JP6687942B2 - Method for manufacturing dye-sensitized solar cell - Google Patents

Method for manufacturing dye-sensitized solar cell Download PDF

Info

Publication number
JP6687942B2
JP6687942B2 JP2016029747A JP2016029747A JP6687942B2 JP 6687942 B2 JP6687942 B2 JP 6687942B2 JP 2016029747 A JP2016029747 A JP 2016029747A JP 2016029747 A JP2016029747 A JP 2016029747A JP 6687942 B2 JP6687942 B2 JP 6687942B2
Authority
JP
Japan
Prior art keywords
dye
semiconductor layer
electrolyte
mixture
porous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016029747A
Other languages
Japanese (ja)
Other versions
JP2017147389A (en
Inventor
真利 柳田
真利 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2016029747A priority Critical patent/JP6687942B2/en
Publication of JP2017147389A publication Critical patent/JP2017147389A/en
Application granted granted Critical
Publication of JP6687942B2 publication Critical patent/JP6687942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は色素増感太陽電池の製造方法に関し、詳細には固体状の電解質層を備える色素増感太陽電池の製造方法に関する。   The present invention relates to a method for manufacturing a dye-sensitized solar cell, and more particularly to a method for manufacturing a dye-sensitized solar cell including a solid electrolyte layer.

近年、地球温暖化などの地球環境問題の観点から化石燃料に代わるクリーンなエネルギー源である太陽光エネルギーを電気エネルギーに変換できる太陽電池が注目されている。   In recent years, from the viewpoint of global environmental problems such as global warming, solar cells that can convert solar energy, which is a clean energy source that replaces fossil fuels, into electric energy have attracted attention.

現在実用化されている太陽電池は、単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池である。しかし、これらの無機系太陽電池、例えばシリコン系の太陽電池では、純度が非常に高いことが要求され、精製の工程が複雑でプロセス数が多く、製造コストが高いことが問題である。   The solar cells currently put into practical use are single crystal silicon, polycrystalline silicon, amorphous silicon, and inorganic solar cells such as cadmium telluride and indium copper selenide. However, in these inorganic solar cells, for example, silicon solar cells, there is a problem that the purity is required to be very high, the refining process is complicated, the number of processes is large, and the manufacturing cost is high.

これに対して、新しいタイプの太陽電池として、1991年にグレッツェルらのグループにより色素増感太陽電池が提案され、より安価で高効率な太陽電池として期待されている。グレッツェルセルは、2枚のガラス等の光透過性基板上にそれぞれ形成された透明電極と対極との間に、増感色素が担持された酸化チタンなどの多孔性半導体層と電解質層を備える。太陽光は光透過性基板から入射し、透明電極を通過して半導体層に達し、増感色素を励起する。発生した励起電子は半導体層を経由して透明電極に移動し、さらに、外部電気回路を経由して対極に戻り、電池内の電解質層中のイオンにより運ばれて、酸化状態にある色素に戻る。このような太陽光による色素の励起電子の発生に始まる電子移動が繰り返されることにより、太陽光エネルギーが電気エネルギーに変換される。   On the other hand, as a new type of solar cell, a dye-sensitized solar cell was proposed by the group of Gretzel et al. In 1991, and is expected as a cheaper and more efficient solar cell. The Gretzell cell includes a porous semiconductor layer such as titanium oxide carrying a sensitizing dye and an electrolyte layer between a transparent electrode and a counter electrode formed on two light-transmitting substrates such as glass. Sunlight enters from the transparent substrate, passes through the transparent electrode, reaches the semiconductor layer, and excites the sensitizing dye. The excited electrons generated move to the transparent electrode via the semiconductor layer, then return to the counter electrode via the external electric circuit, and are carried by the ions in the electrolyte layer in the battery to return to the dye in the oxidized state. . By repeating the electron transfer that begins with the generation of excited electrons of the dye by such sunlight, sunlight energy is converted into electrical energy.

電解質層としては、例えばヨウ塩等の電解質と、I/I 等の酸化還元対を含むアセトニトリル/エチレンカーボネート混合溶液等の液状キャリアを用いた液状層が主として使用されている。しかし、液状キャリアは太陽電池セルから漏れ出し、又は揮発するという問題がある。 As the electrolyte layer, for example, a liquid layer using an electrolyte such as an iodide salt and a liquid carrier such as an acetonitrile / ethylene carbonate mixed solution containing a redox couple such as I / I 3 is mainly used. However, there is a problem that the liquid carrier leaks from the solar cell or volatilizes.

そこで、液状電解質層に代えて、固体状電解質層を備える色素増感太陽電池が提案されている。中でも、イミダゾリウム塩等の電解質を利用したものは、安定性で変換効率が高いことから注目されている。例えば、1−メチル−3−アセチルイミダゾリウムアイオダイド(非特許文献1)、1−プロパルギル−3−メチルイミダゾリウムアイオダイド又は1−プロパルギル−1−メチルピペリジニウムアイオダイド(非特許文献2)、ビス(N−ピロリジニウム)ジブロマイド(非特許文献3)が固体状電解質として使用され、約2〜6%程度のエネルギー変換効率(η)が達成されている。   Therefore, a dye-sensitized solar cell including a solid electrolyte layer instead of the liquid electrolyte layer has been proposed. Among them, those using an electrolyte such as an imidazolium salt are attracting attention because of their stability and high conversion efficiency. For example, 1-methyl-3-acetylimidazolium iodide (Non-patent document 1), 1-propargyl-3-methylimidazolium iodide or 1-propargyl-1-methylpiperidinium iodide (Non-patent document 2). , Bis (N-pyrrolidinium) dibromide (Non-Patent Document 3) is used as a solid electrolyte, and an energy conversion efficiency (η) of about 2 to 6% is achieved.

Yong Zhao et al., Chem. Mater., 2008, 20, pp. 6022-6028Yong Zhao et al., Chem. Mater., 2008, 20, pp. 6022-6028 Hong Wang, et al., J.Am.Chem.Soc.,2013, 135, 12627-12633Hong Wang, et al., J. Am. Chem. Soc., 2013, 135, 12627-12633. Tong He, et al., ACS Appl.Mater. Interface,2015, 7, 21381-21390Tong He, et al., ACS Appl. Mater. Interface, 2015, 7, 21381-21390

しかし、上記固体状の電解質層を作る方法にはいくつかの問題がある。先ず、非特許文献1及び2では、電解質を溶媒に溶解して溶液とし、ホットプレート上で多孔性半導体層上に滴下した後、溶媒が乾燥される。この方法によると、該多孔性半導体層中の孔部が満たされるまで、滴下及び乾燥を何回も繰り返す必要があり、最終的に真空中で1日以上にわたって、乾燥させなければならず大変に時間がかかる。また、非特許文献3では、固体状電解質と添加剤の混合物を粉砕したものを電極上にナイフコートした後、該混合物を対電極と半導体層が形成された電極との間にヒートシールフィルムをスペーサーとして挟んだ状態でホットプレス(0.18MPa,135℃、35秒)して作られる。ここで、コーティングするためには固体を粉砕して紛体にするだけでなく、何等かの媒体に分散させて流動性のある塗料状にしなければならない。また、紛体をホットプレスにより多孔性半導体層中に万遍なく圧入するのは容易なことではない。   However, there are some problems in the method of forming the solid electrolyte layer. First, in Non-Patent Documents 1 and 2, the electrolyte is dissolved in a solvent to form a solution, and the solution is dropped on the porous semiconductor layer on a hot plate, and then the solvent is dried. According to this method, it is necessary to repeat dropping and drying a number of times until the pores in the porous semiconductor layer are filled, and it is necessary to finally dry in a vacuum for one day or more, which is very difficult. take time. Further, in Non-Patent Document 3, after crushing a mixture of a solid electrolyte and an additive onto an electrode by knife coating, a heat seal film is formed between the counter electrode and the electrode on which a semiconductor layer is formed. It is made by hot pressing (0.18 MPa, 135 ° C., 35 seconds) while sandwiched as a spacer. Here, for coating, not only must the solid be pulverized into powder, but it must be dispersed in some medium to form a fluid paint. Further, it is not easy to press the powder into the porous semiconductor layer uniformly by hot pressing.

