JP6671653B2 - Image processing apparatus, image processing method, and program - Google Patents

Image processing apparatus, image processing method, and program Download PDF

Info

Publication number
JP6671653B2
JP6671653B2 JP2015242719A JP2015242719A JP6671653B2 JP 6671653 B2 JP6671653 B2 JP 6671653B2 JP 2015242719 A JP2015242719 A JP 2015242719A JP 2015242719 A JP2015242719 A JP 2015242719A JP 6671653 B2 JP6671653 B2 JP 6671653B2
Authority
JP
Japan
Prior art keywords
fluorescence
component
illumination light
light
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015242719A
Other languages
Japanese (ja)
Other versions
JP2017106877A (en
Inventor
銀強 鄭
銀強 鄭
いまり 佐藤
いまり 佐藤
佐藤 洋一
洋一 佐藤
アントニー ラム
アントニー ラム
イン フー
イン フー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Inter University Research Institute Corp Research Organization of Information and Systems
Original Assignee
University of Tokyo NUC
Inter University Research Institute Corp Research Organization of Information and Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Inter University Research Institute Corp Research Organization of Information and Systems filed Critical University of Tokyo NUC
Priority to JP2015242719A priority Critical patent/JP6671653B2/en
Publication of JP2017106877A publication Critical patent/JP2017106877A/en
Application granted granted Critical
Publication of JP6671653B2 publication Critical patent/JP6671653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、被測定物を撮影した画像から、反射光と蛍光を推定する画像処理装置及び画像処理方法、並びにその画像処理方法を適用したプログラムに関する。   The present invention relates to an image processing apparatus and an image processing method for estimating reflected light and fluorescence from an image of an object to be measured, and a program to which the image processing method is applied.

物体に光を照射したとき、その物体を見ている観察者には、その物体の表面で入射光がそのまま反射して生じる反射光が観察されるだけでなく、物体の性質によっては、物体(物資)が光を吸収して蛍光発光する場合がある。蛍光は、その蛍光を励起する光を物体へ照射したときに、照射した光とは異なる波長の光を物体が発光する現象である。反射光は、物体に入射した光と同じ波長の光を反射するのに対して、蛍光の場合には、物体に入射して吸収される光(吸光)の波長よりも長い波長の光を発光する。   When an object is irradiated with light, an observer looking at the object not only sees reflected light generated by directly reflecting incident light on the surface of the object, but also, depending on the properties of the object, Material) may absorb light and emit fluorescence. Fluorescence is a phenomenon in which when an object is irradiated with light that excites the fluorescence, the object emits light having a wavelength different from that of the irradiated light. The reflected light reflects light of the same wavelength as the light incident on the object, whereas in the case of fluorescent light, it emits light of a wavelength longer than the wavelength of light (absorption) that is incident on and absorbed by the object. I do.

図12は、3つの物体(レタス,トマト,バター)についての、可視光の領域での反射光の特性例を示す。この図12の縦軸に示す反射率は、それぞれの物体ごとに個別に測定した相対値であり、3つの物体での反射光の大小関係を示すものではない。
例えば、レタスaは、緑色の領域で反射率が上昇する。したがって、観察者にはレタスが緑色に見える。また、トマトbは、赤色の領域で反射率が上昇する。したがって、観察者にはトマトが赤色に見える。
それぞれの色(波長)の反射光は、それぞれの物体に照射される光をそのまま反射する。つまり、緑色の波長帯の光をレタスに照射することでレタスが緑色に見え、赤色の波長帯の光をトマトに照射することでトマトが赤色に見える。
一方、上述した蛍光の場合には、それぞれの物体に入射する光とは異なった波長の光である長波長側の光を出射する。蛍光成分は、様々な物体から発することが知られているが、物体によって波長や分布特性は変化する。
FIG. 12 shows an example of characteristics of reflected light in the visible light region for three objects (lettuce, tomato, and butter). The reflectivity shown on the vertical axis in FIG. 12 is a relative value measured individually for each object, and does not indicate the magnitude relationship of the reflected light from the three objects.
For example, lettuce a has an increased reflectance in the green region. Therefore, the lettuce looks green to the observer. The reflectance of tomato b increases in the red region. Therefore, tomatoes appear red to the observer.
The reflected light of each color (wavelength) directly reflects the light irradiated on each object. That is, irradiating the lettuce with light in the green wavelength band causes the lettuce to appear green, and irradiating the tomato with light in the red wavelength band causes the tomato to appear red.
On the other hand, in the case of the above-described fluorescence, light on the long wavelength side, which is light having a wavelength different from the light incident on each object, is emitted. It is known that the fluorescent component is emitted from various objects, but the wavelength and distribution characteristics change depending on the object.

従来、反射光と蛍光を区別して正確に検出するためには、非常に複雑で精度の高い解析装置が必要であった。例えば、紫外光および可視光の波長帯域を複数の狭い帯域に分割して、それぞれの帯域ごとの光を被測定対象物に照射する。そして、その被測定対象物が発する光の波長を光スペクトルアナライザなどの測定器で測定する。測定器で測定された光が、照射した光と同じ波長の成分だけのときには、反射光だけと判断される。また、測定器で測定された光が、照射した光よりも長い波長域であるとき、その長い波長域の光は蛍光と判断される。   Heretofore, in order to accurately detect the reflected light and the fluorescent light while distinguishing them, an extremely complicated and highly accurate analyzer has been required. For example, the wavelength band of the ultraviolet light and the visible light is divided into a plurality of narrow bands, and light of each band is irradiated on the object to be measured. Then, the wavelength of the light emitted from the object to be measured is measured by a measuring device such as an optical spectrum analyzer. When the light measured by the measuring instrument is only the component having the same wavelength as the irradiated light, it is determined that the reflected light is only. Further, when the light measured by the measuring instrument has a longer wavelength range than the irradiated light, the light in the longer wavelength range is determined to be fluorescent.

このように、狭い帯域に分割された紫外光および可視光による光の発光と測定を、可視光の全ての波長範囲で行うことで、被測定対象物の反射光と蛍光とを分離して検出することができる。
被測定対象物の反射光と蛍光を正確に検出することで、例えば農作物などの植物の産地や種類などが判る。例えば、マンゴの蛍光成分の波長分布は、産地によって異なることが知られている。具体的には、日本の沖縄産のマンゴと、日本の宮崎産のマンゴと、台湾産のマンゴは、蛍光成分の波長分布から正確に判別することができる。また、蛍光成分の波長分布から、そばに含まれるそば粉の量が判るとも言われている。
In this way, the emission and measurement of light by ultraviolet light and visible light divided into narrow bands are performed in the entire wavelength range of visible light, so that the reflected light and fluorescence of the measured object are separated and detected. can do.
By accurately detecting the reflected light and the fluorescence of the object to be measured, it is possible to find out, for example, the place of production and the type of plants such as agricultural products. For example, it is known that the wavelength distribution of the fluorescent component of mango varies depending on the place of production. Specifically, mango from Okinawa in Japan, mango from Miyazaki in Japan, and mango from Taiwan can be accurately determined from the wavelength distribution of the fluorescent component. It is also said that the amount of buckwheat flour contained in the buckwheat can be determined from the wavelength distribution of the fluorescent component.

