JP6672976B2 - Charge amount calculation device, computer program, and charge amount calculation method - Google Patents

Charge amount calculation device, computer program, and charge amount calculation method Download PDF

Info

Publication number
JP6672976B2
JP6672976B2 JP2016082913A JP2016082913A JP6672976B2 JP 6672976 B2 JP6672976 B2 JP 6672976B2 JP 2016082913 A JP2016082913 A JP 2016082913A JP 2016082913 A JP2016082913 A JP 2016082913A JP 6672976 B2 JP6672976 B2 JP 6672976B2
Authority
JP
Japan
Prior art keywords
charge amount
secondary battery
unit
current
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016082913A
Other languages
Japanese (ja)
Other versions
JP2017194282A (en
Inventor
裕章 武智
裕章 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016082913A priority Critical patent/JP6672976B2/en
Priority to PCT/JP2017/002228 priority patent/WO2017183241A1/en
Priority to CN201780024109.0A priority patent/CN109073711A/en
Priority to US16/094,226 priority patent/US20190094305A1/en
Priority to EP17785586.3A priority patent/EP3447511A1/en
Publication of JP2017194282A publication Critical patent/JP2017194282A/en
Application granted granted Critical
Publication of JP6672976B2 publication Critical patent/JP6672976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池の充電量を算出する充電量算出装置、該充電量算出装置を実現するためのコンピュータプログラム及び充電量算出方法に関する。   The present invention relates to a charge amount calculation device for calculating a charge amount of a secondary battery, a computer program for realizing the charge amount calculation device, and a charge amount calculation method.

近年、HEV(Hybrid Electric Vehicle:ハイブリッド自動車)及びEV(Electric Vehicle:電気自動車)等の車両が普及しつつある。HEV及びEVは二次電池を搭載している。このような車両では、走行に伴って、二次電池の充電と放電の切り替えが繰り返される。そして、車両の走行中の充放電によって二次電池の充電状態が大きく変動するため、二次電池の充電量(SOC)を精度よく求める必要がある。   In recent years, vehicles such as HEVs (Hybrid Electric Vehicles) and EVs (Electric Vehicles) have become widespread. HEV and EV are equipped with a secondary battery. In such a vehicle, switching between charging and discharging of the secondary battery is repeated as the vehicle travels. Since the state of charge of the secondary battery greatly changes due to charging and discharging while the vehicle is running, it is necessary to accurately determine the state of charge (SOC) of the secondary battery.

二次電池の充電量を算出する方法として、例えば、二次電池の充放電電流を検出して電流積算値を算出し、算出した電流積算値に基づいて第1の充電量を算出する。そして、無負荷時の二次電池の電圧に基づいて第2の充電量を算出し、第1の充電量と第2の充電量との差が所定値以上となったときに第2の充電量に基づいて第1の充電量を補正する充電量演算方法が開示されている(特許文献1参照)。   As a method of calculating the charge amount of the secondary battery, for example, a charge / discharge current of the secondary battery is detected, a current integrated value is calculated, and a first charge amount is calculated based on the calculated current integrated value. Then, the second charge amount is calculated based on the voltage of the secondary battery at the time of no load, and the second charge amount is calculated when the difference between the first charge amount and the second charge amount becomes a predetermined value or more. A charge amount calculation method for correcting the first charge amount based on the amount is disclosed (see Patent Document 1).

特開2000−150003号公報JP 2000-150003 A

特許文献1の方法にあっては、無負荷時の二次電池の電圧を検出する必要がある。無負荷時の二次電池の電圧を検出することができる条件は、例えば、車両を停止し、イグニション(IG)をオフ状態にするか、あるいは二次電池への充放電を強制的に停止させなければならない。このため、イグニション(IG)が長時間連続オンの状態では、無負荷時の二次電池の電圧を検出することができない。また、二次電池への充放電を強制的に停止させると、二次電池からの放電によるモータの駆動が得られない場合や、モータからの回生電力を用いて二次電池を充電することができない場合が生じ、エネルギー損失及び回生ブレーキ力損失を招く。   In the method of Patent Document 1, it is necessary to detect the voltage of the secondary battery at no load. Conditions for detecting the voltage of the secondary battery at no load include, for example, stopping the vehicle, turning off the ignition (IG), or forcibly stopping the charging and discharging of the secondary battery. There must be. For this reason, when the ignition (IG) is continuously turned on for a long time, the voltage of the secondary battery under no load cannot be detected. Also, if the charging and discharging of the secondary battery is forcibly stopped, the motor may not be driven by discharging from the secondary battery, or the secondary battery may be charged using regenerative power from the motor. In some cases, energy loss and regenerative braking force loss may occur.

本発明は、斯かる事情に鑑みてなされたものであり、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる充電量算出装置、該充電量算出装置を実現するためのコンピュータプログラム及び充電量算出方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a charge amount calculation device capable of accurately calculating the charge amount of a secondary battery even when a charge / discharge current flows through the secondary battery, It is an object of the present invention to provide a computer program and a charged amount calculating method for realizing an amount calculating device.

本発明の実施の形態に係る充電量算出装置は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、所定条件を充足するか否かを判定する判定部とを備え、前記判定部で前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記判定部で前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量とし、さらに、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点で、前記第1算出部で算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、該充電量差算出部で算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する単位時間誤差量算出部とを備え、前記判定部は、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する。 A charge amount calculation device according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, a voltage acquisition unit that obtains a voltage of the secondary battery, and a current of the secondary battery. A current acquisition unit that acquires the current, a first calculation unit that integrates the current acquired by the current acquisition unit to calculate a first charge amount of the secondary battery, a voltage acquired by the voltage acquisition unit, A second calculation unit that calculates a second charge amount of the secondary battery based on the current obtained by the unit and an equivalent circuit model of the secondary battery, and a determination unit that determines whether a predetermined condition is satisfied. When the determination unit determines that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery, and when the determination unit determines that the predetermined condition is satisfied, the second charge is performed. the amount and the charge amount of the secondary battery, further, calculated by the second calculating section A charge amount difference calculation unit that calculates a charge amount difference between the first charge amount and the second charge amount calculated by the first calculation unit when the second charge amount is set as the charge amount of the secondary battery; A unit time error amount calculation unit that calculates a unit time error amount per unit time of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit, wherein the determination unit includes the second calculation unit in the basis of the second amount of charge calculated elapsed time and the unit time error amount from the time the charge amount of the of the secondary battery, determining whether to satisfy the predetermined condition.

本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、コンピュータ、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、取得した電圧、電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、所定条件を充足するか否かを判定する判定部して機能させ、前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量として処理さらに、コンピュータを、算出した第2充電量を前記二次電池の充電量とした時点で、算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する単位時間誤差量算出部として機能させ、算出した第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する。 A computer program according to an embodiment of the present invention causes a computer, a computer program for calculating the amount of charge of the secondary battery, the computer, and a voltage acquiring unit that acquires a voltage of the secondary battery, the two A current acquisition unit that acquires the current of the secondary battery, a first calculation unit that integrates the acquired current to calculate a first charge amount of the secondary battery, an acquired voltage, a current, and an equivalent circuit of the secondary battery. a second calculation unit for calculating a second amount of charge of the secondary battery based on the model, to function as a determination section for determining whether or not to satisfy the predetermined condition, determines not to satisfy the predetermined condition If the first charge amount and the charge amount of the secondary battery, when it is determined to satisfy the predetermined condition, to process the second charge amount as the charged amount of the secondary battery, further, the computer, calculates The first At the time when the charge amount is the charge amount of the secondary battery, a charge amount difference calculation unit that calculates a charge amount difference between the calculated first charge amount and the second charge amount, based on the calculated charge amount difference, A unit time error amount calculation unit that calculates a unit time error amount per unit time of the charge amount, and the elapsed time from the time when the calculated second charge amount is set as the charge amount of the secondary battery and the unit time error based on the amount, it determines whether to satisfy the predetermined condition.

本発明の実施の形態に係る充電量算出方法は、二次電池の充電量を算出する充電量算出方法であって、二次電池の電圧を電圧取得部が取得し、前記二次電池の電流を電流取得部が取得し、取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、所定条件を充足するか否かを判定部が判定し、前記所定条件を充足しないと判定された場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定された場合、前記第2充電量を前記二次電池の充電量とし、さらに、算出された第2充電量を前記二次電池の充電量とした時点で、算出された第1充電量及び前記第2充電量の充電量差を充電量差算出部が算出し、算出された充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を単位時間誤差量算出部が算出し、算出された第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する。 A charge amount calculation method according to an embodiment of the present invention is a charge amount calculation method of calculating a charge amount of a secondary battery, wherein a voltage of the secondary battery is acquired by a voltage acquisition unit, and a current of the secondary battery is calculated. Is acquired by the current acquisition unit, the acquired current is integrated, the first charge amount of the secondary battery is calculated by the first calculation unit, and the acquired voltage and current and the equivalent circuit model of the secondary battery are calculated. The second calculating unit calculates a second charge amount of the secondary battery based on the first condition, and a determining unit determines whether a predetermined condition is satisfied. If it is determined that the predetermined condition is not satisfied, the first calculating unit determines whether the first condition is satisfied. The charge amount is the charge amount of the secondary battery, and if it is determined that the predetermined condition is satisfied, the second charge amount is the charge amount of the secondary battery, and the calculated second charge amount is the charge amount of the secondary battery. At the time when the charge amount of the next battery is set, the calculated first charge amount and the second charge amount are charged. The charge amount difference calculation unit calculates the difference, and the unit time error amount calculation unit calculates the unit time error amount per unit time of the charge amount based on the calculated charge amount difference, and the calculated second charge amount the based on the elapsed time and the unit time error amount from the time the charge amount of the of the secondary battery, determining whether to satisfy the predetermined condition.

本発明によれば、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる。   According to the present invention, it is possible to accurately calculate the charge amount of a secondary battery even when a charge / discharge current is flowing through the secondary battery.

本実施の形態の充電量算出装置としての電池監視装置を搭載した車両の要部の構成の一例を示すブロック図である。1 is a block diagram illustrating an example of a configuration of a main part of a vehicle equipped with a battery monitoring device as a charge amount calculation device according to the present embodiment. 本実施の形態の電池監視装置の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of a battery monitoring device of this embodiment. 本実施の形態の二次電池ユニットの等価回路モデルの一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of an equivalent circuit model of the secondary battery unit according to the present embodiment. 本実施の形態の二次電池ユニット50の充電開始後の電圧の推移の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a change in voltage after the charging of the secondary battery unit 50 according to the present embodiment is started. 本実施の形態の二次電池ユニット50の放電開始後の電圧の推移の一例を示す模式図である。FIG. 5 is a schematic diagram illustrating an example of a transition of a voltage after the secondary battery unit 50 according to the present embodiment starts discharging. 本実施の形態の二次電池ユニットの開放電圧と充電量との相関関係の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a correlation between an open circuit voltage and a charged amount of the secondary battery unit according to the present embodiment. 本実施の形態の電池監視装置による二次電池ユニットの充電量の算出処理の要部を示す模式図である。It is a schematic diagram which shows the principal part of the calculation process of the charge amount of a secondary battery unit by the battery monitoring apparatus of this Embodiment. 本実施の形態の二次電池ユニットの電流波形の一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a current waveform of the secondary battery unit according to the present embodiment. 本実施の形態の電池監視装置が算出する各充電量の一例を示す説明図である。It is an explanatory view showing an example of each charge amount calculated by the battery monitoring device of the present embodiment. 本実施の形態の電池監視装置による二次電池ユニットの充電量の一例を示す説明図である。It is an explanatory view showing an example of the amount of charge of the secondary battery unit by the battery monitoring device of the present embodiment. 本実施の形態の電池監視装置による二次電池ユニットの充電量の誤差の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of an error in a charged amount of a secondary battery unit by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第1例を示すフローチャートである。5 is a flowchart illustrating a first example of a processing procedure for calculating a charged amount by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による電池等価回路モデルSOC算出の処理手順の一例を示すフローチャートである。5 is a flowchart illustrating an example of a processing procedure of calculating a battery equivalent circuit model SOC by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による電池等価回路モデルSOC算出の処理手順の一例を示すフローチャートである。5 is a flowchart illustrating an example of a processing procedure of calculating a battery equivalent circuit model SOC by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第2例を示すフローチャートである。9 is a flowchart illustrating a second example of a processing procedure for calculating a charged amount by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第3例を示すフローチャートである。9 is a flowchart illustrating a third example of a processing procedure for calculating a charged amount by the battery monitoring device according to the present embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第4例を示すフローチャートである。11 is a flowchart illustrating a fourth example of a processing procedure for calculating a charged amount by the battery monitoring device according to the present embodiment.

[本願発明の実施形態の説明]
本発明の実施の形態に係る充電量算出装置は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、所定条件を充足するか否かを判定する判定部とを備え、前記判定部で前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記判定部で前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量とする。
[Description of Embodiment of the Present Invention]
A charge amount calculation device according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, a voltage acquisition unit that obtains a voltage of the secondary battery, and a current of the secondary battery. A current acquisition unit that acquires the current, a first calculation unit that integrates the current acquired by the current acquisition unit to calculate a first charge amount of the secondary battery, a voltage acquired by the voltage acquisition unit, A second calculation unit that calculates a second charge amount of the secondary battery based on the current obtained by the unit and an equivalent circuit model of the secondary battery, and a determination unit that determines whether a predetermined condition is satisfied. When the determination unit determines that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery, and when the determination unit determines that the predetermined condition is satisfied, the second charge is performed. The amount is defined as the charge amount of the secondary battery.

本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、コンピュータを、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、取得した電圧、電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、所定条件を充足するか否かを判定する判定部として機能させ、前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量として処理する。   A computer program according to an embodiment of the present invention is a computer program for causing a computer to calculate a charge amount of a secondary battery, the computer program comprising: a voltage acquisition unit that acquires a voltage of a secondary battery; A current acquisition unit that acquires the current of the secondary battery, a first calculation unit that integrates the acquired current to calculate a first charge amount of the secondary battery, an acquired voltage, a current, and an equivalent circuit of the secondary battery. A second calculation unit that calculates a second charge amount of the secondary battery based on a model, and a function as a determination unit that determines whether a predetermined condition is satisfied. If it is determined that the predetermined condition is not satisfied, The first charge amount is set as the charge amount of the secondary battery, and when it is determined that the predetermined condition is satisfied, the second charge amount is processed as the charge amount of the secondary battery.

本発明の実施の形態に係る充電量算出方法は、二次電池の充電量を算出する充電量算出方法であって、二次電池の電圧を電圧取得部が取得し、前記二次電池の電流を電流取得部が取得し、取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、所定条件を充足するか否かを判定部が判定し、前記所定条件を充足しないと判定された場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定された場合、前記第2充電量を前記二次電池の充電量とする。   A charge amount calculation method according to an embodiment of the present invention is a charge amount calculation method of calculating a charge amount of a secondary battery, wherein a voltage of the secondary battery is acquired by a voltage acquisition unit, and a current of the secondary battery is calculated. Is acquired by the current acquisition unit, the acquired current is integrated, the first charge amount of the secondary battery is calculated by the first calculation unit, and the acquired voltage and current and the equivalent circuit model of the secondary battery are calculated. The second calculating unit calculates a second charge amount of the secondary battery based on the first condition, and a determining unit determines whether a predetermined condition is satisfied. If it is determined that the predetermined condition is not satisfied, the first calculating unit determines whether the first condition is satisfied. The charge amount is the charge amount of the secondary battery, and if it is determined that the predetermined condition is satisfied, the second charge amount is the charge amount of the secondary battery.