そこで、本発明はより迅速かつ容易であり、実用化に適した固体状の電解質層を作る方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a solid electrolyte layer which is quicker and easier and suitable for practical use.

即ち、本発明は以下のものである。
一対の電極間に、増感色素が担持された多孔性半導体層と、固体状の電解質層を少なくとも備える色素増感太陽電池を作る方法であって、
(1)増感色素が担持された多孔性半導体層を形成する工程、
(2)該多孔性半導体層に、電解質と酸化還元対を少なくとも含む混合物を70℃〜210℃の温度で液状化して施与する工程、及び
(3)施与された該混合物を固化する下記を含む工
(3−1)工程(2)の液状化を実施した温度以下で、該混合物が施与された多孔性半導体層を所定時間維持する工程、
(3−2)該混合物を固化する工程、
を含む方法。
That is, the present invention is as follows.
A method for producing a dye-sensitized solar cell comprising a porous semiconductor layer carrying a sensitizing dye and a solid electrolyte layer at least between a pair of electrodes,
(1) a step of forming a porous semiconductor layer carrying a sensitizing dye,
(2) the porous semiconductor layer, you solidification step to applied by liquefaction a mixture comprising at least an electrolyte redox pair at a temperature of 70 ° C. to 210 ° C., and (3) The applied mixture as engineering, including the following,
(3-1) A step of maintaining the porous semiconductor layer to which the mixture has been applied for a predetermined time at a temperature equal to or lower than the temperature at which the liquefaction of step (2) was performed,
(3-2) a step of solidifying the mixture,
Including the method.

上記本発明の方法は、電解質等を含む混合物を熱で融解させる等により液状化して半導体層に施与するので、溶液を滴下及び乾燥を繰り返す非特許文献1、2記載の方法に比べて格段に速く電解質層を形成できる。また、電解質等を液状化して多孔性半導体層の上から滴下、或いは電解質等を多孔性半導体層の上に噴霧、または多孔性半導体層上に載置して融解する等により施与するだけでよいので、非特許文献3記載の方法に比べ格段に簡便であり、工業規模での実施も容易である。さらに、電解質等を溶解するための溶媒や、塗料の形態にするための媒体を使用する必要もない。   Since the method of the present invention is applied to the semiconductor layer by liquefying a mixture containing an electrolyte or the like by heat and applying the mixture to the semiconductor layer, it is much more difficult than the method described in Non-Patent Documents 1 and 2 in which the solution is repeatedly dropped and dried. The electrolyte layer can be formed very quickly. Further, it is simply applied by liquefying the electrolyte or the like and dropping it from the top of the porous semiconductor layer, or spraying the electrolyte or the like onto the porous semiconductor layer, or placing it on the porous semiconductor layer and melting it. Since it is good, it is significantly simpler than the method described in Non-Patent Document 3, and is easily implemented on an industrial scale. Furthermore, it is not necessary to use a solvent for dissolving the electrolyte or the like, or a medium for forming a paint.

本発明における色素増感太陽電池の構造の一例を示す概略図である。It is a schematic diagram showing an example of the structure of the dye-sensitized solar cell in the present invention. 本発明における色素増感太陽電池の構造の他の例を示す概略図である。It is the schematic which shows the other example of the structure of the dye-sensitized solar cell in this invention. 実施例における色素増感太陽電池の製造方法の一例を示す概略図である。It is a schematic diagram showing an example of a manufacturing method of a dye-sensitized solar cell in an example.

図1は、本発明における該色素増感太陽電池の構造の一例を示す図である。該色素増感太陽電池は、透明電極2と対極6の間に、多孔性半導体層3と固体状電解質層4を少なくとも備える。透明電極2は、例えば透明基板1の一面上に形成された透明導電性膜からなる。対極6は、例えば対極基板5の透明電極2側の一面上に形成された対極導電性層からなる。多孔性半導体層3上には図示しない増感色素が担持されている。固体状電解質層4は、図では多孔性半導体層3の上の層として表されているが、多孔性半導体層3の内部にも浸透して存在している。なお、本発明において「固体状」とは、色素増感太陽電池が使用される温度範囲において、非流動性である状態を意味し、ペースト等の塑性体、半固体状態も含む。また、図1の構成では太陽電池の両側面部に封止部7があるが、本発明では電解質層が固体状であるので必須の構成要素ではない。該封止部7には、透明基板1と対極基板5との間のスペーサーが備えられていてもよい。   FIG. 1 is a diagram showing an example of the structure of the dye-sensitized solar cell in the present invention. The dye-sensitized solar cell includes at least a porous semiconductor layer 3 and a solid electrolyte layer 4 between a transparent electrode 2 and a counter electrode 6. The transparent electrode 2 is made of, for example, a transparent conductive film formed on one surface of the transparent substrate 1. The counter electrode 6 is formed of, for example, a counter electrode conductive layer formed on one surface of the counter electrode substrate 5 on the transparent electrode 2 side. A sensitizing dye (not shown) is carried on the porous semiconductor layer 3. Although the solid electrolyte layer 4 is shown as a layer above the porous semiconductor layer 3 in the drawing, it also penetrates and exists inside the porous semiconductor layer 3. In the present invention, “solid state” means a state of being non-fluid in the temperature range in which the dye-sensitized solar cell is used, and includes a plastic body such as a paste and a semi-solid state. Further, in the configuration of FIG. 1, the sealing portions 7 are provided on both side surface portions of the solar cell, but in the present invention, the electrolyte layer is a solid state, and thus is not an essential component. The sealing portion 7 may be provided with a spacer between the transparent substrate 1 and the counter electrode substrate 5.

図2は、本発明の色素増感太陽電池の構造の他の例を示す図であり、電解質が固体状であることによって採用できる構成である。即ち、図2の構成は、図1における対極基板5を備えず、例えば白金からなる対極6が固体状電解質層4上及び多孔性半導体層3の側面を覆い、透明基板1上で終端される。そして、保護層8が該多孔性半導体層3の側面及び対極6の表面を覆い、該色素増感太陽電池を擦傷、汚染等から保護する。   FIG. 2 is a diagram showing another example of the structure of the dye-sensitized solar cell of the present invention, which is a configuration that can be adopted because the electrolyte is solid. That is, the configuration of FIG. 2 does not include the counter electrode substrate 5 of FIG. 1, but the counter electrode 6 made of, for example, platinum covers the solid electrolyte layer 4 and the side surface of the porous semiconductor layer 3 and is terminated on the transparent substrate 1. . Then, the protective layer 8 covers the side surface of the porous semiconductor layer 3 and the surface of the counter electrode 6 to protect the dye-sensitized solar cell from scratches, contamination, and the like.

本発明の方法は、上記のような一対の電極間に、増感色素が担持された多孔性半導体層と、固体状の電解質層を少なくとも備える色素増感太陽電池を作る方法であって、下記工程:
(1)増感色素が担持された多孔性半導体層を形成する工程、
(2)該多孔性半導体層に、電解質と酸化還元対を少なくとも含む混合物を70℃〜210℃の温度で液状化して施与する工程、及び
(3)該施与された該混合物を固化する工程、
を含む。
工程(1)は、公知の方法で行うことができ、詳細については後述する。工程(2)において、電解質と酸化還元対を少なくとも含む混合物(以下「電解質混合物」という場合がある)の液状化は、電解質と酸化還元対を一緒に加熱して融解しても、一方を加熱して液状化したものの中に他方を溶解させてもよい。ここで「液状化」は、完全に液体となる状態だけでなく、部分的に液体となる等により流動化した状態も含む。また「混合物」は、均質な物だけでなく、単に組み合わせた状態の不均一な物も含む。液状化手段は特に限定されず、例えば容器に入れた電解質を70℃〜210℃の温度に設定したホットプレート上もしくは恒温槽中で加熱して行う。或いは、光、マイクロ波等の電磁波を照射し、超音波を照射し、又はこれら複数の手段を組み合わせて流動化してもよい。
The method of the present invention is a method for producing a dye-sensitized solar cell comprising at least a porous semiconductor layer carrying a sensitizing dye and a solid electrolyte layer between a pair of electrodes as described above, which comprises: Process:
(1) a step of forming a porous semiconductor layer carrying a sensitizing dye,
(2) a step of liquefying and applying a mixture containing at least an electrolyte and a redox couple at a temperature of 70 ° C. to 210 ° C. to the porous semiconductor layer, and (3) a step of solidifying the applied mixture. ,
including.
The step (1) can be performed by a known method, and details will be described later. In step (2), liquefaction of the mixture containing at least the electrolyte and the redox couple (hereinafter sometimes referred to as “electrolyte mixture”) is performed by heating one of the electrolyte and the redox couple even if they are melted by heating. The other may be dissolved in the liquefied product. Here, "liquefaction" includes not only a completely liquid state but also a partially fluidized state. The "mixture" includes not only a homogeneous product but also a heterogeneous product in a simply combined state. The liquefaction means is not particularly limited, and for example, the electrolyte placed in a container is heated on a hot plate set at a temperature of 70 ° C. to 210 ° C. or in a constant temperature bath. Alternatively, light or electromagnetic waves such as microwaves may be applied, ultrasonic waves may be applied, or a plurality of these means may be combined for fluidization.