特許文献1には、標本が発する蛍光波長帯域を特定するために、異なる複数の波長帯域で撮影し、それらの画像から蛍光の特徴量を算出する技術について記載されている。
特許文献2には、所定の波長間隔で強弱を繰り返す波長特性のプログラマブル光源を用意し、そのプログラマブル光源の強弱が入れ替わる2つの照明光で被写体を照射して、それぞれの照明光ごとに撮影を行い、2回撮影した画像の差分から蛍光を検出する技術が記載されている。
Patent Literature 1 describes a technique for calculating a feature amount of fluorescence from images of a plurality of different wavelength bands in order to specify a fluorescence wavelength band emitted by a specimen.
Patent Literature 2 discloses a programmable light source having a wavelength characteristic that repeats intensity at predetermined wavelength intervals, irradiates a subject with two illumination lights in which the intensity of the programmable light source is switched, and performs shooting for each illumination light. A technique for detecting fluorescence from a difference between images captured twice is described.

特開2013−114233号公報JP 2013-114233 A 国際公開WO2015/080275号International Publication WO2015 / 080275

特許文献1に記載されているように、波長帯域が狭い複数の帯域ごとに撮影を行って、蛍光を検出するためには、非常に多くの撮影回数が必要であり、撮影作業に手間がかかるという問題があった。特に、対象物体の1点の蛍光成分を計測するのではなく、対象物体全体や対象シーン全体を計測する場合には、さらに計測に要する時間がかかり、非常に困難な作業になるという問題があった。また、光スペクトルアナライザなどの測定器は非常に高価であって、かつその取り扱いも複雑な機器であり、これを利用した解析システムも高額になってしまうという問題があった。   As described in Patent Literature 1, in order to perform imaging for each of a plurality of bands having a narrow wavelength band and to detect fluorescence, an extremely large number of times of imaging is required, and the imaging operation is troublesome. There was a problem. In particular, when measuring the entire target object or the entire target scene instead of measuring the fluorescence component at one point of the target object, there is a problem that it takes much more time for the measurement, which is an extremely difficult task. Was. Further, there is a problem that a measuring instrument such as an optical spectrum analyzer is very expensive and the handling thereof is complicated, and an analysis system using the measuring instrument becomes expensive.

これに対して、特許文献2に記載されている技術では、光源の条件を変えて2回の撮影を行い、2回撮影した画像の差分から蛍光を検出するようにしている。これにより、光スペクトルアナライザなどの特殊な測定器を用いることなく、簡単に蛍光を検出することができるという利点がある。
しかしながら、特許文献2に記載された技術では、1つの被測定対象物に対して、光源の条件を変えて2回の撮影を行う必要があり、動いている対象物は測定できないという問題がある。また、特許文献2に記載された技術で用いられるプログラマブル光源は、極めて高価な特殊な光源が必要とされるという問題があった。
On the other hand, in the technique described in Patent Literature 2, imaging is performed twice by changing the conditions of the light source, and fluorescence is detected from the difference between the images captured twice. Thus, there is an advantage that fluorescence can be easily detected without using a special measuring device such as an optical spectrum analyzer.
However, in the technique described in Patent Document 2, it is necessary to perform two shootings on one measurement target object by changing the conditions of the light source, and there is a problem that a moving target object cannot be measured. . Further, the programmable light source used in the technique described in Patent Document 2 has a problem that an extremely expensive special light source is required.

本発明は、被測定物が動いている物体であっても、蛍光を正確かつ簡単に推定することが可能な画像処理装置、画像処理方法及びプログラムを提供することを目的とする。   An object of the present invention is to provide an image processing apparatus, an image processing method, and a program that can accurately and easily estimate fluorescence even when a measured object is a moving object.

本発明の画像処理装置は、蛍光の分光分布が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光を発光させる光源と、この光源による照明光が照射された被測定対象物を、複数の波長帯域に分光して撮影することで分光成分を得る分光カメラと、分光カメラで得た1フレームの画像データの複数の波長帯域ごとの分光成分から、被測定対象物の分光反射率と蛍光を複数の基底で近似する主成分分析部と、照明光の特性と主成分分析部で得た複数の基底とを使った演算で、被測定対象物の反射および蛍光を推定する蛍光推定部とを備えた。 An image processing apparatus according to an aspect of the invention includes a light source that emits illumination light having characteristics in which a frequency component higher than a frequency component of the spectral distribution of fluorescence is included in a plurality of wavelength bands, and a measurement target irradiated with the illumination light by the light source. A spectral camera that obtains a spectral component by spectrally capturing an object in a plurality of wavelength bands to obtain a spectral component, and a spectral component for each of a plurality of wavelength bands of image data of one frame obtained by the spectral camera are used to determine an object to be measured. Estimate the reflection and fluorescence of the measured object by calculation using the principal component analysis unit that approximates the spectral reflectance and fluorescence with multiple bases, and the calculation using the characteristics of the illumination light and the multiple bases obtained by the principal component analysis unit And a fluorescence estimating unit.

また、本発明の画像処理方法は、蛍光成分の分光分布が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光が照射された被測定対象物を、分光カメラで複数の波長帯域に分光して撮影する撮影工程と、撮影工程で撮影して得た1フレームの画像データの複数の波長帯域ごとの分光成分から、被測定対象物の分光反射率と蛍光成分を複数の基底で近似する主成分分析工程と、照明光の特性と主成分分析部で得た複数の基底とを使った演算で、被測定対象物の反射と蛍光を推定する推定工程とを含む。 Further, the image processing method of the present invention uses a spectroscopic camera to measure a plurality of measurement targets irradiated with illumination light having characteristics in which a frequency component higher than the frequency component of the spectral distribution of the fluorescent component is included in a plurality of wavelength bands. A plurality of spectral reflectances and a plurality of fluorescent components of an object to be measured are obtained from a photographing process of spectrally photographing in a wavelength band of a plurality of wavelength bands and spectral components of one frame of image data obtained in the photographing process for each of a plurality of wavelength bands. And an estimation step of estimating the reflection and fluorescence of the measured object by an operation using the characteristics of the illumination light and a plurality of bases obtained by the principal component analysis unit.

また、本発明のプログラムは、上記画像処理方法の各工程をコンピュータで実行するために、コンピュータに実装して利用されるものである。   Further, the program of the present invention is used by being mounted on a computer in order to execute each step of the image processing method by the computer.

本発明によると、蛍光の分光分布が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光で照明された被測定対象物を撮影することで、観察される反射光成分が基底と高周波の照明光の積として表現され、蛍光成分の基底とは相違するため、撮影画像に含まれる反射光成分と蛍光成分を分離する演算が可能になり、蛍光を正確に推定できるようになる。   According to the present invention, a reflected light component to be observed is obtained by photographing an object to be measured illuminated with illumination light having a characteristic in which a frequency component higher than a frequency component of the fluorescence spectral distribution is included in a plurality of wavelength bands. Is expressed as the product of the base and the high-frequency illumination light, and is different from the base of the fluorescent component, so that it is possible to perform an operation to separate the reflected light component and the fluorescent component contained in the captured image, and to accurately estimate the fluorescence. become.