電圧取得部は二次電池の電圧を取得し、電流取得部は二次電池の電流(充電電流及び放電電流を含む)を取得する。第1算出部は、電流取得部で取得した電流を積算して二次電池の第1充電量を算出する。第1充電量は、電流積算に基づく充電量である。電流積算は、電流を時間で積分したものであり、例えば、電流取得のサンプリング間隔をΔtとし、サンプリングの都度、取得した電流値をIbi(i=1、2、…)とすると、電流積算は、ΣIbi×Δt(i=1、2、…)に基づいて算出することができる。直近に求めた充電量をSOCinとし、第1充電量をSOC1とすると、第1充電量は、SOC1=SOCin±{ΣIbi×Δt(i=1、2、…)/満充電容量FCC}という式で算出することができる。なお、当該式において、符号±は、充電時は+、放電時は−を用いる。   The voltage acquisition unit acquires the voltage of the secondary battery, and the current acquisition unit acquires the current (including the charging current and the discharging current) of the secondary battery. The first calculation unit calculates a first charge amount of the secondary battery by integrating the currents obtained by the current obtaining unit. The first charge amount is a charge amount based on current integration. The current integration is obtained by integrating the current with time. For example, if the sampling interval of the current acquisition is Δt and the acquired current value is Ibi (i = 1, 2,...) At each sampling, the current integration is , ΣIbi × Δt (i = 1, 2,...). Assuming that the most recently obtained charge amount is SOCin and the first charge amount is SOC1, the first charge amount is expressed by the following formula: SOC1 = SOCin ± {Ibi × Δt (i = 1, 2,...) / Full charge capacity FCC}. Can be calculated. In this formula, the sign ± uses + during charging and − during discharging.

第2算出部は、電圧取得部で取得した電圧、電流取得部で取得した電流及び二次電池の等価回路モデルに基づいて二次電池の第2充電量を算出する。第2充電量は、二次電池の等価回路モデルに基づく充電量である。第2充電量は、電流積算を採用しないので、電流を積算する過程で徐々に増加する電流値の誤差の影響を受けない。等価回路モデルは、二次電池のインピーダンスを表す等価回路であり、例えば、開放電圧OCVを有する電圧源、抵抗、抵抗とキャパシタとの並列回路などの組み合わせで構成されるインピーダンスで表すことができる。なお、電圧、電流は、二次電池が充電又は放電しているときの値であり、二次電池は、無負荷状態ではない。   The second calculation unit calculates a second charge amount of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit, and an equivalent circuit model of the secondary battery. The second charge amount is a charge amount based on an equivalent circuit model of the secondary battery. Since the second charge amount does not employ current integration, the second charge amount is not affected by a current value error that gradually increases in the process of integrating current. The equivalent circuit model is an equivalent circuit representing the impedance of the secondary battery, and can be represented by, for example, an impedance constituted by a combination of a voltage source having an open circuit voltage OCV, a resistor, and a parallel circuit of a resistor and a capacitor. The voltage and the current are values when the secondary battery is charging or discharging, and the secondary battery is not in a no-load state.

判定部は、所定条件を充足するか否かを判定する。所定条件は、例えば、電流積算の誤差が許容範囲を超えるか否かを表す条件とすることができる。すなわち、電流積算の誤差が許容範囲を超える場合には、所定条件を充足すると判定することができ、許容範囲を超えない場合には、所定条件を充足しないと判定することができる。   The determining unit determines whether a predetermined condition is satisfied. The predetermined condition may be, for example, a condition indicating whether or not an error in current integration exceeds an allowable range. That is, when the error of the current integration exceeds the allowable range, it can be determined that the predetermined condition is satisfied. When the error does not exceed the allowable range, it can be determined that the predetermined condition is not satisfied.

判定部で所定条件を充足しないと判定した場合(電流積算の誤差が許容範囲を超えない場合)、第1充電量を二次電池の充電量とし、判定部で所定条件を充足すると判定した場合(電流積算の誤差が許容範囲を超える場合)、第1充電量を補正すべく、第2充電量を二次電池の充電量とする(第1充電量を第2充電量で置き換える)。これにより、電流積算の誤差が許容範囲内にある場合には、電流積算に基づく第1充電量を充電量とし、電流積算の誤差が許容範囲を超える場合には、電流積算の影響を受けない等価回路モデルに基づく第2充電量を充電量とすることができ、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる。   When the determination unit determines that the predetermined condition is not satisfied (when the current integration error does not exceed the allowable range), the first charge amount is the charge amount of the secondary battery, and the determination unit determines that the predetermined condition is satisfied. When the error of the current integration exceeds the allowable range, the second charge is used as the charge of the secondary battery in order to correct the first charge (replace the first charge with the second charge). Thereby, when the error of the current integration is within the allowable range, the first charge amount based on the current integration is set as the charged amount, and when the error of the current integration exceeds the allowable range, the first integrated charge is not affected by the current integration. The second charge amount based on the equivalent circuit model can be used as the charge amount, and the charge amount of the secondary battery can be accurately calculated even when a charge / discharge current flows through the secondary battery.

本発明の実施の形態に係る充電量算出装置は、前記判定部は、前記二次電池の電流を積算する時間が所定の積算時間未満である場合、前記所定条件を充足しないと判定する。   In the charge amount calculation device according to the embodiment of the present invention, the determination unit determines that the predetermined condition is not satisfied when the time for integrating the current of the secondary battery is shorter than a predetermined integration time.

判定部は、二次電池の電流を積算する時間が所定の積算時間未満である場合、所定条件を充足しないと判定する。所定の積算時間は、所定のサンプリング周期で二次電池の電流を電流センサで検出して、電流積算を行う場合に、取得した電流値の誤差、すなわち電流積算の誤差が累積されて許容範囲を超えると考えられる時間とすることができる。また、所定の積算時間の起点は、例えば、二次電池の通電を開始した時点、あるいは第1充電量を第2充電量で置き換えて第1充電量を補正した、直近(前回)の補正時点とすることができる。   The determination unit determines that the predetermined condition is not satisfied when the time for integrating the current of the secondary battery is less than the predetermined integration time. The predetermined integration time is such that when the current of the secondary battery is detected by the current sensor at a predetermined sampling period and the current integration is performed, the error of the obtained current value, that is, the error of the current integration is accumulated and the allowable range is accumulated. It can be a time considered to exceed. Further, the starting point of the predetermined integrated time is, for example, the time when the power supply of the secondary battery is started, or the most recent (previous) correction time when the first charge amount is corrected by replacing the first charge amount with the second charge amount. It can be.

上述の構成により、電流積算の誤差が許容範囲を超えない場合には、等価回路モデルに基づく第2充電量の精度に比べて、精度がよい電流積算に基づく第1充電量を用いることができるので、二次電池の充電量を精度よく算出することができる。   According to the above configuration, when the error of the current integration does not exceed the allowable range, the first charge amount based on the current integration that is more accurate than the accuracy of the second charge amount based on the equivalent circuit model can be used. Therefore, the charge amount of the secondary battery can be accurately calculated.

本発明の実施の形態に係る充電量算出装置は、前記電流取得部で取得した電流に基づいて前記二次電池の充放電の切り替えの有無を判定する切替判定部を備え、前記判定部は、前記二次電池の電流を積算する時間が前記積算時間以上である場合、前記切替判定部で判定した切り替えの有無に応じて、前記所定条件を充足するか否かを判定する。   The charge amount calculation device according to the embodiment of the present invention includes a switching determination unit that determines whether to switch the charging and discharging of the secondary battery based on the current acquired by the current acquisition unit, the determination unit includes: When the time for integrating the current of the secondary battery is equal to or longer than the integration time, it is determined whether or not the predetermined condition is satisfied according to the presence or absence of switching determined by the switching determination unit.

切替判定部は、電流取得部で取得した電流に基づいて二次電池の充放電の切り替えの有無を判定する。例えば、充電又は放電の一方を正と定めておき、電流が正から負になった場合、あるいは電流が負から正になった場合、充放電の切り替えが有ったと判定することができる。   The switching determination unit determines whether to switch charging and discharging of the secondary battery based on the current acquired by the current acquisition unit. For example, one of charge and discharge is defined as positive, and when the current changes from positive to negative, or when the current changes from negative to positive, it is possible to determine that there is switching between charging and discharging.

判定部は、二次電池の電流を積算する時間が積算時間以上である場合、切替判定部で判定した充放電の切り替えの有無に応じて、所定条件を充足するか否かを判定する。例えば、切替判定部で充放電の切り替えがあったと判定した場合、所定条件を充足すると判定することができる。   When the time for integrating the current of the secondary battery is equal to or longer than the integration time, the determination unit determines whether or not a predetermined condition is satisfied, depending on whether or not the switching of the charging and discharging determined by the switching determination unit is performed. For example, when the switching determination unit determines that the switching between the charging and discharging has been performed, it can be determined that the predetermined condition is satisfied.

充電から放電、あるいは放電から充電に切り替わると、二次電池の内部インピーダンスが一旦リセットされ、等価回路モデルの精度が高くなると考えられる。そこで、電流積算の誤差が許容範囲を超え、かつ二次電池の充放電の切り替えが有った場合には、電流積算に基づく第1充電量の精度に比べて、精度がよい等価回路モデルに基づく第2充電量を用いることができるので、二次電池の充電量を精度よく算出することができる。   When switching from charging to discharging or from discharging to charging, it is considered that the internal impedance of the secondary battery is reset once, and the accuracy of the equivalent circuit model increases. Therefore, when the error of the current integration exceeds the allowable range and there is switching between charging and discharging of the secondary battery, an equivalent circuit model having a higher accuracy than the accuracy of the first charge amount based on the current integration is obtained. Since the second charge amount based on the second charge amount can be used, the charge amount of the secondary battery can be accurately calculated.

本発明の実施の形態に係る充電量算出装置は、前記第2算出部は、前記切替判定部で充放電の切り替えがあると判定した場合、充放電の切替時点から所定時間経過後に、前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記二次電池の第2充電量を算出する。   In the charge amount calculation device according to the embodiment of the present invention, the second calculation unit may be configured such that, when the switching determination unit determines that there is a charge / discharge switch, the second calculator calculates the voltage after a lapse of a predetermined time from the charge / discharge switch time. A second charge amount of the secondary battery is calculated based on the voltage acquired by the acquisition unit and the current acquired by the current acquisition unit.

第2算出部は、切替判定部で充放電の切り替えがあると判定した場合、充放電の切替時点から所定時間経過後に、電圧取得部で取得した電圧及び電流取得部で取得した電流に基づいて二次電池の第2充電量を算出する。充放電の切替後の通電時間に応じて二次電池のインピーダンスが安定し、過電圧の影響を少なくすることができるので、等価回路モデルに基づく第2充電量の精度を高くすることができる。   The second calculation unit, when the switching determination unit determines that there is a charge / discharge switch, based on the voltage acquired by the voltage acquisition unit and the current acquired by the current acquisition unit after a lapse of a predetermined time from the charge / discharge switch time. A second charge amount of the secondary battery is calculated. Since the impedance of the secondary battery is stabilized in accordance with the energization time after switching between charging and discharging, and the influence of overvoltage can be reduced, the accuracy of the second charge amount based on the equivalent circuit model can be increased.

本発明の実施の形態に係る充電量算出装置は、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点で、前記第1算出部で算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、該充電量差算出部で算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する単位時間誤差量算出部とを備え、前記判定部は、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する。   The charge amount calculation device according to the embodiment of the present invention may be configured such that the first charge amount calculated by the first calculation unit at the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery. A charge amount difference calculator for calculating a charge amount difference between the charge amount and the second charge amount, and calculating a unit time error amount per unit time of the charge amount based on the charge amount difference calculated by the charge amount difference calculator. A unit time error amount calculation unit that performs the calculation, wherein the determination unit calculates the unit time error amount and the elapsed time from the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery. Then, it is determined whether or not the predetermined condition is satisfied.

充電量差算出部は、第2算出部で算出した第2充電量を二次電池の充電量とした時点(すなわち、第1充電量を第2充電量で置き換えることで第1充電量を補正した補正時点)で、第1算出部で算出した第1充電量及び第2充電量の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、ΔSOC=SOC2−SOC1という式で表すことができる。   The charge amount difference calculation unit corrects the first charge amount by replacing the second charge amount calculated by the second calculation unit with the charge amount of the secondary battery (that is, replacing the first charge amount with the second charge amount). At the correction point in time), a charge amount difference between the first charge amount and the second charge amount calculated by the first calculation unit is calculated. Assuming that the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be represented by the following equation: ΔSOC = SOC2-SOC1.

単位時間誤差量算出部は、充電量差算出部で算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する。単位時間誤差量をΔEtとし、充電量差ΔSOCに相当する容量ΔEAhを充電又は放電に要する時間をTeとすると、ΔEt=ΔEAh/Teという式で算出することができる。ここで、二次電池の満充電容量をFCCとすると、ΔEAh=FCC×ΔSOC/100である。すなわち、容量ΔEAhは、単位が%である充電量差ΔSOCを、Ah単位に換算したものである。   The unit time error amount calculation unit calculates a unit time error amount per unit time of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit. Assuming that the unit time error amount is ΔEt and the time required for charging or discharging the capacity ΔEAh corresponding to the charge amount difference ΔSOC is Te, it can be calculated by the equation ΔEt = ΔEAh / Te. Here, when the full charge capacity of the secondary battery is FCC, ΔEAh = FCC × ΔSOC / 100. That is, the capacity ΔEAh is obtained by converting the charge amount difference ΔSOC whose unit is% into Ah unit.

判定部は、第2算出部で算出した第2充電量を二次電池の充電量とした時点(すなわち、充電量の直近の補正時点)からの経過時間及び単位時間誤差量に基づいて、所定条件を充足するか否かを判定する。例えば、単位時間誤差量ΔEt×経過時間tが、所定値以上となった場合、誤差量(ΔEt×t)が所定値以上となったとして、所定条件を充足すると判定することができる。これにより、直近に求めた充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正するか否かを判定することができる。   The determination unit is configured to determine a predetermined amount based on the elapsed time and the unit time error amount from the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery (that is, the latest correction time of the charge amount). It is determined whether the condition is satisfied. For example, when the unit time error amount ΔEt × elapsed time t is equal to or more than a predetermined value, it is determined that the error amount (ΔEt × t) is equal to or more than a predetermined value, and it is determined that the predetermined condition is satisfied. Accordingly, it is possible to determine whether to correct the first charge amount by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC obtained most recently.

本発明の実施の形態に係る充電量算出装置は、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点で、前記第1算出部で算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、該充電量差算出部で算出した充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を算出する単位容量誤差量算出部とを備え、前記判定部は、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点以降の前記二次電池の充放電容量及び前記単位容量誤差量に基づいて、前記所定条件を充足するか否かを判定する。   The charge amount calculation device according to the embodiment of the present invention may be configured such that the first charge amount calculated by the first calculation unit at the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery. A charge amount difference calculator for calculating a charge amount difference between the charge amount and the second charge amount, and calculating a unit capacity error amount per unit capacity of the charge amount based on the charge amount difference calculated by the charge amount difference calculator. And a unit capacity error amount calculation unit that performs the charge and discharge capacity of the secondary battery after the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery. It is determined whether or not the predetermined condition is satisfied based on the unit capacitance error amount.

