曲げ材とを接合するための加工コストが増大する。 Here, the steel material damper disclosed in Patent Document 1 is particularly laid across between the structural members serving as the axial force members, and both shaft portions of the steel material damper are connected to end surfaces of the respective structural members facing each other. It is provided by that. At this time, in the steel material damper disclosed in Patent Document 1, the shaft portion for connecting to the structural member and the bending material that bears the bending moment are composed of different members, so the manufacturing cost of each member and the shaft The processing cost for joining the portion and the bending material increases.

また、特許文献1に開示された鋼材ダンパーは、両軸部間の軸線を迂回させてコ字型の曲げ材が形成されて、コ字型の曲げ材の曲げ部のみがせん断変形することで曲げ降伏するため、曲げ材の曲げ部と連結部との連続箇所がヒンジ状に変形しないものとなる。さらに、特許文献1に開示された鋼材ダンパーは、コ字型の曲げ材が軸直交方向にも変形し易く、曲げ材に厚い鋼板を用いて軸直交方向の変形を抑制することが必要であるため、曲げ材の製作に必要となる鋼材量が多くなることで、曲げ材の材料コストが増大する。 Further, in the steel damper disclosed in Patent Document 1, a U-shaped bending material is formed by bypassing the axis line between both shaft portions, and only the bending portion of the U-shaped bending material undergoes shear deformation. Since bending yields, the continuous portion of the bending portion and the connecting portion of the bending material does not deform like a hinge. Further, in the steel damper disclosed in Patent Document 1, the U-shaped bending material is easily deformed in the axis orthogonal direction, and it is necessary to suppress deformation in the axis orthogonal direction by using a thick steel plate as the bending material. Therefore, the amount of steel material required to manufacture the bending material increases, which increases the material cost of the bending material.

また、特許文献2に開示された三重管制震ブレースは、軸力管の内側及び外側の各々に、該軸力管の座屈を阻止する補剛管が同心状に配設されるため、鋼材量が多くなることで材料コストが増大するとともに、軸力管を三重管構造とするための加工コストが増大する。さらに、特許文献2に開示された三重管制震ブレースは、軸力管の軸降伏を誘発させてエネルギー吸収させるものとして、軸力管の断面を意図的に小さくするものである。 Further, in the triple pipe damping brace disclosed in Patent Document 2, since stiffening pipes for preventing buckling of the axial force pipe are concentrically arranged inside and outside the axial force pipe, respectively, the steel material The increase in the amount increases the material cost and the processing cost for forming the axial force tube into the triple tube structure. Further, the triple pipe damping brace disclosed in Patent Document 2 intentionally reduces the cross section of the axial force pipe, by inducing the axial yield of the axial force pipe to absorb energy.

そして、特許文献3に開示されたフードストッパ構造は、自動車のボンネットフードでの衝突荷重に対するエネルギー吸収を目的とするものであって、建築物等の軸力部材での地震力により生じる繰返し荷重に対するエネルギー吸収を目的とするものではない。また、特許文献3に開示されたフードストッパ構造は、ケース部材内のエネルギー吸収部材を塑性変形させてエネルギー吸収させるものであって、交互に作用する引張荷重及び圧縮荷重に対して繰返しエネルギー吸収させるものではない。 The hood stopper structure disclosed in Patent Document 3 is intended to absorb energy against a collision load in a hood of an automobile, and to a repeated load generated by an earthquake force in an axial force member such as a building. It is not intended to absorb energy. Further, the hood stopper structure disclosed in Patent Document 3 plastically deforms the energy absorbing member in the case member to absorb energy, and repeatedly absorbs energy against alternately acting tensile load and compressive load. Not a thing.

そこで、本発明は、上述した問題点に鑑みて案出されたものであって、その目的とするところは、安定したエネルギー吸収性能を確保しながら低廉な製造コストで製造することのできるダンパー構造及びダンパーの製造方法を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and an object thereof is a damper structure that can be manufactured at a low manufacturing cost while ensuring stable energy absorption performance. And a method for manufacturing a damper.

第1発明に係るダンパー構造は、引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパー構造であって、軸力部材の軸方向の一部に設けられるエネルギー吸収部を備え、前記エネルギー吸収部は、断面略円形状に形成された側板に、周方向の複数箇所で切り欠かれた複数の切欠部と、複数の前記切欠部の間で面外方向に突出させた折曲部とが形成されて、引張荷重又は圧縮荷重が軸力部材に作用したときに、前記折曲部で軸方向に伸縮変形するものとなり、前記切欠部は、軸方向の両端部が湾曲させて切り欠かれて、軸方向の中間部よりも両端部を軸方向の両側に突出させることを特徴とする。 A damper structure according to a first aspect of the present invention is a damper structure provided on an axial force member on which a tensile load or a compressive load acts, comprising an energy absorbing portion provided on a part of an axial direction of the axial force member. The part has a plurality of cutouts cut out at a plurality of positions in the circumferential direction on the side plate formed in a substantially circular cross section, and a bent portion projected in the out-of-plane direction between the plurality of cutouts. is formed, when a tensile load or compressive load acts on the axial force member, the bent Ri Do shall stretch deformed axially portion, the cutout, both ends of the axial-away by bending away in it, than the middle portion in the axial direction protrudes both ends on both sides in the axial direction, characterized in Rukoto.

第2発明に係るダンパー構造は、第1発明において、前記エネルギー吸収部は、前記折曲部の軸方向の少なくとも両端部まで連続する芯材が、前記側板に取り囲まれた内空部に挿通されて、又は、前記側板の外側の外面部に設置されることを特徴とする。 In the damper structure according to a second aspect of the present invention, in the first aspect of the present invention, the energy absorbing portion has a core member that is continuous to at least both ends in the axial direction of the bent portion and is inserted into an inner space surrounded by the side plate. Or, it is installed on the outer surface portion outside the side plate.

第3発明に係るダンパー構造は、第1発明又は第2発明において、前記エネルギー吸収部は、前記折曲部の面外方向に折り曲げられた折り目を略ヒンジ状に塑性変形させることで、前記折曲部で軸方向に伸縮変形するものとなることを特徴とする。 A damper structure according to a third invention is the damper structure according to the first invention or the second invention, wherein the energy absorbing portion plastically deforms a fold line bent in an out-of-plane direction of the bending part into a substantially hinge shape. It is characterized in that it is elastically deformable in the axial direction at the curved portion.

発明に係るダンパー構造は、第1発明〜第発明の何れかにおいて、前記折曲部は、軸方向の両端部となる2箇所、及び、軸方向の中間部となる1箇所で、面外方向に折り曲げられた折り目が3箇所に形成されることを特徴とする。 A damper structure according to a fourth aspect of the present invention is the damper structure according to any one of the first to third aspects, wherein the bent portions are two locations that are both ends in the axial direction and one location that is an intermediate portion in the axial direction. It is characterized in that folds bent in the out-of-plane direction are formed at three places.

発明に係るダンパー構造は、第1発明〜第発明の何れかにおいて、前記折曲部は、軸方向の中間部での周方向の幅寸法よりも、軸方向の両端部での周方向の幅寸法が大きくなることを特徴とする。 A damper structure according to a fifth aspect of the present invention is the damper structure according to any one of the first to fourth aspects, wherein the bent portion has a circumference at both axial end portions rather than a circumferential width dimension at an axial middle portion. It is characterized in that the width dimension in the direction becomes large.

発明に係るダンパーの製造方法は、引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパーの製造方法であって、軸力部材の軸方向の一部に設けられるエネルギー吸収部に切欠部を形成する切欠工程と、前記エネルギー吸収部に折曲部を形成する圧縮工程とを備え、前記切欠工程では、前記エネルギー吸収部の断面略円形状に形成された側板を、周方向の複数箇所で、軸方向の両端部を湾曲させて、軸方向の中間部よりも両端部を軸方向の両側に突出させて切り欠くことで、複数の前記切欠部を前記側板に形成して、前記圧縮工程では、前記エネルギー吸収部の前記側板を軸方向に圧縮することで、複数の前記切欠部の間の前記側板に、面外方向に突出させた前記折曲部を形成することを特徴とする。 A damper manufacturing method according to a sixth aspect of the present invention is a method of manufacturing a damper provided on an axial force member on which a tensile load or a compressive load acts, wherein a notch is provided in an energy absorbing portion provided at a part of the axial force member in the axial direction. A step of forming a portion and a compression step of forming a bent portion in the energy absorbing portion, wherein in the notching step, a plurality of side plates formed in a substantially circular cross section of the energy absorbing portion are arranged in the circumferential direction. At a location, by bending both ends in the axial direction, and notching by protruding both ends in the axial direction from both ends in the axial direction , a plurality of the notches are formed in the side plate, and In the compression step, by compressing the side plate of the energy absorbing portion in the axial direction, the side plate between the plurality of notches is formed with the bent portion protruding in an out-of-plane direction. To do.

発明に係るダンパーの製造方法は、第発明において、前記切欠工程では、前記切欠部の軸方向の両端部が、所定の曲率半径で略円弧状に湾曲させて切り欠かれて、前記切欠部の軸方向の中間部での周方向の幅寸法が、前記切欠部の軸方向の両端部での曲率半径の2倍以上の大きさとなることを特徴とする。 A damper manufacturing method according to a seventh invention is the damper manufacturing method according to the sixth invention, wherein in the notching step, both axial end portions of the notch portion are notched by being curved in a substantially arc shape with a predetermined radius of curvature, The width dimension in the circumferential direction at the axially intermediate portion of the cutout portion is at least twice the radius of curvature at both axial end portions of the cutout portion.

第1発明〜第発明によれば、軸力部材に引張荷重及び圧縮荷重が交互に作用したときに、軸力部材の軸方向でエネルギー吸収部が伸縮変形することで、地震又は風等の繰返し外力に対して、安定したエネルギー吸収性能を確保することが可能となる。 According to the first invention to the seventh invention, when the tensile load and the compressive load are alternately applied to the axial force member, the energy absorbing portion expands and contracts in the axial direction of the axial force member, so that an earthquake, a wind, or the like occurs. It is possible to secure stable energy absorption performance against repeated external force.