本発明の一実施の形態例によるシステムを示す構成図である。FIG. 1 is a configuration diagram illustrating a system according to an embodiment of the present invention. 照明光と分光反射率、吸収成分及び蛍光発光の一般的な関係を示す説明図である。FIG. 3 is an explanatory diagram showing a general relationship among illumination light, spectral reflectance, absorption component, and fluorescence emission. 照明光に高周波成分がない場合(図3A)と高周波成分がある場合(図3B)の反射および蛍光変化の例を示す説明図である。It is explanatory drawing which shows the example of the reflection and fluorescence change when there is no high frequency component in illumination light (FIG. 3A) and when there is a high frequency component (FIG. 3B). 本発明の一実施の形態例による処理の流れを示すフローチャートである。5 is a flowchart illustrating a flow of a process according to an embodiment of the present invention. 本発明の一実施の形態例によるさまざまな物体の分光反射率の例(図5A)と、ある物体の分光反射率の上位5個の基底の例(図5B)を示す特性図である。FIG. 5B is a characteristic diagram showing an example of the spectral reflectance of various objects according to the embodiment of the present invention (FIG. 5A), and an example of the top five bases of the spectral reflectance of an object (FIG. 5B). 本発明の一実施の形態例によるn個の基底の線形和の例を示す図である。FIG. 6 is a diagram illustrating an example of a linear sum of n bases according to an embodiment of the present invention. 本発明の一実施の形態例を適用して蛍光を推定する場合の理想的な光源の特性の一例を示す図である。FIG. 5 is a diagram illustrating an example of ideal light source characteristics when estimating fluorescence by applying an embodiment of the present invention. 本発明の一実施の形態例を適用して蛍光を推定する場合のプログラマブル光源の特性の一例を示す図である。FIG. 4 is a diagram illustrating an example of a characteristic of a programmable light source when estimating fluorescence by applying an embodiment of the present invention. 本発明の一実施の形態例を適用して蛍光を推定する場合のHIDランプの特性の一例を示す図である。FIG. 4 is a diagram illustrating an example of characteristics of an HID lamp when fluorescence is estimated by applying an embodiment of the present invention. 本発明と比較するために、蛍光推定に適用できない光源の例を示す特性図である。FIG. 4 is a characteristic diagram illustrating an example of a light source that cannot be applied to fluorescence estimation for comparison with the present invention. 本発明の一実施の形態例で反射及び蛍光成分を推定した例の図であり、図11Aは緑色に観察される対象物体の反射と蛍光成分を示し、図11Bは赤色に観察される対象物体の反射と蛍光成分を示す。FIG. 11A is a diagram of an example in which reflection and fluorescence components are estimated in an embodiment of the present invention. FIG. 11A shows reflection and fluorescence components of a target object observed in green, and FIG. 11B shows a target object observed in red. 2 shows the reflection and the fluorescence component of the light. 反射特性の例を示す図である。It is a figure showing an example of a reflection characteristic.

以下、本発明の一実施の形態例(以下、「本例」と称する。)を、図1〜図11を参照して説明する。   Hereinafter, an embodiment of the present invention (hereinafter, referred to as “present example”) will be described with reference to FIGS. 1 to 11.

[1.システム構成例]
図1は、本例の画像処理装置のシステム全体を示す図である。このシステムは、被測定対象物である被写体90からの反射光を検出し、検出した反射光成分を使った演算で、被写体90が発する反射ならびに蛍光を推定するものである。
[1. System configuration example]
FIG. 1 is a diagram illustrating the entire system of the image processing apparatus according to the present embodiment. This system detects reflected light from a subject 90, which is an object to be measured, and estimates reflection and fluorescence emitted from the subject 90 by an operation using the detected reflected light component.

被写体90は、光源20からの照明光が照射された状態で、カメラ40によって撮影される。光源20が発する照明光としては、本例の場合、検出(推定)する蛍光成分の分光分布が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性のものとする。このような条件を満たす光源の1つとして、例えば高輝度放電ランプ(High Intensity Discharge lamp:以下「HIDランプ」と称する。)がある。HIDランプは、自動車の前照灯などに使用されている。HIDランプを使用するのは1つの例であり、蛍光成分が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光を発する光源であれば、その他の方式の光源を使用してもよい。また、この照明光の特性の具体的な例は後述する。   The subject 90 is photographed by the camera 40 in a state where illumination light from the light source 20 is emitted. In the case of this example, the illumination light emitted by the light source 20 has a characteristic in which a frequency component higher than the frequency component of the spectral distribution of the fluorescent component to be detected (estimated) is included in a plurality of wavelength bands. One of the light sources satisfying such a condition is, for example, a high-intensity discharge lamp (hereinafter, referred to as an “HID lamp”). HID lamps are used for headlights of automobiles and the like. One example of using an HID lamp is to use a light source of another type as long as the light source emits illumination light having a characteristic in which a frequency component higher than the frequency component of the fluorescent component is included in a plurality of wavelength bands. May be. A specific example of the characteristics of the illumination light will be described later.

そして、光源20が照明光を出力した状態で、撮影工程でカメラ40が被写体90の撮影を行う。
カメラ40としては、可視光の帯域を含む範囲を所定数の帯域(例えば30帯域)に分割して、その分割した帯域ごとに各画素のデータを得る分光カメラが使用される。また、カメラ40は、所定のフレームレートで連続して撮影を行うことで、動画像の撮影が可能なものを使用するが、被写体90が静止している場合には、静止画像を撮影するカメラ40を使用してもよい。
Then, with the light source 20 outputting the illumination light, the camera 40 captures an image of the subject 90 in a capturing step.
As the camera 40, a spectral camera that divides a range including a band of visible light into a predetermined number of bands (for example, 30 bands) and obtains data of each pixel for each of the divided bands is used. Also, the camera 40 is capable of shooting a moving image by continuously shooting at a predetermined frame rate. However, when the subject 90 is stationary, the camera 40 shoots a still image. Forty may be used.

カメラ40が撮影して得た画像データは、画像処理部30に送られ、画像処理部30によって、画像内の画素ごとに反射成分と蛍光成分を推定する演算処理が行われる。
画像処理部30は、カメラ画像から反射および蛍光を推定するための処理部として、主成分分析部31と蛍光推定部32とを備える。
主成分分析部31は、分光反射率と蛍光発光の主成分分析工程を行い、分光反射率および蛍光発光の分光分布を特定数の基底の線形モデルに変換する。この主成分分析部31は、例えばフーリエ変換で分光反射率を周波数解析することで、特定数の基底の線形モデルを得る。但し、主成分分析部31がリアルタイムで周波数解析するのは1つの例であり、周波数解析を行う代わりに、分光反射率と基底の線形モデルとの対応のデータをデータベースとして持ち、データベースを参照して分光反射率から基底の線形モデルを得るようにしてもよい。ここでは、データベースを使って基底の線形モデルを得る処理を適用する。また、色の分光反射率のデータベースから分光反射率の基底の線形モデルを求め、蛍光発光の分光分布を示すデータベースからは、蛍光の基底の線形モデルについても得る。
そして、分光反射率の線形基底と、蛍光の基底線形(但し係数が未知)と、照明光の特性とに基づいて、蛍光推定部32が反射成分と蛍光成分を推定する。反射成分と蛍光成分を推定する処理は、反射ならびに蛍光の基底線形の係数を推定する処理であり、詳細は後述する。
Image data obtained by photographing with the camera 40 is sent to the image processing unit 30, and the image processing unit 30 performs an arithmetic process of estimating a reflection component and a fluorescence component for each pixel in the image.
The image processing unit 30 includes a principal component analysis unit 31 and a fluorescence estimation unit 32 as a processing unit for estimating reflection and fluorescence from a camera image.
The principal component analysis unit 31 performs a principal component analysis process of the spectral reflectance and the fluorescence emission, and converts the spectral reflectance and the spectral distribution of the fluorescence emission into a specific number of basis linear models. The principal component analysis unit 31 obtains a specific number of base linear models by frequency-analyzing the spectral reflectance by, for example, Fourier transform. However, it is one example that the principal component analysis unit 31 performs the frequency analysis in real time, and instead of performing the frequency analysis, the database has data corresponding to the spectral reflectance and the linear model of the basis, and refers to the database. Alternatively, a base linear model may be obtained from the spectral reflectance. Here, processing for obtaining a base linear model using a database is applied. Further, a linear model of the basis of the spectral reflectance is obtained from the database of the spectral reflectance of the color, and a linear model of the basis of the fluorescence is also obtained from the database showing the spectral distribution of the fluorescence emission.
Then, the fluorescence estimation unit 32 estimates the reflection component and the fluorescence component based on the linear basis of the spectral reflectance, the basis linearity of the fluorescence (the coefficient is unknown), and the characteristics of the illumination light. The process of estimating the reflection component and the fluorescence component is a process of estimating the coefficient of the basis line of the reflection and the fluorescence, and will be described later in detail.