充電量差算出部は、第2算出部で算出した第2充電量を二次電池の充電量とした時点(すなわち、第1充電量を第2充電量で置き換えることで第1充電量を補正した補正時点)で、第1算出部で算出した第1充電量及び第2充電量の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、ΔSOC=SOC2−SOC1という式で表すことができる。   The charge amount difference calculation unit corrects the first charge amount by replacing the second charge amount calculated by the second calculation unit with the charge amount of the secondary battery (that is, replacing the first charge amount with the second charge amount). At the correction point in time), a charge amount difference between the first charge amount and the second charge amount calculated by the first calculation unit is calculated. Assuming that the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be represented by the following equation: ΔSOC = SOC2-SOC1.

単位容量誤差量算出部は、充電量差算出部で算出した充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を算出する。単位容量誤差量をΔEcとし、充電量差ΔSOCに相当する容量ΔEAhに達する充放電容量絶対値をCaとすると、ΔEc=ΔEAh/Ceという式で算出することができる。ここで、二次電池の満充電容量をFCCとすると、ΔEAh=FCC×ΔSOC/100である。すなわち、容量ΔEAhは、単位が%である充電量差ΔSOCを、Ah単位に換算したものである。   The unit capacity error amount calculation unit calculates a unit capacity error amount per unit capacity of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit. Assuming that the unit capacity error amount is ΔEc and the charging / discharging capacity absolute value that reaches the capacity ΔEAh corresponding to the charge amount difference ΔSOC is Ca, it can be calculated by the equation ΔEc = ΔEAh / Ce. Here, when the full charge capacity of the secondary battery is FCC, ΔEAh = FCC × ΔSOC / 100. That is, the capacity ΔEAh is obtained by converting the charge amount difference ΔSOC whose unit is% into Ah unit.

判定部は、第2算出部で算出した第2充電量を二次電池の充電量とした時点(すなわち、充電量の直近の補正時点)以降の二次電池の充放電容量及び単位容量誤差量に基づいて、所定条件を充足するか否かを判定する。例えば、単位容量誤差量ΔEc×充放電容量c(充電量の直近の補正時点以降の充放電容量の絶対値)が、所定値以上となった場合、誤差量(ΔEc×c)が所定値以上となったとして、所定条件を充足すると判定することができる。これにより、直近に求めた充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正するか否かを判定することができる。   The determination unit determines the charge / discharge capacity and the unit capacity error amount of the secondary battery after the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery (that is, the latest correction time of the charge amount). It is determined whether or not a predetermined condition is satisfied based on. For example, when the unit capacity error amount ΔEc × the charge / discharge capacity c (the absolute value of the charge / discharge capacity after the latest correction of the charge amount) is equal to or more than a predetermined value, the error amount (ΔEc × c) is equal to or more than the predetermined value. , It can be determined that the predetermined condition is satisfied. Accordingly, it is possible to determine whether to correct the first charge amount by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC obtained most recently.

本発明の実施の形態に係る充電量算出装置は、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の開放電圧を算出する開放電圧算出部を備え、前記第2算出部は、前記開放電圧算出部で算出した開放電圧及び前記二次電池の開放電圧と充電量との対応関係に基づいて、前記二次電池の第2充電量を算出する。   The charge amount calculation device according to the embodiment of the present invention includes a voltage acquired by the voltage acquisition unit, a current acquired by the current acquisition unit, and an open circuit voltage of the secondary battery based on an equivalent circuit model of the secondary battery. The open-circuit voltage calculating section for calculating the open-circuit voltage and the open-circuit voltage calculated by the open-circuit voltage calculating section and the correspondence between the open-circuit voltage of the secondary battery and the charge amount. Is calculated.

開放電圧算出部は、電圧取得部で取得した電圧Vb、電流取得部で取得した電流Ib及び二次電池の等価回路モデルに基づいて二次電池の開放電圧OCVを算出する。例えば、等価回路モデル(等価回路モデルで表現されるインピーダンス)に流れる電流Ibにより生じる過電圧、取得(検出)される電圧Vb、及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。ここで、電流Ibは、充電時には正、放電時には負とすると、過電圧も充電時は正、放電時は負となる。   The open-circuit voltage calculating unit calculates the open-circuit voltage OCV of the secondary battery based on the voltage Vb obtained by the voltage obtaining unit, the current Ib obtained by the current obtaining unit, and the equivalent circuit model of the secondary battery. For example, between an overvoltage generated by a current Ib flowing through an equivalent circuit model (impedance expressed by the equivalent circuit model), a voltage Vb acquired (detected), and an open circuit voltage OCV, (OCV = Vb−overvoltage) The relationship holds. Here, if the current Ib is positive during charging and negative during discharging, the overvoltage is also positive during charging and negative during discharging.

第2算出部は、開放電圧算出部で算出した開放電圧OCV及び二次電池の開放電圧と充電量との対応関係に基づいて、二次電池の第2充電量を算出する。二次電池の開放電圧OCVと充電量SOCとの対応関係は、予め記憶部に記憶する構成でもよく、対応関係を演算回路で演算する構成でもよい。これにより、無負荷時の二次電池の電圧を検出する必要がなく、二次電池に充放電電流が流れている場合でも、電流積算に基づく第1充電量を補正するための第2充電量を算出することができる。   The second calculation unit calculates the second charge amount of the secondary battery based on the open circuit voltage OCV calculated by the open circuit voltage calculation unit and the correspondence between the open circuit voltage of the secondary battery and the charge amount. The correspondence between the open-circuit voltage OCV of the secondary battery and the state of charge SOC may be stored in the storage unit in advance, or the correspondence may be calculated by an arithmetic circuit. Accordingly, it is not necessary to detect the voltage of the secondary battery at the time of no load, and even when the charge / discharge current is flowing through the secondary battery, the second charge amount for correcting the first charge amount based on the current integration Can be calculated.

[本願発明の実施形態の詳細]
以下、本発明に係る充電量算出装置の実施の形態を示す図面に基づいて説明する。図1は本実施の形態の充電量算出装置としての電池監視装置100を搭載した車両の要部の構成の一例を示すブロック図である。図1に示すように、車両は、電池監視装置100の他に、二次電池ユニット50、リレー61、63、発電機(ALT)62、スタータモータ(ST)64、電池65、電気負荷66などを備える。
[Details of the embodiment of the present invention]
Hereinafter, a description will be given based on the drawings showing an embodiment of a charge amount calculation device according to the present invention. FIG. 1 is a block diagram illustrating an example of a configuration of a main part of a vehicle equipped with a battery monitoring device 100 as a charge amount calculation device according to the present embodiment. As shown in FIG. 1, in addition to the battery monitoring device 100, the vehicle includes a secondary battery unit 50, relays 61 and 63, a generator (ALT) 62, a starter motor (ST) 64, a battery 65, an electric load 66, and the like. Is provided.

二次電池ユニット50は、例えば、リチウムイオン電池であり、複数のセル51が直列又は直並列に接続されている。二次電池ユニット50には、電圧センサ52、電流センサ53、温度センサ54を備える。電圧センサ52は、各セル51の電圧、二次電池ユニット50の両端の電圧を検出し、電圧検出線50aを介して検出した電圧を電池監視装置100へ出力する。電流センサ53は、例えば、シャント抵抗又はホールセンサ等で構成され、二次電池ユニット50の充電電流及び放電電流を検出する。電流センサ53は、電流検出線50bを介して検出した電流を電池監視装置100へ出力する。温度センサ54は、例えば、サーミスタで構成され、セル51の温度を検出する。温度センサ54は、温度検出線50cを介して検出した温度を電池監視装置100へ出力する。   The secondary battery unit 50 is, for example, a lithium ion battery, and has a plurality of cells 51 connected in series or series / parallel. The secondary battery unit 50 includes a voltage sensor 52, a current sensor 53, and a temperature sensor 54. The voltage sensor 52 detects the voltage of each cell 51 and the voltage at both ends of the secondary battery unit 50, and outputs the detected voltage to the battery monitoring device 100 via the voltage detection line 50a. The current sensor 53 includes, for example, a shunt resistor or a Hall sensor, and detects a charging current and a discharging current of the secondary battery unit 50. The current sensor 53 outputs the current detected via the current detection line 50b to the battery monitoring device 100. The temperature sensor 54 includes, for example, a thermistor, and detects the temperature of the cell 51. Temperature sensor 54 outputs the temperature detected via temperature detection line 50c to battery monitoring device 100.

電池65は、例えば、鉛電池であり、車両の電気負荷66への電力供給を行うとともに、リレー63がオンした場合には、スタータモータ64を駆動するための電力供給を行う。発電機62は、車両のエンジンの回転により発電し、内部に設けられた整流回路により直流を出力して電池65を充電する。また、発電機62は、リレー61がオンしている場合、電池65及び二次電池ユニット50を充電する。なお、リレー61、63のオン・オフは不図示のリレー制御部が行う。   The battery 65 is, for example, a lead battery, and supplies power to the electric load 66 of the vehicle, and supplies power for driving the starter motor 64 when the relay 63 is turned on. The generator 62 generates power by the rotation of the engine of the vehicle, and outputs a direct current by a rectification circuit provided therein to charge the battery 65. In addition, when the relay 61 is turned on, the generator 62 charges the battery 65 and the secondary battery unit 50. The ON / OFF of the relays 61 and 63 is performed by a relay control unit (not shown).

図2は本実施の形態の電池監視装置100の構成の一例を示すブロック図である。電池監視装置100は、装置全体を制御する制御部10、電圧取得部11、電流取得部12、第1充電量算出部13、第2充電量算出部14、開放電圧算出部15、条件判定部16、切替判定部17、充電量差算出部18、単位時間誤差量算出部19、単位容量誤差量算出部20、記憶部21、及び計時のためのタイマ22などを備える。   FIG. 2 is a block diagram illustrating an example of a configuration of the battery monitoring device 100 according to the present embodiment. The battery monitoring device 100 includes a control unit 10 that controls the entire device, a voltage acquisition unit 11, a current acquisition unit 12, a first charge amount calculation unit 13, a second charge amount calculation unit 14, an open voltage calculation unit 15, a condition determination unit. 16, a switching determination unit 17, a charge amount difference calculation unit 18, a unit time error amount calculation unit 19, a unit capacity error amount calculation unit 20, a storage unit 21, a timer 22 for clocking, and the like.

電圧取得部11は、二次電池ユニット50の電圧(例えば、二次電池ユニット50の両端電圧)を取得する。また、電流取得部12は、二次電池ユニット50の電流(充電電流及び放電電流)を取得する。なお、電圧、電流の取得頻度、取得するサンプリング周期は、制御部10が制御することができる。サンプリング周期は、例えば、10msとすることができるが、これに限定されるものではない。   The voltage acquisition unit 11 acquires a voltage of the secondary battery unit 50 (for example, a voltage across the secondary battery unit 50). Further, the current acquisition unit 12 acquires the current (charge current and discharge current) of the secondary battery unit 50. The acquisition frequency of the voltage and the current and the sampling period to be acquired can be controlled by the control unit 10. The sampling period can be, for example, 10 ms, but is not limited to this.

第1充電量算出部13は、第1算出部としての機能を有し、電流取得部12で取得した電流を積算して二次電池ユニット50の第1充電量を算出する。第1充電量は、電流積算に基づく充電量であり、電流積算SOCとも称する。なお、本実施の形態において、充電量は、SOC(State Of Charge)又は充電率とも称し、満充電容量に対する充電されている容量の比率を表す。電流積算は、電流を時間で積分したものであり、例えば、電流取得のサンプリング間隔をΔtとし、サンプリングの都度、取得した電流値をIbi(i=1、2、…)とすると、電流積算は、ΣIbi×Δt(i=1、2、…)に基づいて算出することができる。直近に求めた充電量をSOCinとし、第1充電量をSOC1とすると、第1充電量は、SOC1=SOCin±{ΣIbi×Δt(i=1、2、…)/満充電容量FCC}という式で算出することができる。なお、当該式において、符号±は、充電時は+、放電時は−を用いる。   The first charge amount calculation unit 13 has a function as a first calculation unit, and calculates the first charge amount of the secondary battery unit 50 by integrating the currents acquired by the current acquisition unit 12. The first charge amount is a charge amount based on current integration, and is also referred to as current integration SOC. In the present embodiment, the charge amount is also referred to as SOC (State Of Charge) or charge rate, and represents the ratio of the charged capacity to the full charge capacity. The current integration is obtained by integrating the current with time. For example, if the sampling interval of the current acquisition is Δt and the acquired current value is Ibi (i = 1, 2,...) At each sampling, the current integration is , ΣIbi × Δt (i = 1, 2,...). Assuming that the most recently obtained charge amount is SOCin and the first charge amount is SOC1, the first charge amount is expressed by the following formula: SOC1 = SOCin ± {Ibi × Δt (i = 1, 2,...) / Full charge capacity FCC}. Can be calculated. In this formula, the sign ± uses + during charging and − during discharging.

第2充電量算出部14は、第2算出部としての機能を有し、電圧取得部11で取得した電圧、電流取得部12で取得した電流及び二次電池ユニット50の等価回路モデルに基づいて二次電池ユニット50の第2充電量を算出する。第2充電量は、二次電池ユニット50の等価回路モデルに基づく充電量であり、電池等価回路モデルSOCとも称する。第2充電量は、電流積算を採用しないので、電流を積算する過程で徐々に増加して累積する電流値の誤差(例えば、電流センサ53の誤差)の影響を受けない。なお、電圧、電流は、二次電池ユニット50が充電又は放電しているときの値であり、二次電池ユニット50は、無負荷状態ではない。   The second charge amount calculating unit 14 has a function as a second calculating unit, and is based on the voltage obtained by the voltage obtaining unit 11, the current obtained by the current obtaining unit 12, and the equivalent circuit model of the secondary battery unit 50. The second charge amount of the secondary battery unit 50 is calculated. The second charge amount is a charge amount based on an equivalent circuit model of the secondary battery unit 50, and is also referred to as a battery equivalent circuit model SOC. Since the second charge amount does not employ the current integration, the second charge amount is not affected by a current value error (for example, an error of the current sensor 53) that gradually increases and accumulates in the process of integrating the current. The voltage and current are values when the secondary battery unit 50 is charging or discharging, and the secondary battery unit 50 is not in a no-load state.

図3は本実施の形態の二次電池ユニット50の等価回路モデルの一例を示す説明図である。等価回路モデル(電池等価回路モデルとも称する)は、二次電池ユニット50のインピーダンスを表す等価回路であり、例えば、図3に示すように、開放電圧OCVを有する電圧源、抵抗R1、抵抗とキャパシタとの並列回路(図3では、抵抗R2〜R5それぞれとキャパシタC2〜C5それぞれとの並列回路が4個直列に接続された構成を示す)などの組み合わせで構成されるインピーダンスで表すことができる。二次電池ユニット50は、開放電圧OCVを有する電圧源、内部インピーダンスの直列抵抗などで決定される。開放電圧OCVは、正極、負極及び電解質の静的なつり合いで決まり、内部インピーダンスは動的なメカニズムで決まる。   FIG. 3 is an explanatory diagram illustrating an example of an equivalent circuit model of the secondary battery unit 50 according to the present embodiment. The equivalent circuit model (also referred to as a battery equivalent circuit model) is an equivalent circuit representing the impedance of the secondary battery unit 50. For example, as shown in FIG. 3, a voltage source having an open circuit voltage OCV, a resistor R1, a resistor and a capacitor (FIG. 3 shows a configuration in which four parallel circuits each including the resistors R2 to R5 and each of the capacitors C2 to C5 are connected in series in FIG. 3). The secondary battery unit 50 is determined by a voltage source having an open circuit voltage OCV, a series resistance of an internal impedance, and the like. The open circuit voltage OCV is determined by a static balance between the positive electrode, the negative electrode, and the electrolyte, and the internal impedance is determined by a dynamic mechanism.

