JP6698977B2 - アンテナ装置、アンテナ制御方法、およびプログラム - Google Patents

アンテナ装置、アンテナ制御方法、およびプログラム Download PDF

Info

Publication number
JP6698977B2
JP6698977B2 JP2020513941A JP2020513941A JP6698977B2 JP 6698977 B2 JP6698977 B2 JP 6698977B2 JP 2020513941 A JP2020513941 A JP 2020513941A JP 2020513941 A JP2020513941 A JP 2020513941A JP 6698977 B2 JP6698977 B2 JP 6698977B2
Authority
JP
Japan
Prior art keywords
antenna
control unit
scanning
target
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020513941A
Other languages
English (en)
Other versions
JPWO2019202789A1 (ja
Inventor
池松 寛
寛 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6698977B2 publication Critical patent/JP6698977B2/ja
Publication of JPWO2019202789A1 publication Critical patent/JPWO2019202789A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2617Array of identical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2629Combination of a main antenna unit with an auxiliary antenna unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • H01Q3/385Scan control logics

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、アンテナ装置、アンテナ制御方法、およびプログラムに関する。
航空機には、衛星通信用アンテナが搭載されている。航空機と通信衛星はその相対位置が変化するため、航空機に搭載された衛星通信用アンテナとしては、機械駆動方式のアンテナ、ビーム走査型のアンテナ、機械駆動が可能なビーム走査型のアンテナ等のアンテナの指向方向を調整する機能を有するものが主に使用されている。この種の衛星通信用アンテナの一例が、特許文献1に開示されている。特許文献1に開示される衛星通信用アンテナは、移動体に搭載されるフェーズドアレイアンテナであって、アンテナのビームの向きを走査可能であると共にアンテナの角度を複数のアクチュエータによって制御可能な構成を有する。
特開2002−135019号公報
衛星通信用アンテナには、高利得化、消費電力の低減、コストの低減等が求められる。そこで、衛星通信用アンテナのアンテナ素子の数を減らすことが考えられる。
衛星通信用アンテナの装置占有面積が同一だとすると、アンテナ素子の数が減ると、素子間隔は広がることになる。しかし、フェーズドアレーアンテナにおいて、アンテナ素子の間隔が広がると、アンテナの可視領域に、主ビームだけでなく、グレーティングローブと呼ばれる副ビームが含まれることがある。アンテナの可視領域にグレーティングローブが含まれると、主ビームの方向以外の方向において電波の送受信を行うことで、不要輻射が発生し、利得が低下する。
同様の問題は、航空機に限られず、車両、船舶等の他の移動体に搭載されたフェーズドアレーアンテナから構成される衛星通信用アンテナでも、同様に発生する。
本発明は上述の事情に鑑みてなされたものであり、アンテナ素子数を抑えつつ、上述のグレーティングローブの発生を抑制しながら、ビーム走査を行うことが可能なアンテナ装置を提供することを目的とする。
上記目的を達成するため、本発明に係るアンテナ装置は、平面アンテナ、姿勢制御部、アンテナ制御部、および、走査制御部を備える。平面アンテナは、複数のアンテナ素子を有し、目標物に対して電波の送受信を行う。姿勢制御部は、平面アンテナに取り付けられ、平面アンテナの姿勢を機械的に制御する。アンテナ制御部は、平面アンテナが、目標物を基準として予め定められた向きを向くように、姿勢制御部を制御する。走査制御部は、平面アンテナによるビーム走査を制御し、ビーム走査を行った際に目標物から受信した電波から生成される受信信号の信号レベルに応じて、複数のアンテナ素子の励振位相を調節して、平面アンテナのビームを目標物に向ける。走査制御部は、ビーム走査の範囲を、複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する。