そして、画像処理部30は、カメラ40が撮影して得た画像データから、反射ならびに蛍光推定部32で推定した反射と蛍光成分各成分を抽出した画像データを得る。画像処理部30で得られた反射成分のみと蛍光成分のみを表す各画像データは画像表示部50に供給され、画像表示部50で反射および蛍光成分の画像が表示される。
また、画像処理部30で得られた蛍光の画像データは、特性解析部60に供給される。特性解析部60は、蛍光の画像データから、被写体90の蛍光特性の分布状態を解析する。なお、特性解析部70は、反射光成分の分布状態や、吸光成分の分布状態を解析してもよい。画像処理部30での処理は、制御部10の制御下で実行される。
Then, the image processing unit 30 obtains image data obtained by extracting the reflection and each component of the reflection and the fluorescence component estimated by the fluorescence estimation unit 32 from the image data obtained by photographing by the camera 40. Each image data representing only the reflection component and the fluorescence component obtained by the image processing unit 30 is supplied to the image display unit 50, and the image of the reflection and the fluorescence component is displayed on the image display unit 50.
The fluorescence image data obtained by the image processing unit 30 is supplied to the characteristic analysis unit 60. The characteristic analysis unit 60 analyzes the distribution state of the fluorescent characteristics of the subject 90 from the fluorescent image data. Note that the characteristic analysis unit 70 may analyze the distribution state of the reflected light component and the distribution state of the light absorption component. The processing in the image processing unit 30 is executed under the control of the control unit 10.

[2.蛍光を推定する原理の説明]
次に、本例の画像処理装置が蛍光を推定する原理を、図2〜図6を参照して説明する。
図2は、ある物体を照明光Lで照らしたとき、その物体を観察した光に含まれる蛍光成分Eの例を説明するための図である。図2において横軸は波長であり、縦軸は強度である。
照明光を照射して観察される物体表面の色は、照明光の分光分布と物体表面の分光反射率の積であることが知られている。分光反射率は、入射光の各波長に対する反射の割合を示す。
[2. Explanation of the principle of estimating fluorescence]
Next, the principle of estimating the fluorescence by the image processing apparatus of the present embodiment will be described with reference to FIGS.
FIG. 2 is a diagram illustrating an example of a fluorescent component E contained in light obtained by observing an object when the object is illuminated with the illumination light L. In FIG. 2, the horizontal axis is wavelength and the vertical axis is intensity.
It is known that the color of an object surface observed by irradiating illumination light is the product of the spectral distribution of the illumination light and the spectral reflectance of the object surface. The spectral reflectance indicates the ratio of reflection of incident light to each wavelength.

ここで、測定対象となる物体が全く蛍光を発しない場合には、照明光の分光分布と物体表面の分光反射率の積が、撮影画像の各画素の分光値になる。例えば、照明光の分光分布をl(λ)、物体の分光反射率をr(λ)としたとき、撮影画像として取り込んだ反射光の分光分布P(λ)は、次の式で求まる。

Figure 0006671653
この式は蛍光がない場合であるが、実際には多くの物質は、図2に示すように蛍光成分E(λ)を含んでいる。つまり、観察光の分光分布P(λ)には、分光分布l(λ)と分光反射率R(λ)に、蛍光成分E(λ)を加算する必要がある。但し、蛍光成分E(λ)には、照明光と吸光度との積で示される係数が乗算される。この係数は蛍光発光の強度を決定するものであり、物体の表面での各派長の光の吸収度合いを示す吸光度a(λ)と分光分布l(λ)の積分により求められる。
Figure 0006671653
吸収成分a(λ)は、蛍光成分e(λ)とは異なる波長域,短波長側に現われる。
最終的に反射成分と蛍光成分が観察される場合の式は、
Figure 0006671653
ここで、p1(λ)は観察光p(λ)に含まれる反射成分,p(λ)は観察光p(λ)に含まれる蛍光成分を表している。
各波長での観察光p(λi)は、以下の行列式で表すことができる。
Figure 0006671653
本発明で必要な処理は、観察光p(λ)から分光反射率r(λ)と蛍光e(λ)を推定することであるが、観測値の数が未知数よりも少ないため、推定は困難となる。すなわち、n個の観測値(p(λ1), p(λ2), …, p(λn))に対して、未知数が2n ((r(λ1), r(λ2), …, r(λn)およびe(λ1), e(λ2), …, e(λn))となってしまうため、推定は不可能である。推定する未知数の数をn以下に減らすため,本発明では分光反射率r(λ)と蛍光発光成分e(λ)を、基底表現を用いて表す。 Here, when the object to be measured does not emit fluorescence at all, the product of the spectral distribution of the illumination light and the spectral reflectance of the object surface is the spectral value of each pixel of the captured image. For example, when the spectral distribution of the illumination light is l (λ) and the spectral reflectance of the object is r (λ), the spectral distribution P 1 (λ) of the reflected light captured as the captured image is obtained by the following equation.
Figure 0006671653
This equation is for no fluorescence, but in practice many substances include a fluorescent component E (λ) as shown in FIG. That is, it is necessary to add the fluorescence component E (λ) to the spectral distribution l (λ) and the spectral reflectance R (λ) to the spectral distribution P (λ) of the observation light. However, the fluorescence component E (λ) is multiplied by a coefficient represented by the product of the illumination light and the absorbance. This coefficient determines the intensity of the fluorescent light emission, and is obtained by integrating the absorbance a (λ) indicating the degree of absorption of each major light on the surface of the object and the spectral distribution l (λ).
Figure 0006671653
The absorption component a (λ) appears on a shorter wavelength side than the fluorescence component e (λ).
The equation when the reflection component and the fluorescence component are finally observed is:
Figure 0006671653
Here, p 1 (λ) represents a reflection component contained in the observation light p (λ), and p 2 (λ) represents a fluorescence component contained in the observation light p (λ).
The observation light p (λi) at each wavelength can be expressed by the following determinant.
Figure 0006671653
The processing required in the present invention is to estimate the spectral reflectance r (λ) and the fluorescence e (λ) from the observation light p (λ), but the estimation is difficult because the number of observations is smaller than the unknown. Becomes That is, for n observations (p (λ1), p (λ2),..., P (λn)), the unknown is 2n ((r (λ1), r (λ2),..., R (λn) And e (λ1), e (λ2),..., E (λn)), so that the estimation is impossible. (λ) and the fluorescence emission component e (λ) are represented using a base expression.