より具体的には、抵抗R1は、例えば、電解液バルクの抵抗を表し、抵抗R2〜R5は、例えば、界面電荷移動抵抗及び拡散インピーダンスを表し、キャパシタC2〜C5は、例えば、電気二重層キャパシタンスを表す。電解液バルクの抵抗は、電解液中でのリチウム(Li)イオンの伝導抵抗、正極及び負極での電子抵抗などを含む。界面電荷移動抵抗は、活物質表面における電荷移動抵抗及び被膜抵抗などを含む。拡散インピーダンスは、活物質粒子内部へのリチウム(Li)イオンの拡散過程に起因するインピーダンスである。なお、二次電池ユニット50の等価回路モデルは一例であって、図3の例に限定されない。   More specifically, the resistor R1 represents, for example, the resistance of the electrolyte bulk, the resistors R2 to R5 represent, for example, interface charge transfer resistance and diffusion impedance, and the capacitors C2 to C5 represent, for example, electric double layer capacitance. Represents The resistance of the electrolyte bulk includes the conduction resistance of lithium (Li) ions in the electrolyte and the electronic resistance of the positive electrode and the negative electrode. The interface charge transfer resistance includes a charge transfer resistance and a film resistance on the active material surface. The diffusion impedance is an impedance resulting from a diffusion process of lithium (Li) ions into the active material particles. Note that the equivalent circuit model of the secondary battery unit 50 is an example, and is not limited to the example of FIG.

条件判定部16は、判定部としての機能を有し、所定条件を充足するか否かを判定する。所定条件は、例えば、電流積算の誤差が所定の許容範囲を超えるか否かを表す条件とすることができる。すなわち、電流積算の誤差が許容範囲を超える場合には、所定条件を充足すると判定することができ、許容範囲を超えない場合には、所定条件を充足しないと判定することができる。   The condition determination unit 16 has a function as a determination unit, and determines whether a predetermined condition is satisfied. The predetermined condition can be, for example, a condition indicating whether or not the error of the current integration exceeds a predetermined allowable range. That is, when the error of the current integration exceeds the allowable range, it can be determined that the predetermined condition is satisfied. When the error does not exceed the allowable range, it can be determined that the predetermined condition is not satisfied.

制御部10は、条件判定部16で所定条件を充足しないと判定した場合(電流積算の誤差が許容範囲を超えない場合)、第1充電量を二次電池ユニット50の充電量とする。また、制御部10は、条件判定部16で所定条件を充足すると判定した場合(電流積算の誤差が許容範囲を超える場合)、第1充電量を補正すべく、第2充電量を二次電池ユニット50の充電量とする(第1充電量を第2充電量で置き換える)。なお、第2充電量で第1充電量を補正することを電流積算SOC補正とも称する。   When the condition determination unit 16 determines that the predetermined condition is not satisfied (when the current integration error does not exceed the allowable range), the control unit 10 sets the first charge amount as the charge amount of the secondary battery unit 50. When the condition determining unit 16 determines that the predetermined condition is satisfied (when the error of the current integration exceeds the allowable range), the control unit 10 sets the second charged amount to the secondary battery in order to correct the first charged amount. The charge amount of the unit 50 is set (the first charge amount is replaced with the second charge amount). Note that correcting the first charge amount with the second charge amount is also referred to as current integrated SOC correction.

上述の構成により、電流積算の誤差が許容範囲内にある場合には、電流積算に基づく第1充電量を充電量とし、電流積算の誤差が許容範囲を超える場合には、電流積算の影響を受けない等価回路モデルに基づく第2充電量を充電量とすることができる。これにより、二次電池ユニット50に充放電電流が流れている場合でも二次電池ユニット50の充電量を精度よく算出することができる。   According to the above configuration, when the error of the current integration is within the allowable range, the first charge amount based on the current integration is set as the charge amount, and when the error of the current integration exceeds the allowable range, the influence of the current integration is reduced. The second charge amount based on the equivalent circuit model that is not received can be used as the charge amount. Thereby, even when a charge / discharge current is flowing through the secondary battery unit 50, the charge amount of the secondary battery unit 50 can be accurately calculated.

次に、上述の所定条件について説明する。所定条件は、例えば、電流積算の積算時間、あるいは二次電池ユニット50の充放電の切替の有無などによって設定することができる。まず、電流積算の積算時間について説明する。   Next, the above-described predetermined condition will be described. The predetermined condition can be set based on, for example, the integration time of the current integration, the presence or absence of switching between charging and discharging of the secondary battery unit 50, and the like. First, the integration time of the current integration will be described.

条件判定部16は、二次電池ユニット50の電流を積算する時間が所定の積算時間未満である場合、所定条件を充足しないと判定する。所定の積算時間は、所定のサンプリング周期で二次電池ユニット50の電流を電流センサ53で検出して、電流積算を行う場合に、取得した電流値の誤差(電流センサ53による検出誤差)、すなわち電流積算の誤差が累積されて許容範囲を超えると考えられる時間とすることができる。積算時間は、例えば、10分、20分などとすることができるが、これらの値に限定されない。また、所定の積算時間の起点は、例えば、二次電池ユニット50の通電(充電又は放電)を開始した時点、あるいは第1充電量を補正して第2充電量で置き換えた、直近(前回)の補正時点とすることができる。   If the time for integrating the current of the secondary battery unit 50 is less than the predetermined integration time, the condition determination unit 16 determines that the predetermined condition is not satisfied. When the current sensor 53 detects the current of the secondary battery unit 50 at a predetermined sampling period and performs current integration, the predetermined integration time is an error in the obtained current value (detection error by the current sensor 53), The time can be considered as a time when the errors of the current integration are accumulated and exceed the allowable range. The integration time can be, for example, 10 minutes, 20 minutes, or the like, but is not limited to these values. Further, the starting point of the predetermined integration time is, for example, the time when the energization (charging or discharging) of the secondary battery unit 50 is started, or the latest (last time) in which the first charge amount is corrected and replaced with the second charge amount. At the time of correction.

上述の構成により、電流積算の誤差が許容範囲を超えない場合には、等価回路モデルに基づく第2充電量の精度に比べて、精度がよい電流積算に基づく第1充電量を用いることができるので、二次電池ユニット50の充電量を精度よく算出することができる。   According to the above configuration, when the error of the current integration does not exceed the allowable range, the first charge amount based on the current integration that is more accurate than the accuracy of the second charge amount based on the equivalent circuit model can be used. Therefore, the charge amount of the secondary battery unit 50 can be accurately calculated.

次に、所定条件を二次電池ユニット50の充放電の切替の有無に基づいて設定する場合ついて説明する。   Next, a case where the predetermined condition is set based on whether or not the charging and discharging of the secondary battery unit 50 is switched will be described.

切替判定部17は、電流取得部12で取得した電流に基づいて二次電池ユニット50の充放電の切り替えの有無を判定する。例えば、充電又は放電の一方を正と定めておき、電流が正から負になった場合、あるいは電流が負から正になった場合、充放電の切り替えが有ったと判定することができる。   The switching determination unit 17 determines whether to switch the charging and discharging of the secondary battery unit 50 based on the current acquired by the current acquisition unit 12. For example, one of charge and discharge is defined as positive, and when the current changes from positive to negative, or when the current changes from negative to positive, it is possible to determine that there is switching between charging and discharging.

条件判定部16は、二次電池ユニット50の電流を積算する時間が積算時間以上である場合、切替判定部17で判定した充放電の切り替えの有無に応じて、所定条件を充足するか否かを判定する。例えば、切替判定部17で充放電の切り替えがあったと判定した場合、所定条件を充足すると判定することができる。また、切替判定部17で充放電の切り替えがないと判定した場合、所定条件を充足しないと判定することができる。   When the time for integrating the current of the secondary battery unit 50 is equal to or longer than the integration time, the condition determination unit 16 determines whether or not a predetermined condition is satisfied according to whether or not the switching between the charging and discharging determined by the switching determination unit 17 is performed. Is determined. For example, when the switching determination unit 17 determines that the charge / discharge has been switched, it can be determined that the predetermined condition is satisfied. In addition, when the switching determination unit 17 determines that there is no switching between charging and discharging, it can be determined that the predetermined condition is not satisfied.

充電から放電、あるいは放電から充電に切り替わると、二次電池ユニット50の内部インピーダンスが一旦リセットされ、等価回路モデルの精度が高くなると考えられる。そこで、電流積算の誤差が許容範囲を超え、かつ二次電池ユニット50の充放電の切り替えが有った場合には、電流積算に基づく第1充電量の精度に比べて、精度がよい等価回路モデルに基づく第2充電量を用いることができるので、二次電池ユニット50の充電量を精度よく算出することができる。   When switching from charging to discharging or from discharging to charging, it is considered that the internal impedance of the secondary battery unit 50 is reset once, and the accuracy of the equivalent circuit model is increased. Therefore, when the error of the current integration exceeds the allowable range and there is switching between charging and discharging of the secondary battery unit 50, an equivalent circuit with higher accuracy than the accuracy of the first charge amount based on the current integration. Since the second charge amount based on the model can be used, the charge amount of the secondary battery unit 50 can be accurately calculated.

第2充電量算出部14は、切替判定部17で充放電の切り替えがあると判定した場合、充放電の切替時点から所定時間経過後に、電圧取得部11で取得した電圧及び電流取得部12で取得した電流に基づいて二次電池ユニット50の第2充電量を算出する。所定時間は、充電から放電に切り替わった場合と、放電から充電に切り替わった場合とで異なる値を用いてもよく、同じ値を用いてもよい。所定時間は、例えば、0.1秒〜2秒程度とすることができるが、これらの数値に限定されない。   When the switching determination unit 17 determines that there is a charge / discharge switch, the second charge amount calculation unit 14 uses the voltage and current acquisition unit 12 acquired by the voltage acquisition unit 11 after a lapse of a predetermined time from the charge / discharge switch time. The second charge amount of the secondary battery unit 50 is calculated based on the obtained current. For the predetermined time, different values may be used for the case where switching from charging to discharging and the case for switching from discharging to charging, or the same value may be used. The predetermined time can be, for example, about 0.1 second to 2 seconds, but is not limited to these numerical values.

充放電の切替後の通電時間(充電時間又は放電時間)に応じて二次電池ユニット50のインピーダンスが安定し、過電圧の影響を少なくすることができるので、等価回路モデルに基づく第2充電量の精度を高くすることができる。なお、過電圧は、二次電池ユニット50の電圧(端子電圧)と開放電圧OCV(開回路電圧とも称する)との差をいう。   The impedance of the secondary battery unit 50 is stabilized in accordance with the energizing time (charging time or discharging time) after switching between charging and discharging, and the influence of overvoltage can be reduced. Accuracy can be increased. Note that the overvoltage refers to a difference between the voltage (terminal voltage) of the secondary battery unit 50 and the open circuit voltage OCV (also referred to as open circuit voltage).

次に、第2充電量の算出方法について、より具体的に説明する。   Next, a method of calculating the second charge amount will be described more specifically.

開放電圧算出部15は、電圧取得部11で取得した電圧Vb、電流取得部12で取得した電流Ib及び二次電池ユニット50の等価回路モデルに基づいて二次電池ユニット50の開放電圧OCVを算出する。   The open-circuit voltage calculation unit 15 calculates the open-circuit voltage OCV of the secondary battery unit 50 based on the voltage Vb acquired by the voltage acquisition unit 11, the current Ib acquired by the current acquisition unit 12, and the equivalent circuit model of the secondary battery unit 50. I do.

図4は本実施の形態の二次電池ユニット50の充電開始後の電圧の推移の一例を示す模式図である。図4の上段の図は、充電も放電を行われていない状態から充電が開始された以降の、二次電池ユニット50の電流Ibを模式的に示す。図4の下段の図は、充電が開始された以降の、二次電池ユニット50の開放電圧OCV、端子電圧である電圧Vb、及び過電圧の関係を模式的に示す。過電圧は、二次電池ユニット50の電圧Vbと開放電圧OCVとの差の電圧をいう。開放電圧OCVは、二次電池ユニット50の端子電圧の静的な状態を示し、電極間に外部電源を接続し、電流を0Aにして自己放電しない時間範囲内で長時間緩和させたときの平衡電位である。図4に示すように、充電電流Ibが流れると、二次電池ユニット50の電圧Vbは、ステップ的な電圧上昇に続いて、様々な電気化学反応の遅れにより緩やかに上昇する。図4に示すように、取得(検出)される電圧Vb、過電圧及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。充電時には、電流Ibは正、過電圧も正となる。   FIG. 4 is a schematic diagram illustrating an example of a change in voltage after the start of charging of the secondary battery unit 50 according to the present embodiment. The upper part of FIG. 4 schematically shows the current Ib of the secondary battery unit 50 after charging is started from a state where neither charging nor discharging is performed. The lower part of FIG. 4 schematically illustrates the relationship between the open voltage OCV, the terminal voltage Vb, and the overvoltage of the secondary battery unit 50 after the start of charging. The overvoltage refers to the voltage of the difference between the voltage Vb of the secondary battery unit 50 and the open voltage OCV. The open-circuit voltage OCV indicates a static state of the terminal voltage of the secondary battery unit 50, and is an equilibrium when an external power supply is connected between the electrodes and the current is reduced to 0 A to relax for a long time within a time range in which self-discharge is not performed. Potential. As shown in FIG. 4, when the charging current Ib flows, the voltage Vb of the secondary battery unit 50 gradually increases due to various electrochemical reaction delays following the stepwise voltage increase. As shown in FIG. 4, the relationship (OCV = Vb-overvoltage) holds between the acquired (detected) voltage Vb, the overvoltage, and the open circuit voltage OCV. During charging, the current Ib is positive, and the overvoltage is also positive.

図5は本実施の形態の二次電池ユニット50の放電開始後の電圧の推移の一例を示す模式図である。図5の上段の図は、充電も放電を行われていない状態から放電が開始された以降の、二次電池ユニット50の電流Ibを模式的に示す。図5の下段の図は、充電が開始された以降の、二次電池ユニット50の開放電圧OCV、端子電圧である電圧Vb、及び過電圧の関係を模式的に示す。図5に示すように、放電電流Ibが流れると、二次電池ユニット50の電圧Vbは、ステップ的な電圧降下に続いて、様々な電気化学反応の遅れにより緩やかに低下する。取得(検出)される電圧Vb、過電圧及び開放電圧OCVの間には、OCV=Vb−過電圧、という関係が成り立つ。放電時には、電流Ibは負、過電圧も負となるので、(OCV=Vb−過電圧)、という関係は、図5に示すように、(OCV=Vb+過電圧)、と表すことができる。   FIG. 5 is a schematic diagram showing an example of a change in voltage after the secondary battery unit 50 according to the present embodiment starts discharging. The upper part of FIG. 5 schematically shows the current Ib of the secondary battery unit 50 after the discharge is started from a state where neither charging nor discharging is performed. The lower part of FIG. 5 schematically shows the relationship between the open voltage OCV, the terminal voltage Vb, and the overvoltage of the secondary battery unit 50 after the start of charging. As shown in FIG. 5, when the discharge current Ib flows, the voltage Vb of the secondary battery unit 50 gradually decreases due to the delay of various electrochemical reactions following the stepwise voltage drop. The relationship of OCV = Vb-overvoltage holds between the acquired (detected) voltage Vb, overvoltage, and open circuit voltage OCV. At the time of discharging, the current Ib is negative and the overvoltage is also negative, so that the relationship (OCV = Vb−overvoltage) can be expressed as (OCV = Vb + overvoltage) as shown in FIG.

