JP6698599B2 - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP6698599B2
JP6698599B2 JP2017181183A JP2017181183A JP6698599B2 JP 6698599 B2 JP6698599 B2 JP 6698599B2 JP 2017181183 A JP2017181183 A JP 2017181183A JP 2017181183 A JP2017181183 A JP 2017181183A JP 6698599 B2 JP6698599 B2 JP 6698599B2
Authority
JP
Japan
Prior art keywords
switch
capacitor
vcn
insulation resistance
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181183A
Other languages
Japanese (ja)
Other versions
JP2019056626A (en
Inventor
佳浩 河村
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2017181183A priority Critical patent/JP6698599B2/en
Priority to US16/126,934 priority patent/US10613156B2/en
Priority to DE102018216025.2A priority patent/DE102018216025A1/en
Publication of JP2019056626A publication Critical patent/JP2019056626A/en
Application granted granted Critical
Publication of JP6698599B2 publication Critical patent/JP6698599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、フライングキャパシタを用いた地絡検出装置に関する。   The present invention relates to a ground fault detection device using a flying capacitor.

駆動源としてエンジンと電気モータとを備えるハイブリッド車や、電気自動車のような車両においては、車体上に搭載したバッテリを充電し、バッテリから供給される電気エネルギーを利用して推進力を発生する。一般に、バッテリ関連の電源回路は、200V以上の高電圧を扱う高電圧回路として構成されており、安全性確保ため、バッテリを含む高電圧回路は接地の基準電位点となる車体から電気的に絶縁された非接地構成となっている。   In a vehicle such as a hybrid vehicle having an engine and an electric motor as a drive source, or an electric vehicle, a battery mounted on a vehicle body is charged and electric power supplied from the battery is used to generate a propulsive force. Generally, a battery-related power supply circuit is configured as a high-voltage circuit that handles a high voltage of 200 V or higher, and in order to ensure safety, the high-voltage circuit including the battery is electrically insulated from the vehicle body that is a ground reference potential point. It has a non-grounded configuration.

また、負荷の駆動効率を高めるために、バッテリの正電位を昇圧して負荷に供給する昇圧回路を備える車両がある。昇圧回路を備える車両においては、バッテリの出力、すなわち昇圧回路の1次側と共に、昇圧回路の出力、すなわち2次側も車体から電気的に絶縁された非接地の構成となっており、車両はバッテリおよび昇圧回路の接地として使用されない構成となっている。このため、昇圧回路を有する車両では、地絡状態を監視するために、バッテリと接地との間の絶縁抵抗と共に、昇圧回路の2次側と接地との間の絶縁抵抗も検出する必要がある。   Further, there is a vehicle provided with a booster circuit that boosts a positive potential of a battery and supplies the positive potential of the battery to the load in order to improve drive efficiency of the load. In a vehicle equipped with a booster circuit, the output of the battery, that is, the primary side of the booster circuit, as well as the output of the booster circuit, that is, the secondary side, are electrically insulated from the vehicle body and are ungrounded. The configuration is such that it is not used as the ground for the battery and booster circuit. Therefore, in a vehicle having a booster circuit, in order to monitor the ground fault condition, it is necessary to detect not only the insulation resistance between the battery and the ground but also the insulation resistance between the secondary side of the booster circuit and the ground. ..

そこで、バッテリおよび昇圧回路が設けられた系、具体的には、バッテリから昇圧回路を介して電気モータ等の負荷に至るメインの電源系と車体との地絡状態を監視するために、地絡検出装置が備えられている。地絡検出装置は、フライングキャパシタと呼ばれるコンデンサを利用した方式が広く用いられている。   Therefore, in order to monitor the ground fault condition between the vehicle and the system provided with the battery and the booster circuit, specifically, the main power source system from the battery to the load such as the electric motor via the booster circuit, the ground fault is detected. A detection device is provided. A method using a capacitor called a flying capacitor is widely used for the ground fault detection device.

図7は、フライングキャパシタ方式の従来の地絡検出装置500の構成例を示すブロック図である。地絡検出装置500は、非接地のバッテリ520と接続し、バッテリ520および昇圧回路530が設けられた系の地絡を検出する装置である。地絡検出装置500、昇圧回路530、負荷540等は、上位装置である外部制御装置510により制御される。   FIG. 7 is a block diagram showing a configuration example of a conventional grounding-fault detecting device 500 of the flying capacitor type. The ground fault detection device 500 is a device that is connected to a non-grounded battery 520 and detects a ground fault in a system in which the battery 520 and the booster circuit 530 are provided. The ground fault detection device 500, the booster circuit 530, the load 540, and the like are controlled by the external control device 510 that is a higher-level device.

ここで、バッテリ520出力側、すなわち1次側の正極と接地間の絶縁抵抗をRLp1と表し、負極と接地間の絶縁抵抗をRLn1と表すものとする。また、昇圧回路530出力側、すなわち2次側の正極と接地間の絶縁抵抗をRLp2と表し、負極と接地間の絶縁抵抗をRLn2と表すものとする。正極側絶縁抵抗RLpは、RLp1とRLp2との合成抵抗となり、負極側絶縁抵抗RLnは、RLn1とRLn2との合成抵抗となる。そして、正極側絶縁抵抗RLpと負極側絶縁抵抗RLnとの合成抵抗が系の絶縁抵抗RLとなる。   Here, the insulation resistance between the battery 520 output side, that is, the primary side positive electrode and ground is represented by RLp1, and the insulation resistance between the negative electrode and ground is represented by RLn1. Further, the insulation resistance between the positive electrode on the output side of the booster circuit 530, that is, the secondary side, and ground is represented by RLp2, and the insulation resistance between the negative electrode and ground is represented by RLn2. The positive electrode side insulation resistance RLp is a combined resistance of RLp1 and RLp2, and the negative electrode side insulation resistance RLn is a combined resistance of RLn1 and RLn2. The combined resistance of the positive electrode side insulation resistance RLp and the negative electrode side insulation resistance RLn becomes the system insulation resistance RL.

フライングキャパシタとして機能するコンデンサC1は、スイッチS1〜スイッチS4のオンオフで形成される経路において充電され、その充電電圧が制御装置501で計測されるようになっている。   The capacitor C1 functioning as a flying capacitor is charged in a path formed by turning on and off the switches S1 to S4, and the charging voltage is measured by the control device 501.