第1発明〜第発明によれば、エネルギー吸収部の側板によって十分な引張耐力又は圧縮耐力が確保されて、また、折曲部の長さ寸法、突出高さ、鋼材の種類又は板厚等を適宜設定することができるため、設計自由度の高いエネルギー吸収部を提供することが可能となる。
また、第1発明〜第7発明によれば、折曲部の両端部の折り目を略ヒンジ状に変形等させるときに、切欠部の両端部に応力集中が生じるものの、切欠部の両端部を略円弧状等に湾曲させることで、切欠部の両端部での応力集中が分散されるため、切欠部の両端部の側板に亀裂が発生することを防止することが可能となる。
According to the first invention to the seventh invention, sufficient tensile strength or compression strength is ensured by the side plate of the energy absorbing portion, and the length dimension of the bent portion, the protruding height, the type of steel material or the plate thickness, etc. Can be set appropriately, so that it is possible to provide an energy absorbing portion having a high degree of freedom in design.
According to the first invention to the seventh invention, when the folds at both ends of the bent portion are deformed into a substantially hinge shape, stress concentration occurs at both ends of the notch, but both ends of the notch are Since the stress concentration at both ends of the cutout is dispersed by bending the cutout into a substantially arcuate shape, it is possible to prevent cracks from occurring in the side plates at both ends of the cutout.

特に、第2発明によれば、折曲部の両端部まで軸方向に連続させて、エネルギー吸収部の内空部に芯材が挿通されて、又は、外面部に芯材が設置されることで、折曲部の両端部まで芯材を連続させた状態のままでエネルギー吸収部を伸縮変形させて、折曲部の両端部が軸直交方向に相対変位することが抑制されるため、ダンパー構造の全体座屈を抑制することが可能となる。 In particular, according to the second aspect of the invention, the core member is axially continuous to both ends of the bent portion, the core member is inserted into the inner space of the energy absorbing unit, or the core member is installed on the outer surface portion. Thus, the energy absorbing part is expanded and contracted while the core material is continuously extended to both ends of the bent part, and relative displacement of both ends of the bent part in the direction orthogonal to the axis is suppressed. It is possible to suppress the buckling of the entire structure.

特に、第3発明によれば、引張荷重又は圧縮荷重が作用したときに、折曲部の面外方向に折り曲げられた折り目を略ヒンジ状に塑性変形させることで、安定したエネルギー吸収性能を発揮するため、エネルギー吸収部として厚い鋼板等を用いることなく、十分な引張耐力又は圧縮耐力を確保して、エネルギー吸収部の材料コスト及び加工コストを抑制することが可能となる。 In particular, according to the third aspect of the invention, when a tensile load or a compressive load is applied, the folds bent in the out-of-plane direction of the bent portion are plastically deformed into a substantially hinge shape, thereby exhibiting stable energy absorption performance. Therefore, it is possible to secure sufficient tensile strength or compression strength without using a thick steel plate or the like as the energy absorbing portion, and to suppress the material cost and the processing cost of the energy absorbing portion.

特に、第発明によれば、折曲部の折り目が3箇所に形成されることで、略三角形状に形成された折曲部の剛性が高められるため、エネルギー吸収性能の安定性を向上させることが可能となる。 In particular, according to the fourth aspect of the invention, since the folds of the bent portion are formed at three places, the rigidity of the bent portion formed in a substantially triangular shape is increased, so that the stability of energy absorption performance is improved. It becomes possible.

特に、第発明によれば、折曲部の中間部での幅寸法よりも両端部での幅寸法が大きくなることで、折曲部の中間部の略中央等で確実に折り目が形成されるため、精度の高いエネルギー吸収部を提供することが可能となる。 In particular, according to the fifth aspect of the invention, the width dimension at both ends is larger than the width dimension at the middle portion of the bent portion, so that the crease is surely formed at substantially the center of the middle portion of the bent portion. Therefore, it becomes possible to provide a highly accurate energy absorption part.

特に、第発明によれば、温度依存性の高い粘弾性ダンパー等を用いることなく、円形鋼管等から切欠工程及び圧縮工程を経て容易に折曲部を形成することができるため、低廉な製造コストでダンパー構造を製造することが可能となる。 In particular, according to the sixth aspect of the invention, since a bent portion can be easily formed from a circular steel pipe or the like through a notch process and a compression process without using a viscoelastic damper or the like having a high temperature dependency, it is an inexpensive manufacturing. It is possible to manufacture the damper structure at a cost.

特に、第発明によれば、切欠部の中間部での幅寸法が、切欠部の両端部での曲率半径の2倍以上の大きさとなることで、折曲部の中間部よりも両端部となる位置で側板の断面欠損が小さくなるため、圧縮工程でエネルギー吸収部の側板を圧縮するときに、側板に想定外の座屈が発生することを防止して、折曲部の両端部及び中間部の所定の位置に折り目を形成することが可能となる。 In particular, according to the seventh aspect of the invention, the width dimension at the middle portion of the cutout portion is at least twice the radius of curvature at the both end portions of the cutout portion, so that both end portions of the bent portion are more than the middle portion. Since the cross-section loss of the side plate becomes small at the position where, when the side plate of the energy absorbing part is compressed in the compression step, unexpected buckling of the side plate is prevented, and both end portions of the bent part and It becomes possible to form a fold line at a predetermined position of the intermediate portion.

本発明を適用したダンパー構造が導入される耐力壁を示す斜視図である。It is a perspective view showing a bearing wall in which a damper structure to which the present invention is applied is introduced. (a)は、本発明を適用したダンパー構造が導入される耐力壁に水平力が作用する前の状態を示す正面図であり、(b)は、水平力が作用した後の状態を示す正面図である。(A) is a front view showing a state before a horizontal force is applied to a load bearing wall to which a damper structure to which the present invention is applied is introduced, and (b) is a front view showing a state after the horizontal force is applied. It is a figure. (a)は、本発明を適用したダンパー構造が導入される耐力壁で軸力部材に引張荷重が作用した状態を示す正面図であり、(b)は、圧縮荷重が作用した状態を示す正面図である。(A) is a front view showing a state in which a tensile load is applied to an axial force member in a load bearing wall to which a damper structure to which the present invention is applied is introduced, and (b) is a front view showing a state in which a compressive load is applied. It is a figure. (a)は、本発明を適用したダンパー構造で縦枠又は横枠に直接取り付けられる軸力部材を示す正面図であり、(b)は、接合金物で取り付けられる軸力部材を示す正面図である。(A) is a front view showing an axial force member directly attached to a vertical frame or a horizontal frame in a damper structure to which the present invention is applied, and (b) is a front view showing an axial force member attached with a metal joint. is there. (a)は、本発明を適用したダンパー構造のエネルギー吸収部を示す平面図であり、(b)は、その正面図である。(A) is a plan view showing an energy absorbing part of a damper structure to which the present invention is applied, and (b) is a front view thereof. (a)は、本発明を適用したダンパー構造でエネルギー吸収部の切欠部を示す正面図であり、(b)は、その折曲部を示す正面図である。(A) is a front view which shows the notch of an energy absorption part in the damper structure to which this invention is applied, (b) is a front view which shows the bending part. (a)は、本発明を適用したダンパー構造で略三角形状の折曲部を示す正面図であり、(b)は、その伸長した状態を示す正面図であり、(c)は、その縮長した状態を示す正面図である。(A) is a front view showing a substantially triangular bent portion in a damper structure to which the present invention is applied, (b) is a front view showing its extended state, and (c) is its contracted state. It is a front view which shows the extended state. (a)は、本発明を適用したダンパー構造で略円弧状の折曲部を示す正面図であり、(b)は、その伸長した状態を示す正面図であり、(c)は、その縮長した状態を示す正面図である。(A) is a front view which shows the substantially arcuate bending part in the damper structure to which this invention is applied, (b) is a front view which shows the extended state, (c) is its contraction It is a front view which shows the extended state. (a)は、本発明を適用したダンパー構造で略矩形状の折曲部を示す正面図であり、(b)は、その伸長した状態を示す正面図であり、(c)は、その縮長した状態を示す正面図である。(A) is a front view showing a substantially rectangular bent portion in a damper structure to which the present invention is applied, (b) is a front view showing its extended state, and (c) is its contracted state. It is a front view which shows the extended state. (a)は、本発明を適用したダンパー構造でエネルギー吸収部の内空部に挿通された芯材を示す平面図であり、(b)は、その正面図である。(A) is a plan view showing a core member inserted into an inner space of an energy absorbing part in a damper structure to which the present invention is applied, and (b) is a front view thereof. (a)は、本発明を適用したダンパー構造でエネルギー吸収部の外面部に設置された芯材を示す平面図であり、(b)は、その正面図である。(A) is a top view which shows the core material installed in the outer surface part of the energy absorption part in the damper structure to which this invention is applied, and (b) is its front view. (a)は、従来の鋼材ダンパーでコ字型の曲げ材を示す正面図であり、(b)は、曲げ材の曲げ部のみがせん断変形する状態を示す正面図である。(A) is a front view showing a U-shaped bending material of a conventional steel damper, and (b) is a front view showing a state where only a bending portion of the bending material is sheared and deformed. (a)は、本発明を適用したダンパー構造で軸力部材となる円形鋼管に溶接接合されるエネルギー吸収部を示す正面図であり、(b)は、その円形鋼管にボルト接合されるエネルギー吸収部を示す正面図である。(A) is a front view which shows the energy absorption part weld-bonded to the circular steel pipe used as an axial force member by the damper structure to which this invention is applied, (b) is the energy absorption bolt-bonded to the circular steel pipe. It is a front view which shows a part. (a)は、本発明を適用したダンパー構造で軸力部材となるH形鋼等に溶接接合されるエネルギー吸収部を示す正面図であり、(b)は、そのH形鋼等にボルト接合されるエネルギー吸収部を示す正面図である。(A) is a front view showing an energy absorbing part welded to H-section steel or the like serving as an axial force member in a damper structure to which the present invention is applied, and (b) is bolted to the H-section steel or the like. It is a front view which shows the energy absorption part. 本発明を適用したダンパーの製造方法を示す正面図である。It is a front view which shows the manufacturing method of the damper to which this invention is applied. 本発明を適用したダンパーの製造方法の切欠工程で側板が略直線状に切り欠かれた切欠部を示す正面図である。It is a front view which shows the notch which the side plate was notched in the notch process of the manufacturing method of the damper to which this invention is applied. 本発明を適用したダンパーの製造方法の切欠工程で側板が略円形状に切り欠かれた切欠部を示す正面図である。It is a front view which shows the notch part which the side plate was notched in the notch process of the manufacturing method of the damper to which this invention is applied. 本発明を適用したダンパー構造のFEM解析結果で引張荷重載荷時及び圧縮荷重載荷時の折曲部の伸縮変形量を示すグラフである。It is a graph which shows the expansion-contraction deformation amount of a bending part at the time of tensile load loading and compression load loading by the FEM analysis result of the damper structure to which this invention is applied. (a)は、本発明を適用したダンパー構造で芯材が挿通されたエネルギー吸収部を示す正面図であり、(b)は、その折曲部の伸長した状態を示す正面図であり、(c)は、その折曲部の縮長した状態を示す正面図である。(A) is a front view showing an energy absorption part in which a core material is inserted in a damper structure to which the present invention is applied, and (b) is a front view showing a state where the bent part is extended, FIG. 7C is a front view showing a state in which the bent portion is contracted.