電解質混合物は、70℃〜210℃の温度で、多孔性半導体層中に浸透することができる程度に流動化すればよい。電解質混合物が前記下限値よりも低い温度で流動化するものは、色素増感太陽電池の動作中に温度が高くなったときに漏出する恐れがある。一方、流動化する温度が前記上限値を超えると、半導体層に施与する際に増感色素が熱分解等により劣化する恐れがある。好ましくは電解質として、融点、即ち大気圧下で固体もしくは半固体状から液体状へと相転移する温度が70〜210℃、好ましくは80℃〜180℃、より好ましくは85℃〜160℃であるものが使用される。該融点は熱分析等、公知の方法で測定することができ、温度に幅があってもよい。また、複数電解質の混合物とすることによって、融点降下により上記範囲の温度となる電解質の組み合わせを用いてもよい。   The electrolyte mixture may be fluidized at a temperature of 70 ° C to 210 ° C to such an extent that it can penetrate into the porous semiconductor layer. Those in which the electrolyte mixture fluidizes at a temperature lower than the lower limit value may leak when the temperature rises during the operation of the dye-sensitized solar cell. On the other hand, if the fluidizing temperature exceeds the above upper limit, the sensitizing dye may deteriorate due to thermal decomposition or the like when applied to the semiconductor layer. Preferably, the electrolyte has a melting point, that is, a temperature at which a phase transition from a solid or semi-solid state to a liquid state under atmospheric pressure is 70 to 210 ° C, preferably 80 ° C to 180 ° C, more preferably 85 ° C to 160 ° C. Stuff used. The melting point can be measured by a known method such as thermal analysis, and the temperature may vary. Alternatively, a combination of electrolytes having a temperature in the above range due to a melting point decrease by using a mixture of a plurality of electrolytes may be used.

該電解質としては、アンモニウム塩、アミンハロゲン酸塩、ピリジニウム塩、ピペリジニウム塩、イミダゾリウム塩、ホスホニウム塩、スルホキソニウム塩、及びこれらの混合物で上記温度範囲の融点を有するものが挙げられる。該塩におけるアニオンとしては、ハロゲンアニオン、硫化物イオン、ポリ硫化物イオンが例示され、これらのうちハロゲンアニオンが好ましく、ヨウ素アニオンが最も好ましい。   Examples of the electrolyte include ammonium salts, amine halogen salts, pyridinium salts, piperidinium salts, imidazolium salts, phosphonium salts, sulfoxonium salts, and mixtures thereof having a melting point in the above temperature range. Examples of the anion in the salt include a halogen anion, a sulfide ion, and a polysulfide ion. Of these, a halogen anion is preferable, and an iodine anion is most preferable.

アンモニウム塩としては、アセチルコリンアイオダイド(161〜164℃)、アセチルチオコリンアイオダイド(205〜210℃)、ブチリルコリンアイオダイド(85〜89℃)、ブチリルチオコリンアイオダイド(171〜174℃)、プロピオニルチオコリンアイオダイド(200〜202℃)、ベンジルトリエチルアンモニウムアイオダイド(168〜173℃)、テトラn−ブチルアンモニウムアイオダイド(141〜143℃)、トリメチルフェニルアンモニウムアイオダイド(175℃)、下記式(1)で表される(1−tert-ブトキシカルボニル−7−アザインドール−3−メチル)トリメチルアンモニウムアイオダイド(138〜143℃)、テトラメチルアンモニウム アイオダイド(>300℃)、テトラエチルアンモニウム アイオダイド(>300℃)が例示される。なお、括弧内は大気圧下での融点である。

As the ammonium salt, acetylcholine iodide (161 to 164 ° C), acetylthiocholine iodide (205 to 210 ° C), butyrylcholine iodide (85 to 89 ° C), butyrylthiocholine iodide (171 to 174 ° C), Propionyl thiocholine iodide (200-202 ° C), benzyltriethylammonium iodide (168-173 ° C), tetra-n-butylammonium iodide (141-143 ° C), trimethylphenylammonium iodide (175 ° C), the following formula (1-tert-Butoxycarbonyl-7-azaindole-3-methyl) trimethylammonium iodide (138 to 143 ° C.), tetramethylammonium iodide (> 300 ° C.), tetraethylan represented by (1) Pyridinium iodide (> 300 ° C.) are exemplified. The values in parentheses are melting points under atmospheric pressure.

アミンハロゲン酸塩としては、ブチルアミン塩酸塩(169〜173℃)、ベンジルアミン塩酸塩(176〜180℃)が例示される。   Examples of the amine halogenate include butylamine hydrochloride (169 to 173 ° C) and benzylamine hydrochloride (176 to 180 ° C).

ピリジニウム塩としては、1−アミノ−2−メチルピリジニウムアイオダイド(160〜162℃)、1−アミノピリジニウムアイオダイド(159〜161℃)、2−クロロ−1−メチルピリジニウムアイオダイド(約200℃)、1−エチルピリジニウムアイオダイド(97℃)、1−プロパルギル−3−ピリジニウムアイオダイド(80℃)が例示される。   As the pyridinium salt, 1-amino-2-methylpyridinium iodide (160 to 162 ° C.), 1-aminopyridinium iodide (159 to 161 ° C.), 2-chloro-1-methylpyridinium iodide (about 200 ° C.) , 1-ethylpyridinium iodide (97 ° C.) and 1-propargyl-3-pyridinium iodide (80 ° C.).

ピペリジニウム塩としては、1−プロパルギル−3−ピペリジニウムアイオダイド(80℃)が例示される。   Examples of the piperidinium salt include 1-propargyl-3-piperidinium iodide (80 ° C.).

イミダゾリウム塩としては、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド(略称:CIM10P、式(2)、72〜74℃)、1,3−ジメチルイミダゾリウムアイオダイド(略称:DMI、式(3)、92℃)、1−エチル−3−メチルイミダゾリウムアイオダイド(略称:EMI、式(4)、77.5〜79℃)、1−メチル−3−アセチルイミダゾリウムアイオダイド(式(5)、188〜189℃)、1−プロパルギル−3−メチルイミダゾリウムアイオダイド(式(6)、100℃)が例示される。








As the imidazolium salt, 1,2-dimethyl-3-propylimidazolium iodide (abbreviation: CIM10P, formula (2), 72 to 74 ° C.), 1,3-dimethylimidazolium iodide (abbreviation: DMI, formula) (3), 92 ° C), 1-ethyl-3-methylimidazolium iodide (abbreviation: EMI, formula (4), 77.5-79 ° C), 1-methyl-3-acetylimidazolium iodide (formula (5), 188 to 189 ° C.) and 1-propargyl-3-methylimidazolium iodide (formula (6), 100 ° C.).








ホスホニウム塩としては、エチルトリフェニルホスホニウムアイオダイド(164〜170℃)、イソプロピルトリフェニルホスホニウムアイオダイド(194〜197℃)、メチルトリフェノキシホスホニウムアイオダイド(141〜145℃)が例示される。   Examples of the phosphonium salt include ethyltriphenylphosphonium iodide (164 to 170 ° C), isopropyltriphenylphosphonium iodide (194 to 197 ° C), and methyltriphenoxyphosphonium iodide (141 to 145 ° C).