絶縁抵抗RLを取得する手法として、V0とVcnとVcpとを測定して、(Vcn+Vcp)/V0を演算し、得られた演算値に基づいて、あらかじめ作成されたテーブルデータを参照して絶縁抵抗RLを算出する技術が知られている。地絡検出装置500は、得られた絶縁抵抗RLが所定の基準値を下回っている場合に、地絡が発生していると判定し、外部制御装置510に警告を出力する。   As a method of acquiring the insulation resistance RL, V0, Vcn, and Vcp are measured, (Vcn+Vcp)/V0 is calculated, and insulation resistance is obtained by referring to table data created in advance based on the obtained calculated value. Techniques for calculating RL are known. When the obtained insulation resistance RL is lower than a predetermined reference value, the ground fault detection device 500 determines that a ground fault has occurred and outputs a warning to the external control device 510.

ここで、V0は、スイッチS1とスイッチS2とをオンにして形成される経路で計測されるバッテリ520の電圧に相当する値である。Vcnは、スイッチS1とスイッチS4とをオンにして形成される経路で計測される負極側絶縁抵抗RLnの影響を含んだ電圧値である。Vcpは、スイッチS2とスイッチS3とをオンにして形成される経路で計測される正極側絶縁抵抗RLpの影響を含んだ電圧値である。   Here, V0 is a value corresponding to the voltage of the battery 520 measured on the path formed by turning on the switch S1 and the switch S2. Vcn is a voltage value including the influence of the negative electrode side insulation resistance RLn measured in the path formed by turning on the switch S1 and the switch S4. Vcp is a voltage value including the influence of the positive electrode side insulation resistance RLp measured in the path formed by turning on the switches S2 and S3.

一般に、地絡判定においては、V0測定、Vcn測定、V0測定、Vcp測定を1サイクルとして計測を行ない、各測定の切換え時に、スイッチS3とスイッチS4とをオンにして形成される経路でコンデンサC1の充電電圧の読み取りと、コンデンサC1の放電とが行なわれる。   Generally, in the ground fault determination, V0 measurement, Vcn measurement, V0 measurement, and Vcp measurement are performed as one cycle, and at the time of switching of each measurement, the switch S3 and the switch S4 are turned on to form a capacitor C1 in a path formed. The charging voltage is read and the capacitor C1 is discharged.

特開2015−206784号公報JP, 2005-206784, A

昇圧回路530が昇圧動作を行なっている場合に、スイッチS1とスイッチS4とをオンにしてVcnを計測する際、コンデンサC1の接地側極板には、昇圧された電圧を正極側絶縁抵抗RLpと負極側絶縁抵抗RLnとで分圧した電圧が印加される。   When the switch S1 and the switch S4 are turned on to measure Vcn while the booster circuit 530 is performing the boosting operation, the grounded side plate of the capacitor C1 receives the boosted voltage as the positive side insulation resistance RLp. A voltage divided by the negative electrode side insulation resistance RLn is applied.

この電圧が、バッテリ520の正極側から印加される電圧よりも大きくなると、電流の回り込みにより、通常と逆極性でコンデンサC1が充電されることになる。この場合、制御装置501で測定される電圧が0となり、絶縁抵抗RLの算出ができなくなってしまう。このため、昇圧状態が多い系では、2次側からの電流の回り込みによって、絶縁抵抗算出の機会が減ってしまうという問題がある。   When this voltage becomes higher than the voltage applied from the positive electrode side of the battery 520, the current sneak causes the capacitor C1 to be charged with a polarity opposite to the normal polarity. In this case, the voltage measured by the control device 501 becomes 0, and the insulation resistance RL cannot be calculated. For this reason, in a system with many boosting states, there is a problem that the chances of insulation resistance calculation decrease due to the current sneak from the secondary side.

そこで、本発明は、昇圧回路を含んだ系の地絡検出装置において、絶縁抵抗算出機会の減少を抑制することを目的とする。   Therefore, it is an object of the present invention to suppress a decrease in insulation resistance calculation opportunities in a ground fault detection device that includes a booster circuit.

上記課題を解決するため、本発明の地絡検出装置は、昇圧回路を介して負荷に電源を供給する非接地のバッテリと接続し、前記バッテリが設けられた系の絶縁抵抗を算出して地絡を検出する地絡検出装置であって、フライングキャパシタとして動作するコンデンサと、前記バッテリ、前記コンデンサを含んだV0測定経路と、前記バッテリ、前記バッテリ負側と接地との絶縁抵抗である負側絶縁抵抗、前記コンデンサを含んだVcn測定経路と、前記バッテリ、前記バッテリ正側と接地との絶縁抵抗である正側絶縁抵抗、前記コンデンサを含んだVcn測定経路と、を切り換えるスイッチ群と、常開型スイッチを介して前記負側絶縁抵抗と並列に接続されたバイパス抵抗と、前記各測定経路での前記コンデンサの充電電圧測定値に基づいて前記絶縁抵抗を算出する際に、前記Vcn測定経路での前記コンデンサの充電電圧測定値が0とみなせる場合に、前記常開型スイッチを閉に切り替えて、前記Vcn測定経路での前記コンデンサの充電電圧を測定する制御部と、を備えたことを特徴とする。
ここで、前記制御部は、前記常開型スイッチを閉に切り替えたときの前記Vcn測定経路での前記コンデンサの充電電圧測定値が0とみなされない場合に、この充電電圧測定値を用いて前記正側絶縁抵抗を算出することができる。
また、前記常開型スイッチを閉に切り替えたときの前記Vcn測定経路での前記コンデンサの充電電圧測定値が0とみなせる場合に、前記昇圧回路による昇圧比と前記バイパス抵抗値とに基づいて、前記正側絶縁抵抗の最大値を算出することができる。
In order to solve the above problems, the ground fault detection device of the present invention is connected to a non-grounded battery that supplies power to a load through a booster circuit, and calculates the insulation resistance of the system in which the battery is provided to calculate the ground resistance. A ground fault detection device for detecting a fault, comprising a capacitor that operates as a flying capacitor, the battery, a V0 measurement path including the capacitor, a negative side that is an insulation resistance between the battery, the battery negative side, and ground. A switch group that switches between an insulation resistance, a Vcn measurement path that includes the capacitor, a positive side insulation resistance that is an insulation resistance between the battery, the battery positive side and ground, and a Vcn measurement path that includes the capacitor. The Vcn measurement path is used when calculating the insulation resistance based on a bypass resistance connected in parallel with the negative side insulation resistance via an open switch and a charging voltage measurement value of the capacitor in each measurement path. And a control unit that switches the normally open switch to a closed state and measures the charging voltage of the capacitor in the Vcn measurement path when the measured charging voltage value of the capacitor in 0 is regarded as 0. Characterize.
Here, the control unit uses the charging voltage measurement value when the charging voltage measurement value of the capacitor in the Vcn measurement path when the normally open switch is switched to the closed state is not regarded as 0. The positive side insulation resistance can be calculated.
In addition, when the charging voltage measurement value of the capacitor in the Vcn measurement path when the normally open switch is closed can be regarded as 0, based on the step-up ratio by the step-up circuit and the bypass resistance value, The maximum value of the positive side insulation resistance can be calculated.