上述のように、等価回路モデルに流れる電流Ibにより生じる過電圧、取得(検出)される電圧Vb、及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。ここで、電流Ibは、充電時には正、放電時には負とすると、過電圧も充電時は正、放電時は負となる。   As described above, the relationship (OCV = Vb-overvoltage) holds between the overvoltage generated by the current Ib flowing through the equivalent circuit model, the acquired (detected) voltage Vb, and the open circuit voltage OCV. Here, if the current Ib is positive during charging and negative during discharging, the overvoltage is also positive during charging and negative during discharging.

第2充電量算出部14は、開放電圧算出部15で算出した開放電圧OCV、及び二次電池ユニット50の開放電圧OCVと充電量SOCとの対応関係に基づいて、二次電池ユニット50の第2充電量を算出する。   The second charge amount calculation unit 14 determines the second charge amount of the secondary battery unit 50 based on the open circuit voltage OCV calculated by the open circuit voltage calculation unit 15 and the correspondence between the open circuit voltage OCV of the secondary battery unit 50 and the charge amount SOC. 2 Calculate the charge amount.

図6は本実施の形態の二次電池ユニット50の開放電圧と充電量との相関関係の一例を示す説明図である。図6において、横軸は開放電圧OCVを示し、縦軸は充電量SOCを示す。図6に示すように、二次電池ユニット50の開放電圧が大きいほど充電量が増加する。なお、図6に例示する開放電圧と充電量との相関関係は、記憶部21に記憶してもよく、あるいは演算回路で演算するようにしてもよい。   FIG. 6 is an explanatory diagram illustrating an example of a correlation between the open-circuit voltage and the charge amount of the secondary battery unit 50 according to the present embodiment. In FIG. 6, the horizontal axis indicates the open-circuit voltage OCV, and the vertical axis indicates the state of charge SOC. As shown in FIG. 6, the charging amount increases as the open-circuit voltage of the secondary battery unit 50 increases. Note that the correlation between the open-circuit voltage and the charge amount illustrated in FIG. 6 may be stored in the storage unit 21 or may be calculated by an arithmetic circuit.

上述の構成により、無負荷時の二次電池ユニット50の電圧を検出する必要がなく、二次電池ユニット50に充放電電流が流れている場合でも、電流積算に基づく第1充電量を補正するための第2充電量を算出することができる。   According to the above configuration, it is not necessary to detect the voltage of the secondary battery unit 50 at the time of no load, and the first charge amount based on the current integration is corrected even when the charge / discharge current is flowing through the secondary battery unit 50. The second charge amount can be calculated.

図7は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の算出処理の要部を示す模式図である。二次電池ユニット50の電圧Vb、及び電流Ibが、所定のサンプリング周期(例えば、10ms)で取得されると、第1充電量算出部13は、電流積算の処理を行って、当該サンプリング周期で第1充電量を算出する。制御部10は、算出された第1充電容量を二次電池ユニット50の充電量SOCとして出力する。   FIG. 7 is a schematic diagram illustrating a main part of a process of calculating the charge amount of the secondary battery unit 50 by the battery monitoring device 100 according to the present embodiment. When the voltage Vb and the current Ib of the secondary battery unit 50 are acquired at a predetermined sampling period (for example, 10 ms), the first charge amount calculation unit 13 performs a current integration process and performs the current integration at the sampling period. A first charge amount is calculated. The control unit 10 outputs the calculated first charging capacity as the state of charge SOC of the secondary battery unit 50.

第2充電量算出部14は、二次電池ユニット50の電流Ib及び電池等価回路モデルに基づいて二次電池ユニット50の過電圧を算出し、二次電池ユニット50の電圧Vbから算出した過電圧を減算して開放電圧OCVを算出する。第2充電量算出部14は、算出した開放電圧OCVを、図6に例示したようなOCV−SOC特性に基づいて変換することにより、第2充電量を算出する。第2充電量の算出頻度は、前述のサンプリング周期(例えば、10ms)の都度でもよく、後述のトリガが生成される都度でもよい。   The second charge amount calculator 14 calculates the overvoltage of the secondary battery unit 50 based on the current Ib of the secondary battery unit 50 and the battery equivalent circuit model, and subtracts the calculated overvoltage from the voltage Vb of the secondary battery unit 50. To calculate the open circuit voltage OCV. The second charge amount calculation unit 14 calculates the second charge amount by converting the calculated open circuit voltage OCV based on the OCV-SOC characteristic as illustrated in FIG. The calculation frequency of the second charge amount may be each time the above-described sampling cycle (for example, 10 ms) or every time a trigger described later is generated.

切替判定部17は、二次電池ユニット50の電流Ibに基づいて、ゼロクロス判定処理(電流ゼロクロスの有無の判定処理、すなわち、充放電の切替の有無の判定処理)を行い、電流ゼロクロスがあった時点(充放電の切替時点)から所定時間(例えば、0.1秒〜2秒程度など)経過した時点でトリガ(所定時間経過トリガとも称する)を生成する、所定時間経過トリガ生成処理を行う。   The switching determination unit 17 performs a zero-crossing determination process (a determination process of the presence or absence of a current zero-cross, that is, a determination process of presence or absence of switching between charging and discharging) based on the current Ib of the secondary battery unit 50, and there is a current zero-crossing. A predetermined time lapse trigger generation process is performed in which a trigger (also referred to as a predetermined time lapse trigger) is generated at a point in time when a predetermined time (for example, about 0.1 second to 2 seconds or the like) has elapsed from the time point (charge / discharge switching time).

制御部10は、所定時間経過トリガが生成された時点で、第1充電量を第2充電量に置き換えることにより第1充電量を補正する。すなわち、制御部10は、所定時間経過トリガが生成された時点で第2充電量算出部14が算出した第2充電量を二次電池ユニット50の充電量SOCとして出力する。   The control unit 10 corrects the first charge amount by replacing the first charge amount with the second charge amount when the predetermined time lapse trigger is generated. That is, the control unit 10 outputs the second charge amount calculated by the second charge amount calculation unit 14 as the charge amount SOC of the secondary battery unit 50 when the predetermined time elapse trigger is generated.

図8は本実施の形態の二次電池ユニット50の電流波形の一例を示す説明図である。図8において、横軸は時間を示し、縦軸は電流を示す。電流が正の場合は充電状態であり、電流が負の場合は放電状態である。図8の例では、数時間程度の間での電流の推移を表しており、充電から放電、及び放電から充電に切り替わるタイミングで電流ゼロクロスが発生していることが分かる。なお、電流波形は一例であり、これに限定されない。   FIG. 8 is an explanatory diagram illustrating an example of a current waveform of the secondary battery unit 50 according to the present embodiment. In FIG. 8, the horizontal axis represents time, and the vertical axis represents current. When the current is positive, the battery is in a charged state, and when the current is negative, the battery is in a discharged state. In the example of FIG. 8, the transition of the current for about several hours is shown, and it can be seen that the current zero cross occurs at the timing of switching from charging to discharging and from discharging to charging. Note that the current waveform is an example, and the present invention is not limited to this.

図9は本実施の形態の電池監視装置100が算出する各充電量の一例を示す説明図である。図9において、横軸は時間を示し、縦軸は充電量SOCを示す。図9中、「電流積算(電流誤差あり)」で示すグラフは、図8に例示した電流に基づいて算出した第1充電量の時刻0からの推移を示す。また、「電池等価回路モデル」で示すグラフは、図8に例示した電流に基づいて算出した第2充電量の時刻0からの推移を示す。また、「電流積算(電流誤差なし)」で示すグラフは、図8に例示した電流を誤差がない状態で積算した場合の時刻0からの推移を示し、電流積算の真値を表す。   FIG. 9 is an explanatory diagram illustrating an example of each charge amount calculated by the battery monitoring device 100 according to the present embodiment. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates the state of charge SOC. In FIG. 9, a graph indicated by “current integration (with current error)” indicates a transition from the time 0 of the first charge amount calculated based on the current illustrated in FIG. 8. Further, the graph shown by the “battery equivalent circuit model” shows a transition from the time 0 of the second charge amount calculated based on the current illustrated in FIG. Further, a graph indicated by “current integration (without current error)” indicates a transition from time 0 when the currents illustrated in FIG. 8 are integrated without error, and represents a true value of current integration.

図9から分かるように、電流積算に基づく第1充電量は、時間の経過とともに電流積算の真値からの乖離が大きくなり、誤差が徐々に増大していくことがわかる。また、時刻0からの時間経過が短い間では、電流積算に基づく第1充電量と電流積算の真値との差が小さく、第1充電量が二次電池ユニット50の充電量を精度よく表していることがわかる。また、充放電の切替が発生したタイミングで、第2充電量が電流積算の真値に近づく傾向があることも分かる。   As can be seen from FIG. 9, the deviation of the first charge amount based on the current integration from the true value of the current integration increases with time, and the error gradually increases. In addition, during a short time lapse from time 0, the difference between the first charge amount based on the current integration and the true value of the current integration is small, and the first charge amount accurately represents the charge amount of the secondary battery unit 50. You can see that it is. Also, it can be understood that the second charge amount tends to approach the true value of the current integration at the timing when the switching between the charge and the discharge occurs.

図10は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の一例を示す説明図である。図10において、横軸は時間を示し、縦軸は充電量SOCを示す。図10では、所定時間経過トリガが4回生成されている。所定時間経過トリガが生成されるタイミングで、図中符号A、B、C及びDで示すように二次電池ユニット50の充電量が補正されていることが分かる。   FIG. 10 is an explanatory diagram illustrating an example of a charged amount of the secondary battery unit 50 by the battery monitoring device 100 according to the present embodiment. In FIG. 10, the horizontal axis indicates time, and the vertical axis indicates the state of charge SOC. In FIG. 10, the predetermined time elapse trigger is generated four times. It can be seen that the charge amount of the secondary battery unit 50 is corrected at the timing when the predetermined time lapse trigger is generated, as indicated by reference numerals A, B, C, and D in the figure.

図11は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の誤差の一例を示す説明図である。図11において、横軸は時間を示し、縦軸は充電量SOCの誤差を示す。図11中、電流積算の真値は、誤差0%の横軸により表される。「補正前誤差」で示すグラフは、電流積算の真値に対する第1充電量と電流積算の真値との差の割合(誤差)を示す。また、「補正後誤差」で示すグラフは、電流積算の真値に対する補正後の充電量の割合(誤差)を示す。図11に示すように、所定時間経過トリガが生成されるタイミングで、誤差が小さくなるように二次電池ユニット50の充電量が補正されていることが分かる。   FIG. 11 is an explanatory diagram illustrating an example of an error in the amount of charge of the secondary battery unit 50 by the battery monitoring device 100 according to the present embodiment. In FIG. 11, the horizontal axis represents time, and the vertical axis represents an error in the state of charge SOC. In FIG. 11, the true value of the current integration is represented by a horizontal axis with an error of 0%. The graph indicated by “error before correction” indicates the ratio (error) of the difference between the first charge amount and the true value of current integration with respect to the true value of current integration. Further, a graph indicated by “error after correction” indicates a ratio (error) of the charged amount after correction to the true value of the current integration. As shown in FIG. 11, it can be seen that the charge amount of the secondary battery unit 50 is corrected at the timing when the predetermined time lapse trigger is generated so that the error is reduced.

次に、本実施の形態の電池監視装置100の動作について説明する。図12は本実施の形態の電池監視装置100による充電量算出の処理手順の第1例を示すフローチャートである。以下では便宜上、処理の主体を制御部10として説明する。制御部10は、電流積算SOC(第1充電量)を算出する(S11)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、たとえば、10msとすることができる。電流積算SOCの算出処理の詳細は後述する。   Next, the operation of the battery monitoring device 100 according to the present embodiment will be described. FIG. 12 is a flowchart illustrating a first example of a processing procedure for calculating the amount of charge by the battery monitoring device 100 according to the present embodiment. Hereinafter, for the sake of convenience, the subject of the processing will be described as the control unit 10. The control unit 10 calculates a current integrated SOC (first charge amount) (S11). The calculation frequency of the current integration SOC can be synchronized with the sampling cycle of the current detection of the secondary battery unit 50, and can be, for example, 10 ms. Details of the process of calculating the current integrated SOC will be described later.

制御部10は、通電開始から積算時間T1が経過したか否かを判定する(S12)。積算時間T1は、例えば、10分、20分などとすることができる。積算時間T1は、二次電池ユニット50の種類、型式などに応じて適宜設定すればよい。通電開始から積算時間T1が経過した場合(S12でYES)、制御部10は、電流ゼロクロスの有無を判定し(S13)、電流ゼロクロスがあった場合(S13でYES)、充電から放電への切替であるか否かを判定する(S14)。   The control unit 10 determines whether the integration time T1 has elapsed from the start of energization (S12). The integration time T1 can be, for example, 10 minutes, 20 minutes, or the like. The integration time T1 may be set as appropriate according to the type and model of the secondary battery unit 50. When the integration time T1 has elapsed from the start of energization (YES in S12), the control unit 10 determines the presence or absence of a current zero cross (S13), and when there is a current zero cross (YES in S13), switches from charging to discharging. Is determined (S14).

充電から放電への切替である場合(S14でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S15)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tcdが経過していない場合(S15でNO)、制御部10は、ステップS15の処理を続ける。所定時間Tcdが経過した場合(S15でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S17)。電池等価回路モデルSOCの算出処理の詳細は後述する。   If the switching is from charging to discharging (YES in S14), the control unit 10 determines whether a predetermined time Tcd has elapsed from the time when the current zero cross occurred (S15). The predetermined time Tcd can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tcd has not elapsed (NO in S15), the control unit 10 continues the processing in step S15. When the predetermined time Tcd has elapsed (YES in S15), the control unit 10 calculates a battery equivalent circuit model SOC (second charge amount) (S17). The details of the process of calculating the battery equivalent circuit model SOC will be described later.

充電から放電への切替でない場合(S14でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S16)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S16でNO)、制御部10は、ステップS16の処理を続ける。所定時間Tdcが経過した場合(S16でYES)、制御部10は、ステップS17の処理を行う。   When switching from charging to discharging is not performed (NO in S14), that is, when switching from discharging to charging is performed, the control unit 10 determines whether or not a predetermined time Tdc has elapsed from the time when the current zero cross occurred. (S16). The predetermined time Tdc can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tdc has not elapsed (NO in S16), the control unit 10 continues the processing in step S16. When predetermined time Tdc has elapsed (YES in S16), control unit 10 performs the process of step S17.

制御部10は、電流積算SOCの補正を行う(S18)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   The control unit 10 corrects the current integration SOC (S18). The correction of the current integrated SOC is a process of replacing the most recently calculated current integrated SOC with the battery equivalent circuit model SOC when a predetermined time Tcd or Tdc has elapsed.