以下、本発明を適用したダンパー構造1及びダンパーの製造方法を実施するための形態について、図面を参照しながら詳細に説明する。 Hereinafter, a mode for carrying out the damper structure 1 and the manufacturing method of the damper to which the present invention is applied will be described in detail with reference to the drawings.

本発明を適用したダンパー構造1は、図1に示すように、例えば、住宅、学校、事務所、病院施設等の建築物の軸力部材2に設けられる。また、本発明を適用したダンパー構造1は、プラント構造物、鉄塔等の建造物の軸力部材2に設けられてもよい。 As shown in FIG. 1, a damper structure 1 to which the present invention is applied is provided on an axial force member 2 of a building such as a house, a school, an office or a hospital facility. Further, the damper structure 1 to which the present invention is applied may be provided on the axial force member 2 of a building such as a plant structure or a steel tower.

本発明を適用したダンパー構造1は、特に、引張荷重Pt又は圧縮荷重Pcが作用する軸力部材2に設けられる。本発明を適用したダンパー構造1は、柱材、梁材又はブレース材20等の軸力部材2に設けられて、建築物の耐力壁7等として用いられる。 The damper structure 1 to which the present invention is applied is particularly provided on the axial force member 2 on which the tensile load Pt or the compressive load Pc acts. The damper structure 1 to which the present invention is applied is provided on an axial force member 2 such as a column member, a beam member or a brace member 20 and is used as a load bearing wall 7 of a building.

耐力壁7は、例えば、スチールハウス、鉄骨プレハブ又は木造住宅等の建築物の壁体として設けられる。耐力壁7は、一対の縦枠71と一対の横枠72とで四方が取り囲まれて、所定の枠内空間70が形成される。耐力壁7は、例えば、図2に示すように、高さ寸法Hを2300mm程度、幅寸法Wを910mm程度とする。 The load bearing wall 7 is provided as a wall body of a building such as a steel house, a steel frame prefab or a wooden house. The load bearing wall 7 is surrounded on all sides by a pair of vertical frames 71 and a pair of horizontal frames 72, and a predetermined frame inner space 70 is formed. The bearing wall 7 has a height dimension H of about 2300 mm and a width dimension W of about 910 mm, for example, as shown in FIG.

耐力壁7は、図2(a)に示すように、ブレース材20となる軸力部材2が、枠内空間70の上部70a及び下部70bの各々に傾斜して設けられる。このとき、枠内空間70の上部70aでは、一方の縦枠71の上側から他方の縦枠71までブレース材20が傾斜して設けられて、また、枠内空間70の下部70bでは、他方の縦枠71から一方の縦枠71の下側までブレース材20が傾斜して設けられる。 As shown in FIG. 2( a ), the load bearing wall 7 is provided with the axial force member 2 serving as the brace member 20 inclined to each of the upper portion 70 a and the lower portion 70 b of the frame inner space 70. At this time, in the upper part 70a of the frame inner space 70, the brace member 20 is provided so as to be inclined from the upper side of one vertical frame 71 to the other vertical frame 71, and in the lower part 70b of the frame inner space 70, the other brace 20 is inclined. The brace member 20 is provided so as to be inclined from the vertical frame 71 to the lower side of one vertical frame 71.

耐力壁7は、図2(b)に示すように、地震又は風等によって水平力Fが作用することで、各々の縦枠71が横方向に傾倒するように変位する。このとき、耐力壁7は、例えば、枠内空間70の上部70aでは、ブレース材20に引張荷重Ptが作用するとともに、枠内空間70の下部70bでは、ブレース材20に圧縮荷重Pcが作用する。 As shown in FIG. 2B, the load bearing wall 7 is displaced so that each vertical frame 71 tilts in the horizontal direction when a horizontal force F is applied by an earthquake or wind. At this time, in the load bearing wall 7, for example, the tensile load Pt acts on the brace member 20 in the upper portion 70a of the frame inner space 70, and the compressive load Pc acts on the brace member 20 in the lower portion 70b of the frame inner space 70. ..

耐力壁7は、図3に示すように、ブレース材20となる軸力部材2が、枠内空間70の上部70aから下部70bまで跨って設けられてもよい。このとき、枠内空間70の上部70aでは、一方の縦枠71の上側にブレース材20の一方の端部20aが傾斜して取り付けられて、また、枠内空間70の下部70bでは、他方の縦枠71の下側にブレース材20の他方の端部20aが傾斜して取り付けられる。 As shown in FIG. 3, the load bearing wall 7 may be provided with the axial force member 2 serving as the brace member 20 extending from the upper portion 70a to the lower portion 70b of the frame inner space 70. At this time, in the upper portion 70a of the frame inner space 70, one end portion 20a of the brace member 20 is obliquely attached to the upper side of one vertical frame 71, and in the lower portion 70b of the frame inner space 70, the other end portion 20a is inclined. The other end 20a of the brace member 20 is attached to the lower side of the vertical frame 71 in an inclined manner.

耐力壁7は、地震又は風等によって水平力Fが作用することで、図3(a)に示すように、例えば、各々の縦枠71が右方向に傾倒するように変位して、ブレース材20に引張荷重Ptが作用する。そして、耐力壁7は、図3(b)に示すように、各々の縦枠71が左方向に傾倒するように変位したときには、ブレース材20に圧縮荷重Pcが作用する。 When the horizontal force F acts on the bearing wall 7 due to an earthquake, wind, or the like, as shown in FIG. 3A, for example, each vertical frame 71 is displaced so as to be tilted to the right, and the brace member is displaced. The tensile load Pt acts on 20. Then, as shown in FIG. 3B, when the vertical frames 71 of the load bearing wall 7 are displaced so as to tilt to the left, the compressive load Pc acts on the brace member 20.

ここで、耐力壁7は、例えば、図2(b)に示す水平力Fを30kNとするとともに、層間変形角を1/50とした場合に、各々のブレース材20の耐力を43kN以上、各々のブレース材20の変形性能を17mm以上確保する必要がある。このため、耐力壁7は、各々のブレース材20で所定の耐力及び変形性能を確保するためにエネルギー吸収部3が設けられる。 Here, the load bearing wall 7 has, for example, a horizontal force F shown in FIG. 2(b) of 30 kN and a yield strength of each brace member 20 of 43 kN or more when the interlayer deformation angle is 1/50. It is necessary to secure the deformation performance of the brace material 20 of 17 mm or more. For this reason, the energy-bearing wall 7 is provided with the energy absorbing portion 3 in order to ensure a predetermined yield strength and deformability of each brace member 20.

耐力壁7は、図4に示すように、ブレース材20の端部20aが縦枠71又は横枠72に取り付けられる。このとき、耐力壁7は、図4(a)に示すように、ブレース材20の端部20aが直接溶接等で取り付けられてもよい。また、耐力壁7は、図4(b)に示すように、ブレース材20の端部20aに溶接等で取り付けられた接合金物6が、縦枠71及び横枠72にボルト接合等で取り付けられてもよい。 As shown in FIG. 4, the bearing wall 7 has the end portion 20 a of the brace member 20 attached to the vertical frame 71 or the horizontal frame 72. At this time, as shown in FIG. 4A, the end portion 20a of the brace member 20 may be directly attached to the load bearing wall 7 by welding or the like. As shown in FIG. 4( b ), the load-bearing wall 7 is such that the metal joint 6 attached to the end 20 a of the brace member 20 by welding or the like is attached to the vertical frame 71 and the horizontal frame 72 by bolting or the like. May be.

本発明を適用したダンパー構造1は、図5に示すように、軸力部材2の軸方向Zの一部に設けられるエネルギー吸収部3を備える。軸力部材2は、断面略円形状の閉断面形状に形成された円形鋼管等が用いられて、例えば、円形鋼管等の板厚tを1.0mm〜6.0mm程度、周方向Xの外径Dを20mm〜200mm程度とする。 As shown in FIG. 5, the damper structure 1 to which the present invention is applied includes an energy absorbing portion 3 provided in a part of the axial force member 2 in the axial direction Z. For the axial force member 2, a circular steel pipe or the like formed in a closed cross-sectional shape having a substantially circular cross-section is used. For example, the plate thickness t of the circular steel pipe or the like is about 1.0 mm to 6.0 mm, and the outside in the circumferential direction X. The diameter D is about 20 mm to 200 mm.

エネルギー吸収部3は、図5(a)に示すように、断面略円形状に形成された側板31を有する。このとき、エネルギー吸収部3は、軸力部材2の軸方向Zに対する側板31の断面形状が、略真円形状又は略楕円形状等に形成されて、側板31に取り囲まれた内側に略中空状の内空部30が形成される。また、エネルギー吸収部3は、内空部30とは反対側となる側板31の外側が外面部32となる。 As shown in FIG. 5A, the energy absorbing section 3 has a side plate 31 formed in a substantially circular cross section. At this time, in the energy absorbing portion 3, the cross-sectional shape of the side plate 31 with respect to the axial direction Z of the axial force member 2 is formed into a substantially perfect circular shape or a substantially elliptical shape, and is substantially hollow inside the side plate 31. The inner space 30 is formed. Further, in the energy absorbing portion 3, the outer surface portion 32 is on the outer side of the side plate 31 on the side opposite to the inner space portion 30.

エネルギー吸収部3は、図5(b)に示すように、周方向Xに連続して側板31が形成されて、軸方向Zと略直交する方向が、側板31の面外方向Yとなる。エネルギー吸収部3は、周方向Xの複数箇所で切り欠かれた複数の切欠部4と、複数の切欠部4の間で面外方向Yに突出させた複数の折曲部5とが、側板31に形成される。 As shown in FIG. 5B, in the energy absorbing portion 3, the side plate 31 is formed continuously in the circumferential direction X, and the direction substantially orthogonal to the axial direction Z is the out-of-plane direction Y of the side plate 31. The energy absorbing portion 3 has a plurality of notches 4 cut out at a plurality of positions in the circumferential direction X and a plurality of bent portions 5 protruding in the out-of-plane direction Y between the plurality of notches 4 as side plates. 31 is formed.