本発明によれば、昇圧回路を含んだ系の地絡検出装置において、絶縁抵抗算出機会の減少を抑制することができる。   According to the present invention, it is possible to suppress a decrease in insulation resistance calculation opportunities in a system ground fault detection device including a booster circuit.

本実施形態に係る地絡検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ground fault detection apparatus which concerns on this embodiment. 地絡検出装置の計測サイクルを説明する図である。It is a figure explaining the measurement cycle of a ground fault detection device. V0計測期間の計測経路を説明する図である。It is a figure explaining the measurement route of a V0 measurement period. Vcn計測期間の計測経路を説明する図である。It is a figure explaining the measurement course of a Vcn measurement period. Vcp計測期間の計測経路を説明する図である。It is a figure explaining the measurement course of a Vcp measurement period. 本実施形態に係る地絡検出装置における絶縁抵抗算出動作について説明するフローチャートである。It is a flow chart explaining insulation resistance calculation operation in the ground fault detection device concerning this embodiment. フライングキャパシタ方式の従来の地絡検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the conventional ground fault detection apparatus of a flying capacitor system.

本発明の実施形態である地絡検出装置について図面を参照して説明する。図1は、本実施形態の地絡検出装置100の構成を示すブロック図である。地絡検出装置100は、非接地のバッテリ300と接続し、バッテリ300および昇圧回路210が設けられた系の地絡を検出する装置である。地絡検出装置100、昇圧回路210、負荷360等は、上位装置である外部制御装置200により制御される。   A ground fault detection device that is an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the ground fault detection device 100 of this embodiment. The ground fault detection device 100 is a device that is connected to an ungrounded battery 300 and detects a ground fault in a system in which the battery 300 and the booster circuit 210 are provided. The ground fault detection device 100, the booster circuit 210, the load 360, and the like are controlled by the external control device 200 that is a higher-level device.

ここで、バッテリ300出力側、すなわち1次側の正極と接地間の絶縁抵抗をRLp1と表し、負極と接地間の絶縁抵抗をRLn1と表すものとする。また、昇圧回路210出力側、すなわち2次側の正極と接地間の絶縁抵抗をRLp2と表し、負極と接地間の絶縁抵抗をRLn2と表すものとする。正極側絶縁抵抗RLpは、RLp1とRLp2との合成抵抗となり、負極側絶縁抵抗RLnは、RLn1とRLn2との合成抵抗となる。そして、正極側絶縁抵抗RLpと負極側絶縁抵抗RLnとの合成低抵抗が系の絶縁抵抗RLとなる。   Here, the insulation resistance between the output side of the battery 300, that is, the primary side positive electrode and ground is represented by RLp1, and the insulation resistance between the negative electrode and ground is represented by RLn1. Further, the insulation resistance between the output side of the booster circuit 210, that is, the secondary side positive electrode and ground is represented by RLp2, and the insulation resistance between the negative electrode and ground is represented by RLn2. The positive insulating resistance RLp is a combined resistance of RLp1 and RLp2, and the negative insulating resistance RLn is a combined resistance of RLn1 and RLn2. The combined low resistance of the positive electrode side insulation resistance RLp and the negative electrode side insulation resistance RLn becomes the system insulation resistance RL.

バッテリ300は、リチウムイオン電池等のように充電可能なバッテリにより構成されており、正極側はメインリレーMR+、昇圧回路210を介して電気モータ等の負荷360に接続され、負極側はメインリレーMR−を介して負荷360に接続されている。   The battery 300 is composed of a rechargeable battery such as a lithium-ion battery, the positive side is connected to the main relay MR+, the load 360 such as an electric motor via the booster circuit 210, and the negative side is the main relay MR. It is connected to the load 360 via −.

本図に示すように、地絡検出装置100は、フライングキャパシタとして機能するコンデンサC1を備えている。コンデンサC1は、例えば、セラミックコンデンサを用いることができる。   As shown in the figure, the ground fault detection device 100 includes a capacitor C1 that functions as a flying capacitor. As the capacitor C1, for example, a ceramic capacitor can be used.

また、計測経路を切り替えるとともに、コンデンサC1の充放電を制御するために、コンデンサC1の周辺に4つのスイッチS1〜S4を備えている。さらに、コンデンサC1の充電電圧に相当する計測用の電圧をサンプリングするためのスイッチSaを備えている。スイッチSaは、サンプリング時のみオンにする。これらのスイッチは、光MOSFETのような絶縁型のスイッチング素子で構成することができる。   Further, four switches S1 to S4 are provided around the capacitor C1 in order to switch the measurement path and control the charging/discharging of the capacitor C1. Further, a switch Sa for sampling a measurement voltage corresponding to the charging voltage of the capacitor C1 is provided. The switch Sa is turned on only during sampling. These switches can be composed of insulating type switching elements such as optical MOSFETs.

スイッチS1は、一端がバッテリ300正極と接続し、他端がダイオードD1のアノード側と接続している。ダイオードD1のカソード側は抵抗R1と接続し、抵抗R1の他端はコンデンサC1の第1極板と接続している。   The switch S1 has one end connected to the positive electrode of the battery 300 and the other end connected to the anode side of the diode D1. The cathode side of the diode D1 is connected to the resistor R1, and the other end of the resistor R1 is connected to the first plate of the capacitor C1.

スイッチS2は、一端がバッテリ300負極と接続し、他端が抵抗R5と接続している。抵抗R2の他端はコンデンサC1の第2極板と接続している。   The switch S2 has one end connected to the negative electrode of the battery 300 and the other end connected to the resistor R5. The other end of the resistor R2 is connected to the second plate of the capacitor C1.