スルホキソニウム塩としては、トリメチルスルホキソニウムアイオダイド(208〜212℃)が例示される。

Examples of sulfoxonium salts include trimethylsulfoxonium iodide (208 to 212 ° C.).

これらの塩のうち、ピリジニウム、ピペリジニウム、及びイミダゾリウムのアイオダイドが好ましく、より好ましくはイミダゾリウムアイオダイドが使用される。   Of these salts, pyridinium, piperidinium, and imidazolium iodides are preferable, and imidazolium iodides are more preferably used.

酸化還元対は、一般的に色素増感太陽電池において使用されているものを使用してよい。例えば、I/I 系、Br/Br 系、Fe2+/Fe3+系、キノン/ハイドロキノン系等が挙げられる。ヨウ化リチウム、ヨウ化カリウム、ヨウ化カルシウムなどの金属ヨウ化物とヨウ素との組合せ、テトラエチルアンモニウムアイオダイド、テトラプロピルアンモニウムアイオダイド、テトラブチルアンモニウムアイオダイド、テトラヘキシルアンモニウムアイオダイドなどのテトラアルキルアンモニウム塩とヨウ素との組合せ、並びに臭化リチウム、臭化ナトリウム、臭化カリウム、臭化カルシウムなどの金属臭化物と臭素との組合せであってもよい。これらの中でもI/I 系が特に好ましい。該酸化還元対の電解質混合物中の濃度は、酸化体、例えばI が、1〜90、好ましくは5〜50wt%、より好ましくは5〜15wt%である。 As the redox couple, those generally used in dye-sensitized solar cells may be used. Examples thereof include I / I 3 system, Br / Br 3 system, Fe 2+ / Fe 3+ system, quinone / hydroquinone system, and the like. Combination of metal iodide such as lithium iodide, potassium iodide, calcium iodide and iodine, tetraalkylammonium salt such as tetraethylammonium iodide, tetrapropylammonium iodide, tetrabutylammonium iodide, tetrahexylammonium iodide And iodine, as well as a combination of bromine with a metal bromide such as lithium bromide, sodium bromide, potassium bromide, calcium bromide. Of these, the I / I 3 system is particularly preferable. The concentration of the redox couple in the electrolyte mixture is 1 to 90, preferably 5 to 50 wt%, and more preferably 5 to 15 wt% of oxidant, for example, I 3 .

電解質混合物には、従来用いられている有機塩基性化合物等の添加剤が含まれていてもよい。添加剤の例としては、ピリジン、キノリン、イミダゾール、及びトリアゾール等の含窒素芳香族化合物であって融点が100℃以上の材料が好ましい。該添加剤の該電解質混合物中の濃度は、1〜10wt%程度である。   The electrolyte mixture may contain additives such as conventionally used organic basic compounds. As examples of the additive, nitrogen-containing aromatic compounds such as pyridine, quinoline, imidazole, and triazole, which have a melting point of 100 ° C. or higher, are preferable. The concentration of the additive in the electrolyte mixture is about 1 to 10 wt%.

液状化された該電解質混合物を施与する多孔性半導体層3は、例えば透明基板1上の透明導電性膜2上に形成された形態で供されて、該電解質混合物が固化しないように加熱されたホットプレート上又は恒温槽中に載置される。該加熱は、施与される電解質混合物が固化しない温度であればよい。電解質混合物を融解等する温度と同じである必要はなく、増感色素の熱劣化を防止するためにできるだけ低温であることが好ましい。液状化された電解質混合物を多孔性半導体層3に施与する方法は限定されず、ディスペンサ等による滴下、スプレー等による散布、各種コーターによる塗布、又は印刷等によることができる。この際、電解質混合物が固化しないようにディスペンサ等も加熱しておくか、加熱手段を備えたものを用いることが好ましい。   The porous semiconductor layer 3 to which the liquefied electrolyte mixture is applied is provided, for example, in a form formed on the transparent conductive film 2 on the transparent substrate 1 and heated so that the electrolyte mixture does not solidify. It is placed on a hot plate or in a constant temperature bath. The heating may be at a temperature at which the applied electrolyte mixture does not solidify. The temperature does not have to be the same as the temperature at which the electrolyte mixture is melted, and is preferably as low as possible in order to prevent thermal deterioration of the sensitizing dye. The method of applying the liquefied electrolyte mixture to the porous semiconductor layer 3 is not limited, and it can be dropped by a dispenser or the like, sprayed by a spray or the like, applied by various coaters, or printed. At this time, it is preferable to heat the dispenser or the like so as not to solidify the electrolyte mixture, or to use a device provided with a heating means.

或いは、固体状の電解質混合物を、加熱された多孔性半導体層上に直接載置して、該電解質混合物を融解させるのと同時に多孔性半導体層中に浸透させてもよい。この際、電解質混合物の半導体層中への浸透を促進するために、圧力を負荷し、又は透明基板ごと振動させてもよい。電解質混合物の施与量は、多孔性半導体層中の空間を充填し、図1の構成においては対極との間を充填するのに十分な量であればよい。図2の構成にする場合には、段階質混合物で該多孔性半導体層の表面の凹凸が均されて、平坦な表面が得られる量であればよい。施与後に、余分な電解質混合物を綿棒等により拭き取って平坦化してもよい。好ましくは、該平坦な表面上に蒸着等により対極を形成する。   Alternatively, the solid electrolyte mixture may be placed directly on the heated porous semiconductor layer, and the electrolyte mixture may be melted and allowed to penetrate into the porous semiconductor layer at the same time. At this time, in order to promote the permeation of the electrolyte mixture into the semiconductor layer, pressure may be applied or the entire transparent substrate may be vibrated. The amount of the electrolyte mixture applied may be an amount sufficient to fill the space in the porous semiconductor layer and to fill the space between the counter electrode in the configuration of FIG. In the case of the structure shown in FIG. 2, the amount may be such that the unevenness on the surface of the porous semiconductor layer is leveled by the graded mixture to obtain a flat surface. After the application, the excess electrolyte mixture may be wiped off with a cotton swab or the like to be flattened. Preferably, a counter electrode is formed on the flat surface by vapor deposition or the like.

該多孔性半導体層を、上記の図1に示す構造の色素増感太陽電池において、透明基板1と対極基板5とをスペーサーを挟んで対向させて封止したセル状で提供してもよい。その場合には、液状化した電解質混合物を該セルに導入することによって施与する。導入は、例えば以下の手順で行うことができる:
(i)液状化した電解質混合物を導入するために、対極基板5及び対極6を通る孔を形成する。
(ii)孔の開口を上側にして、加熱可能な、又はセルを加熱する手段を備え、及び減圧にすることができるデシケータ等の容器内に配置し、対極基板5上に、該孔の開口を覆うようにして、固体状の電解質混合物の所定量を載せる。
(iii)容器内の空気を窒素ガス等の不活性ガスでパージする。
(iv)セルを加熱して、電解質混合物を融解させる。
(v)融解と同時又は融解後に、真空引きを開始しセル内の空気を除く。真空引きは、融解した電解質混合物からの泡の発生がなくなるまで続ける。
(vi)容器内を常圧に戻して、融解した電解質混合物をセル内に浸透させる。
The porous semiconductor layer may be provided as a cell in which the transparent substrate 1 and the counter electrode substrate 5 are opposed to each other with a spacer interposed therebetween and sealed in the dye-sensitized solar cell having the structure shown in FIG. In that case, it is applied by introducing the liquefied electrolyte mixture into the cell. The introduction can be performed, for example, by the following procedure:
(I) To introduce the liquefied electrolyte mixture, a hole is formed through the counter electrode substrate 5 and the counter electrode 6.
(Ii) With the opening of the hole facing upward, the hole is placed in a container such as a desiccator capable of heating or having means for heating the cell and capable of reducing the pressure, and the opening of the hole is formed on the counter electrode substrate 5. A predetermined amount of the solid electrolyte mixture is placed so as to cover the.
(Iii) Purge the air in the container with an inert gas such as nitrogen gas.
(Iv) Heat the cell to melt the electrolyte mixture.
(V) Simultaneous with or after melting, evacuation is started to remove air in the cell. Evacuation is continued until no bubbles are generated from the molten electrolyte mixture.
(Vi) The inside of the container is returned to normal pressure, and the melted electrolyte mixture is permeated into the cell.