本発明に係るアンテナ装置によれば、平面アンテナの姿勢を機械的に制御した上で、ビーム走査を行う。アンテナ装置は、ビーム走査の範囲を、アンテナ素子の間隔に応じたグレーティングローブが生じない範囲に制限する。その結果、アンテナ素子数を抑えつつグレーティングローブの発生を抑制しながらビーム走査を行うアンテナ装置を提供することが可能である。
本発明の実施の形態1に係るアンテナ装置の正面図 実施の形態1に係るアンテナ装置の正面図 実施の形態1に係るアンテナ装置の構成を示すブロック図 実施の形態1に係るアンテナ素子の配置例を示す図 実施の形態1における走査角を示す図 実施の形態1における主ビームおよびグレーティングローブの例を示す図 実施の形態1における可視領域に対するグレーティングローブの位置を示す図 実施の形態1における可視領域に対するグレーティングローブの位置を示す図 実施の形態1に係るアンテナ装置が行うビーム走査処理の一例を示すフローチャート 実施の形態1に係るアンテナ装置の正面図 実施の形態1に係るアンテナ装置の正面図 本発明の実施の形態2に係るアンテナ装置の正面図 実施の形態2に係るアンテナ装置の正面図 実施の形態に係る走査制御部のハードウェア構成図
以下、本発明の実施の形態に係るアンテナ装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
(実施の形態1)
実施の形態1に係るアンテナ装置を、移動体の一例である航空機に搭載され、目標物の一例である通信衛星との通信を行うアンテナ装置を例に説明する。図1に示すアンテナ装置1の説明において、理解を容易にするため、X軸、Y軸、およびZ軸を有する航空機座標系を設定し、適宜参照する。航空機座標系において、Y軸は、航空機2の進行方向を示し、Z軸は航空機の底面に直交する方向を示し、X軸は、Y軸およびZ軸に直交する。なお航空機の底面は、航空機が地上の平坦な場所に停止している際に水平な面とする。図1は、航空機2の進行方向後方から進行方向前方に向かって、アンテナ装置1を見た図である。
アンテナ装置1は、航空機2の外面2aに形成された凹部2bに設けられる。航空機2および通信衛星はそれぞれ移動するため、航空機2から見た通信衛星の位置は変化する。そこで、アンテナ装置1は、ビーム走査を行って、ビームを通信衛星に向けるよう制御し、通信衛星と通信する。アンテナ装置1は、通信衛星に対して電波の送受信を行うビーム走査型の平面アンテナ11を有する。平面アンテナ11には、姿勢制御部12が取り付けられる。姿勢制御部12は、凹部2bの底面2cに固定されている。詳細には、姿勢制御部12は、平面アンテナ11をZ軸方向に支持する少なくとも3つの支持部を有する。支持部のZ軸方向の長さを調節することで、図2に示すように、平面アンテナ11を底面2cに対して任意の向きに任意の角度だけ傾斜させることが可能である。図2では、平面アンテナ11は、底面2cから、反時計回りに角度ψだけ傾いている。なお底面2cは、航空機が地上の平坦な場所に停止している際に水平な面とする。
アンテナ装置1は、図3に示すように、通信衛星から受信した電波から受信信号を生成し、受信信号を通信機3に送る。通信機3は、増幅器、フィルタ、ミキサ等を備え、受信信号を処理して所望の信号を生成し、外部装置4に出力する。また通信機3は、外部装置4から取得した信号を処理して送信信号を生成し、アンテナ装置1に送る。アンテナ装置1は、送信信号から生成した電波を送信する。
図3に示すように、アンテナ装置1は、電気的には、上述の平面アンテナ11および姿勢制御部12に加えて、姿勢制御部12を制御するアンテナ制御部13、平面アンテナ11のビームを通信衛星に向ける走査制御部14、および、通信衛星の方向を算出する目標方向算出部15を備える。
アンテナ制御部13、走査制御部14、および目標方向算出部15は、航空機2の内部に収容される。アンテナ制御部13は、平面アンテナ11が、目標方向算出部15が算出した通信衛星の方向に向くように、姿勢制御部12を制御する。換言すれば、アンテナ制御部13が姿勢制御部12を制御することで、平面アンテナ11が通信衛星の方向を向く。走査制御部14は、平面アンテナ11によるビーム走査を制御する。またビーム走査を行った際の受信信号の信号レベルに応じて、走査制御部14は、平面アンテナ11が有するアンテナ素子の励振位相を調節して、平面アンテナ11のビームを通信衛星に向ける。なお走査制御部14は、ビーム走査の範囲を、後述するグレーティングローブが生じない範囲に制限する。アンテナ装置1の各部の詳細について以下に説明する。
平面アンテナ11は、図4に示すように、複数のアンテナ素子11aを有するフェーズドアレーアンテナから構成される。平面アンテナ11が有するアンテナ素子11aとして、線状アンテナ、スロットアンテナ、マイクロストリップアンテナ等が用いられる。アンテナ素子11aは、平面アンテナ11の主面において、三角配列で配置される。図4の座標系は、平面アンテナ11の水平面に対する傾斜に応じて、回転するアンテナ座標系である。Z’軸は、アンテナ素子11aが配置されるアンテナ面に直交する軸とする。X’軸およびY’軸は、アンテナ素子11aの配列方向とする。X’軸およびY’軸は、互いに直交し、かつ、Z’軸に直交する。アンテナ素子11aは、X’軸方向に2dx、かつ、Y’軸方向に2dyの間隔で配置される。さらに上述のように配置された各アンテナ素子11aからX’軸方向にdx、かつ、Y’軸方向にdyの間隔をあけて、アンテナ素子11aが配置される。