スイッチS3は、一端が抵抗R2およびダイオードD3のアノード側と接続し、他端が抵抗R3とスイッチSaの一端と接続している。ダイオードD3のカソード側はコンデンサC1の第1極板と接続し、抵抗R2の他端はダイオードD2のカソード側と接続し、ダイオードD2のアノード側はコンデンサC1の第1極板と接続している。抵抗R3の他端は接地している。   The switch S3 has one end connected to the resistor R2 and the anode side of the diode D3, and the other end connected to the resistor R3 and one end of the switch Sa. The cathode side of the diode D3 is connected to the first plate of the capacitor C1, the other end of the resistor R2 is connected to the cathode side of the diode D2, and the anode side of the diode D2 is connected to the first plate of the capacitor C1. . The other end of the resistor R3 is grounded.

スイッチS4は、一端がコンデンサC1の第2極板と接続し、他端が抵抗R4と接続している。抵抗R4の他端は接地している。スイッチSaの他端は制御装置120のA/D端子に接続している。   The switch S4 has one end connected to the second polar plate of the capacitor C1 and the other end connected to the resistor R4. The other end of the resistor R4 is grounded. The other end of the switch Sa is connected to the A/D terminal of the control device 120.

制御装置120は、マイクロコンピュータ等で構成され、あらかじめ組み込まれたプログラムを実行することにより、地絡検出装置100における各種動作を制御する。具体的には、スイッチS1〜S4を個別に制御して計測経路を切り替えるとともに、コンデンサC1の充電および放電を制御する。また、各計測経路においてコンデンサC1の充電電圧の測定を行ない、絶縁抵抗を算出し、地絡の判定を行なう。   The control device 120 is configured by a microcomputer or the like, and executes various programs installed in advance to control various operations in the ground fault detection device 100. Specifically, the switches S1 to S4 are individually controlled to switch the measurement path, and the charging and discharging of the capacitor C1 are controlled. In addition, the charging voltage of the capacitor C1 is measured in each measurement path, the insulation resistance is calculated, and the ground fault is determined.

また、制御装置120は、スイッチSaを制御して、コンデンサC1の充電電圧に相当するアナログレベルをA/D端子から入力し、この値に基づいて所定の演算を行ない、絶縁抵抗RLを算出する。制御装置120の測定データや警報は、外部制御装置200に出力される。   Further, the control device 120 controls the switch Sa to input the analog level corresponding to the charging voltage of the capacitor C1 from the A/D terminal, performs a predetermined calculation based on this value, and calculates the insulation resistance RL. .. The measurement data and alarm of the control device 120 are output to the external control device 200.

本実施形態の地絡検出装置100は、上述の従来と同様の構成に加え、バッテリ300の負極と接地との間、すなわち負極側絶縁抵抗RLnと並列に、常開型のスイッチS5を介してバイパス抵抗BRが接続されている。バイパス抵抗BRは2次側に接続してもよい。スイッチS5は、スイッチS1〜S4と同様に制御装置120により切換制御される。   The ground fault detection device 100 of the present embodiment has, in addition to the same configuration as the conventional one described above, between the negative electrode of the battery 300 and the ground, that is, in parallel with the negative electrode side insulation resistance RLn via the normally open switch S5. The bypass resistor BR is connected. The bypass resistor BR may be connected to the secondary side. The switch S5 is switch-controlled by the control device 120 similarly to the switches S1 to S4.

バイパス抵抗BRは、Vcnの測定の際に、昇圧された2次側電圧V2の上昇等により、電流が回り込んで測定不能となったときに、負極側絶縁抵抗を強制的に引き下げることで正極側絶縁抵抗RLpを計測できるようにするための抵抗である。   The bypass resistance BR is forcibly lowered by pulling down the insulation resistance on the negative electrode side when the current wraps around and becomes unmeasurable due to an increase in the boosted secondary voltage V2 when measuring Vcn. It is a resistance for enabling measurement of the side insulation resistance RLp.

すなわち、電流の回り込みが生じて計測不能となる状況は、昇圧された2次側電圧V2の上昇等により、正極側絶縁抵抗RLpと負極側絶縁抵抗RLnとで分圧された接地電位が上昇して、1次側電圧V1よりも高くなる場合であり、
V1<(V2×RLn/(RLn+RLp))
が成り立つときである。これは、昇圧回路210における昇圧比率が高く、負極側絶縁抵抗RLnに対して正極側絶縁抵抗RLpが低下している状態である。例えば、昇圧率が2倍であれば、負極側絶縁抵抗RLn>正極側絶縁抵抗RLpのときに計測不能となる。
That is, in the situation where current sneak occurs and measurement becomes impossible, the ground potential divided by the positive side insulation resistance RLp and the negative side insulation resistance RLn rises due to the rise of the boosted secondary side voltage V2 or the like. Is higher than the primary side voltage V1,
V1<(V2×RLn/(RLn+RLp))
Is when. This is a state in which the boosting ratio in the boosting circuit 210 is high and the positive insulating resistance RLp is lower than the negative insulating resistance RLn. For example, if the boosting rate is twice, measurement becomes impossible when the negative electrode side insulation resistance RLn>the positive electrode side insulation resistance RLp.

ここで、負極側絶縁抵抗RLnをバイパス抵抗BRで引き下げることにより、右辺が小さくなるため、計測可能な範囲を拡張することができる。すなわち、絶縁抵抗算出機会の減少が抑制される。   Here, by lowering the negative electrode side insulation resistance RLn by the bypass resistance BR, the right side becomes smaller, so that the measurable range can be expanded. That is, it is possible to suppress a decrease in insulation resistance calculation opportunities.

なお、負極側絶縁抵抗RLnはバイパス抵抗BRでバイパスされているため、このとき得られる絶縁抵抗RLは、正極側絶縁抵抗RLpとバイパス抵抗BRとの合成抵抗とみなすことができる。抵抗BRの値は既知であるため、得られた絶縁抵抗RLから、相対的に低下している正極側絶縁抵抗RLpを算出することができる。   Since the negative resistance RLn is bypassed by the bypass resistance BR, the insulation resistance RL obtained at this time can be regarded as a combined resistance of the positive insulation resistance RLp and the bypass resistance BR. Since the value of the resistance BR is known, the relatively decreased positive electrode side insulation resistance RLp can be calculated from the obtained insulation resistance RL.

バイパス抵抗BRの値は、小さすぎると地絡状態となり、大きすぎると負極側絶縁抵抗RLnの引き下げに寄与しないため、最大昇圧電圧、許容最小絶縁抵抗値等を考慮して定めるようにする。例えば、1MΩとすることができる。   If the value of the bypass resistance BR is too small, a ground fault occurs, and if it is too large, it does not contribute to the reduction of the negative electrode side insulation resistance RLn. Therefore, the value of the bypass resistance BR is determined in consideration of the maximum boosted voltage, the allowable minimum insulation resistance value, and the like. For example, it can be 1 MΩ.