制御部10は、積算時間T1をリセットし(S19)、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力し(S20)、処理を終了する。通電開始から積算時間T1が経過していない場合(S12でNO)、あるいは、電流ゼロクロスがない場合(S13でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力し(S20)、処理を終了する。なお、図12に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   The control unit 10 resets the integrated time T1 (S19), outputs the replaced battery equivalent circuit model SOC as the state of charge SOC of the secondary battery unit 50 (S20), and ends the process. If the integration time T1 has not elapsed from the start of energization (NO in S12), or if there is no current zero crossing (NO in S13), the control unit 10 calculates the calculated current integration SOC as the charge amount of the secondary battery unit 50. It is output as SOC (S20), and the process ends. Note that the process illustrated in FIG. 12 can be repeatedly performed when charging or discharging of the secondary battery unit 50 continues.

図13は本実施の形態の電池監視装置100による電流積算SOC算出の処理手順の一例を示すフローチャートである。制御部10は、所定のサンプリング周期(例えば、10ms)で二次電池ユニット50の電流Ibを取得し(S101)、取得した電流値を積算する(S102)。制御部10は、積算した電流値を満充電容量で除算して、電流積算SOCを算出し(S103)、処理を終了する。なお、SOCの初期値は、例えば、イグニッションがオフ時、あるいはイグニッションのオン直後、つまり二次電池ユニット50の電流が流れていないときに取得した電圧をOCVとし、当該OCVから求めたSOCを初期値とすればよい。   FIG. 13 is a flowchart illustrating an example of a processing procedure of current integrated SOC calculation by battery monitoring device 100 of the present embodiment. The control unit 10 acquires the current Ib of the secondary battery unit 50 at a predetermined sampling cycle (for example, 10 ms) (S101), and integrates the acquired current values (S102). The control unit 10 calculates the current integrated SOC by dividing the integrated current value by the full charge capacity (S103), and ends the processing. Note that the initial value of the SOC is, for example, the voltage obtained when the ignition is turned off or immediately after the ignition is turned on, that is, when the current of the secondary battery unit 50 is not flowing, is the OCV, and the SOC obtained from the OCV is the initial value. It should be a value.

図14は本実施の形態の電池監視装置100による電池等価回路モデルSOC算出の処理手順の一例を示すフローチャートである。制御部10は、二次電池ユニット50の電圧Vbを取得し(S111)、電流Ibを取得する(S112)。電圧Vb及び電流Ibの取得のタイミングは、所定のサンプリング周期(例えば、10ms)の都度でもよく、あるいは、複数回サンプリングした値を平均化した後でもよい。   FIG. 14 is a flowchart illustrating an example of a processing procedure of calculating the battery equivalent circuit model SOC by the battery monitoring device 100 according to the present embodiment. The control unit 10 acquires the voltage Vb of the secondary battery unit 50 (S111), and acquires the current Ib (S112). The timing of acquiring the voltage Vb and the current Ib may be at a predetermined sampling cycle (for example, 10 ms) or after averaging values sampled a plurality of times.

制御部10は、取得した電流Ib及び電池等価回路モデルに基づいて過電圧を算出し(S113)、取得した電圧Vb及び算出した過電圧に基づいて開放電圧OCVを算出する(S114)。制御部10は、算出した開放電圧OCVを変換して、電池等価回路モデルSOCを算出し(S115)、処理を終了する。   The control unit 10 calculates an overvoltage based on the obtained current Ib and the battery equivalent circuit model (S113), and calculates an open circuit voltage OCV based on the obtained voltage Vb and the calculated overvoltage (S114). The control unit 10 converts the calculated open circuit voltage OCV to calculate the battery equivalent circuit model SOC (S115), and ends the processing.

図15は本実施の形態の電池監視装置100による充電量算出の処理手順の第2例を示すフローチャートである。図12に示す第1例との相違点は、積算時間の起点が異なる点である。制御部10、電流積算SOC(第1充電量)を算出する(S31)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、たとえば、10msとすることができる。電流積算SOCの算出処理は、図13に示す処理と同じである。   FIG. 15 is a flowchart illustrating a second example of the processing procedure for calculating the charge amount by the battery monitoring device 100 according to the present embodiment. The difference from the first example shown in FIG. 12 is that the starting point of the integration time is different. The control unit 10 calculates a current integrated SOC (first charge amount) (S31). The calculation frequency of the current integration SOC can be synchronized with the sampling cycle of the current detection of the secondary battery unit 50, and can be, for example, 10 ms. The process of calculating the current integrated SOC is the same as the process shown in FIG.

制御部10は、前回(直近)の補正時点から積算時間T2が経過したか否かを判定する(S32)。積算時間T2は、例えば、10分、20分などとすることができる。積算時間T2は、二次電池ユニット50の種類、型式などに応じて適宜設定すればよい。前回の補正時点から積算時間T2が経過した場合(S32でYES)、制御部10は、電流ゼロクロスの有無を判定し(S33)、電流ゼロクロスがあった場合(S33でYES)、充電から放電への切替であるか否かを判定する(S34)。   The control unit 10 determines whether or not the integration time T2 has elapsed from the previous (most recent) correction time point (S32). The integration time T2 can be, for example, 10 minutes, 20 minutes, or the like. The integration time T2 may be appropriately set according to the type and model of the secondary battery unit 50. When the integration time T2 has elapsed from the previous correction time point (YES in S32), the control unit 10 determines the presence or absence of a current zero cross (S33), and when there is a current zero cross (YES in S33), changes from charging to discharging. Is determined (S34).

充電から放電への切替である場合(S34でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S35)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tcdが経過していない場合(S35でNO)、制御部10は、ステップS35の処理を続ける。所定時間Tcdが経過した場合(S35でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S37)。電池等価回路モデルSOCの算出処理は、図14に示す処理を同じである。   If the switching is from charging to discharging (YES in S34), the control unit 10 determines whether or not a predetermined time Tcd has elapsed from the time when the current zero cross occurred (S35). The predetermined time Tcd can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tcd has not elapsed (NO in S35), the control unit 10 continues the process of step S35. When the predetermined time Tcd has elapsed (YES in S35), the control unit 10 calculates a battery equivalent circuit model SOC (second charge amount) (S37). The process of calculating the battery equivalent circuit model SOC is the same as the process shown in FIG.

充電から放電への切替でない場合(S34でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S36)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S36でNO)、制御部10は、ステップS36の処理を続ける。所定時間Tdcが経過した場合(S36でYES)、制御部10は、ステップS37の処理を行う。   When switching from charging to discharging is not performed (NO in S34), that is, when switching from discharging to charging is performed, the control unit 10 determines whether or not a predetermined time Tdc has elapsed from the time when the current zero cross occurred. (S36). The predetermined time Tdc can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tdc has not elapsed (NO in S36), the control unit 10 continues the process of step S36. When the predetermined time Tdc has elapsed (YES in S36), the control unit 10 performs the process of step S37.

制御部10は、電流積算SOCの補正を行う(S38)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   The control unit 10 corrects the current integrated SOC (S38). The correction of the current integrated SOC is a process of replacing the most recently calculated current integrated SOC with the battery equivalent circuit model SOC when a predetermined time Tcd or Tdc has elapsed.

制御部10は、積算時間T2をリセットし(S39)、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力し(S40)、処理を終了する。前回の補正時点から積算時間T2が経過していない場合(S32でNO)、あるいは、電流ゼロクロスがない場合(S33でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力し(S40)、処理を終了する。なお、図15に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   The control unit 10 resets the integrated time T2 (S39), outputs the replaced battery equivalent circuit model SOC as the state of charge SOC of the secondary battery unit 50 (S40), and ends the process. If the integration time T2 has not elapsed since the previous correction (NO in S32) or if there is no current zero crossing (NO in S33), the control unit 10 calculates the calculated current integration SOC of the secondary battery unit 50. The charge amount SOC is output (S40), and the process ends. Note that the process illustrated in FIG. 15 can be repeatedly performed when charging or discharging of the secondary battery unit 50 continues.

次に、前回(直近)の充電量の補正量(充電量差)に基づいて二次電池ユニット50の充電量SOCを算出する方法について、第3例として単位時間誤差量を用いる場合、及び第4例として単位容量誤差量を用いる場合について説明する。まず、第3例として単位時間誤差量を用いる場合について説明する。   Next, as to a method of calculating the state of charge SOC of the secondary battery unit 50 based on the correction amount (charge amount difference) of the previous (most recent) charge amount, a case where a unit time error amount is used as a third example, and Four cases will be described where the unit capacitance error amount is used. First, a case where a unit time error amount is used will be described as a third example.

充電量差算出部18は、第2充電量算出部14で算出した第2充電量を二次電池ユニット50の充電量とした時点(すなわち、第1充電量を第2充電量で置き換えることで第1充電量を補正した補正時点)で、第1充電量算出部13で算出した第1充電量及び置き換えた第2充電量の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、ΔSOC=SOC2−SOC1という式で表すことができる。   The charge amount difference calculation unit 18 determines when the second charge amount calculated by the second charge amount calculation unit 14 is used as the charge amount of the secondary battery unit 50 (that is, by replacing the first charge amount with the second charge amount). At the correction time when the first charge amount is corrected), the charge amount difference between the first charge amount calculated by the first charge amount calculation unit 13 and the replaced second charge amount is calculated. Assuming that the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be represented by the following equation: ΔSOC = SOC2-SOC1.

単位時間誤差量算出部19は、充電量差算出部18で算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する。単位時間誤差量をΔEtとし、充電量差ΔSOCに相当する容量ΔEAhを充電又は放電に要する時間をTeとすると、ΔEt=ΔEAh/Teという式で算出することができる。ここで、二次電池ユニット50の満充電容量をFCCとすると、ΔEAh=FCC×ΔSOC/100である。すなわち、容量ΔEAhは、単位が%である充電量差ΔSOCを、Ah単位に換算したものである。   The unit time error amount calculation unit 19 calculates the unit time error amount per unit time of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit 18. Assuming that the unit time error amount is ΔEt and the time required for charging or discharging the capacity ΔEAh corresponding to the charge amount difference ΔSOC is Te, it can be calculated by the equation ΔEt = ΔEAh / Te. Here, assuming that the full charge capacity of the secondary battery unit 50 is FCC, ΔEAh = FCC × ΔSOC / 100. That is, the capacity ΔEAh is obtained by converting the charge amount difference ΔSOC whose unit is% into Ah unit.

条件判定部16は、第2充電量算出部14で算出した第2充電量を二次電池ユニット50の充電量とした時点(すなわち、充電量の直近の補正時点)からの経過時間及び単位時間誤差量に基づいて、所定条件を充足するか否かを判定する。   The condition determination unit 16 determines the elapsed time and the unit time from the time when the second charge amount calculated by the second charge amount calculation unit 14 is set as the charge amount of the secondary battery unit 50 (that is, the latest correction time of the charge amount). It is determined whether a predetermined condition is satisfied based on the error amount.

例えば、単位時間誤差量ΔEt×経過時間tが、所定値以上となった場合、誤差量(ΔEt×t)が所定値以上となったとして、所定条件を充足すると判定することができる。これにより、直近に求めた充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正するか否かを判定することができる。   For example, when the unit time error amount ΔEt × elapsed time t is equal to or more than a predetermined value, it is determined that the error amount (ΔEt × t) is equal to or more than a predetermined value, and it is determined that the predetermined condition is satisfied. Accordingly, it is possible to determine whether to correct the first charge amount by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC obtained most recently.

図16は本実施の形態の電池監視装置100による充電量算出の処理手順の第3例を示すフローチャートである。制御部10、電流積算SOC(第1充電量)を算出する(S51)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、たとえば、10msとすることができる。電流積算SOCの算出処理は、図13に示す処理と同じである。   FIG. 16 is a flowchart illustrating a third example of the procedure for calculating the amount of charge by the battery monitoring device 100 according to the present embodiment. The control unit 10 calculates a current integrated SOC (first charge amount) (S51). The calculation frequency of the current integration SOC can be synchronized with the sampling cycle of the current detection of the secondary battery unit 50, and can be, for example, 10 ms. The process of calculating the current integrated SOC is the same as the process shown in FIG.

制御部10は、単位時間当たりの誤差量(単位時間誤差量ΔEt)を算出し(S52)、誤差量(ΔEt×経過時間t)が所定値以上となったか否かを判定する(S53)。なお、所定値は、判定時点のSOCの5%〜10%程度とすることができるが、これらの数値に限定されるものではない。   The control unit 10 calculates an error amount per unit time (unit time error amount ΔEt) (S52), and determines whether the error amount (ΔEt × elapsed time t) is equal to or greater than a predetermined value (S53). The predetermined value can be about 5% to 10% of the SOC at the time of the determination, but is not limited to these values.

誤差量(ΔEt×経過時間t)が所定値以上となった場合(S53でYES)、制御部10は、電流ゼロクロスの有無を判定し(S54)、電流ゼロクロスがあった場合(S54でYES)、充電から放電への切替であるか否かを判定する(S55)。   When the error amount (ΔEt × elapsed time t) is equal to or greater than a predetermined value (YES in S53), the control unit 10 determines whether there is a current zero cross (S54), and when there is a current zero cross (YES in S54). Then, it is determined whether or not switching from charging to discharging is performed (S55).

充電から放電への切替である場合(S55でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S56)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tcdが経過していない場合(S56でNO)、制御部10は、ステップS56の処理を続ける。所定時間Tcdが経過した場合(S56でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S57)。電池等価回路モデルSOCの算出処理は、図14に示す処理と同じである。   If the switching is from charging to discharging (YES in S55), the control unit 10 determines whether or not a predetermined time Tcd has elapsed from the time when the current zero cross occurred (S56). The predetermined time Tcd can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tcd has not elapsed (NO in S56), the control unit 10 continues the process of step S56. When the predetermined time Tcd has elapsed (YES in S56), the control unit 10 calculates a battery equivalent circuit model SOC (second charge amount) (S57). The process of calculating the battery equivalent circuit model SOC is the same as the process shown in FIG.

充電から放電への切替でない場合(S55でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S58)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S58でNO)、制御部10は、ステップS58の処理を続ける。所定時間Tdcが経過した場合(S58でYES)、制御部10は、ステップS57の処理を行う。   When switching from charging to discharging is not performed (NO in S55), that is, when switching from discharging to charging is performed, the control unit 10 determines whether or not a predetermined time Tdc has elapsed from the time when the current zero cross occurred. (S58). The predetermined time Tdc can be, for example, about 0.1 second to 2 seconds. When the predetermined time Tdc has not elapsed (NO in S58), the control unit 10 continues the process of step S58. When the predetermined time Tdc has elapsed (YES in S58), control unit 10 performs the process of step S57.

制御部10は、電流積算SOCの補正を行う(S59)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   The control unit 10 corrects the current integration SOC (S59). The correction of the current integrated SOC is a process of replacing the most recently calculated current integrated SOC with the battery equivalent circuit model SOC when a predetermined time Tcd or Tdc has elapsed.

制御部10は、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力し(S60)、処理を終了する。誤差量(ΔEt×経過時間t)が所定値以上でない場合(S53でNO)、あるいは、電流ゼロクロスがない場合(S54でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力し(S60)、処理を終了する。なお、図16に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   The control unit 10 outputs the replaced battery equivalent circuit model SOC as the state of charge SOC of the secondary battery unit 50 (S60), and ends the process. If the error amount (ΔEt × elapsed time t) is not equal to or greater than the predetermined value (NO in S53), or if there is no current zero cross (NO in S54), the control unit 10 calculates the calculated current integrated SOC by the secondary battery unit 50. (S60), and the process ends. Note that the process illustrated in FIG. 16 can be repeatedly performed when charging or discharging of the secondary battery unit 50 continues.