図3A及び図3Bは、物体に照明光を照射したときの反射光の特性l(λ)r(λ)(各図の左側)と、蛍光成分の特性we(λ)(各図の右側)とを、並べて示す。各特性図において、横軸は波長を示し、縦軸は強度を示す。
図3Aは、物体に照射した照明光が、図1で説明した条件を持たない、すなわち蛍光成分に含まれる高周波成分よりも高い周波数成分を持たないもの(ハロゲン球や太陽光のように滑らかな分光分布を持つ照明光)の場合の反射光と、特定の波長域に現われる蛍光成分を示す。
3A and 3B show the characteristic l (λ) r (λ) of the reflected light when the object is irradiated with the illumination light (left side in each figure) and the characteristic we (λ) of the fluorescent component (right side in each figure). Are shown side by side. In each characteristic diagram, the horizontal axis represents wavelength, and the vertical axis represents intensity.
FIG. 3A shows a case where the illumination light applied to the object does not have the condition described with reference to FIG. 1, that is, does not have a frequency component higher than the high frequency component included in the fluorescent component (a smooth component such as a halogen bulb or sunlight). FIG. 5 shows reflected light in the case of illumination light having a spectral distribution) and a fluorescent component appearing in a specific wavelength range.

一方、図3Bは、物体に照射した照明光が、蛍光成分に含まれる高周波成分よりも高い周波数成分を持ったものである場合の反射光と、特定の波長域に現われる蛍光成分を示す。ここでEaは図3Aで説明した照明光の分光分布と蛍光物質の吸光度のもとで計算される蛍光の強度を示しており、Ebは図3Bの照明光のもとで分光分布と蛍光物質の吸光度もとで計算される蛍光の強度を示し,図3AとBの蛍光成分を比較すると照明光に高周波成分が含まれる場合でも、蛍光成分の形態は変化しないことが分かる。照明光に高い周波数成分が含まれる。光源の例の詳細は後述するが、例えば一例として図9Aに示すような特性の光源がある。このため、その照明光を反射した反射光にも、シャープな成分が含まれる。例えば、図3Bに示すようなシャープな成分Pa,Pb,Pcが反射光に含まれる。   On the other hand, FIG. 3B shows the reflected light when the illumination light applied to the object has a higher frequency component than the high frequency component included in the fluorescent component, and the fluorescent component appearing in a specific wavelength range. Here, Ea indicates the spectral distribution of the illumination light and the fluorescence intensity calculated based on the absorbance of the fluorescent substance described with reference to FIG. 3A, and Eb indicates the spectral distribution and the fluorescent substance under the illumination light of FIG. 3B. 3A and 3B, it can be seen that the form of the fluorescent component does not change even if the illumination light contains a high-frequency component. The illumination light contains high frequency components. Although details of an example of the light source will be described later, for example, there is a light source having characteristics as shown in FIG. 9A as an example. Therefore, the reflected light that reflects the illumination light also includes a sharp component. For example, reflected components include sharp components Pa, Pb, and Pc as shown in FIG. 3B.

本発明では、この図3Bに示すように、照明光に高周波な成分が含まれる場合に反射光成分に照明光のシャープな成分が含まれることと、蛍光成分については、照明光が高周波な分光分布を持つ場合にも蛍光発光波長の形態が変化しないことを利用して、演算で蛍光成分を推定する処理を行うようにしている。   According to the present invention, as shown in FIG. 3B, when the illumination light includes a high-frequency component, the reflected light component includes the sharp component of the illumination light, and the fluorescence component includes a high-frequency spectral component of the illumination light. Utilizing that the form of the fluorescence emission wavelength does not change even in the case of having a distribution, a process of estimating the fluorescence component by calculation is performed.

図4は、本例の画像処理装置が被写体を撮影して蛍光成分を推定するまでの手順を示す。
まず、制御部10からの指示に基づいて、光源20からの照明光Lで照らされた被写体を、カメラ40が1フレームの撮影を行い、画像処理部30が1フレームの分光画像を取り込む(ステップS11)。
FIG. 4 shows a procedure performed by the image processing apparatus according to the present embodiment until an image of a subject is captured and a fluorescent component is estimated.
First, based on an instruction from the control unit 10, the camera 40 captures one frame of a subject illuminated with the illumination light L from the light source 20, and the image processing unit 30 captures one frame of a spectral image (step S1). S11).

画像処理部30の主成分分析部31は、データベースを用いた分光反射率の主成分分析を行い、k1個(k1は整数:例えば8)の基底の線形モデルを得る。ここでは、画像処理部30は、分光反射率と基底の線形モデルとの対応が格納されたデータベースを持ち、そのデータベースを使って分光反射率から対応したk1の基底の線形モデルで近似したものを推定していく。
また、蛍光成分についても、k2個(k2は整数:例えば12)の基底の線形モデルで近似したものを得る(ステップS12)。この蛍光成分についても、蛍光発光のデータベースを使って、k2個の基底の線形モデルを得る。但し、この時点では反射成分ならびに蛍光成分は推定前であるため、反射成分および蛍光成分の基底の係数は未知であり、係数が未知の基底の線形モデルを得る。なお、基底数k1とk2は異なる数としたが、同じ数でもよい。
分光反射率をk1個の基底の線形モデルで表現するときには、例えば上位8個程度の限られた数の線形基底で、分光反射率の大部分の成分を表現できることが知られている。蛍光成分についても、同様に12個程度の線形基底で、蛍光成分の大部分の成分を表現できることが知られている。
さらに、画像処理部30の蛍光推定部32は、分光反射率の基底数をk1、蛍光成分の基底数をk2とし、照明光Lの特性を使った行列式の演算で、蛍光成分の推定値を算出する(ステップS13)。反射成分および蛍光成分の推定に使用する行列式は後述する。
The principal component analysis unit 31 of the image processing unit 30 performs principal component analysis of the spectral reflectance using the database, and obtains k1 (k1 is an integer, for example, 8) base linear models. Here, the image processing unit 30 has a database in which the correspondence between the spectral reflectance and the linear model of the base is stored. Using the database, an image obtained by approximating the corresponding linear model of the base of k1 from the spectral reflectance. Estimate.
In addition, as for the fluorescent component, an approximation by k2 (k2 is an integer, for example, 12) base linear models is obtained (step S12). For this fluorescent component, a k2 basis linear model is obtained using the database of fluorescent emission. However, at this time, since the reflection component and the fluorescence component have not been estimated, the base coefficients of the reflection component and the fluorescence component are unknown, and a linear model of the base whose coefficient is unknown is obtained. Although the base numbers k1 and k2 are different numbers, they may be the same number.
It is known that when the spectral reflectance is represented by a k1 basis linear model, most components of the spectral reflectance can be represented by, for example, a limited number of top eight linear basis. It is also known that most of the fluorescent components can be expressed by about 12 linear bases similarly.
Further, the fluorescence estimating unit 32 of the image processing unit 30 sets the basis number of the spectral reflectance to k1, the basis number of the fluorescence component to k2, and calculates the estimated value of the fluorescence component by calculating a determinant using the characteristics of the illumination light L. Is calculated (step S13). The determinant used for estimating the reflection component and the fluorescence component will be described later.

図5は、分光反射率をk1個の基底の線形モデルで表現した例を示す。図5Aは、さまざまな物質の分光反射率を示す。図5Aにおいて、横軸は波長であり、縦軸は反射率の強度を示す。図5Bは、特定の1つの物質の分光反射率の上位k1個(ここではk1は5)の基底を用いた線形モデルを示す。図5Bにおいて、横軸は波長であり、縦軸は関数値を示す。   FIG. 5 shows an example in which the spectral reflectance is represented by k1 base linear models. FIG. 5A shows the spectral reflectance of various materials. In FIG. 5A, the horizontal axis represents the wavelength, and the vertical axis represents the intensity of the reflectance. FIG. 5B shows a linear model using the top k1 (here, k1 is 5) bases of the spectral reflectance of one specific substance. In FIG. 5B, the horizontal axis represents the wavelength, and the vertical axis represents the function value.