切欠部4は、図6(a)に示すように、側板31が板厚方向に切り欠かれた状態となることで、所定の切欠形状で形成される。切欠部4は、軸方向Zの両端部4aが略円弧状等に湾曲させて切り欠かれて、軸方向Zの中間部4bよりも両端部4aを軸方向Zの両側に突出させる。 As shown in FIG. 6A, the cutout portion 4 is formed in a predetermined cutout shape when the side plate 31 is cut out in the plate thickness direction. Both ends 4a in the axial direction Z of the cutout portion 4 are bent in a substantially arcuate shape or the like so as to be cut out so that the both ends 4a project to both sides in the axial direction Z more than the intermediate portion 4b in the axial direction Z.

折曲部5は、図6(b)に示すように、側板31が面外方向Yに折り曲げられた状態となることで、軸方向Zに延びた折曲形状で形成される。折曲部5は、軸方向Zの両端部5aで面外方向Yの外側に向けて折り曲げられた折り目51が形成されるとともに、軸方向Zの中間部5bで面外方向Yの内側に向けて折り曲げられた折り目51が形成される。 As shown in FIG. 6( b ), the bent portion 5 is formed in a bent shape extending in the axial direction Z when the side plate 31 is bent in the out-of-plane direction Y. The bent portion 5 has a fold line 51 that is bent toward the outside in the out-of-plane direction Y at both ends 5a in the axial direction Z, and is directed toward the inside in the out-of-plane direction Y at the intermediate portion 5b in the axial direction Z. The folded fold line 51 is formed.

折曲部5は、軸方向Zの両端部5a及び中間部5bに形成された折り目51で、周方向Xに所定の幅寸法となる。このとき、折曲部5は、軸方向Zの中間部5bでの周方向Xの幅寸法wbよりも、軸方向Zの両端部5aでの周方向Xの幅寸法waが大きくなる。また、折曲部5は、必要に応じて、軸方向Zの中間部5bでの幅寸法wbと軸方向Zの両端部5aでの幅寸法waとが、互いに略同一の大きさとなってもよい。 The bent portion 5 is a fold 51 formed at both ends 5a and an intermediate portion 5b in the axial direction Z, and has a predetermined width dimension in the circumferential direction X. At this time, in the bent portion 5, the width dimension wa in the circumferential direction X at both end portions 5a in the axial direction Z is larger than the width dimension wb in the circumferential direction X at the intermediate portion 5b in the axial direction Z. In addition, in the bent portion 5, if necessary, the width dimension wb at the intermediate portion 5b in the axial direction Z and the width dimension wa at both end portions 5a in the axial direction Z are substantially the same. Good.

折曲部5は、図7に示すように、例えば、軸方向Zの長さ寸法bを10mm〜50mm程度、面外方向Yの突出高さhを10mm〜50mm程度、板厚tを1.0mm〜6.0mm程度として、折り目51で湾曲又は屈曲等させた状態で折り曲げられる。折曲部5は、折り目51で湾曲させて折り曲げられる場合には、例えば、折り目51の内周側の曲率半径r1を、折曲部5の板厚tと同一以上の大きさとするとともに、折り目51の外周側の曲率半径r2を、折曲部5の板厚tの2倍以上の大きさとする。 As shown in FIG. 7, the bent portion 5 has a length dimension b in the axial direction Z of about 10 mm to 50 mm, a protruding height h of the out-of-plane direction Y of about 10 mm to 50 mm, and a plate thickness t of 1. The length is about 0 mm to 6.0 mm, and the fold line 51 is bent or bent. When the bent portion 5 is bent at the fold 51 and bent, for example, the radius of curvature r1 on the inner peripheral side of the fold 51 is set to be equal to or larger than the plate thickness t of the bent portion 5, and The radius of curvature r2 on the outer peripheral side of 51 is set to be twice or more the plate thickness t of the bent portion 5.

折曲部5は、面外方向Yに折り曲げられて形成された折り目51が、軸方向Zの両端部5a及び中間部5bで2箇所以上の複数箇所に配置される。折曲部5は、例えば、軸方向Zの両端部5aとなる2箇所、及び、軸方向Zの中間部5bとなる1箇所で、面外方向Yに折り曲げられた折り目51が3箇所に形成されることで、略三角形状に形成される。 In the bent portion 5, folds 51 formed by bending in the out-of-plane direction Y are arranged at two or more positions at both ends 5a and the intermediate part 5b in the axial direction Z. The bent portions 5 are, for example, two places which are both end portions 5a in the axial direction Z and one place which is an intermediate portion 5b in the axial direction Z, and three folds 51 bent in the out-of-plane direction Y are formed. By doing so, it is formed into a substantially triangular shape.

折曲部5は、略三角形状に形成される場合に、軸方向Zの両端部5aの折り目51から中間部5bの折り目51まで、側板31が略直線状に傾斜して延びることで、軸直交方向に対して15°以上、43°以下程度の傾斜角度θで傾斜した側板31が形成される。 When the bent portion 5 is formed in a substantially triangular shape, the side plate 31 extends in a substantially straight line from the fold 51 of both end portions 5a in the axial direction Z to the fold 51 of the intermediate portion 5b. The side plate 31 is formed with an inclination angle θ of about 15° or more and 43° or less with respect to the orthogonal direction.

折曲部5は、必要に応じて、図8に示すように、軸方向Zの両端部5aとなる2箇所にのみ折り目51が形成されてもよい。このとき、折曲部5は、軸方向Zの中間部5bには折り目51が形成されないものとして、軸方向Zの両端部5aとなる折り目51と折り目51との間で、略円弧状又は略楕円弧状等に湾曲した側板31が形成される。 As shown in FIG. 8, the bent portion 5 may have folds 51 formed only at two positions serving as both ends 5a in the axial direction Z, as shown in FIG. At this time, the bent portion 5 assumes that the folds 51 are not formed in the intermediate portion 5b in the axial direction Z, and between the folds 51 serving as both end portions 5a in the axial direction Z and the folds 51, a substantially arc shape or a substantially fold is formed. The side plate 31 curved in an elliptic arc shape or the like is formed.

折曲部5は、図9に示すように、軸方向Zの両端部5aとなる2箇所、及び、軸方向Zの中間部5bとなる2箇所で、折り目51が4箇所に形成されることで、略矩形状に形成されてもよい。折曲部5は、折り目51が4箇所に形成されて、略台形状又は略逆台形状に形成されてもよく、この場合も、略三角形状に形成される場合と同様に、軸直交方向に対して15°以上、43°以下の傾斜角度θで傾斜した側板31が形成されてもよい。 As shown in FIG. 9, the bent portion 5 has two folds 51 at both ends 5a in the axial direction Z and two intermediate portions 5b in the axial direction Z, and folds 51 are formed at four positions. Thus, it may be formed in a substantially rectangular shape. The folding part 5 may have four folds 51 formed in a substantially trapezoidal shape or a substantially inverted trapezoidal shape. In this case as well, in the same manner as in the case of being formed in a substantially triangular shape, the folding direction is orthogonal to the axis. The side plate 31 that is inclined at an inclination angle θ of 15° or more and 43° or less may be formed.

エネルギー吸収部3は、図5に示すように、側板31に取り囲まれて形成された内空部30が略中空状の状態で用いられてもよいが、必要に応じて、図10に示すように、側板31に取り囲まれた内空部30に、円形鋼管等の芯材60が挿通されてもよい。このとき、エネルギー吸収部3は、折曲部5の軸方向Zの少なくとも両端部5aまで連続させて、所定の剛性を有する芯材60が内空部30に設けられるものとなる。 As shown in FIG. 5, the energy absorbing portion 3 may be used in a state in which the inner hollow portion 30 formed by being surrounded by the side plate 31 is in a substantially hollow state, but if necessary, as shown in FIG. In addition, the core material 60 such as a circular steel pipe may be inserted into the inner space 30 surrounded by the side plate 31. At this time, the energy absorbing portion 3 is continuous to at least both end portions 5a of the bent portion 5 in the axial direction Z, and the core material 60 having a predetermined rigidity is provided in the inner hollow portion 30.

また、エネルギー吸収部3は、図11に示すように、折曲部5の両端部5aで面外方向Yの内側に向けて折り曲げられた折り目51が形成されてもよい。このとき、エネルギー吸収部3は、折曲部5の軸方向Zの少なくとも両端部5aまで連続させて、円形鋼管等の芯材60が、側板31の外側の外面部32に設置されるものとなる。 Further, as shown in FIG. 11, the energy absorbing portion 3 may be formed with folds 51 that are bent inward in the out-of-plane direction Y at both ends 5 a of the bent portion 5. At this time, the energy absorbing part 3 is made continuous to at least both ends 5a in the axial direction Z of the bent part 5, and the core material 60 such as a circular steel pipe is installed on the outer surface part 32 outside the side plate 31. Become.

エネルギー吸収部3は、図7〜図9に示すように、特に、軸方向Zの引張荷重Pt又は圧縮荷重Pcが軸力部材2に作用したときに、折曲部5で軸方向Zに伸縮変形するものとなる。なお、エネルギー吸収部3は、折曲部5で伸縮変形する前の状態から、図9(b)、図9(c)に示すように、略台形状又は略逆台形状に折曲部5が形成されてもよい。 As shown in FIGS. 7 to 9, the energy absorbing portion 3 expands and contracts in the axial direction Z at the bending portion 5 especially when a tensile load Pt or a compressive load Pc in the axial direction Z acts on the axial force member 2. It will be transformed. The energy absorbing portion 3 is bent into a substantially trapezoidal shape or an inverted trapezoidal shape as shown in FIGS. 9B and 9C from a state before being stretched and deformed by the bending portion 5. May be formed.