平面アンテナ11のビーム方向は、図5に示すように、走査角(θ,φ)で表される。角度θは、ビーム方向とZ’軸とのなす角を示す。また角度φは、ビーム方向およびZ’軸を含む平面とX’軸とのなす角を示す。なおビーム方向およびZ’軸を含む平面とY’軸とのなす角は、(90°−φ)で表される。平面アンテナ11において、走査角θが取り得る範囲は、−π/2≦θ≦π/2の範囲である。この範囲を可視領域という。アンテナパターンのゲインは周期的に大きくなり、主ビーム以外にも、グレーティングローブと呼ばれるピーク値が存在する。
上述のように、姿勢制御部12は、平面アンテナ11の裏面と底面2cとの間に取り付けられていて、平面アンテナ11の姿勢を機械的に制御する。アンテナ制御部13は、平面アンテナ11を、通信衛星を基準として予め定められた向きに向かせるための、姿勢制御部12の制御を行う。本実施の形態では、アンテナ制御部13は、後述する目標方向算出部15から、航空機2から見た通信衛星の方向を取得し、Z’軸を該通信衛星の方向に延ばすために、姿勢制御部12を制御する。その結果、Z’軸は、通信衛星の方向に延びる。
走査制御部14は、アンテナ素子11aごとに設けられた移相器141、および、分配/合成回路142を有する。アンテナ素子11aで受信された電波は、分配/合成回路142で合成され、受信信号が生成される。走査制御部14は、受信信号を通信機3に送る。また走査制御部14は、通信機3から、送信信号を取得する。送信信号は分配/合成回路142で分配されて、各移相器141に出力される。走査制御部14は、各移相器141によって励振位相を調節することで、平面アンテナ11のビーム方向を制御する。
走査制御部14は、後述する目標方向算出部15から、航空機2から見た通信衛星の方向を取得する。そして、走査制御部14は、航空機2から見た通信衛星の方向に基づき、平面アンテナ11によるビーム走査を制御する。さらに走査制御部14は、ビーム走査を行った際に通信衛星から受信した電波から生成される受信信号の信号レベルに応じて、ステップトラック方式に基づき、信号レベルが最も高くなる方向、すなわち、通信衛星の方向を探索する。通信衛星の方向が探索されると、走査制御部14は、アンテナ素子11aの励振位相を調節して、平面アンテナ11のビームを通信衛星に向ける。
アンテナ素子11aの間隔が広がると、平面アンテナ11の可視領域に、ゲインのピークを有する主ビームだけでなく、グレーティングローブが含まれることがある。図6に主ビームおよびグレーティングローブの一例を示す。図6の例では、45°の方向に主ビームが存在するが、−45°の方向にも主ビームと同程度のゲインのピークを有するグレーティングローブが存在する。図7は、可視領域に対するグレーティングローブの位置を示すグレーティングローブダイアグラムである。図7のTx軸は、sinθcosφを示し、Ty軸は、sinθsinφを示す。可視領域は、原点を中心とする半径1の円で示される。図7において、目標物の方向、すなわち、電波の到来方向を黒丸で示し、グレーティングローブを白丸で示す。図7に、目標物がθ=0°、φ=0°で定まる方向に位置する場合の例を示す。この場合、可視領域にグレーティングローブが含まれない。すなわち、グレーティングローブが生じない。
図8に、目標物がθ=θ1、φ=φ1で定まる方向に位置する場合の例を示す。グレーティングローブは、目標物の位置に応じて、θ=0°、φ=0°の状態からグレーティングローブダイアグラム上で共に平行移動する。その結果、可視領域にグレーティングローブが位置する、すなわち、グレーティングローブが生じる。図7および図8に示すように、グレーティングローブダイアグラムにおけるグレーティングローブの間隔は、自由空間波長λを図4に示すdxで除算した値、または、自由空間波長λを図4に示すdyで除算した値で表される。アンテナ素子11aの間隔が広がる、すなわち、dx,dyが大きくなると、グレーティングローブダイアグラム上でのグレーティングローブの間隔が狭まる。その結果、グレーティングローブが生じない走査角の範囲は狭まる。
上述のように、グレーティングローブが生じる条件は、アンテナ素子11aの間隔に応じて決まる。換言すれば、グレーティングローブが生じない走査角θ,φの範囲は、アンテナ素子11aの間隔に応じて予め定められる。そこで走査制御部14は、平面アンテナ11のビーム走査の範囲を、可視領域にグレーティングローブが含まれない、すなわち、θおよびφの組み合わせで決定されるグレーティングローブが生じない範囲に制限する。詳細には、走査制御部14は、平面アンテナ11の走査角θ,φのそれぞれを、アンテナ素子11aの間隔dx,dyにより定められる最大走査角θLMT,φLMT以下の範囲に制限し、ビーム走査を行う。なお走査制御部14は、θの最大走査角θLMTおよびφの最大走査角φLMTを予め保持している。θLMTおよびφLMTは、平面アンテナ11の設計段階において、定めることができる。そして、走査制御部14は、平面アンテナ11の走査角を、−θLMT≦θ≦θLMTの範囲、かつ、−φLMT≦φ≦φLMTの範囲に維持して、ビーム走査を行う。