図6は、n個の基底の線形モデルにより分光反射率を分解して示すものである。
すなわち、図6の左端に示す分光反射率の特性は、係数α,係数α,係数α,・・・,係数αk1のk1個の異なる係数と対応した基底の線形モデルに分解することができる。つまり、1つの分光反射率が、k1個の異なる周波数成分に分解される。
FIG. 6 shows the spectral reflectances decomposed by a linear model of n bases.
That is, characteristics of the spectral reflectance shown at the left end of Figure 6, decompose coefficients alpha 1, coefficient alpha 2, the coefficient alpha 3, · · ·, a linear model of the base that corresponds with the (k1) of different coefficients of coefficient alpha k1 be able to. That is, one spectral reflectance is decomposed into k1 different frequency components.

図6で記述した分光反射率の線形モデルによる近似は以下の式で表すことができる。ここでは、k1個(k1次元)の基底を用いた線形モデルの例である。αはj番目の基底の係数であり、b(λ)は、j番目の反射率の基底の形である。

Figure 0006671653
全ての波長における分光反射率は行列式として記述できる。

Figure 0006671653
The approximation of the spectral reflectance by the linear model described in FIG. 6 can be expressed by the following equation. Here, an example of a linear model using k1 (k1 dimension) bases is shown. α j is the coefficient of the j-th base, and b j (λ) is the form of the j-th reflectance base.

Figure 0006671653
The spectral reflectance at all wavelengths can be described as a determinant.

Figure 0006671653

ある照明光l(λ)のもとで観察される反射成分p1(λ)は、分光反射rを基底bjで表現して記述することができる。

Figure 0006671653
照明光l(λ)が高い周波数分布を持つ場合(蛍光成分に含まれる高周波成分よりも高い周波数成分)、光源l(λ)と基底bj(λ)の積も、光源20が出力する照明光が持つ高い周波数成分を示すことになる。図7〜9に基底と照明光の積の分光分布の例を示す。
同様に、蛍光成分の線形モデルによる近似は以下の式で表すことができる。βはj番目の基底の係数であり、c(λ)は、j番目の蛍光成分の基底の形である。

Figure 0006671653
ある照明光l(λ)のもとで観察される蛍光成分p2(λ)は、蛍光発光eを基底cjで表現して記述することができる。

Figure 0006671653
wは物体の表面での各派長の光の吸収度合いを示す係数であり、吸光度a(λ)と分光分布l(λ)の積分により求められる。
蛍光成分の場合、観察される分光は吸収成分a(λ)と分光分布l(λ)の積分により計算される係数wをe(λ)かけるだけであり、観察される蛍光成分の周波数は蛍光基底の最高周波数は変化しない。このことは,照明光が高周波な分布を持つ場合にも発光波長の形態が変化しないことを意味している。 The reflection component p1 (λ) observed under a certain illumination light l (λ) can be described by expressing the spectral reflection r by a basis bj.

Figure 0006671653
When the illumination light l (λ) has a high frequency distribution (a frequency component higher than the high-frequency component included in the fluorescent light component), the product of the light source l (λ) and the base bj (λ) also indicates the illumination light output from the light source 20. Will show the high frequency components of. 7 to 9 show examples of the spectral distribution of the product of the base and the illumination light.
Similarly, the approximation of the fluorescent component by the linear model can be expressed by the following equation. β j is the coefficient of the j-th base, and c j (λ) is the base form of the j-th fluorescent component.

Figure 0006671653
The fluorescence component p2 (λ) observed under a certain illumination light l (λ) can be described by expressing the fluorescence emission e by the basis cj.

Figure 0006671653
w is a coefficient indicating the degree of absorption of each major light on the surface of the object, and is obtained by integrating the absorbance a (λ) and the spectral distribution l (λ).
In the case of the fluorescent component, the observed spectrum is simply multiplied by e (λ) by the coefficient w calculated by integrating the absorption component a (λ) and the spectral distribution l (λ), and the frequency of the observed fluorescent component is The highest frequency of the base does not change. This means that the form of the emission wavelength does not change even when the illumination light has a high frequency distribution.

そして、画像処理部30の蛍光推定部32では、このようにn個の基底の線形モデルで表現された分光反射率と、照明光lの特性とを使って、蛍光成分を推定する処理が行われる。基底表現を用いて、反射成分と蛍光成分を含む観察光は以下の行列式で記述できる。

Figure 0006671653
蛍光成分の線形係数βをw倍した係数β’を定義すると,次式を得る。

Figure 0006671653
この式にもとづき、分光反射を表す線形係数αi(i=1,..k1)と蛍光成分を表すβ’i
i(i=1,..k2)を推定する。
反射特性と線形係数αと蛍光特性を表すβ’を推定できれば基底の線形和により獲反射特性および特性を計算することができる。ここで,未知数はk1+k2個であり、k1+k2が観察数以下、すなわちk1+k2<=nの場合、この式を解くことができる。 Then, the fluorescence estimating unit 32 of the image processing unit 30 performs a process of estimating the fluorescent component using the spectral reflectance expressed by the n linear models and the characteristics of the illumination light l. Will be Using the basis expression, the observation light including the reflection component and the fluorescence component can be described by the following determinant.
Figure 0006671653
If a coefficient β ′ obtained by multiplying the linear coefficient β of the fluorescent component by w is defined, the following equation is obtained.

Figure 0006671653
Based on this equation, a linear coefficient αi (i = 1, .. k1) representing the spectral reflection and β′i representing the fluorescence component
Estimate i (i = 1, .. k2).
If the reflection characteristic, the linear coefficient α, and β ′ representing the fluorescence characteristic can be estimated, the capture reflection characteristic and the characteristic can be calculated by the linear sum of the bases. Here, the number of unknowns is k1 + k2, and when k1 + k2 is equal to or less than the number of observations, that is, k1 + k2 <= n, this equation can be solved.

上記の行列式で分光反射率の基底bjと蛍光成分の基底cjは似た分光特性を持つため、ハロゲン球や太陽光のように滑らかな分光分布を持つ照明光のもとで観察される明るさp(λ)を用いて双方の係数αとβを安定に求めることは難しい。すなわち、上述した行列式から反射光と蛍光とを分離することは極めて難しくなる。そこで,本発明では、光源20が出力する照明光の分光分布を考慮して、上記の式のうち,基底の積l(λ)bj(λ)が、蛍光成分の基底cj(λ)とは異なる特性を持たせることで、線形係数αjとβ’jを安定に求めるものである。   In the above determinant, the basis bj of the spectral reflectance and the basis cj of the fluorescent component have similar spectral characteristics, so that the brightness observed under illumination light having a smooth spectral distribution such as a halogen bulb or sunlight. It is difficult to stably obtain both coefficients α and β using p (λ). That is, it is extremely difficult to separate the reflected light and the fluorescence from the determinant described above. Therefore, in the present invention, in consideration of the spectral distribution of the illumination light output from the light source 20, the product l (λ) bj (λ) of the basis in the above equation is different from the basis cj (λ) of the fluorescent component. By providing different characteristics, the linear coefficients αj and β′j are stably obtained.