エネルギー吸収部3は、図7(b)、図8(b)、図9(b)に示すように、引張荷重Ptが軸力部材2に作用したときに、折曲部5の軸方向Zの両端部5aが軸方向Zで互いに離間する方向に変位する。このとき、折曲部5は、軸直交方向に対する折り目51での傾斜角度θtが大きくなって、軸方向Zに伸長する変形をするものとなる。 As shown in FIG. 7B, FIG. 8B, and FIG. 9B, the energy absorbing portion 3 has the axial direction Z of the bending portion 5 when the tensile load Pt acts on the axial force member 2. Both end portions 5a of the are displaced in the direction away from each other in the axial direction Z. At this time, the bent portion 5 is deformed so that the inclination angle θt at the fold line 51 with respect to the axis orthogonal direction becomes large and the bent portion 5 extends in the axial direction Z.

エネルギー吸収部3は、図7(c)、図8(c)、図9(c)に示すように、圧縮荷重Pcが軸力部材2に作用したときに、折曲部5の軸方向Zの両端部5aが軸方向Zで互いに接近する方向に変位する。このとき、折曲部5は、軸直交方向に対する折り目51での傾斜角度θcが小さくなって、軸方向Zに縮長する変形をするものとなる。 As shown in FIGS. 7(c), 8(c), and 9(c), the energy absorbing portion 3 has an axial direction Z of the bending portion 5 when a compressive load Pc acts on the axial force member 2. Both end portions 5a of the are displaced in the axial direction Z in directions approaching each other. At this time, the bent portion 5 is deformed so that the inclination angle θc at the fold line 51 with respect to the axis orthogonal direction becomes small and the bent portion 5 contracts in the axial direction Z.

エネルギー吸収部3は、引張荷重Pt又は圧縮荷重Pcが軸力部材2に作用したときに、折曲部5の面外方向Yに折り曲げられた折り目51を略ヒンジ状に塑性変形させることで、折曲部5で軸方向Zに伸縮変形する。このとき、エネルギー吸収部3は、側板31がせん断変形又は曲げ変形するか否かにかかわらず、折曲部5の両端部5a及び中間部5bの折り目51での略ヒンジ状の塑性変形により安定したエネルギー吸収性能を発揮する。 When the tensile load Pt or the compressive load Pc acts on the axial force member 2, the energy absorbing portion 3 plastically deforms the fold line 51 of the bent portion 5 bent in the out-of-plane direction Y into a substantially hinge shape, The bending portion 5 expands and contracts in the axial direction Z. At this time, the energy absorbing portion 3 is stable due to the substantially hinge-like plastic deformation at the folds 51 of the both end portions 5a and the intermediate portion 5b of the bent portion 5, regardless of whether the side plate 31 is sheared or bent. Demonstrate the energy absorption performance.

これに対して、従来の鋼材ダンパー9は、図12に示すように、コ字型の曲げ材91の上部及び下部の曲げ部91aのみをせん断変形させて、曲げ部91aのせん断変形のみによりエネルギー吸収性能を発揮する。このとき、従来の鋼材ダンパー9は、曲げ部91aのみがせん断変形して曲げ降伏することから、曲げ部91aと連結部91bとの連続箇所91cがヒンジ状に変形しないものとなる。 On the other hand, in the conventional steel damper 9, as shown in FIG. 12, only the upper and lower bent portions 91a of the U-shaped bent member 91 are shear-deformed, and the energy is generated only by the shear deformation of the bent portion 91a. Exhibits absorption performance. At this time, in the conventional steel damper 9, only the bending portion 91a undergoes shear deformation and bending yielding, so that the continuous portion 91c of the bending portion 91a and the connecting portion 91b does not deform like a hinge.

エネルギー吸収部3は、図5に示すように、円形鋼管等の軸力部材2自体の軸方向Zの一部をエネルギー吸収部3の側板31として、軸力部材2自体に切欠部4及び折曲部5が形成されることで、軸力部材2と一体として軸力部材2の軸方向Zの一部に設けられる。 As shown in FIG. 5, the energy absorbing portion 3 uses a part of the axial force member 2 itself, such as a circular steel pipe, in the axial direction Z as a side plate 31 of the energy absorbing portion 3 in the notch portion 4 and the folding portion of the axial force member 2 itself. By forming the curved portion 5, it is provided integrally with the axial force member 2 in a part of the axial force member 2 in the axial direction Z.

エネルギー吸収部3は、これに限らず、図13、図14に示すように、軸力部材2とは独立して製作された側板31が、軸力部材2の端部2aに取り付けられて、軸力部材2とは独立した部材として軸力部材2の軸方向Zの一部に設けられてもよい。 The energy absorbing portion 3 is not limited to this, and as shown in FIGS. 13 and 14, a side plate 31 manufactured independently of the axial force member 2 is attached to the end portion 2a of the axial force member 2, It may be provided as a member independent of the axial force member 2 in a part of the axial force member 2 in the axial direction Z.

このとき、エネルギー吸収部3は、軸力部材2を軸方向Zに分断させるとともに、軸力部材2を分断させた一対の端部2aに架設される。エネルギー吸収部3は、図13(a)に示すように、軸力部材2となる円形鋼管の端部2aに溶接接合されてもよく、また、図13(b)に示すように、円形鋼管の端部2aにボルト接合されるほか、ねじ接合、くぎ接合又はピン接合等で取り付けられてもよい。 At this time, the energy absorbing portion 3 divides the axial force member 2 in the axial direction Z, and is installed on the pair of end portions 2 a that divide the axial force member 2. The energy absorbing portion 3 may be welded to the end portion 2a of the circular steel pipe serving as the axial force member 2 as shown in FIG. 13(a), or as shown in FIG. 13(b), the circular steel pipe. In addition to being bolted to the end portion 2a, it may be attached by screw joining, nail joining, pin joining, or the like.

エネルギー吸収部3は、図14に示すように、断面略H形状に形成されたH形鋼、又は、断面略C形状に形成された溝形鋼等の軸力部材2の一部に設けられてもよい。このとき、エネルギー吸収部3は、図14(a)に示すように、軸力部材2となるH形鋼等の端部2aが内空部30に内挿されて溶接接合等されてもよく、また、図14(b)に示すように、略平坦に潰した側板31をH形鋼等の端部2aにボルト接合されるほか、ねじ接合、くぎ接合又はピン接合等で取り付けられてもよい。 As shown in FIG. 14, the energy absorbing portion 3 is provided in a part of the axial force member 2 such as an H-shaped steel having a substantially H-shaped cross section or a channel steel having a substantially C-shaped cross section. May be. At this time, as shown in FIG. 14A, the energy absorbing portion 3 may be welded or joined by inserting the end portion 2a of the H-shaped steel or the like serving as the axial force member 2 into the inner hollow portion 30. Further, as shown in FIG. 14B, the side plate 31 crushed to be substantially flat may be bolted to the end portion 2a of the H-shaped steel or the like, or may be attached by screw bonding, nail bonding, pin bonding, or the like. Good.

本発明を適用したダンパー構造1は、図15に示すように、本発明を適用したダンパーの製造方法が用いられて製造される。本発明を適用したダンパーの製造方法は、軸力部材2の軸方向Zの一部に設けられるエネルギー吸収部3に、切欠部4を形成する切欠工程と、折曲部5を形成する圧縮工程とを備える。 The damper structure 1 to which the present invention is applied is manufactured by using the damper manufacturing method to which the present invention is applied, as shown in FIG. The damper manufacturing method to which the present invention is applied includes a notch step of forming a notch portion 4 and a compression step of forming a bent portion 5 in the energy absorbing portion 3 provided in a part of the axial force member 2 in the axial direction Z. With.

切欠工程では、図15(a)に示すように、エネルギー吸収部3の断面略円形状に形成された側板31を、周方向Xの複数箇所で切り欠くことで、複数の切欠部4を側板31に形成する。このとき、切欠工程では、側板31が板厚方向に切り欠かれた状態となることで、切欠部4の軸方向Zの両端部4aが略円弧状等に湾曲させて切り欠かれる。 In the notch step, as shown in FIG. 15A, the plurality of notches 4 are formed by notching the side plate 31 of the energy absorbing section 3 formed in a substantially circular cross section at a plurality of positions in the circumferential direction X. 31 is formed. At this time, in the notch step, the side plate 31 is notched in the plate thickness direction, so that both ends 4a of the notch 4 in the axial direction Z are bent in a substantially arc shape or the like and are notched.

切欠工程では、図16、図17に示すように、特に、切欠部4の軸方向Zの両端部4aが、所定の曲率半径rで略円弧状に湾曲させて切り欠かれる。そして、切欠部4の軸方向Zの中間部4bでの周方向Xの幅寸法dbは、切欠部4の軸方向Zの両端部4aでの曲率半径rの2倍以上の大きさとなることが望ましい。 In the notch step, as shown in FIGS. 16 and 17, in particular, both ends 4a of the notch 4 in the axial direction Z are notched by being curved in a substantially arc shape with a predetermined curvature radius r. Then, the width dimension db in the circumferential direction X at the intermediate portion 4b of the cutout portion 4 in the axial direction Z may be twice or more the radius of curvature r at both end portions 4a of the cutout portion 4 in the axial direction Z. desirable.

切欠工程では、図16に示すように、切欠部4の軸方向Zの両端部4aから略中央まで、側板31を略直線状に切り欠くことで、軸方向Zの中間部4bが略直線状となる切欠部4が形成される。このとき、切欠部4は、図16(a)に示すように、軸方向Zの中間部4bでの幅寸法dbが、軸方向Zの両端部4aでの幅寸法daと略同一となる。 In the notch step, as shown in FIG. 16, by cutting the side plate 31 in a substantially linear shape from both ends 4a in the axial direction Z of the notch 4 to substantially the center, the intermediate portion 4b in the axial direction Z is substantially linear. The notch 4 is formed. At this time, as shown in FIG. 16A, in the cutout portion 4, the width dimension db at the intermediate portion 4b in the axial direction Z becomes substantially the same as the width dimension da at both end portions 4a in the axial direction Z.

切欠工程では、図16(b)に示すように、切欠部4の軸方向Zの中間部4bで略中央のみを湾曲等させて切り欠いて、又は、図16(c)に示すように、切欠部4の軸方向Zの両端部4aから略中央まで傾斜して切り欠いてもよい。このとき、切欠部4は、軸方向Zの中間部4bでの幅寸法dbが、両端部4aでの幅寸法daよりも大きくなる。 In the notch step, as shown in FIG. 16(b), the middle portion 4b of the notch portion 4 in the axial direction Z is notched by bending only the substantially central portion, or as shown in FIG. 16(c). You may incline from the both ends 4a of the notch part 4 of the axial direction Z to substantially the center, and may notch. At this time, in the cutout portion 4, the width dimension db at the intermediate portion 4b in the axial direction Z becomes larger than the width dimension da at both end portions 4a.