上記処理を行うため、走査制御部14は、走査角θが−θLMT≦θ≦θLMTの範囲内にあるか否か、および、走査角φが−φLMT≦φ≦φLMTの範囲内にあるか否かを判定する判定回路を有する。また走査制御部14は、判定回路が、走査角θが−θLMT≦θ≦θLMTの範囲内にない、または、走査角φが−φLMT≦φ≦φLMTの範囲内にないと判定した場合に、電波の送信を停止する停波制御部を有する。なおアンテナ制御部13の制御によって、Z’軸が通信衛星に向いている場合、走査角θ,φのいずれかのみを調節しながらビーム走査することで、最も受信信号の信号レベルが高くなる方向を探索することが可能である。
目標方向算出部15は、図示しない外部機器である慣性航行装置から、通信衛星の位置情報および航空機2の予測位置情報を取得する。そして、目標方向算出部15は、通信衛星の位置情報および航空機2の予測位置情報に基づいて、航空機2から見た通信衛星の方向を算出する。通信衛星の位置情報は、通信衛星の緯度、経度、および高度を含む。航空機2の位置情報は、航空機2の緯度、経度、および高度を含む。
上述の構成を有するアンテナ装置1は、Z’軸を通信衛星に向け、平面アンテナ11のビーム走査の範囲をグレーティングローブが生じない範囲内に維持しながら、ビーム走査を行う。アンテナ装置1の動作を図9を用いて説明する。目標方向算出部15は、一定の時間間隔で、航空機2から見た通信衛星の方向を算出する(ステップS11)。詳細には、目標方向算出部15は、通信衛星の位置情報、および、航空機2の予測位置情報に基づいて、航空機2から見た通信衛星の方向を算出する。そして、目標方向算出部15は、算出した通信衛星の方向をアンテナ制御部13および走査制御部14に送る。通信衛星の方向は、方位角および仰角で表される。
アンテナ制御部13は、目標方向算出部15から、航空機2から見た通信衛星の方向を取得すると、該通信衛星の方向に応じてZ’軸を通信衛星に向けるために、姿勢制御部12を制御する(ステップS12)。詳細には、アンテナ制御部13は、姿勢制御部12が有する支持部のZ軸方向の長さを調節することで、平面アンテナ11を傾けてZ’軸を通信衛星に向ける。
走査制御部14は、通信機3から受信信号の信号レベルを示す情報を取得する。走査制御部14は、平面アンテナ11のビーム方向を変化させながらビーム走査を行い、ビーム走査した際の受信信号の信号レベルが最も高くなる方向を探索する(ステップS13)。なおビーム走査する際、走査制御部14は、ビーム走査の範囲をグレーティングローブが生じない範囲に制限する。ステップS13の処理によって、最も信号レベルが高くなる方向、すなわち、通信衛星の方向が探索されると、走査制御部14は、探索された通信衛星の方向にビームを向け、通信衛星と通信を行う(ステップS14)。ステップS14において、受信信号の信号レベルが、例えば、閾値レベル以下まで低減すると、ステップS11に戻り、上述の処理を繰り返す。
アンテナ制御部13に制御された姿勢制御部12が平面アンテナ11の姿勢を機械的に制御してから、走査制御部14が平面アンテナ11の走査角θをグレーティングローブが発生しない範囲内に維持しながら、ビーム走査することで、グレーティングローブの発生が抑制される。図10、図11はそれぞれ、図1、図2にビーム方向を追記したものである。理解を容易にするために、走査角φを一定とし、走査角θのみ調節する場合を例にして説明する。走査角θ=0の場合のビーム方向D1を、実線の矢印で示す。走査角θ=θLMTの場合のビーム方向D2はおよび走査角θ=−θLMTの場合のビーム方向D3を点線の矢印で示す。
平面アンテナ11の姿勢を機械的に制御しないアンテナ装置、すなわち、平面アンテナ11の向きが図10の状態から変化しない場合は、グレーティングローブを生じさせずにビーム走査できる範囲は、図10におけるD2からD3までの範囲に限定される。実施の形態1に係るアンテナ装置1では、図11に示すように、平面アンテナ11を水平面に対して傾けた上で、−θLMT≦θ≦θLMTの範囲でビーム走査を行う。図11では、Y軸回りに反時計回りに平面アンテナ11を傾けているが、Y軸回りに時計回りに平面アンテナ11を傾けることも可能である。Y軸回りに反時計回りに平面アンテナ11を傾けた場合の走査範囲と、Y軸回りに時計回りに平面アンテナ11を傾けた場合の走査範囲とをあわせることで、実施の形態1に係るアンテナ装置1は、グレーティングローブを発生させることなく、より広い範囲をビーム走査することが可能である。また図11に示すように、平面アンテナ11を底面2cに対して傾斜した際に、平面アンテナ11の一部が凹部2bの内部に位置することで、航空機2の空力特性に及ぼす影響を小さくすることが可能である。