工程(3)では、施与された該液状化混合物を固化させて、固体状電解質層を形成する。なお、工程(2)においても、一部の電解質混合物が固化する可能性はあり、工程(2)と工程(3)とを一連の工程として行ってもよいのは勿論である。工程(3)における固化は、冷却、又は後述する溶媒を添加する場合には、該溶媒を揮発することにより行うことができる。該冷却手段は特に限定されず、自然冷却、冷風を循環させた恒温室内等での強制的な冷却であってもよい。   In step (3), the applied liquefied mixture is solidified to form a solid electrolyte layer. Note that, also in the step (2), a part of the electrolyte mixture may be solidified, and it goes without saying that the step (2) and the step (3) may be performed as a series of steps. The solidification in the step (3) can be performed by cooling or by volatilizing the solvent when the solvent described later is added. The cooling means is not particularly limited, and may be natural cooling or forced cooling in a temperature-controlled room in which cold air is circulated.

好ましくは、固化工程の前に、液状化を行った温度以下の温度で維持して電解質混合物を半導体層中に十分に拡散させる工程を含む。該温度は電解質混合物が固化する温度より高い温度、又は、溶媒を添加する場合には該溶媒の沸点より低い温度である。また、維持する間、光、マイクロ波等の電磁波、超音波等を照射して、電解質混合物の拡散を促進してもよい。維持する時間は、維持する温度、及び多孔性半導体層の厚み等にも依存するが、1分〜20分程度であってよい。多孔性半導体層の空孔率が0.4〜0.7程度であるとき、半導体層の厚みが0.1〜5μmの場合には約1〜2分加熱を維持し、厚みが6μm〜50μmの場合には5分又はそれ以上加熱を保持することが好ましい。なお、空孔率(ρ)は半導体単結晶の密度(d gcm-3)、製膜した膜の見かけの体積(V cm3:面積×膜厚)と重さ(W g)からρ=W(Vd)-1により求められる。電解質混合物の拡散効率をより高めて、該維持時間を短くするために、低沸点溶媒、例えばエタノール等のアルコール系溶媒、アセトニトリル等のニトリル系溶媒を電解質混合物に添加して、固体状の電解質の染み込みを促進させてもよい。該添加は、半導体層内に存在する電解質混合物に添加する点で、従来の溶液として半導体層内に施与する方法と相違し、添加量が非常に少なくてよい。このように溶媒を添加する場合には、該溶媒の沸点以下の温度で維持した後、該溶媒を加熱して揮発させる温度に加熱することにより固化を行うことができる。 Preferably, before the solidification step, a step of maintaining the temperature below the liquefaction temperature to sufficiently diffuse the electrolyte mixture into the semiconductor layer is included. The temperature is above the temperature at which the electrolyte mixture solidifies or, if a solvent is added, below the boiling point of the solvent. In addition, while maintaining, light, electromagnetic waves such as microwaves, ultrasonic waves, or the like may be irradiated to promote diffusion of the electrolyte mixture. The maintaining time depends on the maintaining temperature, the thickness of the porous semiconductor layer and the like, but may be about 1 minute to 20 minutes. When the porosity of the porous semiconductor layer is about 0.4 to 0.7, when the thickness of the semiconductor layer is 0.1 to 5 μm, heating is maintained for about 1 to 2 minutes, and the thickness is 6 μm to 50 μm. In this case, it is preferable to maintain the heating for 5 minutes or longer. The porosity (ρ) is ρ = W from the density of semiconductor single crystal (d gcm -3 ), the apparent volume of the formed film (V cm 3 : Area x film thickness) and the weight (W g). Calculated by (Vd) -1 . In order to further increase the diffusion efficiency of the electrolyte mixture and shorten the maintenance time, a low boiling point solvent, for example, an alcohol solvent such as ethanol, a nitrile solvent such as acetonitrile is added to the electrolyte mixture, and a solid electrolyte of You may accelerate impregnation. The addition is different from the conventional method of applying the solution in the semiconductor layer in that it is added to the electrolyte mixture existing in the semiconductor layer, and the addition amount may be very small. When the solvent is added as described above, solidification can be performed by maintaining the temperature at the boiling point of the solvent or lower and then heating the solvent to a temperature at which it volatilizes.

工程(1)〜(3)は、グローブボックス等の不活性雰囲気下で実施することが好ましいが、上述のように加熱し及び減圧することができるデシケータ等の内部で行ってもよい。   The steps (1) to (3) are preferably performed in an inert atmosphere such as a glove box, but may be performed inside a desiccator or the like that can be heated and depressurized as described above.

色素増感太陽電池の固体状電解質層以外の部分については、公知の材料を用いて、公知の方法で作成してよい。透明基板1としては、ガラス、プラスチックを使用することができる。ガラスとしては太陽光を効率良く透過させ、耐熱性であることができれば特に限定されず、例えばソーダ石灰フロートガラスが使用される。プラスチックとしては、テトラアセチルセルロース、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリカーボネート、ポリアリレート、ポリエーテルイミド等が挙げられる。   Parts other than the solid electrolyte layer of the dye-sensitized solar cell may be formed by a known method using a known material. As the transparent substrate 1, glass or plastic can be used. The glass is not particularly limited as long as it can efficiently transmit sunlight and is heat resistant, and soda lime float glass is used, for example. Examples of plastics include tetraacetyl cellulose, polyethylene terephthalate, polyphenylene sulfide, polycarbonate, polyarylate, and polyetherimide.

透明電極2としては、酸化インジウム錫(ITO)、フッ素ドープ酸化錫(FTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等を使用することができる。これらの膜が0.02〜5μm程度の厚みで透明基板1上に一体化された市販品を使用することができる。   As the transparent electrode 2, indium tin oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), or the like can be used. A commercially available product in which these films are integrated on the transparent substrate 1 with a thickness of about 0.02 to 5 μm can be used.

透明基板1上に金属リード線を設けてよく、その材質としては、白金、銅、アルミニウム、インジウム、ニッケル等が好ましい。金属リード線は透明基板にスパッタ、蒸着等で形成し、その上に上記透明電極2を設けても良い。   A metal lead wire may be provided on the transparent substrate 1, and its material is preferably platinum, copper, aluminum, indium, nickel or the like. The metal lead wire may be formed on a transparent substrate by sputtering, vapor deposition or the like, and the transparent electrode 2 may be provided thereon.

工程(1)において、透明基板1上に増感色素が担持された多孔性半導体層3を形成する。半導体としては、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化ジルコニウム、酸化セリウム、酸化タングステン、酸化シリコン、酸化アルミニウム、酸化ニッケル、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅−インジウム硫化物又はこれらの組み合わせを使用することができる。これらのうち、酸化チタン、酸化亜鉛、酸化錫、酸化ニオブが好ましく、安定性及び安全性の点から、酸化チタンが特に好ましい。   In the step (1), the porous semiconductor layer 3 supporting the sensitizing dye is formed on the transparent substrate 1. As the semiconductor, for example, titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, zirconium oxide, cerium oxide, tungsten oxide, silicon oxide, aluminum oxide, nickel oxide, barium titanate, strontium titanate, cadmium sulfide, Lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide or combinations thereof can be used. Among these, titanium oxide, zinc oxide, tin oxide and niobium oxide are preferable, and titanium oxide is particularly preferable from the viewpoint of stability and safety.

酸化チタンには、大別してアナターゼ型とルチル型の二種類の結晶形があり、通常、これらの混合物である。光触媒活性の点からアナターゼ型の方が好ましく、アナターゼ型の含有率が90重量%以上の混合物であることが好ましい。アナターゼ型酸化チタンは市販の粉末、ゾル、スラリーでもよいし、あるいは、各種文献に記載されている公知の方法によって所定の粒径のものを作製しても良い。   Titanium oxide is roughly classified into two types, that is, anatase-type and rutile-type crystal forms, which are usually a mixture thereof. From the viewpoint of photocatalytic activity, the anatase type is preferred, and the anatase type content is preferably 90% by weight or more. The anatase-type titanium oxide may be a commercially available powder, sol, or slurry, or may have a predetermined particle size by a known method described in various documents.