切欠工程では、軸方向Zの中間部4bが略直線状となる切欠部4が形成されるほか、図17に示すように、側板31を略円形状に切り欠いた切欠部4が形成されてもよい。このとき、切欠部4は、軸方向Zの中間部4bでの幅寸法dbが、両端部4aでの幅寸法daよりも大きくなって、図17(a)に示すように、略楕円形状の切欠部4が形成されて、又は、図17(b)に示すように、略真円形状の切欠部4が形成される。 In the notch step, the notch 4 in which the intermediate portion 4b in the axial direction Z is substantially linear is formed, and as shown in FIG. 17, the notch 4 is formed by notching the side plate 31 in a substantially circular shape. Good. At this time, the width dimension db of the cutout portion 4 at the intermediate portion 4b in the axial direction Z is larger than the width dimension da at the both end portions 4a, and as shown in FIG. The notch 4 is formed, or as shown in FIG. 17B, the notch 4 having a substantially perfect circle shape is formed.

圧縮工程では、図15(b)に示すように、エネルギー吸収部3の側板31を軸方向Zに圧縮することで、エネルギー吸収部3の側板31が次第に折り曲がりながら面外方向Yに突出する。そして、圧縮工程では、エネルギー吸収部3の側板31を所定の圧縮量だけ圧縮させることで、図15(c)に示すように、複数の切欠部4の間の側板31に、面外方向Yに突出させた折曲部5が形成されるものとなる。 In the compression step, as shown in FIG. 15B, by compressing the side plate 31 of the energy absorbing portion 3 in the axial direction Z, the side plate 31 of the energy absorbing portion 3 gradually bends and projects in the out-of-plane direction Y. .. Then, in the compression step, by compressing the side plate 31 of the energy absorbing unit 3 by a predetermined compression amount, as shown in FIG. The bent portion 5 is formed so as to be projected.

圧縮工程では、図5に示すように、軸力部材2自体の一部をエネルギー吸収部3の側板31とした場合には、軸力部材2自体を軸方向Zに圧縮することで、エネルギー吸収部3の側板31が軸方向Zに圧縮される。また、軸力部材2とは独立してエネルギー吸収部3が製作される場合には、図13、図14に示すように、エネルギー吸収部3の側板31を圧縮してから、軸力部材2の端部2aにエネルギー吸収部3が取り付けられてもよい。 In the compression step, as shown in FIG. 5, when a part of the axial force member 2 itself is used as the side plate 31 of the energy absorbing portion 3, the axial force member 2 itself is compressed in the axial direction Z to absorb the energy. The side plate 31 of the part 3 is compressed in the axial direction Z. When the energy absorbing portion 3 is manufactured independently of the axial force member 2, the axial force member 2 is compressed after the side plate 31 of the energy absorbing portion 3 is compressed, as shown in FIGS. 13 and 14. The energy absorbing portion 3 may be attached to the end portion 2a of the.

ここで、本発明を適用したダンパー構造1は、図7〜図9に示すように、地震又は風等の繰返し外力に起因して、軸力部材2に引張荷重Pt及び圧縮荷重Pcが交互に作用したときに、エネルギー吸収部3が折曲部5で伸縮変形する。本発明を適用したダンパー構造1は、軸力部材2の軸方向Zでエネルギー吸収部3が伸縮変形することで、地震又は風等の繰返し外力に対して、安定したエネルギー吸収性能を確保することが可能となる。 Here, in the damper structure 1 to which the present invention is applied, as shown in FIGS. 7 to 9, the tensile load Pt and the compressive load Pc are alternately applied to the axial force member 2 due to the repeated external force such as earthquake or wind. When acting, the energy absorbing portion 3 expands and contracts at the bent portion 5. In the damper structure 1 to which the present invention is applied, the energy absorbing portion 3 expands and contracts in the axial direction Z of the axial force member 2 to ensure stable energy absorbing performance against repeated external force such as earthquake or wind. Is possible.

本発明を適用したダンパー構造1のエネルギー吸収性能を検証するために、シェル要素モデルのFEM解析を実施した。ここでは、図7に示す折曲部5の長さ寸法bを30mm、突出高さhを26mm、鋼材をSTK400(JIS G 3444)として、板厚tを4.5mm又は6mmで均一とした。また、切欠部4は、側板31の周方向Xの6箇所に形成されるものとしたうえ、図16(a)に示す軸方向Zの両端部4aでの幅寸法daを6mm又は30mmとして、図5に示す軸力部材2の外径Dを114.3mmとした。 In order to verify the energy absorption performance of the damper structure 1 to which the present invention is applied, FEM analysis of shell element model was performed. Here, the length dimension b of the bent portion 5 shown in FIG. 7 is 30 mm, the protrusion height h is 26 mm, the steel material is STK400 (JIS G 3444), and the plate thickness t is 4.5 mm or 6 mm and uniform. Further, the cutouts 4 are formed at six positions in the circumferential direction X of the side plate 31, and the width dimension da at both ends 4a in the axial direction Z shown in FIG. 16(a) is 6 mm or 30 mm, The outer diameter D of the axial force member 2 shown in FIG. 5 was set to 114.3 mm.

図18では、軸力部材2に引張荷重Pt又は圧縮荷重Pcが作用する前の状態を基準とした折曲部5での軸方向Zの伸縮変形量のFEM解析の結果を図示している。ここでは、軸力部材2の軸方向Zに作用する引張荷重Pt(縦軸の正方向)及び圧縮荷重Pc(縦軸の負方向)と、折曲部5での軸方向Zの伸長変形量(横軸の正方向)及び縮長変形量(横軸の負方向)との関係を図示している。また、ここでは、一般住宅での軸力部材2の軸方向Zの目標耐力Ppを43kNとして図示している。 FIG. 18 shows the result of the FEM analysis of the amount of expansion and contraction deformation in the axial direction Z at the bending portion 5 based on the state before the tensile load Pt or the compressive load Pc is applied to the axial force member 2. Here, the tensile load Pt (the positive direction of the vertical axis) and the compressive load Pc (the negative direction of the vertical axis) that act in the axial direction Z of the axial force member 2, and the amount of extensional deformation of the bending portion 5 in the axial direction Z. The relationship between (the positive direction of the horizontal axis) and the amount of contraction deformation (negative direction of the horizontal axis) is shown. In addition, here, the target proof strength Pp of the axial force member 2 in the axial direction Z in a general house is shown as 43 kN.

本発明を適用したダンパー構造1は、図18に示すように、軸力部材2に引張荷重Pt又は圧縮荷重Pcの何れが作用した場合でも、軸力部材2で目標耐力Pp以上の引張耐力又は圧縮耐力を確保できることがわかる。そして、本発明を適用したダンパー構造1は、引張荷重Pt又は圧縮荷重Pcが目標耐力Ppを上回った以降、折曲部5での伸縮変形量の増大にかかわらず、顕著な耐力上昇や座屈による耐力低下等は見られず、引張載荷時及び圧縮載荷時で安定した挙動を示す。 As shown in FIG. 18, the damper structure 1 to which the present invention is applied, regardless of whether a tensile load Pt or a compressive load Pc is applied to the axial force member 2, the axial proof member 2 has a tensile proof stress or a target proof stress Pp or more. It can be seen that the compression strength can be secured. Then, the damper structure 1 to which the present invention is applied has a remarkable increase in yield strength and buckling after the tensile load Pt or the compression load Pc exceeds the target yield strength Pp, regardless of the expansion/contraction deformation increase at the bent portion 5. No decrease in proof stress due to stress is observed, and stable behavior is exhibited during tensile loading and compression loading.

したがって、本発明を適用したダンパー構造1は、軸力部材2に要求される所定の引張耐力、圧縮耐力及び変形性能を確保しながら、引張耐力又は圧縮耐力の必要以上の増大を抑制できることがわかる。また、本発明を適用したダンパー構造1は、横軸の正方向及び負方向で引張荷重Pt及び圧縮荷重Pcの漸増傾向が類似するため、引張荷重Pt載荷時と圧縮荷重Pc載荷時とで伸縮変形の挙動差も小さいことがわかる。以上より、本発明を適用したダンパー構造1は、エネルギー吸収部3が軸方向Zに伸縮変形することで、安定したエネルギー吸収性能を発揮することがFEM解析の結果からも検証された。 Therefore, it can be seen that the damper structure 1 to which the present invention is applied can suppress an unnecessary increase in tensile strength or compression strength while ensuring the predetermined tensile strength, compression strength and deformation performance required for the axial force member 2. .. Further, in the damper structure 1 to which the present invention is applied, the tensile load Pt and the compressive load Pc have similar gradual increasing tendencies in the positive and negative directions of the horizontal axis. Therefore, the damper structure 1 expands and contracts when the tensile load Pt is loaded and when the compressive load Pc is loaded. It can be seen that the difference in behavior of deformation is also small. From the above, it was also verified from the result of the FEM analysis that the damper structure 1 to which the present invention is applied exhibits stable energy absorption performance due to the energy absorbing portion 3 expanding and contracting in the axial direction Z.

また、本発明を適用したダンパー構造1は、切欠部4の両端部4aでの幅寸法daを6mm又は30mmの何れの大きさとした場合でも、軸力部材2で目標耐力Pp以上の引張耐力又は圧縮耐力を確保できることがわかる。このため、本発明を適用したダンパー構造1は、エネルギー吸収部3の側板31が切り欠かれた切欠部4の周方向Xの大きさにかかわらず、十分な引張耐力又は圧縮耐力を確保することが可能となる。 Further, in the damper structure 1 to which the present invention is applied, even if the width dimension da at both end portions 4a of the cutout portion 4 is set to 6 mm or 30 mm, the axial force member 2 has a tensile yield strength equal to or higher than the target yield strength Pp. It can be seen that the compression strength can be secured. Therefore, in the damper structure 1 to which the present invention is applied, regardless of the size in the circumferential direction X of the cutout portion 4 in which the side plate 31 of the energy absorption portion 3 is cut out, sufficient tensile strength or compression strength is ensured. Is possible.