以上説明したとおり、本実施の形態1に係るアンテナ装置1によれば、平面アンテナ11の姿勢を機械的に制御することで、ビーム走査する際に、ビーム走査の範囲をグレーティングローブが生じない範囲に制限することが可能である。その結果、グレーティングローブの発生を抑制することが可能である。グレーティングローブの発生を抑制することが可能となるため、アンテナ素子11aの間隔を広げることが可能となる。またアンテナ制御部13が平面アンテナ11の姿勢を機械的に制御してからビーム走査することで、グレーディングローブの発生を抑制しながら、より水平面に近い領域をビーム走査することが可能である。機械的な姿勢の制御を行わない平面アンテナでは、走査角θの絶対値がπ/2に近づくと、ビームの方向から見たアンテナ開口が小さくなり、ビームの電力半値幅が大きくなって、ゲインが低下してしまう。そのため、通信を可能にするには、平面アンテナを大きくしなければならない。一方、実施の形態1に係るアンテナ装置1では、平面アンテナ11の姿勢を機械的に制御して、Z’軸を目標物に向けるため、平面アンテナ11の小型化が可能である。
(実施の形態2)
実施の形態1のように、アンテナ制御部13によって、平面アンテナ11の姿勢を機械的に制御することで、図12において実線の矢印で示すように、一部のアンテナ素子11aのビームは通信衛星に向かって放射されるが、点線の矢印で示すように、他の一部のアンテナ素子11aのビームが凹部2bの縁によってブロッキングされることがある。
そこで、実施の形態2に係るアンテナ装置1においては、アンテナ制御部13は、凹部2bの縁によるビームのブロッキングを生じさせない範囲で、平面アンテナ11の姿勢を機械的に制御する。詳細には、アンテナ制御部13が姿勢制御部12を制御することで、複数のアンテナ素子11aのビームが、凹部2bの縁から離隔した位置を通って、航空機2の外部に放射される。ブロッキングを生じさせない範囲は、平面アンテナ11をX軸回りに回転可能な範囲、および、平面アンテナ11をY軸回りに回転可能な範囲に基づいて定義される。またブロッキングを生じさせない範囲は、凹部2bの形状および大きさ、凹部2bにおける平面アンテナ11の位置によって決まる。なおアンテナ制御部13は、ブロッキングを生じさせない範囲を保持している。アンテナ制御部13は、ブロッキングを生じさせない範囲において、Z’軸が通信衛星に向くように、姿勢制御部12を制御する。
図13に示すように、平面アンテナ11のZ軸方向の下端を、図12の位置よりも上方に移動することで、いずれのアンテナ素子11aのビームも、凹部2bの縁によって、ブロッキングされない。
以上説明したとおり、本実施の形態2に係るアンテナ装置1によれば、複数のアンテナ素子11aのビームが凹部2bの縁によってブロッキングされることを抑制することが可能である。
図14は、実施の形態に係る走査制御部14のハードウェアの構成例を示す図である。走査制御部14は、各部を制御するハードウェア構成としてプロセッサ21、メモリ22、およびインターフェース23を備える。これらの装置の各機能は、プロセッサ21がメモリ22に記憶されたプログラムを実行することにより実現される。また走査制御部14は、最大走査角θLMT,φLMTをメモリ22に記憶しておく。インターフェース23は各装置を接続し、通信を確立させるためのものであり、必要に応じて複数の種類のインターフェースで構成されてもよい。走査制御部14は、インターフェース23を介して、目標方向算出部15と通信機3に接続し、通信を行う。図14では、プロセッサ21およびメモリ22をそれぞれ1つで構成する例を示しているが、複数のプロセッサ21および複数のメモリ22が連携して各機能を実行してもよい。
その他、上記のハードウェア構成やフローチャートは一例であり、任意に変更および修正が可能である。
プロセッサ21、メモリ22、およびインターフェース23を有し、制御処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。たとえば、上述の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD−ROM(Compact Disc Read-Only Memory)、DVD−ROM(Digital Versatile Disc Read-Only Memory)など)に格納して配布し、上記コンピュータプログラムをコンピュータにインストールすることにより、上述の処理を実行する走査制御部14を構成してもよい。また、通信ネットワーク上のサーバ装置が有する記憶装置に上記コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロードすることで走査制御部14を構成してもよい。
また、走査制御部14の機能を、OS(Operating System)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。
また、搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS:Bulletin Board System)に上記コンピュータプログラムを掲示し、通信ネットワークを介して上記コンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行してもよい。
以上、本発明の実施の形態を説明したが、本発明は上述した実施の形態に限られない。