半導体微粒子の粒径としては、平均粒径(D50)が1nm〜1μmであることが好ましい。また、二種類以上の粒径の異なる粒子を混合して用いても良い。この場合、平均粒径の比率は10倍以上の差がある方が良い。粒径の大きい粒子(好ましくは100〜500nm)は、入射光を散乱させ、量子収率を上げる効果がある。また、粒径の小さい粒子(好ましくは5〜50nm)は、大きい粒子の間を埋め、また、増感色素の担持部位をより多くする効果がある。 Regarding the particle size of the semiconductor fine particles, the average particle size (D 50 ) is preferably 1 nm to 1 μm. Further, two or more kinds of particles having different particle sizes may be mixed and used. In this case, it is preferable that the ratio of the average particle size has a difference of 10 times or more. Particles with a large particle size (preferably 100 to 500 nm) have the effect of scattering incident light and increasing the quantum yield. In addition, particles having a small particle size (preferably 5 to 50 nm) have an effect of filling spaces between large particles and increasing the number of sites for supporting the sensitizing dye.

多孔性半導体層3の形成は、例えば透明導電膜上に半導体微粒子を含有する縣濁液を塗布し、乾燥し、及び電気抵抗値を下げるために好ましくは焼成する。半導体微粒子を縣濁する溶媒としては、エチレングリコールモノメチルエーテル、イソプロピルアルコール、イソプロピルアルコール−トルエン混合溶媒、水等が挙げられる。また、縣濁液の代わりに、市販の酸化チタンペーストを用いても良い。基板への塗布は、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、スクリーン印刷など様々な方法により行うことができる。乾燥温度及び時間は使用する懸濁溶媒等の沸点に応じて適宜選択される。また、焼成の温度、時間、雰囲気等も、基板と半導体微粒子の種類に応じて、それぞれ調整できる。酸化チタンの場合は、大気圧下で、400〜600℃で、20分〜3時間程度で行われる。塗布、乾燥、焼成の工程を2回以上繰り返しても良い。また、透明基板1としてプラスチック基板を用いる場合は大気圧下の焼成の代わりに、1〜100MPaで加圧プレスしてもよい。   In order to form the porous semiconductor layer 3, for example, a suspension containing semiconductor particles is applied onto a transparent conductive film, dried, and preferably baked to reduce the electric resistance value. Examples of the solvent for suspending the semiconductor fine particles include ethylene glycol monomethyl ether, isopropyl alcohol, isopropyl alcohol-toluene mixed solvent, water and the like. Further, a commercially available titanium oxide paste may be used instead of the suspension. The application to the substrate can be carried out by various methods such as a dip method, a spray method, a wire bar method, a spin coating method, a roller coating method, a blade coating method, a gravure coating method and a screen printing. The drying temperature and time are appropriately selected according to the boiling point of the suspension solvent used. Further, the firing temperature, time, atmosphere, etc. can be adjusted depending on the types of the substrate and semiconductor particles. In the case of titanium oxide, it is carried out under atmospheric pressure at 400 to 600 ° C. for about 20 minutes to 3 hours. The steps of coating, drying and baking may be repeated twice or more. Further, when a plastic substrate is used as the transparent substrate 1, pressure pressing may be performed at 1 to 100 MPa instead of firing under atmospheric pressure.

多孔性半導体層3は多くの色素を担持できるように、表面積が大きいことが好ましい。しかし、大き過ぎると、注入した電子の拡散距離が増して電荷再結合によるロスも大きくなる。従って、表面積は10〜200m/gが好ましく、厚みは0.1〜100μm程度が好ましい。工程(2)において、液状化された電解質混合物をディスペンサ等により滴下して施与する場合には、厚さ0.1〜5μmがより好ましい。また、固体状の電解質混合物を、加熱された多孔性半導体層上に載置して、該電解質混合物を融解させるのと同時に多孔性半導体層中に浸透させる場合には、厚さ5〜50μmであることがより好ましい。 The porous semiconductor layer 3 preferably has a large surface area so that it can carry many dyes. However, if it is too large, the diffusion distance of injected electrons increases and the loss due to charge recombination also increases. Therefore, the surface area is preferably 10 to 200 m 2 / g, and the thickness is preferably about 0.1 to 100 μm. In the step (2), when the liquefied electrolyte mixture is dropped and applied by a dispenser or the like, the thickness is more preferably 0.1 to 5 μm. When the solid electrolyte mixture is placed on the heated porous semiconductor layer and the electrolyte mixture is melted and simultaneously penetrated into the porous semiconductor layer, the thickness is 5 to 50 μm. More preferably.

次いで、多孔性半導体層3に、増感色素を担持させる。増感色素としては、公知の金属錯体色素、または有機色素を使用することができる。金属錯体としては、ルテニウム錯体、コバルト錯体、各種の金属ポルフィリン、金属フタロシアニン等が挙げられる。これらのうちルテニウム錯体が好ましく、例えばN749 Black Dye、N−3、N−719、Z−907等を使用することができる。有機色素としてはシアニン系色素、ヘミシアニン系色素、キサンテン系色素、カルバゾール系色素、トリフェニルメタン系色素を用いることができ、これらのうちカルバゾール系色素、例えば(2−シアノ−3−[5’’’−(9−エチル−9H−カルバゾール−3−yl)−3’,3,3’ ’ ’,4−テトラ−n−ヘキシル−[2,2’,5’,2’ ’,5’ ’,2’ ’ ’]−クォーター チオフェン−5−イル] アクリル酸 :MK−2)が好ましい。   Then, a sensitizing dye is supported on the porous semiconductor layer 3. As the sensitizing dye, known metal complex dyes or organic dyes can be used. Examples of the metal complex include ruthenium complexes, cobalt complexes, various metal porphyrins, metal phthalocyanines and the like. Of these, ruthenium complexes are preferable, and for example, N749 Black Dye, N-3, N-719, Z-907 and the like can be used. As the organic dye, a cyanine dye, a hemicyanine dye, a xanthene dye, a carbazole dye, and a triphenylmethane dye can be used. Among them, a carbazole dye, for example, (2-cyano-3- [5 '' '-(9-Ethyl-9H-carbazole-3-yl) -3', 3,3 '' ', 4-tetra-n-hexyl- [2,2', 5 ', 2' ', 5' ' , 2 '' '']-quarter thiophen-5-yl] acrylic acid: MK-2) is preferred.