先に説明した通り、照明光が高い周波数を持つ場合には、観察される反射成分(分光反射率rと光源lの積)が蛍光成分eよりも高い周波数成分を持つ。同様に反射成分を近似した基底表現においても、分光反射率を近似する基底bj(λ)と照明光l(λ)の積も高い周波数を持つことになる。このため、分光反射率の基底と照明光の積分(l(λ)bj(λ))で得られた分光特性は、蛍光成分を近似する基底cj(λ)と分光分布が相違し、蛍光推定部32で上述した行列式を解くことができ、推定された線形係数αと基底b(λ)の線形和により分光反射率r(λ)が復元でき、推定された線形係数βと基底c(λ)の線形和により蛍光成分、蛍光成分e(λ)をw倍した分光分布we(λ)が復元できる。但し、行列式を解いて蛍光成分eを精度良く推定するためには、照明光に含まれる高周波成分(シャープな成分)が、ある程度広い帯域内に分散して複数存在する必要がある。   As described above, when the illumination light has a high frequency, the observed reflection component (the product of the spectral reflectance r and the light source 1) has a higher frequency component than the fluorescence component e. Similarly, also in the basis expression approximating the reflection component, the product of the basis bj (λ) approximating the spectral reflectance and the illumination light l (λ) has a high frequency. For this reason, the spectral characteristics obtained by the integration of the basis of the spectral reflectance and the illumination light (l (λ) bj (λ)) have a different spectral distribution from the basis cj (λ) that approximates the fluorescent component. The determinant described above can be solved by the unit 32, the spectral reflectance r (λ) can be restored by the linear sum of the estimated linear coefficient α and the basis b (λ), and the estimated linear coefficient β and the basis c ( The spectral distribution we (λ) obtained by multiplying the fluorescence component and the fluorescence component e (λ) by w can be restored by the linear sum of λ). However, in order to accurately estimate the fluorescence component e by solving the determinant, it is necessary that a plurality of high-frequency components (sharp components) included in the illumination light are dispersed in a certain wide band.

このようにして反射成分Rと蛍光成分Eが得られることで、画像処理部30は、被測定物を撮影した分光画像を、反射成分Rと蛍光成分Eの画像に変換することができる。画像処理部30で得られた反射成分Rと蛍光成分Eの画像は、画像表示部50により表示される。また、特性解析部60は、蛍光成分Eの分布特性が解析できるようになる。   By obtaining the reflection component R and the fluorescence component E in this way, the image processing unit 30 can convert the spectral image obtained by capturing the object to be measured into an image of the reflection component R and the fluorescence component E. The image of the reflection component R and the fluorescence component E obtained by the image processing unit 30 is displayed by the image display unit 50. Further, the characteristic analysis unit 60 can analyze the distribution characteristics of the fluorescent component E.

[3.光源の例]
図7〜図9は、上述した条件を満たす照明光の例を示す。図7〜図9のAは420nm〜700nmの帯域の照明光の波長特性を示し、Bは照明光の分光分布の周波数を示し、Cはk1個の全ての基底を重ねて示す。図7〜図9のAの横軸は波長、縦軸はレベルを示し、図7〜図9のBの横軸は、分光分布の周波数を波長(nm)で示し、例えば特定の波長位置のレベル(縦軸)が高いとき、その波長成分(高周波成分)が、照明光に多く含まれることを示す。図7〜図9のCの横軸は、分光反射率の基底と照明光の積の周波数成分を示す。
[3. Example of light source]
7 to 9 show examples of illumination light satisfying the above-described conditions. 7A to 9A show the wavelength characteristics of the illumination light in the band of 420 nm to 700 nm, B shows the frequency of the spectral distribution of the illumination light, and C shows all the k1 bases superimposed. The horizontal axis of A in FIGS. 7 to 9 indicates the wavelength and the vertical axis indicates the level, and the horizontal axis of B in FIGS. 7 to 9 indicates the frequency of the spectral distribution by wavelength (nm). When the level (vertical axis) is high, it indicates that the wavelength component (high-frequency component) is largely contained in the illumination light. The horizontal axis of C in FIGS. 7 to 9 indicates the frequency component of the product of the basis of the spectral reflectance and the illumination light.

図7Aは、照明光の波長特性として、非常にシャープな多くの帯域に分散して存在する理想的な照明光をシミュレーションで算出した例を示す。この波長特性の場合には、図7Bに示すように、高周波成分fに10nmよりも長い波長(つまり高周波成分)が多く含まれていることが判る。また、図7Cに示す基底と照明光の積の分布を見た場合にも、それぞれの基底に10nmを超える長い波長の成分が多く存在することが判る。
この図7に示すような理想的な特性の照明光を出力する光源を用意することで、蛍光の推定を良好に行うことができる。但し、現状ではこのような理想的な特性を持つ光源を得るのは困難である。
FIG. 7A shows an example in which, as wavelength characteristics of illumination light, ideal illumination light which is dispersed in many very sharp bands is calculated by simulation. In the case of the wavelength characteristic as shown in FIG. 7B, a long wavelength (i.e. high frequency components) than 10nm in the high-frequency component f 1 is seen to contain many. Also, when looking at the distribution of the product of the base and the illumination light shown in FIG. 7C, it can be seen that there are many components with a long wavelength exceeding 10 nm in each base.
By preparing a light source that outputs illumination light having ideal characteristics as shown in FIG. 7, it is possible to favorably estimate the fluorescence. However, at present, it is difficult to obtain a light source having such ideal characteristics.

図8Aは、光源としてプログラマブル光源を使用して、比較的短い一定の波長間隔で強度が変化するようにした照明光の例を示す。この波長特性の場合には、図8Bに示すように、高周波成分fが、特定個所(約20nm)に集中している。また、図7Cに示す基底と照明光の積を見た場合にも、それぞれの基底に10nmを超える長い波長の成分が多く存在することが判る。
プログラマブル光源を用意して、この図8に示すような照明光を出力させることで、蛍光の推定を良好に行うことができる。但し、このようなプログラマブル光源は高価であり、容易に入手できる光源ではない。
FIG. 8A shows an example of illumination light using a programmable light source as a light source, the intensity of which changes at a relatively short constant wavelength interval. In the case of this wavelength characteristic as shown in FIG. 8B, the high-frequency component f 2 are concentrated in a specific location (about 20 nm). Also, when looking at the product of the base and the illumination light shown in FIG. 7C, it can be seen that there are many components of long wavelengths exceeding 10 nm in each base.
By preparing a programmable light source and outputting illumination light as shown in FIG. 8, it is possible to satisfactorily estimate the fluorescence. However, such programmable light sources are expensive and are not readily available light sources.

図9Aは、光源としてHIDランプを使用して、高い周波数成分であるシャープで強度が強い箇所が、複数の帯域にそれなりに分散した照明光の例を示す。この波長特性の場合には、図9Bに示すように、高周波成分fが、10nmよりも長い波長域で比較的多く存在している。図9Cに示す基底表現で見た場合にも、それぞれの基底に10nmを超える長い波長の成分が多く存在することが判る。
HIDランプを用意して、この図9に示すような照明光を出力させることで、蛍光の推定を良好に行うことができる。HIDランプは広く普及した光源であるから、比較的容易に入手することができる。
したがって、光源としてHIDランプを使用することで、蛍光成分を良好に推定することができる画像処理装置を比較的容易に得ることが可能である。
FIG. 9A shows an example of illumination light in which a HID lamp is used as a light source, and sharp and strong portions, which are high-frequency components, are dispersed in a plurality of bands. In the case of this wavelength characteristic as shown in FIG. 9B, high frequency components f 3, are present relatively large in a wavelength range longer than 10 nm. It can also be seen from the basis expression shown in FIG. 9C that there are many components with long wavelengths exceeding 10 nm in each basis.
By preparing an HID lamp and outputting illumination light as shown in FIG. 9, it is possible to satisfactorily estimate the fluorescence. Since HID lamps are widely used light sources, they can be obtained relatively easily.
Therefore, by using an HID lamp as a light source, it is possible to relatively easily obtain an image processing apparatus capable of favorably estimating a fluorescent component.