上記構成の地絡検出装置100の動作について説明する。以下では、メインリレーMR+、MR−がオンになっているものとする。   The operation of the ground fault detection device 100 having the above configuration will be described. In the following, it is assumed that the main relays MR+ and MR- are on.

地絡検出装置100は、図2に示すように、V0計測期間→Vcn計測期間→V0計測期間→Vcp計測期間を1サイクルとして計測動作を繰り返す。いずれの計測期間とも、計測対象の電圧でコンデンサC1を充電してから、コンデンサC1の充電電圧の計測を行なう。そして、次の計測のためにコンデンサC1の放電を行なう。   As shown in FIG. 2, the ground fault detection device 100 repeats the measurement operation with the V0 measurement period→Vcn measurement period→V0 measurement period→Vcp measurement period as one cycle. In any measurement period, the capacitor C1 is charged with the voltage to be measured, and then the charging voltage of the capacitor C1 is measured. Then, the capacitor C1 is discharged for the next measurement.

V0計測期間では、バッテリ300電圧に相当する電圧を計測する。このため、スイッチS1、スイッチS2をオンにし、スイッチS3、スイッチS4をオフにして、コンデンサC1を充電する。すなわち、図3に示すように、バッテリ300、コンデンサC1が計測経路となる。   In the V0 measurement period, a voltage corresponding to the voltage of the battery 300 is measured. Therefore, the switches S1 and S2 are turned on, the switches S3 and S4 are turned off, and the capacitor C1 is charged. That is, as shown in FIG. 3, the battery 300 and the capacitor C1 serve as the measurement path.

コンデンサC1の充電電圧の計測時には、スイッチS1、スイッチS2をオフにし、スイッチS3、スイッチS4をオンにして、制御装置120でサンプリングを行ない、さらに次の計測のためにコンデンサC1の放電を行なう。コンデンサC1の充電電圧の計測時、コンデンサC1の放電時の動作は他の計測期間においても同様である。   At the time of measuring the charging voltage of the capacitor C1, the switches S1 and S2 are turned off, the switches S3 and S4 are turned on, the controller 120 performs sampling, and the capacitor C1 is discharged for the next measurement. The operation at the time of measuring the charging voltage of the capacitor C1 and the operation at the time of discharging the capacitor C1 is the same in other measurement periods.

Vcn計測期間では、負極側絶縁抵抗RLnの影響を反映した電圧を計測する。このため、スイッチS1、スイッチS4をオンにし、スイッチS2、スイッチS3をオフにしてコンデンサC1を充電する。すなわち、図4に示すように、バッテリ300、抵抗R1、コンデンサC1、抵抗R4、負極側絶縁抵抗RLnが計測経路となる。   In the Vcn measurement period, a voltage that reflects the influence of the negative electrode side insulation resistance RLn is measured. Therefore, the switches S1 and S4 are turned on, the switches S2 and S3 are turned off, and the capacitor C1 is charged. That is, as shown in FIG. 4, the battery 300, the resistor R1, the capacitor C1, the resistor R4, and the negative electrode side insulation resistance RLn serve as a measurement path.

Vcp計測期間では、正極側絶縁抵抗RLpの影響を反映した電圧を計測する。このため、スイッチS2、スイッチS3をオンにし、スイッチS1、スイッチS4をオフにして、コンデンサC1を充電する。すなわち、図5に示すように、バッテリ300、1次側正極絶縁抵抗RLp1と昇圧回路210および2次側正極絶縁抵抗RLp2との並列回路、抵抗R3、コンデンサC1が計測経路となる。   In the Vcp measurement period, the voltage that reflects the influence of the positive electrode side insulation resistance RLp is measured. Therefore, the switches S2 and S3 are turned on, the switches S1 and S4 are turned off, and the capacitor C1 is charged. That is, as shown in FIG. 5, the parallel circuit of the battery 300, the primary side positive electrode insulation resistance RLp1 and the booster circuit 210 and the secondary side positive electrode insulation resistance RLp2, the resistance R3, and the capacitor C1 serve as a measurement path.

これらの計測期間で得られたV0、Vcn、Vcpから算出される(Vcp+Vcn)/V0に基づいて、地絡検出装置100の制御装置120は、あらかじめ作成されたテーブルデータを参照して絶縁抵抗RLを算出する。そして、絶縁抵抗RLが所定の判定基準レベル以下となった場合に、地絡が発生しているものとして判定し、外部制御装置200に警報を出力する。   Based on (Vcp+Vcn)/V0 calculated from V0, Vcn, and Vcp obtained during these measurement periods, the control device 120 of the ground fault detection device 100 refers to the table data created in advance and the insulation resistance RL. To calculate. Then, when the insulation resistance RL becomes equal to or lower than a predetermined determination reference level, it is determined that a ground fault has occurred, and an alarm is output to the external control device 200.

次に、本実施形態の地絡検出装置100における絶縁抵抗算出動作について図6のフローチャートを参照して説明する。まず、各計測期間の測定を行なう(S101)。各計測期間の測定では、上述のように、V0計測期間→Vcn計測期間→V0計測期間→Vcp計測期間を1サイクルとした測定を行なう。   Next, the insulation resistance calculation operation in the ground fault detection device 100 of the present embodiment will be described with reference to the flowchart of FIG. First, measurement in each measurement period is performed (S101). In the measurement of each measurement period, as described above, the measurement is performed with the V0 measurement period→Vcn measurement period→V0 measurement period→Vcp measurement period as one cycle.

2次側からの電流回り込み発生の有無を判定するために、Vcn計測期間での測定値が0であるかどうかを調べる(S102)。ここで、ノイズ等の影響を考慮して、例えば、数10mV以下であれば0とみなすものとする。   In order to determine whether or not the current sneak from the secondary side occurs, it is checked whether or not the measurement value in the Vcn measurement period is 0 (S102). Here, considering the influence of noise or the like, for example, if it is several tens mV or less, it is assumed to be 0.

Vcn計測期間での測定値が0でなければ(S102:No)、通常の算出が可能であるため、得られた各計測期間の測定値に基づいて絶縁抵抗RLを算出する(S103)。   If the measured value in the Vcn measurement period is not 0 (S102: No), normal calculation is possible, and thus the insulation resistance RL is calculated based on the obtained measured value in each measurement period (S103).