多孔性半導体層3に増感色素を担持させる方法としては、増感色素を溶解した溶液中に多孔性半導体層3を備えた透明基板1を浸漬させる方法が一般的である。色素溶液の溶媒としては、アルコール、トルエン、アセトニトリル、テトラヒドロフラン、クロロホルム、ジメチルホルムアミド等の有機溶剤が挙げられ、溶解性を上げるために、二種類以上の溶剤を混合しても良い。溶媒中の色素濃度は、増感色素や溶媒の種類に応じて適宣調整するが、0.01〜10mM程度が好ましい。また、必要に応じて、増感色素分子の会合を低減するためにデオキシコール酸などを添加しても良い。浸漬時間は使用する増感色素、溶媒の種類、溶液の濃度等に応じて適宣調整するが、2〜50時間が好ましく、浸漬の際の温度としては10〜50℃が好ましい。浸漬は、一回でも良いし、複数回行っても良い。また、色素の担持量が多い場合、半導体に直接結合していない色素は太陽電池の電解質層に遊離してきて光電変換効率の低下の原因になるので、色素溶液に浸漬した後、有機溶剤で洗浄して、担持されていない色素を除去するのが好ましい。洗浄剤としては、比較的揮発性の高いメタノール、エタノール、アセトニトリル、アセトン等が挙げられる。また、洗浄により余分な色素を除去した後、色素の担持状態をより安定にするために半導体の表面を有機塩基性化合物で処理して、未担持色素の除去を促進しても良い。これらの化合物が液体の場合にはそのまま用いても良いが、固体の場合には色素溶液と同じ溶剤に溶解して用いても良い。   As a method of supporting the sensitizing dye on the porous semiconductor layer 3, a method of immersing the transparent substrate 1 provided with the porous semiconductor layer 3 in a solution in which the sensitizing dye is dissolved is generally used. Examples of the solvent for the dye solution include organic solvents such as alcohol, toluene, acetonitrile, tetrahydrofuran, chloroform and dimethylformamide, and two or more kinds of solvents may be mixed in order to improve the solubility. The dye concentration in the solvent is appropriately adjusted depending on the types of the sensitizing dye and the solvent, but is preferably about 0.01 to 10 mM. If necessary, deoxycholic acid or the like may be added to reduce the association of sensitizing dye molecules. The immersion time is appropriately adjusted depending on the sensitizing dye to be used, the type of solvent, the concentration of the solution, etc., but it is preferably 2 to 50 hours, and the temperature at the time of immersion is preferably 10 to 50 ° C. Immersion may be performed once or multiple times. Also, if the amount of dye supported is large, dye that is not directly bound to the semiconductor will be released into the electrolyte layer of the solar cell and cause a decrease in photoelectric conversion efficiency.Therefore, after dipping in a dye solution, wash with an organic solvent. Then, it is preferable to remove the unsupported dye. Examples of the cleaning agent include relatively highly volatile methanol, ethanol, acetonitrile, acetone and the like. Further, after removing the excess dye by washing, the surface of the semiconductor may be treated with an organic basic compound in order to make the dye-supported state more stable, to accelerate the removal of the unsupported dye. When these compounds are liquid, they may be used as they are, but when they are solid, they may be dissolved in the same solvent as the dye solution and used.

対極は、図1のように対極基板5と対極6が一体化された構成としても、図2のような対極基板を用いない構成としてもよい。対極6の材料としては、上述の透明電極2の材料に加えて、半導体、例えばシリコン、ゲルマニウム等;化合物半導体、例えばGaAs、InP、ZnSe、CsS等;金属、例えば金、白金、銀、銅、アルミニウム、チタン、タンタル、タングステン等を使用することができる。対極基板5としては、上述の透明基板1の材料に加えて、アルミニウム、銅等の金属基板を使用することができる。対極6は蒸着、塗布等の定法により対極基板5上又は固体状電界質層4上に、膜厚0.1〜1.0μm程度になるように形成することができる。   The counter electrode may have a structure in which the counter electrode substrate 5 and the counter electrode 6 are integrated as shown in FIG. 1 or a structure without the counter electrode substrate as shown in FIG. As the material of the counter electrode 6, in addition to the material of the transparent electrode 2 described above, a semiconductor such as silicon or germanium; a compound semiconductor such as GaAs, InP, ZnSe, CsS or the like; a metal such as gold, platinum, silver or copper, Aluminum, titanium, tantalum, tungsten, etc. can be used. As the counter substrate 5, in addition to the material of the transparent substrate 1 described above, a metal substrate such as aluminum or copper can be used. The counter electrode 6 can be formed on the counter electrode substrate 5 or the solid electrolyte layer 4 by a conventional method such as vapor deposition or coating so as to have a film thickness of about 0.1 to 1.0 μm.

封止層7は、熱、光、電子線等で硬化する樹脂接着剤、例えばエポキシ樹脂接着剤、を塗布した後、硬化させることによって作ることができる。スペーサーとしては、5〜100μmの一定の厚みを有するポリエステルフィルム、ポリエチレンフィルム等の高分子フィルムを用いることができる。   The sealing layer 7 can be formed by applying a resin adhesive that is cured by heat, light, an electron beam or the like, for example, an epoxy resin adhesive, and then curing the resin adhesive. As the spacer, a polymer film such as a polyester film or a polyethylene film having a constant thickness of 5 to 100 μm can be used.

図2の構成において、保護層8は、ガラス、金属または高分子フィルムを用いて形成することができ、例えば接着剤を介して、透明電極2、及び対極6と接合される。高分子フィルムとしては、例えばポリフッ化ビニル、ポリエステル、ポリオレフィン、ポリフェニレンエーテル、及びこれらのラミネートフィルム等のシリコン太陽電池のバックシートに使用されているフィルムが挙げられる。   In the configuration of FIG. 2, the protective layer 8 can be formed using glass, metal, or a polymer film, and is bonded to the transparent electrode 2 and the counter electrode 6 via an adhesive, for example. Examples of the polymer film include polyvinyl fluoride, polyester, polyolefin, polyphenylene ether, and films used for backsheets of silicon solar cells such as laminated films thereof.

以下、本発明を実施例により説明するが、本発明はそれらに限定されるものではない。
[実施例1〜5]
<電解質混合物の調製>
(1)下表に示すヨウ化物塩1〜5(いずれも東京化成工業(株)製)を使用した。


(2)各塩に、電解質混合物重量に対して6wt%のヨウ素と、4wt%のイミダゾールを添加して、電解質混合物とした。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[Examples 1 to 5]
<Preparation of electrolyte mixture>
(1) Iodide salts 1 to 5 shown in the table below (all manufactured by Tokyo Chemical Industry Co., Ltd.) were used.


(2) To each salt, 6 wt% iodine and 4 wt% imidazole were added to the weight of the electrolyte mixture to prepare an electrolyte mixture.

<色素増感太陽電池の作成>
(1)図3に示す手順で、色素増感太陽電池を作成した。先ず、フッ素ドープされたSnO膜付きガラス基板(日本板硝子社製)のSnO膜の一部分を、亜鉛粉末と塩酸を用いてエッチングして、蒸留水とエタノールによって洗浄した後、乾燥した。該エッチング部分に、酸化チタンペースト(Solaronix社製、Ti nanoxide T/SP)を、約5mm×5mmの面積になるようにスクリーン印刷して、100℃で30分間予備乾燥した後、大気雰囲気中500℃で1時間焼結し、膜厚4.5μmの酸化チタン層を作製した。次いで、酸化チタン層を備えた該ガラス基板を増感色素(MK−2)のアセトン溶液に24時間から48時間浸漬して増感色素を酸化チタン層に担持させた後、アセトンによって洗浄した。
(2)該ガラス基板を、酸化チタン層を上側にして、グローブボックス中のホットプレート上に置いた。電解質混合物0.3gを入れた試薬瓶も同じホットプレート上に置き、ホットプレートの温度を100℃まで上げた。電解質混合物が融解したのを確認後、マイクロピペットで20から60μLを吸い取って酸化チタン層上に滴下し、該電解質混合物が酸化チタン層中及び上に広がるのを確認した。なお、実施例4及び5では、電解質混合物0.3gを酸化チタン層の上に載置して施与し、図3はその態様を示している。得られたガラス基板を実施例1、2、3は1分、実施例4、5は2分、夫々、100℃に保った後、導電性ガラスに付着した電解質混合物を綿棒により取り除き、及び酸化チタン層上の余分な電解質混合物を取り除いて平らにした。該基板をホットプレートから降ろして、自然冷却した。次いで、得られた固体状電解質層の上に白金をスパッタして対極とした。電解質の汚染などを防ぐため、対極上を10mm×10mmのカバーガラスで覆い、周囲を熱融着シートで封止をし、色素増感太陽電池1〜5を作成した。全工程に要した時間は、10〜20分であった。
<Creation of dye-sensitized solar cell>
(1) A dye-sensitized solar cell was prepared by the procedure shown in FIG. First, a part of the SnO 2 film of the fluorine-doped glass substrate with SnO 2 film (manufactured by Nippon Sheet Glass Co., Ltd.) was etched with zinc powder and hydrochloric acid, washed with distilled water and ethanol, and then dried. Titanium oxide paste (Ti nanoxide T / SP manufactured by Solaronix Co., Ltd.) was screen-printed on the etched portion so as to have an area of about 5 mm × 5 mm, pre-dried at 100 ° C. for 30 minutes, and then 500 in an air atmosphere. Sintering was performed at 0 ° C. for 1 hour to form a titanium oxide layer having a film thickness of 4.5 μm. Next, the glass substrate provided with the titanium oxide layer was immersed in an acetone solution of the sensitizing dye (MK-2) for 24 to 48 hours to support the sensitizing dye on the titanium oxide layer, and then washed with acetone.
(2) The glass substrate was placed on a hot plate in a glove box with the titanium oxide layer facing upward. A reagent bottle containing 0.3 g of the electrolyte mixture was also placed on the same hot plate, and the temperature of the hot plate was raised to 100 ° C. After confirming that the electrolyte mixture was melted, 20 to 60 μL was sucked with a micropipette and dropped onto the titanium oxide layer, and it was confirmed that the electrolyte mixture spreads in and on the titanium oxide layer. In Examples 4 and 5, 0.3 g of the electrolyte mixture was placed on the titanium oxide layer and applied, and FIG. 3 shows this mode. The obtained glass substrates were kept at 100 ° C. for 1 minute in Examples 1, 2 and 3 and 2 minutes in Examples 4 and 5, respectively, and then the electrolyte mixture adhering to the conductive glass was removed with a cotton swab and oxidized. The excess electrolyte mixture on the titanium layer was removed and flattened. The substrate was removed from the hot plate and naturally cooled. Then, platinum was sputtered on the obtained solid electrolyte layer to form a counter electrode. In order to prevent contamination of the electrolyte and the like, the counter electrode was covered with a cover glass of 10 mm × 10 mm, and the periphery was sealed with a heat fusion sheet to prepare dye-sensitized solar cells 1 to 5. The time required for all steps was 10 to 20 minutes.