例えば、アンテナ装置1の構成は、上述の構成に限られない。一例として、アンテナ素子11aの配列の仕方は任意であり、四角配列でもよい。
アンテナ装置1が搭載される移動体も、車両、船舶等の任意の移動体に搭載可能である。通信先も、通信衛星に限らず、任意の目標物と通信を行うことができ、車両に搭載された通信装置、地上に固定された通信装置等と通信を行う。また、アンテナ装置1と目標物の一方の位置が固定でもよい。
上述の処理動作・通信動作も例示であり、適宜変更可能である。例えば、図9に示したステップS11−S14の処理を実行する順序は適宜変更可能である。例えば、図9におけるステップS11,S12の処理を行った後に、ステップS13,S14の処理を定められた時間に亘って繰り返し行う、または、定められた回数だけ繰り返し行うことができる。ステップS13,S14を繰り返す時間および回数は、例えば目標物および移動体の種類、アンテナ装置1の特性等に応じて任意に定めることができる。また、ステップS14において、受信信号の信号レベルが、例えば、閾値レベル以下まで低減すると、ステップS13に戻り、ステップS13で受信信号強度が閾値を超えるビームの方向を検出できない場合に、ステップS11にリターンするようにしてもよい。上述のように、ステップS13,S14を繰り返し、目標物の相対位置の変動に対して、ビームの向きを変えることで、姿勢制御部12として、応答性の低い小型の姿勢制御機構を用いることができる。
姿勢制御部12として、2軸のジンバル機構を例示したが、3軸以上の自由度を有するジンバル機構のように、平面アンテナ11の姿勢、即ち、アンテナ面の向きを機械的に変更あるいは制御可能な任意の機構を採用しうる。
アンテナ制御部13の機能として、アンテナ面の法線方向、すなわち、Z’軸を通信衛星に向ける例を開示したが、これに限定されるものではない。アンテナ制御部13は、平面アンテナ11と通信衛星を結ぶ線とZ’軸との角度を小さくする向きに姿勢制御部12を制御するだけでもよい。
実施の形態では、アンテナ制御部13の機能として、アンテナ面の法線方向、すなわち、Z’軸を通信衛星に向ける例を開示した。これは、励振位相が原点のビームの方向がアンテナ11のZ’軸方向であると仮定したものである。励振位相が原点のビームの方向がZ’軸からある角度だけずれる構成の場合、アンテナ制御部13は、励振位相が原点のビームの方向を通信衛星に向けるために、Z’軸を通信衛星から定められたその角度だけずれた方向に向けて姿勢制御部12を制御してもよい。
走査制御部14は、可変移相器および振幅調整器によって、アンテナ素子11aの励振位相および励振振幅を調節してもよい。この場合、走査制御部14は、アンテナ素子11aごとに設けられた増幅器、周波数変換器、およびA−D(Analog-to-Digital)変換器、ならびに、ディジタル信号処理回路を有し、ディジタル信号処理回路によって、ディジタル領域で励振位相および励振振幅を調節する。
また走査制御部14は、姿勢制御部12の駆動範囲の制約、機械的構造の誤差、制御処理の誤差等によって生じたZ’軸と通信衛星の方向との差である姿勢誤差の範囲で、通信衛星の方向を探索してもよい。この場合、走査制御部14は、目標方向算出部15から取得した通信衛星の方向と姿勢制御部12から取得したZ’軸の方向との差に、ならびに生じ得る機械的構造の誤差および制御処理の誤差を加算して姿勢誤差の取り得る値を算出し、姿勢誤差の範囲で、通信衛星の方向を探索すればよい。
上述の実施の形態では、Z’軸を走査範囲の中心に設定したが、Z’軸を走査範囲の中心に設定する必要はない。また走査制御部14は、ローブスイッチ方式によって、通信衛星の方向を探索してもよい。目標方向算出部15は、ジャイロセンサおよびGPS(Global Positioning System)の少なくとも一方に基づく航空機2の位置情報を用いて、航空機2から見た通信衛星の方向を算出してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
本出願は、2018年4月18日に出願された、日本国特許出願特願2018−80179号に基づく。本明細書中に日本国特許出願特願2018−80179号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
1 アンテナ装置、2 航空機、2a 外面、2b 凹部、2c 底面、3 通信機、4 外部機器、11 平面アンテナ、11a アンテナ素子、12 姿勢制御部、13 アンテナ制御部、14 走査制御部、15 目標方向算出部、21 プロセッサ、22 メモリ、23 インターフェース、141 移相器、142 分配/合成回路。

Claims (6)

  1. 複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナと、
    前記平面アンテナに取り付けられ、前記平面アンテナの姿勢を機械的に制御する姿勢制御部と、
    前記平面アンテナが、前記目標物を基準として予め定められた向きを向くように、前記姿勢制御部を制御するアンテナ制御部と、
    前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向ける走査制御部と、
    を備え、