一方、Vcn計測期間での測定値が0であれば(S102:Yes)、2次側からの電流の回り込みが発生し、通常の算出が不可能であるため、スイッチS5をオンにして、バイパス抵抗BRを接続状態にする(S104)。   On the other hand, if the measured value during the Vcn measurement period is 0 (S102: Yes), the current sneak from the secondary side occurs, and normal calculation is impossible. Therefore, the switch S5 is turned on to bypass. The resistor BR is brought into the connected state (S104).

そして、バイパス抵抗BRを接続した状態で、各計測期間の測定を行なう(S105)。すなわち、V0計測期間→Vcn計測期間→V0計測期間→Vcp計測期間を1サイクルとした測定を行なう。   Then, the measurement in each measurement period is performed with the bypass resistor BR connected (S105). That is, the measurement is performed with the V0 measurement period→Vcn measurement period→V0 measurement period→Vcp measurement period as one cycle.

バイパス抵抗BRを接続した状態で、2次側からの電流回り込み発生の有無を判定するために、Vcn計測期間での測定値が0であるかどうかを調べる(S106)。このときも、例えば、数10mV以下であれば0とみなすものとする。   In the state where the bypass resistor BR is connected, it is checked whether or not the measurement value during the Vcn measurement period is 0 in order to determine whether or not the current sneak-up from the secondary side occurs (S106). Also at this time, for example, if it is several tens of mV or less, it is regarded as 0.

バイパス抵抗BRを接続した状態で、Vcn計測期間での測定値が0でなければ(S102:No)、バイパス抵抗BRを接続した状態の絶縁抵抗RLを算出することが可能であるため、通常と同じ演算方法によって絶縁抵抗RLを算出する(S107)。   If the measured value in the Vcn measurement period is not 0 with the bypass resistance BR connected (S102: No), the insulation resistance RL with the bypass resistance BR connected can be calculated, so The insulation resistance RL is calculated by the same calculation method (S107).

ただし、算出された絶縁抵抗RLは、正極側絶縁抵抗RLpとバイパス抵抗BRとの合成抵抗とみなすことができる。このため、系の地絡判定用の絶縁抵抗としては扱わず、RL=RLp×BR/(RLp+BR)から、正極側絶縁抵抗RLpを算出する(S108)。算出された正極側絶縁抵抗RLpから正極側の地絡を判定することが可能となる。   However, the calculated insulation resistance RL can be regarded as a combined resistance of the positive insulation resistance RLp and the bypass resistance BR. Therefore, the positive-side insulation resistance RLp is calculated from RL=RLp×BR/(RLp+BR) without being treated as an insulation resistance for system ground fault determination (S108). It is possible to determine the ground fault on the positive electrode side from the calculated positive electrode side insulation resistance RLp.

一方、バイパス抵抗BRを接続した状態で、Vcn計測期間での測定値が0であれば(S106:Yes)、絶縁抵抗の算出は不可となる(S109)。この状況は、昇圧された2次側電圧V2の上昇等により、正極側絶縁抵抗RLpとバイパス抵抗BRとで分圧された接地電位が上昇して、1次側電圧V1よりも高くなっている場合であり、
V1<(V2×BR/(BR+RLp))
が成り立っている。
On the other hand, if the measured value during the Vcn measurement period is 0 with the bypass resistance BR connected (S106: Yes), the insulation resistance cannot be calculated (S109). In this situation, the ground potential divided by the positive side insulation resistance RLp and the bypass resistance BR rises due to the rise of the boosted secondary side voltage V2, etc., and is higher than the primary side voltage V1. Is the case
V1<(V2×BR/(BR+RLp))
Is established.

このため、
RLp<BR×(V2−V1)/V1
が得られ、1次側電圧V1と2次側電圧V2とバイパス抵抗BRとを用いて、正極側絶縁抵抗RLpの最大値RLpmaxを算出することができる。これにより、正極側絶縁抵抗RLpが少なくともRLpmax以下であることを検出することが可能となる。ここで、上不等式の右辺BR×(V2−V1)/V1は、昇圧比から1を引いた値にバイパス抵抗BRを乗じた値を意味している。
For this reason,
RLp<BR×(V2-V1)/V1
Then, the maximum value RLpmax of the positive electrode side insulation resistance RLp can be calculated using the primary side voltage V1, the secondary side voltage V2, and the bypass resistance BR. This makes it possible to detect that the positive electrode side insulation resistance RLp is at least RLpmax or less. Here, BR*(V2-V1)/V1 on the right side of the above inequality means a value obtained by multiplying the value obtained by subtracting 1 from the step-up ratio by the bypass resistance BR.

なお、正極側絶縁抵抗RLpの最大値算出は、昇圧回路210における昇圧比を取得する必要がある。地絡検出装置100の制御装置120がこれらの値を取得できない場合には、外部制御装置200が正極側絶縁抵抗RLpの最大値を算出すればよい。この場合、外部制御装置200の一部が地絡検出装置100として機能することになる。   In addition, in order to calculate the maximum value of the positive electrode side insulation resistance RLp, it is necessary to obtain the step-up ratio in the step-up circuit 210. When the control device 120 of the ground fault detection device 100 cannot acquire these values, the external control device 200 may calculate the maximum value of the positive electrode side insulation resistance RLp. In this case, a part of the external control device 200 functions as the ground fault detection device 100.

以上説明したように、本実施形態の地絡検出装置100によれば、Vcn計測期間での測定値が0のときに、バイパス抵抗BRを接続して計測を行なうため、正極側絶縁抵抗RLpの算出可能範囲を拡張することができる。このため、昇圧回路を含んだ系の地絡検出装置において、絶縁抵抗算出機会の減少を抑制することができる。   As described above, according to the ground fault detection apparatus 100 of the present embodiment, when the measured value in the Vcn measurement period is 0, the bypass resistance BR is connected and the measurement is performed. Therefore, the positive insulation resistance RLp The calculable range can be expanded. For this reason, in the system ground fault detection device including the booster circuit, it is possible to suppress a decrease in insulation resistance calculation opportunities.

また、バイパス抵抗BRを接続した状態でもVcn計測期間での測定値が0のときには、1次側電圧および2次側電圧の値、あるいは昇圧回路210における昇圧比に基づいて、正極側絶縁抵抗RLpの最大値を把握することができる。   Further, even when the bypass resistor BR is connected, when the measured value in the Vcn measurement period is 0, based on the values of the primary side voltage and the secondary side voltage or the step-up ratio in the step-up circuit 210, the positive side insulation resistance RLp. The maximum value of can be grasped.