[実施例6]
酸化チタン層の厚みを10μmとし、マイクロピペットでの滴下に代えて、実施例1の電解質混合物10mgを、該酸化チタン層の上に置いて融解させた後、5分間放置したことを除き、実施例4と同様にして色素増感太陽電池6を作製した。
[Example 6]
The thickness of the titanium oxide layer was set to 10 μm, and 10 mg of the electrolyte mixture of Example 1 was placed on the titanium oxide layer and melted instead of dropping with a micropipette. Dye-sensitized solar cell 6 was prepared in the same manner as in Example 4.

[比較例]
非特許文献1に記載される方法に従い、実施例1と同じ電解質混合物をメタノールに溶解した溶液を、滴下及び乾燥を繰り返して色素増加太陽電池(比較)を作製した。
[Comparative example]
According to the method described in Non-Patent Document 1, a solution obtained by dissolving the same electrolyte mixture as that in Example 1 in methanol was dropped and dried repeatedly to prepare a dye-enhanced solar cell (comparative).

<光電変換特性の測定>
得られた色素増感太陽電池に、黒塗りのマスク(4.8mm角の正方形の穴が開いたもの)を取り付けて周囲からの散乱光の影響を受けないようにして、100mWcm−2の強度の光(1SUN、AM1.5,ソーラーシミュレーター)を照射し、定法に従い電流−電圧特性を測定した。結果を表2に示す。
<Measurement of photoelectric conversion characteristics>
The obtained dye-sensitized solar cell was attached with a black mask (having a square hole of 4.8 mm square) so as not to be affected by scattered light from the surroundings, and the intensity of 100 mWcm −2 . (1SUN, AM1.5, solar simulator) was irradiated, and the current-voltage characteristics were measured according to a standard method. The results are shown in Table 2.

上表に示すとおり、本発明の方法によれば、非常に短い時間で、実施例4(EPY)及び実施例5(BDI)を除き、太陽光に対する光電変換効率(η)2%以上を達成することができた。実施例6において、より厚い膜の酸化チタン層上に、より長い時間加熱放置したことで光電変換効率が顕著に向上したことから、他の実施例についても同様の向上が見られることが期待される。   As shown in the above table, according to the method of the present invention, a photoelectric conversion efficiency (η) of 2% or more with respect to sunlight is achieved in a very short time except for Example 4 (EPY) and Example 5 (BDI). We were able to. In Example 6, since the photoelectric conversion efficiency was remarkably improved by allowing the film to stand on the thicker titanium oxide layer for a longer period of time, it is expected that the same improvement can be seen in the other Examples. It

本発明の製造方法によれば、迅速かつ容易に、実用化に適した固体状の電解質層を備えた色素増感太陽電池を作製することができる。   According to the production method of the present invention, a dye-sensitized solar cell provided with a solid electrolyte layer suitable for practical use can be produced quickly and easily.

1 透明基板
2 透明電極
3 多孔性半導体層
4 固体状電解質層
5 対極基板
6 対極
7 封止層
8 保護層
1 Transparent Substrate 2 Transparent Electrode 3 Porous Semiconductor Layer 4 Solid Electrolyte Layer 5 Counter Electrode Substrate 6 Counter Electrode 7 Sealing Layer 8 Protective Layer

Claims (2)

一対の電極間に、増感色素が担持された多孔性半導体層と、固体状の電解質層を少なくとも備える色素増感太陽電池を作る方法であって、
(1)増感色素が担持された多孔性半導体層を形成する工程、
(2)該多孔性半導体層に、電解質と酸化還元対を少なくとも含む混合物を70℃〜210℃の温度で液状化して施与する工程、及び
(3)施与された該混合物を固化する下記を含む工
(3−1)工程(2)の液状化を実施した温度以下で、該混合物が施与された多孔性半導体層を所定時間維持する工程、
(3−2)該混合物を固化する工程、
を含む方法。
A method for producing a dye-sensitized solar cell comprising a porous semiconductor layer carrying a sensitizing dye and a solid electrolyte layer at least between a pair of electrodes,
(1) a step of forming a porous semiconductor layer carrying a sensitizing dye,
(2) the porous semiconductor layer, you solidification step to applied by liquefaction a mixture comprising at least an electrolyte redox pair at a temperature of 70 ° C. to 210 ° C., and (3) The applied mixture as engineering, including the following,
(3-1) A step of maintaining the porous semiconductor layer to which the mixture has been applied for a predetermined time at a temperature equal to or lower than the temperature at which the liquefaction of step (2) was performed,
(3-2) a step of solidifying the mixture,
Including the method.
該電解質が、大気圧下で70℃〜210℃の融点を有する、ピリジニウム塩、ピペリジニウム塩、及びイミダゾリウム塩からなる群より選ばれる少なくとも一種である、請求項1記載の方法。 Electrolyte has a melting point of 70 ° C. to 210 ° C. at atmospheric pressure, pyridinium salts, is at least one selected from the group consisting of piperidinium salts and imidazolium salts, according to claim 1 Symbol placement methods.
JP2016029747A 2016-02-19 2016-02-19 Method for manufacturing dye-sensitized solar cell Active JP6687942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029747A JP6687942B2 (en) 2016-02-19 2016-02-19 Method for manufacturing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029747A JP6687942B2 (en) 2016-02-19 2016-02-19 Method for manufacturing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2017147389A JP2017147389A (en) 2017-08-24
JP6687942B2 true JP6687942B2 (en) 2020-04-28

Family

ID=59682460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029747A Active JP6687942B2 (en) 2016-02-19 2016-02-19 Method for manufacturing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP6687942B2 (en)

Also Published As

Publication number Publication date
JP2017147389A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
Leijtens et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
Wang et al. Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes
WO2005112183A1 (en) Photoelectric conversion element and semiconductor electrode
CN102396101A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
US10014122B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2003223939A (en) Interlaminar material for solar cell and dye sensitizing solar cell using it
KR20100136931A (en) Novel organic dye and preparation thereof
JP2012009374A (en) Dye-sensitized solar cell and its manufacturing method, and dye-sensitized solar cell module
KR20140138749A (en) Dye-sensitized solar cell and method of manufacturing same
JP5536015B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP6687942B2 (en) Method for manufacturing dye-sensitized solar cell
JP2007242544A (en) Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
JP5160045B2 (en) Photoelectric conversion element
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5490229B2 (en) Photoelectrode manufacturing method, dye-sensitized solar cell manufacturing method, photoelectrode and dye-sensitized solar cell
JP6289175B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2013196852A (en) Method for manufacturing photoelectrode, photoelectrode, and dye-sensitized solar cell
KR20150090895A (en) Dye-sensitized solar cell
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
US10916382B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2018092981A (en) Photoelectric conversion device and manufacturing method for the same
JP6173560B2 (en) Photoelectric conversion module and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6687942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250