図16に示す処理において、ステップS53、S54、S55、S56、及びS58の処理を省略することもできる。すなわち、誤差量(ΔEt×経過時間t)が所定値以上となった場合(S53でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S57)ようにしてもよい。   In the processing illustrated in FIG. 16, the processing of steps S53, S54, S55, S56, and S58 may be omitted. That is, when the error amount (ΔEt × elapsed time t) is equal to or greater than the predetermined value (YES in S53), the control unit 10 calculates the battery equivalent circuit model SOC (second charge amount) (S57). Is also good.

次に、第4例として単位容量誤差量を用いる場合について説明する。   Next, a case where the unit capacitance error amount is used will be described as a fourth example.

第3例の場合と同様、充電量差算出部18は、第2充電量算出部14で算出した第2充電量を二次電池ユニット50の充電量とした時点(すなわち、第1充電量を第2充電量で置き換えることで第1充電量を補正した補正時点)で、第1充電量算出部13で算出した第1充電量及び置き換えた第2充電量の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、ΔSOC=SOC2−SOC1という式で表すことができる。   As in the case of the third example, the charge amount difference calculation unit 18 determines when the second charge amount calculated by the second charge amount calculation unit 14 is set as the charge amount of the secondary battery unit 50 (that is, the first charge amount At the correction time when the first charge amount is corrected by replacing the second charge amount, the charge amount difference between the first charge amount calculated by the first charge amount calculation unit 13 and the replaced second charge amount is calculated. Assuming that the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be represented by the following equation: ΔSOC = SOC2-SOC1.

単位容量誤差量算出部20は、充電量差算出部18で算出した充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を算出する。単位容量誤差量をΔEcとし、充電量差ΔSOCに相当する容量ΔEAhに達する充放電容量絶対値をCaとすると、ΔEc=ΔEAh/Ceという式で算出することができる。ここで、二次電池ユニット50の満充電容量をFCCとすると、ΔEAh=FCC×ΔSOC/100である。すなわち、容量ΔEAhは、単位が%である充電量差ΔSOCを、Ah単位に換算したものである。   The unit capacity error amount calculation unit 20 calculates the unit capacity error amount per unit capacity of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit 18. Assuming that the unit capacity error amount is ΔEc and the charging / discharging capacity absolute value that reaches the capacity ΔEAh corresponding to the charge amount difference ΔSOC is Ca, it can be calculated by the equation ΔEc = ΔEAh / Ce. Here, assuming that the full charge capacity of the secondary battery unit 50 is FCC, ΔEAh = FCC × ΔSOC / 100. That is, the capacity ΔEAh is obtained by converting the charge amount difference ΔSOC whose unit is% into Ah unit.

条件判定部16は、第2充電量算出部14で算出した第2充電量を二次電池ユニット50の充電量とした時点(すなわち、充電量の直近の補正時点)以降の二次電池ユニット50の充放電容量及び単位容量誤差量に基づいて、所定条件を充足するか否かを判定する。   The condition determination unit 16 determines that the second charge amount calculated by the second charge amount calculation unit 14 is the charge amount of the secondary battery unit 50 (that is, the latest correction time of the charge amount) and thereafter. It is determined whether or not a predetermined condition is satisfied based on the charge / discharge capacity and the unit capacity error amount.

例えば、単位容量誤差量ΔEc×充放電容量c(充電量の直近の補正時点以降の充放電容量の絶対値)が、所定値以上となった場合、誤差量(ΔEc×c)が所定値以上となったとして、所定条件を充足すると判定することができる。これにより、直近に求めた充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正するか否かを判定することができる。   For example, when the unit capacity error amount ΔEc × the charge / discharge capacity c (the absolute value of the charge / discharge capacity after the latest correction of the charge amount) is equal to or more than a predetermined value, the error amount (ΔEc × c) is equal to or more than the predetermined value. , It can be determined that the predetermined condition is satisfied. Accordingly, it is possible to determine whether to correct the first charge amount by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC obtained most recently.

図17は本実施の形態の電池監視装置100による充電量算出の処理手順の第4例を示すフローチャートである。制御部10、電流積算SOC(第1充電量)を算出する(S71)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、たとえば、10msとすることができる。電流積算SOCの算出処理は、図13に示す処理と同じである。   FIG. 17 is a flowchart illustrating a fourth example of the processing procedure for calculating the charge amount by the battery monitoring device 100 according to the present embodiment. The control unit 10 calculates an integrated current SOC (first charge amount) (S71). The calculation frequency of the current integration SOC can be synchronized with the sampling cycle of the current detection of the secondary battery unit 50, and can be, for example, 10 ms. The process of calculating the current integrated SOC is the same as the process shown in FIG.

制御部10は、単位充放電容量当たりの誤差量(単位容量誤差量ΔEc)を算出し(S72)、誤差量(ΔEc×充放電容量c)が所定値以上となったか否かを判定する(S73)。なお、所定値は、判定時点のSOCの5%〜10%程度とすることができるが、これらの数値に限定されるものではない。   The control unit 10 calculates an error amount per unit charge / discharge capacity (unit capacity error amount ΔEc) (S72), and determines whether the error amount (ΔEc × charge / discharge capacity c) is equal to or larger than a predetermined value (S72). S73). The predetermined value can be about 5% to 10% of the SOC at the time of the determination, but is not limited to these values.

誤差量(ΔEc×充放電容量c)が所定値以上となった場合(S73でYES)、制御部10は、電流ゼロクロスの有無を判定し(S74)、電流ゼロクロスがあった場合(S74でYES)、充電から放電への切替であるか否かを判定する(S75)。   When the error amount (ΔEc × charge / discharge capacity c) is equal to or greater than the predetermined value (YES in S73), the control unit 10 determines whether there is a current zero cross (S74), and when there is a current zero cross (YES in S74). ), It is determined whether or not the switching is from charging to discharging (S75).

充電から放電への切替である場合(S75でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S76)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tcdが経過していない場合(S76でNO)、制御部10は、ステップS76の処理を続ける。所定時間Tcdが経過した場合(S76でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S77)。電池等価回路モデルSOCの算出処理は、図14に示す処理を同じである。   If the switching is from charging to discharging (YES in S75), the control unit 10 determines whether a predetermined time Tcd has elapsed from the time when the current zero cross occurred (S76). The predetermined time Tcd can be, for example, about 0.1 second to 2 seconds. If the predetermined time Tcd has not elapsed (NO in S76), the control unit 10 continues the processing in step S76. If the predetermined time Tcd has elapsed (YES in S76), control unit 10 calculates battery equivalent circuit model SOC (second charge amount) (S77). The process of calculating the battery equivalent circuit model SOC is the same as the process shown in FIG.

充電から放電への切替でない場合(S75でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S78)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S78でNO)、制御部10は、ステップS78の処理を続ける。所定時間Tdcが経過した場合(S78でYES)、制御部10は、ステップS77の処理を行う。   When switching from charging to discharging is not performed (NO in S75), that is, when switching from discharging to charging is performed, the control unit 10 determines whether a predetermined time Tdc has elapsed from the time when the current zero cross occurred. (S78). The predetermined time Tdc can be, for example, about 0.1 second to 2 seconds. When the predetermined time Tdc has not elapsed (NO in S78), the control unit 10 continues the process of step S78. When the predetermined time Tdc has elapsed (YES in S78), the control unit 10 performs the process of step S77.

制御部10は、電流積算SOCの補正を行う(S79)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   The control unit 10 corrects the current integration SOC (S79). The correction of the current integrated SOC is a process of replacing the most recently calculated current integrated SOC with the battery equivalent circuit model SOC when a predetermined time Tcd or Tdc has elapsed.

制御部10は、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力し(S80)、処理を終了する。誤差量(ΔEc×充放電容量c)が所定値以上でない場合(S73でNO)、あるいは、電流ゼロクロスがない場合(S74でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力し(S80)、処理を終了する。なお、図17に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   The control unit 10 outputs the replaced battery equivalent circuit model SOC as the state of charge SOC of the secondary battery unit 50 (S80), and ends the process. If the error amount (ΔEc × charge / discharge capacity c) is not equal to or more than the predetermined value (NO in S73), or if there is no current zero crossing (NO in S74), the control unit 10 calculates the calculated current integrated SOC by the secondary battery unit. The SOC is output as the charge amount SOC of 50 (S80), and the process ends. Note that the process illustrated in FIG. 17 can be repeatedly performed when charging or discharging of the secondary battery unit 50 continues.

図17に示す処理において、ステップS73、S74、S75、S76、及びS78の処理を省略することもできる。すなわち、誤差量(ΔEc×充放電容量c)が所定値以上となった場合(S73でYES)、制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S77)ようにしてもよい。   In the processing illustrated in FIG. 17, the processing of steps S73, S74, S75, S76, and S78 may be omitted. That is, when the error amount (ΔEc × charge / discharge capacity c) is equal to or larger than the predetermined value (YES in S73), the control unit 10 calculates the battery equivalent circuit model SOC (second charge amount) (S77). You may.

本実施の形態の充電量算出装置(電池監視装置100)は、CPU(プロセッサ)、RAM(メモリ)などを備えた汎用コンピュータを用いて実現することもできる。すなわち、図12から図17に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で充電量算出装置(電池監視装置100)を実現することができる。   The charge amount calculation device (battery monitoring device 100) of the present embodiment can also be realized using a general-purpose computer including a CPU (processor), a RAM (memory), and the like. That is, a computer program defining the procedure of each process as shown in FIGS. 12 to 17 is loaded into a RAM (memory) provided in the computer, and the computer program is executed by a CPU (processor). Thus, the charge amount calculation device (battery monitoring device 100) can be realized.

上述のように、本実施の形態の電池監視装置100(充電量算出装置)によれば、二次電池ユニットが無負荷状態である必要がなく、二次電池ユニットに電流が流れている場合でも、電流積算に基づく充電量を電池等価回路モデルに基づく充電量に置き換えて、電流積算に基づく充電量を補正することができ、二次電池ユニットの充電量を精度よく算出することができる。   As described above, according to the battery monitoring device 100 (charge amount calculating device) of the present embodiment, the secondary battery unit does not need to be in a no-load state, and even when a current flows through the secondary battery unit. By replacing the charge amount based on the current integration with the charge amount based on the battery equivalent circuit model, the charge amount based on the current integration can be corrected, and the charge amount of the secondary battery unit can be accurately calculated.

また、比較例として、二次電池の端子電圧及び電流から一次回帰演算して得られる特性直線から開放電圧を算出し、当該開放電圧に基づいて算出される充電量と電流積算に基づく充電量との差が所定値以上となった場合に、開放電圧に基づいて算出される充電量に置き換える方法がある。しかし、かかる方法では、一次回帰演算して精度の高い特性直線を得るためには、電圧及び電流のサンプリングを多くする必要があるとともに、サンプリングした電圧及び電流にある程度のばらつきが必要となり、例えば、車両が一定の速度で走行する機会が多い場合には、精度良く開放電圧を求めることができず、充電量の補正を行うことができない。しかし、本実施の形態の電池監視装置100によれば、一次回帰演算を得る必要がなく、二次電池ユニットの充放電の切替タイミング(正確には、充放電の切替後所定時間経過時点)で二次電池ユニットの充電量を補正することができる。   Further, as a comparative example, an open-circuit voltage is calculated from a characteristic line obtained by performing a linear regression operation from the terminal voltage and the current of the secondary battery, and a charge amount calculated based on the open-circuit voltage and a charge amount based on the current integration are calculated. When the difference is equal to or larger than a predetermined value, there is a method of replacing the difference with a charge amount calculated based on the open circuit voltage. However, in such a method, in order to obtain a high-precision characteristic line by performing a first-order regression operation, it is necessary to increase the sampling of the voltage and the current, and a certain degree of variation is required in the sampled voltage and the current. When the vehicle has many opportunities to run at a constant speed, the open-circuit voltage cannot be obtained with high accuracy, and the charge amount cannot be corrected. However, according to the battery monitoring device 100 of the present embodiment, it is not necessary to obtain the primary regression calculation, and the charge / discharge switching timing of the secondary battery unit (accurately, at the time when a predetermined time has elapsed after the charge / discharge switching). The charge amount of the secondary battery unit can be corrected.

また、比較例として、二次電池の端子電圧、電流、及び内部抵抗から開放電圧を算出し、当該開放電圧算出される充電量と電流積算に基づく充電量との差が所定値以上となった場合に、開放電圧に基づいて算出される充電量に置き換える方法がある。しかし、かかる方法では、開放電圧を算出する場合に、二次電池の分極の影響が考慮されていないため、精度良く開放電圧を求めることができず、充電量の補正を行うことができない。しかし、本実施の形態の電池監視装置100によれば、電池等価回路モデルの中に分極の影響も含んでいるので、電池等価回路モデルを用いることにより、分極による誤差は生じない。   Further, as a comparative example, an open-circuit voltage was calculated from the terminal voltage, the current, and the internal resistance of the secondary battery, and the difference between the charge amount calculated based on the open-circuit voltage and the charge amount based on the current integration became a predetermined value or more. In such a case, there is a method of replacing the charged amount calculated based on the open circuit voltage. However, in such a method, when calculating the open-circuit voltage, the influence of the polarization of the secondary battery is not taken into account, so that the open-circuit voltage cannot be obtained with high accuracy, and the charge amount cannot be corrected. However, according to the battery monitoring apparatus 100 of the present embodiment, since the effect of polarization is included in the battery equivalent circuit model, no error due to polarization occurs by using the battery equivalent circuit model.

上述の実施の形態では、二次電池をリチウムイオン電池として説明したが、二次電池はリチウムイオン電池に限定されるものではなく、例えば、ニッケル水素電池、ニッカド電池などにも提供することができる。   In the above embodiment, the secondary battery is described as a lithium-ion battery, but the secondary battery is not limited to a lithium-ion battery, and can be provided to, for example, a nickel-metal hydride battery, a nickel-cadmium battery, and the like. .