100 地絡検出装置
120 制御装置
200 外部制御装置
210 昇圧回路
300 バッテリ
360 負荷
BR バイパス抵抗
C1 コンデンサ
RL 絶縁抵抗
S1、S2、S3、S4、Sa スイッチ
100 Ground Fault Detection Device 120 Control Device 200 External Control Device 210 Booster Circuit 300 Battery 360 Load BR Bypass Resistance C1 Capacitor RL Insulation Resistance S1, S2, S3, S4, Sa Switch

Claims (3)

昇圧回路を介して負荷に電源を供給する非接地のバッテリと接続し、前記バッテリが設けられた系の絶縁抵抗を算出して地絡を検出する地絡検出装置であって、
フライングキャパシタとして動作するコンデンサと、
前記バッテリの正極と前記コンデンサの第1の極板との間に接続された第1のスイッチと、
前記バッテリの負極と前記コンデンサの第2の極板との間に接続された第2のスイッチと、
前記コンデンサの第1の極板と接地との間に直列に接続された抵抗および第3のスイッチと、
前記コンデンサの第2の極板と接地との間に接続された第4のスイッチと、
前記バッテリの負極と接地との間に直列に接続されたバイパス抵抗および第5のスイッチと、
前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチ、前記第4のスイッチ、および前記第5のスイッチを制御する制御部であって、前記第3のスイッチと直列に接続された前記抵抗に生じた電圧を測定する制御部と、を備え、
前記制御部は、前記第5のスイッチをオフにした状態で、前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチ、前記第4のスイッチのオンオフを制御することで、
前記第1のスイッチおよび前記第2のスイッチをオンにし、前記第3のスイッチおよび前記第4のスイッチをオフにした状態で前記コンデンサを充電するV0測定経路と、
前記第1のスイッチおよび前記第4のスイッチをオンにし、前記第2のスイッチおよび前記第3のスイッチをオフにした状態で前記コンデンサを充電するVcn測定経路と、
前記第2のスイッチおよび前記第3のスイッチをオンにし、前記第1のスイッチおよび前記第4のスイッチをオフにした状態で前記コンデンサを充電するVcp測定経路と、
前記第3のスイッチおよび前記第4のスイッチをオンにし、前記第1のスイッチおよび前記第2のスイッチをオフにした状態で、前記コンデンサの充電電圧を、前記第3のスイッチと直列に接続された前記抵抗に生じた電圧に基づいて測定する充電電圧測定経路と、を切り換え、前記V0測定経路で充電された前記コンデンサの充電電圧V0、前記Vcn測定経路で充電された前記コンデンサの充電電圧Vcn、および前記Vcp測定経路で充電された前記コンデンサの充電電圧Vcpを測定し、
前記コンデンサの充電電圧Vcnの測定値が0とみなされない場合は、前記コンデンサの充電電圧V0、Vcn、Vcpの測定値に基づいて地絡の検出を行い
前記コンデンサの充電電圧Vcnの測定値が0とみなせる場合は、前記第5のスイッチをオンにした状態で、前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチ、前記第4のスイッチの開閉を制御することで、前記V0測定経路と、前記Vcn測定経路と、前記Vcp測定経路と、前記充電電圧測定経路と、を切り換え、前記V0測定経路で充電された前記コンデンサの充電電圧V0、前記Vcn測定経路で充電された前記コンデンサの充電電圧Vcn、および前記Vcp測定経路で充電された前記コンデンサの充電電圧Vcpを測定し、当該第5のスイッチをオンにした状態での前記充電電圧V0、Vcn、Vcpの測定値に基づいて地絡の検出を行う、地絡検出装置。
A ground fault detection device for detecting a ground fault by connecting to a non-grounded battery that supplies power to a load via a booster circuit, and calculating an insulation resistance of a system in which the battery is provided,
A capacitor that operates as a flying capacitor,
A first switch connected between the positive electrode of the battery and the first plate of the capacitor;
A second switch connected between the negative electrode of the battery and the second plate of the capacitor;
A resistor and a third switch connected in series between the first plate of the capacitor and ground;
A fourth switch connected between the second plate of the capacitor and ground;
A bypass resistor and a fifth switch connected in series between the negative electrode of the battery and the ground;
A control unit that controls the first switch, the second switch, the third switch, the fourth switch, and the fifth switch, and is connected in series with the third switch. A control unit for measuring the voltage generated in the resistor,
The control unit controls ON/OFF of the first switch, the second switch, the third switch, and the fourth switch in a state where the fifth switch is turned off,
A V0 measurement path for charging the capacitor with the first switch and the second switch turned on and the third switch and the fourth switch turned off ;
A Vcn measurement path that charges the capacitor with the first switch and the fourth switch turned on and the second switch and the third switch turned off ;
A Vcp measurement path that charges the capacitor with the second switch and the third switch turned on and the first switch and the fourth switch turned off ;
The charging voltage of the capacitor is connected in series with the third switch with the third switch and the fourth switch turned on and the first switch and the second switch turned off. The charging voltage measuring path for measuring based on the voltage generated in the resistor, the charging voltage V0 of the capacitor charged in the V0 measuring path, and the charging voltage Vcn of the capacitor charged in the Vcn measuring path. , And a charging voltage Vcp of the capacitor charged in the Vcp measurement path,
When the measured value of the charging voltage Vcn of the capacitor is not regarded as 0, the ground fault is detected based on the measured values of the charging voltages V0, Vcn, and Vcp of the capacitor,
When the measured value of the charging voltage Vcn of the capacitor can be regarded as 0 , the first switch, the second switch, the third switch, and the fourth switch with the fifth switch turned on. By controlling the opening and closing of a switch, the V0 measurement path, the Vcn measurement path, the Vcp measurement path, and the charging voltage measurement path are switched, and the charging voltage of the capacitor charged in the V0 measurement path is switched. V0, the charging voltage Vcn of the capacitor charged in the Vcn measurement path, and the charging voltage Vcp of the capacitor charged in the Vcp measurement path are measured, and the charging is performed with the fifth switch turned on. A ground fault detection device that detects a ground fault based on the measured values of the voltages V0, Vcn, and Vcp .
前記制御部は、前記第5のスイッチをオンにした状態での充電電圧Vcnの測定値が0とみなされない場合に、前記第5のスイッチをオンにした状態での前記充電電圧V0、Vcn、Vcpの測定値と前記バイパス抵抗の抵抗値を用いて前記バッテリの正極と接地との絶縁抵抗である正側絶縁抵抗を算出することで、地絡の検出を行う、請求項1に記載の地絡検出装置。 When the measured value of the charging voltage Vcn in the state where the fifth switch is turned on is not regarded as 0, the control unit controls the charging voltages V0 and Vcn in the state where the fifth switch is turned on . The ground fault is detected by calculating a positive side insulation resistance, which is an insulation resistance between the positive electrode of the battery and the ground , using the measured value of Vcp and the resistance value of the bypass resistance. Detection device. 前記制御部は、前記第5のスイッチをオンにした状態での前記コンデンサの充電電圧Vcnの測定値が0とみなせる場合に、前記昇圧回路による昇圧比と前記バイパス抵抗の抵抗値とに基づいて、前記バッテリの正極と接地との絶縁抵抗である正側絶縁抵抗の最大値を算出することで、地絡の検出を行う、請求項1または2に記載の地絡検出装置。 When the measured value of the charging voltage Vcn of the capacitor in the state where the fifth switch is turned on can be regarded as 0, the control unit is based on the step-up ratio of the step-up circuit and the resistance value of the bypass resistor. The ground fault detection device according to claim 1 , wherein the ground fault is detected by calculating a maximum value of a positive side insulation resistance that is an insulation resistance between the positive electrode of the battery and the ground .
JP2017181183A 2017-09-21 2017-09-21 Ground fault detector Active JP6698599B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017181183A JP6698599B2 (en) 2017-09-21 2017-09-21 Ground fault detector
US16/126,934 US10613156B2 (en) 2017-09-21 2018-09-10 Ground fault detection apparatus
DE102018216025.2A DE102018216025A1 (en) 2017-09-21 2018-09-20 Erdschlussdetektionsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181183A JP6698599B2 (en) 2017-09-21 2017-09-21 Ground fault detector