また、本発明を適用したダンパー構造1は、折曲部5の長さ寸法b、突出高さh、鋼材の種類、板厚t又は周方向Xに形成される数量等を適宜設定することができるため、設計自由度の高いエネルギー吸収部3を提供することが可能となる。なお、本発明を適用したダンパー構造1は、軸力部材2の周方向Xで複数の折曲部5が略均等に配置されることで、折曲部5が伸縮変形するときの軸方向Zに対する偏心を抑制することが可能となる。 Further, in the damper structure 1 to which the present invention is applied, the length dimension b of the bent portion 5, the protruding height h, the type of steel material, the plate thickness t, the number formed in the circumferential direction X, and the like can be appropriately set. Therefore, it is possible to provide the energy absorbing section 3 having a high degree of freedom in design. In the damper structure 1 to which the present invention is applied, the plurality of bent portions 5 are substantially evenly arranged in the circumferential direction X of the axial force member 2 so that the bent portion 5 is expanded and contracted in the axial direction Z. It becomes possible to suppress the eccentricity with respect to.

本発明を適用したダンパー構造1は、図10、図11に示すように、折曲部5の少なくとも両端部5aまで軸方向Zに連続させて、エネルギー吸収部3の内空部30に芯材60が挿通されて、又は、外面部32に芯材60が設置されてもよい。このとき、本発明を適用したダンパー構造1は、図19に示すように、折曲部5の両端部5aまで芯材60を連続させた状態を維持したまま、折曲部5の両端部5aが軸方向Zにスライド移動して互いに離間又は接近する方向に変位する。これにより、本発明を適用したダンパー構造1は、芯材60が内空部30に挿通されて、又は、芯材60が外面部32に設置された状態でエネルギー吸収部3が伸縮変形して、折曲部5の両端部5aが軸直交方向に相対変位することが抑制されるため、ダンパー構造1の全体座屈を抑制することが可能となる。 As shown in FIG. 10 and FIG. 11, the damper structure 1 to which the present invention is applied is arranged such that at least both ends 5a of the bent portion 5 are continuous in the axial direction Z, and the core member is provided in the inner space 30 of the energy absorbing portion 3. 60 may be inserted, or the core material 60 may be installed on the outer surface portion 32. At this time, in the damper structure 1 to which the present invention is applied, as shown in FIG. 19, both ends 5a of the bent portion 5 are maintained while maintaining the state where the core material 60 is continuous to both ends 5a of the bent portion 5. Slide in the axial direction Z and are displaced in a direction in which they move away from or approach each other. Thereby, in the damper structure 1 to which the present invention is applied, the core material 60 is inserted into the inner space portion 30, or the energy absorbing portion 3 expands and contracts while the core material 60 is installed on the outer surface portion 32. Since both end portions 5a of the bent portion 5 are restrained from being relatively displaced in the direction orthogonal to the axis, it is possible to restrain the entire buckling of the damper structure 1.

本発明を適用したダンパー構造1は、図7〜図9に示すように、折曲部5の折り目51を湾曲させることで、折り目51で略ヒンジ状に変形するときの塑性化領域が大きくなる。このとき、本発明を適用したダンパー構造1は、エネルギー吸収部3が圧縮されるときの歪みと伸縮変形するときの歪みとを併せた折り目51での累積歪みが小さくなり、加工硬化による耐力上昇が抑制されるとともに、低サイクル疲労に対する抵抗特性が向上する。また、本発明を適用したダンパー構造1は、図7に示すように、折曲部5の折り目51が3箇所に形成されることで、略三角形状に形成された折曲部5の剛性が高められるため、エネルギー吸収性能の安定性を向上させることが可能となる。 In the damper structure 1 to which the present invention is applied, as shown in FIGS. 7 to 9, by bending the fold 51 of the bent portion 5, the plasticized region when the fold 51 is deformed into a substantially hinge shape becomes large. .. At this time, in the damper structure 1 to which the present invention is applied, the cumulative strain at the folds 51, which is the strain when the energy absorbing part 3 is compressed and the strain when the energy absorbing part 3 is expanded and contracted, becomes small, and the yield strength increases due to work hardening. Is suppressed and resistance characteristics against low cycle fatigue are improved. Further, in the damper structure 1 to which the present invention is applied, as shown in FIG. 7, since the folds 51 of the bent portion 5 are formed at three places, the rigidity of the bent portion 5 formed in a substantially triangular shape is improved. Since it is increased, it becomes possible to improve the stability of the energy absorption performance.

本発明を適用したダンパー構造1は、引張荷重Pt又は圧縮荷重Pcが作用したときに、折曲部5の面外方向Yに折り曲げられた折り目51を略ヒンジ状に塑性変形させることで、安定したエネルギー吸収性能を発揮する。このため、本発明を適用したダンパー構造1は、図12に示す従来の鋼材ダンパー9のように、曲げ部91aのみがせん断変形してエネルギー吸収性能を発揮するものでないため、エネルギー吸収部3として厚い鋼板等を用いることが要求されない。これにより、本発明を適用したダンパー構造1は、厚い鋼板等を用いることなく、十分な引張耐力又は圧縮耐力を確保できるため、エネルギー吸収部3の材料コスト及び加工コストを抑制することが可能となる。 The damper structure 1 to which the present invention is applied is stable by plastically deforming the fold line 51 bent in the out-of-plane direction Y of the bent portion 5 into a substantially hinge shape when a tensile load Pt or a compressive load Pc is applied. Demonstrate the energy absorption performance. Therefore, the damper structure 1 to which the present invention is applied does not have the energy absorbing performance because the bending portion 91a alone undergoes shear deformation unlike the conventional steel damper 9 shown in FIG. It is not required to use thick steel plate or the like. As a result, the damper structure 1 to which the present invention is applied can secure sufficient tensile strength or compression strength without using a thick steel plate or the like, so that it is possible to suppress the material cost and processing cost of the energy absorbing section 3. Become.

本発明を適用したダンパーの製造方法は、図15〜図17に示すように、温度依存性の高い粘弾性ダンパー等を用いることなく、切欠工程及び圧縮工程を経て製造された鋼管等が用いられる。このとき、本発明を適用したダンパーの製造方法は、円形鋼管等から切欠工程及び圧縮工程を経て容易に折曲部5を形成することができるため、低廉な製造コストでダンパー構造1を製造することが可能となる。 In the damper manufacturing method to which the present invention is applied, as shown in FIGS. 15 to 17, a steel pipe manufactured through a notch process and a compression process is used without using a viscoelastic damper having a high temperature dependency. .. At this time, according to the damper manufacturing method to which the present invention is applied, since the bent portion 5 can be easily formed from the circular steel pipe or the like through the notch process and the compression process, the damper structure 1 is manufactured at a low manufacturing cost. It becomes possible.

本発明を適用したダンパーの製造方法は、圧縮工程でエネルギー吸収部3の側板31を圧縮して、エネルギー吸収部3の側板31を次第に折り曲げるときに、切欠部4の両端部4aに応力集中が生じる。また、本発明を適用したダンパー構造1は、折曲部5の両端部5aの折り目51を略ヒンジ状に変形させるときにも、切欠部4の両端部4aに応力集中が生じる。このとき、本発明を適用したダンパー構造1は、特に、切欠部4の両端部4aを略円弧状等に湾曲させることで、切欠部4の両端部4aでの応力集中が分散されるため、切欠部4の両端部4aの側板31に亀裂や割れが発生することを防止することが可能となる。 In the damper manufacturing method to which the present invention is applied, when the side plate 31 of the energy absorbing unit 3 is compressed in the compression step and the side plate 31 of the energy absorbing unit 3 is gradually bent, stress concentration at both ends 4a of the notch 4 is caused. Occurs. Further, in the damper structure 1 to which the present invention is applied, stress concentration occurs at both end portions 4a of the cutout portion 4 even when the folds 51 of both end portions 5a of the bent portion 5 are deformed into a substantially hinge shape. At this time, in the damper structure 1 to which the present invention is applied, the stress concentration at both end portions 4a of the cutout portion 4 is dispersed particularly by bending the both end portions 4a of the cutout portion 4 into a substantially arc shape or the like. It is possible to prevent cracks or breaks from occurring in the side plates 31 at both ends 4a of the cutout 4.

また、本発明を適用したダンパーの製造方法は、切欠部4の中間部4bでの幅寸法dbが、切欠部4の両端部4aでの曲率半径rの2倍以上の大きさとなることで、折曲部5の中間部5bよりも両端部5aとなる位置で、側板31の断面欠損が小さくなる。このため、本発明を適用したダンパーの製造方法は、圧縮工程でエネルギー吸収部3の側板31を圧縮するときに、側板31に想定外の座屈が発生することを防止して、折曲部5の両端部5a及び中間部5bの所定の位置に折り目51を形成することが可能となる。 Further, in the method of manufacturing the damper to which the present invention is applied, the width dimension db at the intermediate portion 4b of the cutout portion 4 is at least twice the radius of curvature r at both end portions 4a of the cutout portion 4, The cross-section loss of the side plate 31 becomes smaller at the positions at both end portions 5a than the intermediate portion 5b of the bent portion 5. Therefore, the damper manufacturing method to which the present invention is applied prevents the unexpected bending of the side plate 31 when the side plate 31 of the energy absorbing unit 3 is compressed in the compression step, and prevents the bending portion from bending. It is possible to form the fold line 51 at a predetermined position of both end portions 5a and the intermediate portion 5b of the fold 5.

本発明を適用したダンパーの製造方法は、特に、図16(b)、図16(c)、図17に示すように、切欠部4の中間部4bでの幅寸法dbを両端部4aでの幅寸法daよりも大きくすることができる。このとき、本発明を適用したダンパー構造1は、切欠工程から圧縮工程を経た状態で、図6(b)に示すように、折曲部5の中間部5bでの幅寸法wbよりも両端部5aでの幅寸法waが確実に大きくなる。本発明を適用したダンパー構造1は、折曲部5の中間部5bでの幅寸法wbよりも両端部5aでの幅寸法waが大きくなることで、折曲部5の中間部5bの略中央等で確実に折り目51が形成されるため、精度の高いエネルギー吸収部3を提供することが可能となる。 In the damper manufacturing method to which the present invention is applied, in particular, as shown in FIGS. 16B, 16C, and 17, the width dimension db at the middle portion 4b of the cutout portion 4 at both ends 4a is It can be made larger than the width dimension da. At this time, as shown in FIG. 6B, the damper structure 1 to which the present invention is applied has both end portions than the width dimension wb at the middle portion 5b of the bent portion 5 in the state after the notch step and the compression step. The width dimension wa at 5a surely increases. In the damper structure 1 to which the present invention is applied, the width dimension wa at both end portions 5a is larger than the width dimension wb at the intermediate portion 5b of the bent portion 5, so that the middle portion 5b of the bent portion 5 is substantially centered. Since the fold line 51 is surely formed by, for example, it is possible to provide the energy absorbing section 3 with high accuracy.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。 Although the examples of the embodiments of the present invention have been described above in detail, the above-described embodiments are merely examples of specific embodiments for carrying out the present invention, and the technical aspects of the present invention are thereby described. The range should not be construed as limiting.