    前記走査制御部は、前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
    アンテナ装置。
  2. 前記アンテナ装置は、移動体に搭載され、
    前記目標物の位置情報および前記移動体の位置情報に基づいて、前記移動体から見た前記目標物の方向を算出する目標方向算出部をさらに備え、
    前記アンテナ制御部は、前記目標方向算出部が算出した前記目標物の方向に応じて前記姿勢制御部を制御する、
    請求項1に記載のアンテナ装置。
  3. 前記アンテナ装置は、前記移動体の外面に形成された凹部に設けられ、
    前記複数のアンテナ素子のビームが、前記凹部の縁から離隔した位置を通って、前記移動体の外部に放射されるように、前記アンテナ制御部は、前記姿勢制御部を制御する、
    請求項2に記載のアンテナ装置。
  4. 前記走査制御部は、前記平面アンテナの向く方向と、前記目標物の方向との差である姿勢誤差の範囲で、前記ビーム走査を行う、
    請求項1から3のいずれか1項に記載のアンテナ装置。
  5. 複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナを、前記目標物を基準として予め定められた向きに向けるように、前記平面アンテナの姿勢を制御し、
    前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向け、
    前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
    アンテナ制御方法。
  6. コンピュータを、
    複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナを、前記目標物を基準として予め定められた向きに向けるように、前記平面アンテナの姿勢を制御するアンテナ制御部、および、
    前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向ける走査制御部として機能させ、
    前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
    ためのプログラム。
JP2020513941A 2018-04-18 2019-01-15 アンテナ装置、アンテナ制御方法、およびプログラム Active JP6698977B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018080179 2018-04-18
JP2018080179 2018-04-18
PCT/JP2019/000932 WO2019202789A1 (ja) 2018-04-18 2019-01-15 アンテナ装置、アンテナ制御方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP6698977B2 true JP6698977B2 (ja) 2020-05-27
JPWO2019202789A1 JPWO2019202789A1 (ja) 2020-06-11

Family

ID=68240234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020513941A Active JP6698977B2 (ja) 2018-04-18 2019-01-15 アンテナ装置、アンテナ制御方法、およびプログラム

Country Status (3)

Country Link
US (1) US11296406B2 (ja)
JP (1) JP6698977B2 (ja)
WO (1) WO2019202789A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3209399A1 (en) * 2021-02-24 2022-09-01 Michael Thomas Pace System and method for a digitally beamformed phased array feed
US11619701B2 (en) * 2021-06-21 2023-04-04 Microelectronics Technology, Inc. Satellite tracking system and method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115194B2 (ja) * 1994-09-22 2000-12-04 三菱電機株式会社 フェーズドアレイアンテナ装置
JPH10178313A (ja) * 1996-12-19 1998-06-30 Mitsubishi Electric Corp アンテナ装置
JP2002135019A (ja) 2000-10-24 2002-05-10 Mitsubishi Electric Corp 移動体用アンテナ装置
JPWO2005104331A1 (ja) * 2004-03-30 2008-03-13 三菱電機株式会社 レクテナ太陽電池ハイブリッドパネル、及びハイブリッド太陽光発電システム