Publications (2)

Publication Number Publication Date
JP2019056626A JP2019056626A (en) 2019-04-11
JP6698599B2 true JP6698599B2 (en) 2020-05-27

Family

ID=65526698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181183A Active JP6698599B2 (en) 2017-09-21 2017-09-21 Ground fault detector

Country Status (3)

Country Link
US (1) US10613156B2 (en)
JP (1) JP6698599B2 (en)
DE (1) DE102018216025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098142A (en) * 2018-12-18 2020-06-25 矢崎総業株式会社 Ground fault detector

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582584A1 (en) * 2018-06-12 2019-12-18 Continental Automotive GmbH Electric circuit and diagnostic method for an electric load
DE202018104044U1 (en) * 2018-07-13 2019-10-15 Wago Verwaltungsgesellschaft Mbh Ground wire monitoring
EP3608152B1 (en) * 2018-08-06 2022-06-22 Ningbo Geely Automobile Research & Development Co. Ltd. Method for detecting an isolation fault
GB2578339B (en) 2019-03-25 2020-12-30 Greentec International Ltd Open PEN detection and shut down system
JP7086886B2 (en) * 2019-04-03 2022-06-20 矢崎総業株式会社 Ground fault detector
JP7118935B2 (en) * 2019-09-10 2022-08-16 矢崎総業株式会社 Ground fault detector
KR20210060210A (en) 2019-11-18 2021-05-26 주식회사 엘지에너지솔루션 Apparatus for estimating Insulation Resistance and Battery System using the same
CN114184897A (en) * 2020-09-15 2022-03-15 广汽埃安新能源汽车有限公司 Insulation detection circuit and method, power battery quick charging method and related device
CN112498171B (en) * 2020-12-14 2023-03-07 北汽福田汽车股份有限公司 Battery monitoring system and method and vehicle
CN112946508A (en) * 2021-02-05 2021-06-11 奇瑞新能源汽车股份有限公司 Insulation failure reminding device and method for electric automobile and vehicle
JP7391482B2 (en) * 2021-05-31 2023-12-05 矢崎総業株式会社 Ground fault detection device
JP7395240B2 (en) * 2021-08-06 2023-12-11 矢崎総業株式会社 Ground fault detection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165973A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Measuring device of insulation resistance of direct-current circuit
JP2006220520A (en) * 2005-02-10 2006-08-24 Honda Motor Co Ltd Dielectric resistance measuring device of floating d.c. power supply and its method
TW200913433A (en) * 2007-09-10 2009-03-16 J Tek Inc Scattered energy storage control system
JP5406611B2 (en) * 2009-07-08 2014-02-05 矢崎総業株式会社 Insulation state detector
AU2012371210A1 (en) * 2012-02-28 2014-05-15 Deere & Company Method and system for determining DC bus leakage
JP5947584B2 (en) * 2012-03-27 2016-07-06 矢崎総業株式会社 Insulation state detector
JP2014020914A (en) * 2012-07-18 2014-02-03 Keihin Corp Leak detection device
JP6433305B2 (en) 2014-04-09 2018-12-05 矢崎総業株式会社 Insulation detection device and insulation detection method for non-grounded power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098142A (en) * 2018-12-18 2020-06-25 矢崎総業株式会社 Ground fault detector

Also Published As

Publication number Publication date
US20190086464A1 (en) 2019-03-21
US10613156B2 (en) 2020-04-07
JP2019056626A (en) 2019-04-11
DE102018216025A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
JP6698599B2 (en) Ground fault detector
JP6625586B2 (en) Ground fault detection device
JP6633585B2 (en) Ground fault detector
JP7118935B2 (en) Ground fault detector
US9255957B2 (en) Earth fault detection circuit and power source device
US10222423B2 (en) Electrical storage system
JP7004204B2 (en) Measuring device, power storage device, measuring system, offset error measuring method
US10330716B2 (en) Earth fault detector with flying capacitor
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
JP6781212B2 (en) Ground fault detector
CN111796201B (en) Ground fault detection device
US11555863B2 (en) Ground fault detection device
JP6853797B2 (en) Battery monitoring device and relay status diagnostic method
US9778307B2 (en) Insulation fault detection device for testing for insulation faults under critical conditions
JP2019174118A (en) Battery deterioration determination device
US20220404432A1 (en) Earth leakage detection device and vehicle power supply system
US11187759B2 (en) Ground fault detection device
JP6804320B2 (en) Ground fault detector, power supply system
JP6836411B2 (en) Ground fault detector, power supply system
US11592470B2 (en) Insulation abnormality detection apparatus
JP2010261807A (en) Storage battery deterioration determination method and charge/discharge control device
JP7171412B2 (en) Ground fault detector
CN109444549B (en) Rapid detection method for vehicle body insulation
US11874332B2 (en) Failure detection apparatus
JP2010220341A (en) Power supply system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250