1 :ダンパー構造
2 :軸力部材
2a :軸力部材の端部
20 :ブレース材
20a :ブレース材の端部
3 :エネルギー吸収部
30 :内空部
31 :側板
32 :外面部
4 :切欠部
4a :切欠部の両端部
4b :切欠部の中間部
5 :折曲部
5a :折曲部の両端部
5b :折曲部の中間部
51 :折り目
6 :接合金物
60 :芯材
7 :耐力壁
70 :枠内空間
70a :上部
70b :下部
71 :縦枠
72 :横枠
Pc :圧縮荷重
Pt :引張荷重
X :周方向
Y :面外方向
Z :軸方向
1: Damper structure 2: Axial force member 2a: Axial force member end 20: Brace material 20a: Brace material end 3: Energy absorbing part 30: Inner cavity 31: Side plate 32: Outer surface part 4: Notch part 4a : Both ends 4b of the cutout part: Intermediate part 5 of the cutout part: Bent part 5a: Both end parts 5b of the bent part: Intermediate part 51 of the bent part: Fold line 6: Joining metal 60: Core member 7: Bearing wall 70 : Frame inner space 70a: Upper part 70b: Lower part 71: Vertical frame 72: Horizontal frame Pc: Compressive load Pt: Tensile load X: Circumferential direction Y: Out-of-plane direction Z: Axial direction

Claims (7)

引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパー構造であって、
軸力部材の軸方向の一部に設けられるエネルギー吸収部を備え、
前記エネルギー吸収部は、断面略円形状に形成された側板に、周方向の複数箇所で切り欠かれた複数の切欠部と、複数の前記切欠部の間で面外方向に突出させた折曲部とが形成されて、引張荷重又は圧縮荷重が軸力部材に作用したときに、前記折曲部で軸方向に伸縮変形するものとなり、
前記切欠部は、軸方向の両端部が湾曲させて切り欠かれて、軸方向の中間部よりも両端部を軸方向の両側に突出させること
を特徴とするダンパー構造。
A damper structure provided on an axial member on which a tensile load or a compressive load acts,
An energy absorbing portion provided on a part of the axial force member in the axial direction is provided,
The energy absorbing portion has a plurality of notches cut out at a plurality of positions in the circumferential direction on a side plate formed in a substantially circular cross section, and a bend protruding in an out-of-plane direction between the plurality of notches. parts and is formed, when a tensile load or compressive load acts on the axial force member, Ri Do shall stretch deformation in the axial direction by the bent portion,
A damper structure, wherein both ends in the axial direction of the cutout portion are curved and cut out so that the both ends of the notch portion are projected to both sides in the axial direction more than the intermediate portion in the axial direction.
前記エネルギー吸収部は、前記折曲部の軸方向の少なくとも両端部まで連続する芯材が、前記側板に取り囲まれた内空部に挿通されて、又は、前記側板の外側の外面部に設置されること
を特徴とする請求項1記載のダンパー構造。
The energy absorbing portion has a core material that is continuous to at least both ends in the axial direction of the bent portion, is inserted into an inner space surrounded by the side plate, or is installed on an outer surface portion outside the side plate. The damper structure according to claim 1, wherein:
前記エネルギー吸収部は、前記折曲部の面外方向に折り曲げられた折り目を略ヒンジ状に塑性変形させることで、前記折曲部で軸方向に伸縮変形するものとなること
を特徴とする請求項1又は2記載のダンパー構造。
The energy absorbing portion is configured to be elastically deformed in the axial direction at the bent portion by plastically deforming a fold line bent in the out-of-plane direction of the bent portion into a substantially hinge shape. The damper structure according to Item 1 or 2.
前記折曲部は、軸方向の両端部となる2箇所、及び、軸方向の中間部となる1箇所で、面外方向に折り曲げられた折り目が3箇所に形成されること
を特徴とする請求項1〜の何れか1項記載のダンパー構造。
The bent portion is formed at two positions at both ends in the axial direction and at one position at an intermediate portion in the axial direction, and three folds bent in the out-of-plane direction are formed. Item 1. The damper structure according to any one of items 1 to 3 .
前記折曲部は、軸方向の中間部での周方向の幅寸法よりも、軸方向の両端部での周方向の幅寸法が大きくなること
を特徴とする請求項1〜の何れか1項記載のダンパー構造。
The bent portion than the circumferential width dimension of the middle portion in the axial direction, one of claims 1-4 in which the width dimension of the circumferential direction at both end portions in the axial direction is equal to or larger 1 The damper structure described in paragraph.
引張荷重又は圧縮荷重が作用する軸力部材に設けられるダンパーの製造方法であって、
軸力部材の軸方向の一部に設けられるエネルギー吸収部に切欠部を形成する切欠工程と、前記エネルギー吸収部に折曲部を形成する圧縮工程とを備え、
前記切欠工程では、前記エネルギー吸収部の断面略円形状に形成された側板を、周方向の複数箇所で、軸方向の両端部を湾曲させて、軸方向の中間部よりも両端部を軸方向の両側に突出させて切り欠くことで、複数の前記切欠部を前記側板に形成して、
前記圧縮工程では、前記エネルギー吸収部の前記側板を軸方向に圧縮することで、複数の前記切欠部の間の前記側板に、面外方向に突出させた前記折曲部を形成すること
を特徴とするダンパーの製造方法。
A method for manufacturing a damper provided on an axial force member on which a tensile load or a compressive load acts, comprising:
A notch step of forming a notch in the energy absorbing portion provided in a portion of the axial force member in the axial direction, and a compression step of forming a bent portion in the energy absorbing portion,
In the notch step, the side plates formed in a substantially circular cross section of the energy absorbing portion, at a plurality of locations in the circumferential direction, both ends in the axial direction are curved, and both ends in the axial direction rather than the middle part in the axial direction. By notching by protruding to both sides of , a plurality of the notches are formed in the side plate,
In the compressing step, the side plate of the energy absorbing unit is axially compressed to form the bent portion protruding in the out-of-plane direction on the side plate between the plurality of notches. The manufacturing method of the damper.
前記切欠工程では、前記切欠部の軸方向の両端部が、所定の曲率半径で略円弧状に湾曲させて切り欠かれて、前記切欠部の軸方向の中間部での周方向の幅寸法が、前記切欠部の軸方向の両端部での曲率半径の2倍以上の大きさとなること
を特徴とする請求項記載のダンパーの製造方法。
In the notch step, both end portions in the axial direction of the notch portion are notched by being curved in a substantially arc shape with a predetermined radius of curvature, and a circumferential width dimension at an axially intermediate portion of the notch portion is obtained. The damper manufacturing method according to claim 6 , wherein the size of the damper is twice or more a radius of curvature at both axial end portions of the cutout portion.
JP2016108529A 2016-05-31 2016-05-31 Damper structure and damper manufacturing method Active JP6707992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016108529A JP6707992B2 (en) 2016-05-31 2016-05-31 Damper structure and damper manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016108529A JP6707992B2 (en) 2016-05-31 2016-05-31 Damper structure and damper manufacturing method

Publications (2)

Publication Number Publication Date
JP2017214748A JP2017214748A (en) 2017-12-07
JP6707992B2 true JP6707992B2 (en) 2020-06-10

Family

ID=60575441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016108529A Active JP6707992B2 (en) 2016-05-31 2016-05-31 Damper structure and damper manufacturing method

Country Status (1)

Country Link
JP (1) JP6707992B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859404A (en) * 2017-12-20 2018-03-30 兰州理工大学 A kind of metal energy-dissipation damper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0190667U (en) * 1987-12-07 1989-06-14
JPH1030669A (en) * 1996-07-16 1998-02-03 Mitsubishi Motors Corp Energy absorbing member
JP2001207679A (en) * 2000-01-28 2001-08-03 Tatsuji Ishimaru Damper
JP4087632B2 (en) * 2002-03-28 2008-05-21 ダイハツ工業株式会社 Hood stopper structure
JP2005233367A (en) * 2004-02-23 2005-09-02 Kawaguchi Metal Industries Co Ltd Connection member of structure
JP2006052826A (en) * 2004-08-16 2006-02-23 Tatsuji Ishimaru Double damper and manufacturing method of damper
US20060059796A1 (en) * 2004-09-15 2006-03-23 Atle Gjelsvik Energy absorber and method of forming the same
JP4359702B2 (en) * 2008-03-24 2009-11-04 国立大学法人 香川大学 Hollow structure and manufacturing method thereof
JP2011149143A (en) * 2010-01-19 2011-08-04 Nippon Light Metal Co Ltd Vibration damper

Also Published As

Publication number Publication date
JP2017214748A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
TWI399473B (en) Metal joint, vibration-damping structure, and architecture
US8397444B2 (en) Perforated plate seismic damper
JP5261490B2 (en) Shock absorbing member
JP6913029B2 (en) Energy absorbing member
JP5561691B2 (en) Shock absorbing member
JP2017133282A (en) Steel device and load bearing wall
JP6552176B2 (en) Buckling restraint brace
TWI428494B (en) Hysteresis damping construct
JP5822203B2 (en) Brace damper
JP5179429B2 (en) Energy absorbing member
JP6707992B2 (en) Damper structure and damper manufacturing method
JP6941467B2 (en) Damper and how to make the damper
JP5179390B2 (en) Energy absorbing member
US11346121B2 (en) Member-to-member laminar fuse connection
JP6803661B2 (en) Rod-shaped damping member
JP6510375B2 (en) Adjustable buckled brace with adjustable length
JP6677480B2 (en) Hysteretic damper and vibration control structure of building
US11203862B2 (en) Member-to-member laminar fuse connection
JP6447227B2 (en) Damper structure
JP6838877B2 (en) Buckling restraint brace damper
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP6915601B2 (en) Viscoelastic damper
JP7098363B2 (en) Ladder type bearing wall frame
JP2018025036A (en) Damper structure and load-bearing wall
JP6448968B2 (en) Shear damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R151 Written notification of patent or utility model registration

Ref document number: 6707992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151