CN101076923B (zh) * 2004-12-13 2013-12-25 艾利森电话股份有限公司 天线装置及其相关方法
JP4360354B2 (ja) * 2005-06-20 2009-11-11 ブラザー工業株式会社 無線タグ通信装置
JP5518365B2 (ja) * 2009-05-12 2014-06-11 株式会社東芝 レーダ装置空中線
JP5320340B2 (ja) * 2010-05-07 2013-10-23 三菱重工業株式会社 フェーズドアレイレーダ装置およびこれを備えた車両
US11183749B2 (en) * 2015-06-05 2021-11-23 Viasat, Inc. Methods and systems for mitigating interference with a nearby satellite
CA3013983A1 (en) * 2016-02-12 2017-08-17 Aeronet Global Communications Labs Dac Antenna system and method for aerial vehicles
GB2563574B (en) * 2017-06-05 2021-08-04 International Electric Company Ltd A phased array antenna and apparatus incorporating the same

Also Published As

Publication number Publication date
US20200381820A1 (en) 2020-12-03
JPWO2019202789A1 (ja) 2020-06-11
WO2019202789A1 (ja) 2019-10-24
US11296406B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
US9812775B2 (en) Large aperture antenna with narrow angle fast beam steering
KR101183482B1 (ko) 이동 타겟을 추적하기 위한 페이즈드 어레이 평면형 안테나및 추적방법
JPH04278703A (ja) アレイアンテナ及び揺動補償型アンテナ装置
US9337536B1 (en) Electronically steerable SATCOM antenna
KR20180006294A (ko) 컨포멀 안테나를 동작시키기 위한 시스템 및 방법
JP6456579B1 (ja) フェーズドアレイアンテナ
JP6698977B2 (ja) アンテナ装置、アンテナ制御方法、およびプログラム
US11670855B2 (en) System and method for a digitally beamformed phased array feed
US10833757B1 (en) Systems and methods for mitigating adjacent satellite interference
US10069214B1 (en) Constrained diameter phased array antenna system and methods
JP7479326B2 (ja) アンテナ装置及びレーダ装置
RU2314611C2 (ru) Многоканальная линзовая антенна со стабилизируемой и управляемой по углам многолучевой диаграммой направленности
JP2001042024A (ja) 船舶レーダ用アンテナ
JP2010050698A (ja) レーダ装置
JP6760825B2 (ja) レーダ装置及び航空機
US11996634B2 (en) System and method for a digitally beamformed phased array feed
JPH07336135A (ja) アンテナ装置
JP6415397B2 (ja) 分散アレーアンテナ装置
JP2010136258A (ja) 追尾アンテナ
JPH0149204B2 (ja)
JP4622966B2 (ja) アレーアンテナ、アレー給電反射鏡アンテナ、前記両アンテナの指向方向誤差検出方法及び指向方向誤差補償方法
Hara et al. A calculation technique of multi-beam directions for emitter detection
JP2019041256A (ja) アンテナ及び電波方向変更方法
JP2007329717A (ja) アレー給電反射鏡アンテナ
JPS62111530A (ja) 妨害波除去方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200306

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250