開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 制御部
11 電圧取得部
12 電流取得部
13 第1充電量算出部
14 第2充電量算出部
15 開放電圧算出部
16 条件判定部
17 切替判定部部
18 充電量差算出部
19 単位時間誤差量算出部
20 単位容量誤差量算出部
21 記憶部
22 タイマ
50 二次電池ユニット
51 セル
52 電圧センサ
53 電流センサ
100 電池監視装置
DESCRIPTION OF SYMBOLS 10 Control part 11 Voltage acquisition part 12 Current acquisition part 13 1st charge amount calculation part 14 2nd charge amount calculation part 15 Open circuit voltage calculation part 16 Condition judgment part 17 Switching judgment part 18 Charge amount difference calculation part 19 Unit time error amount Calculation unit 20 Unit capacity error amount calculation unit 21 Storage unit 22 Timer 50 Secondary battery unit 51 Cell 52 Voltage sensor 53 Current sensor 100 Battery monitoring device

Claims (11)

二次電池の充電量を算出する充電量算出装置であって、
二次電池の電圧を取得する電圧取得部と、
前記二次電池の電流を取得する電流取得部と、
該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、
前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、
所定条件を充足するか否かを判定する判定部と
を備え、
前記判定部で前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、
前記判定部で前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量とし、
さらに、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点で、前記第1算出部で算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、
該充電量差算出部で算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する単位時間誤差量算出部と
を備え、
前記判定部は、
前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する充電量算出装置。
A charge amount calculation device that calculates a charge amount of a secondary battery,
A voltage acquisition unit that acquires the voltage of the secondary battery,
A current acquisition unit that acquires the current of the secondary battery,
A first calculation unit that integrates the current acquired by the current acquisition unit to calculate a first charge amount of the secondary battery;
A second calculation unit that calculates a second charge amount of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit, and an equivalent circuit model of the secondary battery;
A determination unit for determining whether a predetermined condition is satisfied, and
When the determination unit determines that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery,
When the determination unit determines that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery,
Further, at the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery, the charge amount difference between the first charge amount and the second charge amount calculated by the first calculation unit is calculated. A charge amount difference calculation unit to be calculated;
A unit time error amount calculation unit that calculates a unit time error amount per unit time of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit;
With
The determination unit includes:
Based on the elapsed time and the unit time error amount from the time the charge amount and the second amount of charge of the secondary battery calculated by the second calculating unit, charging to determine whether or not to satisfy the predetermined condition Quantity calculation device.
二次電池の充電量を算出する充電量算出装置であって、A charge amount calculation device that calculates a charge amount of a secondary battery,
二次電池の電圧を取得する電圧取得部と、A voltage acquisition unit that acquires the voltage of the secondary battery,
前記二次電池の電流を取得する電流取得部と、A current acquisition unit that acquires the current of the secondary battery,
該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、A first calculation unit that integrates the current acquired by the current acquisition unit to calculate a first charge amount of the secondary battery;
前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、A second calculation unit that calculates a second charge amount of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit, and an equivalent circuit model of the secondary battery;
所定条件を充足するか否かを判定する判定部とA determining unit for determining whether a predetermined condition is satisfied;
を備え、With
前記判定部で前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、When the determination unit determines that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery,
前記判定部で前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量とし、When the determination unit determines that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery,
さらに、前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点で、前記第1算出部で算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、Further, at the time when the second charge amount calculated by the second calculation unit is set as the charge amount of the secondary battery, the charge amount difference between the first charge amount and the second charge amount calculated by the first calculation unit is calculated. A charge amount difference calculation unit to be calculated;
該充電量差算出部で算出した充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を算出する単位容量誤差量算出部とA unit capacity error amount calculation unit that calculates a unit capacity error amount per unit capacity of the charge amount based on the charge amount difference calculated by the charge amount difference calculation unit;
を備え、With
前記判定部は、The determination unit includes:
前記第2算出部で算出した第2充電量を前記二次電池の充電量とした時点以降の前記二次電池の充放電容量及び前記単位容量誤差量に基づいて、前記所定条件を充足するか否かを判定する充電量算出装置。Whether the predetermined condition is satisfied based on the charge / discharge capacity of the secondary battery and the unit capacity error amount after the time when the second charge amount calculated by the second calculator is set as the charge amount of the secondary battery. A charge amount calculation device for determining whether or not the charge amount is present.
前記判定部は、
前記二次電池の電流を積算する時間が所定の積算時間未満である場合、前記所定条件を充足しないと判定する請求項1又は請求項2に記載の充電量算出装置。
The determination unit includes:
3. The charge amount calculation device according to claim 1, wherein it is determined that the predetermined condition is not satisfied when a time for integrating the current of the secondary battery is shorter than a predetermined integration time. 4.
前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の開放電圧を算出する開放電圧算出部を備え、
前記第2算出部は、
前記開放電圧算出部で算出した開放電圧及び前記二次電池の開放電圧と充電量との対応関係に基づいて、前記二次電池の第2充電量を算出する請求項1から請求項までのいずれか1項に記載の充電量算出装置。
The voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit and an open-circuit voltage calculation unit that calculates the open-circuit voltage of the secondary battery based on the equivalent circuit model of the secondary battery,
The second calculation unit includes:
Based on the correspondence between the open-circuit voltage and the charging amount of the open-circuit voltage and the secondary battery calculated by the open-circuit voltage calculating unit, of claims 1 to 3 for calculating a second amount of charge of the secondary battery A charge amount calculation device according to any one of the preceding claims.
前記電流取得部で取得した電流に基づいて前記二次電池の充放電の切り替えの有無を判定する切替判定部を備え、A switching determination unit that determines whether to switch the charging and discharging of the secondary battery based on the current acquired by the current acquisition unit,
前記判定部は、The determination unit includes:
前記二次電池の電流を積算する時間が前記積算時間以上である場合、前記切替判定部で判定した切り替えの有無に応じて、前記所定条件を充足するか否かを判定する請求項3に記載の充電量算出装置。4. The method according to claim 3, wherein when the time for integrating the current of the secondary battery is equal to or longer than the integration time, it is determined whether the predetermined condition is satisfied according to whether or not switching has been performed by the switching determination unit. 5. Charge calculation device.
前記第2算出部は、The second calculation unit includes:
前記切替判定部で充放電の切り替えがあると判定した場合、充放電の切替時点から所定時間経過後に、前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記二次電池の第2充電量を算出する請求項5に記載の充電量算出装置。When the switching determination unit determines that there is a charge / discharge switch, after a lapse of a predetermined time from the charge / discharge switch time, the secondary based on the voltage acquired by the voltage acquisition unit and the current acquired by the current acquisition unit. The charge amount calculating device according to claim 5, wherein the second charge amount of the battery is calculated.
前記所定時間は、0.1秒から2秒の範囲である請求項に記載の充電量算出装置。 The charging amount calculation device according to claim 6 , wherein the predetermined time is in a range of 0.1 second to 2 seconds. コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、
コンピュータ
二次電池の電圧を取得する電圧取得部と、
前記二次電池の電流を取得する電流取得部と、
取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、
取得した電圧、電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、
所定条件を充足するか否かを判定する判定部
して機能させ、
前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量として処理
さらに、コンピュータを、
算出した第2充電量を前記二次電池の充電量とした時点で、算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、
算出した充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を算出する単位時間誤差量算出部と
して機能させ、
算出した第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定するコンピュータプログラム。
A computer program for causing a computer to calculate a charge amount of a secondary battery,
The computer,
A voltage acquisition unit that acquires the voltage of the secondary battery,
A current acquisition unit that acquires the current of the secondary battery,
A first calculator that integrates the obtained current to calculate a first charge amount of the secondary battery;
A second calculator that calculates a second charge amount of the secondary battery based on the acquired voltage, current, and an equivalent circuit model of the secondary battery;
A determining unit for determining whether a predetermined condition is satisfied;
Function
When it is determined that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery, and when it is determined that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery. processing,
In addition, the computer
A charge amount difference calculating unit that calculates a charge amount difference between the calculated first charge amount and the calculated second charge amount when the calculated second charge amount is set as the charge amount of the secondary battery;
A unit time error amount calculation unit that calculates a unit time error amount per unit time of the charge amount based on the calculated charge amount difference;
Function
A computer program for determining whether or not the predetermined condition is satisfied, based on an elapsed time from a time when the calculated second charge amount is set as the charge amount of the secondary battery and the unit time error amount .
コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、A computer program for causing a computer to calculate a charge amount of a secondary battery,
コンピュータを、Computer
二次電池の電圧を取得する電圧取得部と、A voltage acquisition unit that acquires the voltage of the secondary battery,
前記二次電池の電流を取得する電流取得部と、A current acquisition unit that acquires the current of the secondary battery,
取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、A first calculator that integrates the obtained current to calculate a first charge amount of the secondary battery;
取得した電圧、電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、A second calculator that calculates a second charge amount of the secondary battery based on the acquired voltage, current, and an equivalent circuit model of the secondary battery;
所定条件を充足するか否かを判定する判定部とA determining unit for determining whether a predetermined condition is satisfied;
して機能させ、Function
前記所定条件を充足しないと判定した場合、前記第1充電量を前記二次電池の充電量とし、前記所定条件を充足すると判定した場合、前記第2充電量を前記二次電池の充電量として処理し、When it is determined that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery, and when it is determined that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery. Process,
さらに、コンピュータを、In addition, the computer
算出した第2充電量を前記二次電池の充電量とした時点で、算出した第1充電量及び前記第2充電量の充電量差を算出する充電量差算出部と、A charge amount difference calculating unit that calculates a charge amount difference between the calculated first charge amount and the calculated second charge amount when the calculated second charge amount is set as the charge amount of the secondary battery;
算出した充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を算出する単位容量誤差量算出部とA unit capacity error amount calculation unit that calculates a unit capacity error amount per unit capacity of the charge amount based on the calculated charge amount difference;
を備え、With
算出した第2充電量を前記二次電池の充電量とした時点以降の前記二次電池の充放電容量及び前記単位容量誤差量に基づいて、前記所定条件を充足するか否かを判定するコンピュータプログラム。A computer that determines whether or not the predetermined condition is satisfied based on the charge / discharge capacity of the secondary battery and the unit capacity error amount after the calculated second charge amount is set as the charge amount of the secondary battery. program.
二次電池の充電量を算出する充電量算出方法であって、
二次電池の電圧を電圧取得部が取得し、
前記二次電池の電流を電流取得部が取得し、
取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、
取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、
所定条件を充足するか否かを判定部が判定し、
前記所定条件を充足しないと判定された場合、前記第1充電量を前記二次電池の充電量とし、
前記所定条件を充足すると判定された場合、前記第2充電量を前記二次電池の充電量とし、
さらに、
算出された第2充電量を前記二次電池の充電量とした時点で、算出された第1充電量及び前記第2充電量の充電量差を充電量差算出部が算出し、
算出された充電量差に基づいて、充電量の単位時間当たりの単位時間誤差量を単位時間誤差量算出部が算出し、
算出された第2充電量を前記二次電池の充電量とした時点からの経過時間及び前記単位時間誤差量に基づいて、前記所定条件を充足するか否かを判定する充電量算出方法。
A charge amount calculation method for calculating a charge amount of a secondary battery,
The voltage acquisition unit acquires the voltage of the secondary battery,
A current acquisition unit acquires the current of the secondary battery,
The first calculator calculates a first charge amount of the secondary battery by integrating the obtained currents,
A second calculator calculates a second charge amount of the secondary battery based on the acquired voltage and current and an equivalent circuit model of the secondary battery,
The determining unit determines whether a predetermined condition is satisfied,
When it is determined that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery,
When it is determined that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery,
further,
At the time when the calculated second charge amount is set as the charge amount of the secondary battery, a charge amount difference calculation unit calculates a charge amount difference between the calculated first charge amount and the second charge amount,
Based on the calculated charge amount difference, a unit time error amount calculation unit calculates a unit time error amount per unit time of the charge amount,
Based second charge amount calculated in the elapsed time and the unit time error amount from the time the charge amount of the of the secondary battery, the charge amount calculating method for determining whether to satisfy the predetermined condition.
二次電池の充電量を算出する充電量算出方法であって、A charge amount calculation method for calculating a charge amount of a secondary battery,
二次電池の電圧を電圧取得部が取得し、The voltage acquisition unit acquires the voltage of the secondary battery,
前記二次電池の電流を電流取得部が取得し、A current acquisition unit acquires the current of the secondary battery,
取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、The first calculator calculates a first charge amount of the secondary battery by integrating the obtained currents,
取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、A second calculator calculates a second charge amount of the secondary battery based on the acquired voltage and current and an equivalent circuit model of the secondary battery,
所定条件を充足するか否かを判定部が判定し、The determining unit determines whether a predetermined condition is satisfied,
前記所定条件を充足しないと判定された場合、前記第1充電量を前記二次電池の充電量とし、When it is determined that the predetermined condition is not satisfied, the first charge amount is set as the charge amount of the secondary battery,
前記所定条件を充足すると判定された場合、前記第2充電量を前記二次電池の充電量とし、When it is determined that the predetermined condition is satisfied, the second charge amount is set as the charge amount of the secondary battery,
さらに、further,
算出された第2充電量を前記二次電池の充電量とした時点で、算出された第1充電量及び前記第2充電量の充電量差を充電量差算出部が算出し、At the time when the calculated second charge amount is set as the charge amount of the secondary battery, a charge amount difference calculation unit calculates a charge amount difference between the calculated first charge amount and the second charge amount,
算出された充電量差に基づいて、充電量の単位容量当たりの単位容量誤差量を単位容量誤差量算出部が算出し、Based on the calculated charge amount difference, a unit capacity error amount calculation unit calculates a unit capacity error amount per unit capacity of the charge amount,
算出された第2充電量を前記二次電池の充電量とした時点以降の前記二次電池の充放電容量及び前記単位容量誤差量に基づいて、前記所定条件を充足するか否かを判定する充電量算出方法。It is determined whether or not the predetermined condition is satisfied, based on the charge / discharge capacity of the secondary battery and the unit capacity error amount after the calculated second charge amount is set as the charge amount of the secondary battery. Charge amount calculation method.
JP2016082913A 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method Active JP6672976B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016082913A JP6672976B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method
PCT/JP2017/002228 WO2017183241A1 (en) 2016-04-18 2017-01-24 State-of-charge calculation device, computer program, and state-of-charge calculation method
CN201780024109.0A CN109073711A (en) 2016-04-18 2017-01-24 Charge device for calculating, computer program and charge volume calculation method
US16/094,226 US20190094305A1 (en) 2016-04-18 2017-01-24 Amount of charge calculation device, recording medium, and amount of charge calculation method
EP17785586.3A EP3447511A1 (en) 2016-04-18 2017-01-24 State-of-charge calculation device, computer program, and state-of-charge calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082913A JP6672976B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method

Publications (2)

Publication Number Publication Date
JP2017194282A JP2017194282A (en) 2017-10-26
JP6672976B2 true JP6672976B2 (en) 2020-03-25

Family

ID=60155433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082913A Active JP6672976B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method

Country Status (1)

Country Link
JP (1) JP6672976B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203245B1 (en) 2017-11-01 2021-01-13 주식회사 엘지화학 Apparatus and method for estimating SOC of battery
CN114200317A (en) * 2021-11-11 2022-03-18 一汽奔腾轿车有限公司 SOC estimation method of dynamically corrected ampere-hour integration method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223665A (en) * 1998-02-04 1999-08-17 Nissan Motor Co Ltd Battery residual capacity calculating unit
JP4071207B2 (en) * 2004-03-12 2008-04-02 株式会社日本自動車部品総合研究所 Battery current measuring device
JP2010271288A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Battery charging rate calculation device, battery charging rate calculation method, and program

Also Published As

Publication number Publication date
JP2017194282A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2017183241A1 (en) State-of-charge calculation device, computer program, and state-of-charge calculation method
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
CN107076802B (en) Secondary battery state detection device and secondary battery state detection method
JP5304880B2 (en) Battery remaining capacity detection device
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP5865546B2 (en) Electric storage device electric energy estimation apparatus and electric storage device electric energy estimation method
JP4817647B2 (en) Secondary battery life judgment method.
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
US10996280B2 (en) Battery pack that calculates full charge capacity of a battery based on a state of charge
JP2017203659A (en) Degradation determination device, computer program and degradation determination method
JP2018125977A (en) Control apparatus of battery module
JP2017090152A (en) Internal resistance computing device, computer program, and internal resistance computing method
JP5959566B2 (en) Storage battery control device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2004271342A (en) Charging and discharging control system
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP2018137109A (en) Life estimation device
JP6631172B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
CN111624491A (en) Method and device for determining residual electric quantity of battery and battery management system
JP2017194283A (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2000133322A (en) Charge/discharge system for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6672976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250