図10は、本発明において、利用することができない光源の特性を参考(比較例)として示したものである。
図10では、蛍光灯の特性(図10の左端)、カラーLED(Light Emitting Diode)ランプの特性(図10の中央)、及び、白色LEDの特性(図10の右側)を示している。各特性ともに、図7〜図9と同様に、図10Aは420nm〜700nmの帯域の照明光の波長特性を示し、図10Bは照明光の高周波成分を示し、図10Cはn個の全ての基底と照明光の分布との積を重ねて示す。
FIG. 10 shows, as a reference (comparative example), characteristics of a light source that cannot be used in the present invention.
FIG. 10 shows the characteristics of a fluorescent lamp (left end of FIG. 10), the characteristics of a color LED (Light Emitting Diode) lamp (center of FIG. 10), and the characteristics of a white LED (right side of FIG. 10). 7A to 9, FIG. 10A shows the wavelength characteristics of the illumination light in the band of 420 nm to 700 nm, FIG. 10B shows the high-frequency components of the illumination light, and FIG. 10C shows all n bases. And the product of the distribution of the illumination light.

蛍光灯の場合、図10Bに高周波成分fとして示すように、10nmよりも長い波長成分が少なく、図10Cに示す照明と基底の積でも、10nmよりも長い成分が少なく、蛍光成分を推定するのに適さない。
カラーLEDの場合についても、図10Bに高周波成分fとして示すように、10nmよりも長い波長成分が少なく、図10Cに示す照明と基底の積でも、10nmよりも長い成分が少なく、蛍光成分を推定するのに適さない。
白色LEDの場合についても、図10Cに高周波成分fとして示すように、10nmよりも長い波長成分が殆どなく、図10Cに示す照明と基底の積でも、10nmよりも長い成分が殆どなく、蛍光成分を推定するのに適さない。
これら図10に示す光源を使用した場合には、先に説明した行列式に基づいた演算で蛍光成分を算出しようとしても、適切な推定結果が得られない。
For fluorescent lamps, as shown as a high frequency component f 4 in FIG. 10B, fewer long wavelength components than 10 nm, in the product of the illumination and the base shown in FIG. 10C, less longer components than 10 nm, to estimate the fluorescence component Not suitable for
For the case of a color LED is also shown as a high frequency component f 5 in FIG. 10B, fewer long wavelength components than 10 nm, in the product of the illumination and the base shown in FIG. 10C, less longer components than 10 nm, the fluorescence component Not suitable for estimation.
For the case of the white LED also, as shown as a high frequency component f 6 in FIG. 10C, almost no longer wavelength components than 10 nm, in the product of the illumination and the base shown in FIG. 10C, almost no longer components than 10 nm, fluorescence Not suitable for estimating components.
When the light sources shown in FIGS. 10A and 10B are used, an appropriate estimation result cannot be obtained even if an attempt is made to calculate the fluorescence component by the calculation based on the determinant described above.

[4.蛍光を推定した例]
図11は、本例の画像処理装置で蛍光成分を推定した例を示す。
図11Aは、ある物質の緑の反射光(左側)と、緑の蛍光成分(右側)の例を示す。
図11Aの左側に示す3つの反射光RG1,RG2,RG3は、それぞれ正確な反射光成分、プログラマブル光源を使った場合の反射光成分、HIDランプを使った場合の反射光成分を示す。また、図11Aの右側に示す3つの蛍光成分EG1,EG2,EG3は、それぞれ正確な蛍光成分、プログラマブル光源を使った場合の蛍光成分、及び、HIDランプを使った場合の蛍光成分を示す。正確な反射光成分RG1及び蛍光成分EG1は、従来から知られた精度の高い蛍光測定装置を使って測定したものである。この3つの蛍光成分EG1,EG2,EG3には大きな相異がない。したがって、本例の画像処理装置によると、従来のような構成が複雑かつ高価な蛍光測定装置を使用することなく、良好に蛍光成分の推定ができることが判る。
[4. Example of estimating fluorescence]
FIG. 11 shows an example of estimating the fluorescence component by the image processing apparatus of this example.
FIG. 11A shows an example of green reflected light (left) and green fluorescent component (right) of a substance.
Three reflection light R G1, R G2 shown on the left side of FIG. 11A, R G3 represents accurate reflection component, respectively, the reflected light component when using a programmable light source, the reflected light component when using HID lamps . Further, three fluorescent components E G1, E G2 shown on the right side in FIG. 11A, E G3, respectively exact fluorescent components, a fluorescent component when using a programmable light source, and a fluorescence component when using HID lamps Show. The accurate reflected light component R G1 and fluorescent component E G1 are measured using a conventionally known high-precision fluorescence measuring device. The three fluorescent components EG1 , EG2 , EG3 do not differ greatly. Therefore, according to the image processing apparatus of the present example, it can be understood that the fluorescence component can be satisfactorily estimated without using an expensive fluorescence measurement apparatus having a complicated configuration as in the related art.

図11Bは、ある物質の赤の反射光(左側)と、赤の蛍光成分(右側)の例を示す。
図11Bの左側に示す3つの反射光RR1,RR2,RR3は、それぞれ正確な反射光成分、プログラマブル光源を使った場合の反射光成分、HIDランプを使った場合の反射光成分を示す。また、図11Bの右側に示す3つの蛍光成分ER1,ER2,ER3は、それぞれ正確な蛍光成分、プログラマブル光源を使った場合の蛍光成分、及び、HIDランプを使った場合の蛍光成分を示す。
赤色の成分についても、3つの蛍光成分ER1,ER2,ER3には大きな相異がない。したがって、本例の画像処理装置によると、良好に蛍光成分の推定を行うことが可能であることが判る。この技術を分光画像に適用した場合,分光画像の各画素ごとに反射成分と蛍光成分を推定することができる。
FIG. 11B shows an example of a red reflected light (left) and a red fluorescent component (right) of a substance.
The three reflected lights R R1 , R R2 , and R R3 shown on the left side of FIG. 11B indicate an accurate reflected light component, a reflected light component when using a programmable light source, and a reflected light component when using an HID lamp, respectively. . The three fluorescent components E R1 , E R2 , and E R3 shown on the right side of FIG. 11B are an accurate fluorescent component, a fluorescent component when a programmable light source is used, and a fluorescent component when a HID lamp is used. Show.
As for the red component, there is no great difference between the three fluorescent components E R1 , E R2 , and E R3 . Therefore, according to the image processing apparatus of the present example, it can be seen that the fluorescence component can be satisfactorily estimated. When this technique is applied to a spectral image, a reflection component and a fluorescence component can be estimated for each pixel of the spectral image.

以上説明したように、本例の画像処理装置によると、分光画像を得るカメラ40で撮影した1フレームの画像から被測定対象物が発する蛍光を正確に推定することができるようになる。しかも、分光反射率を基底で表現した行列式の演算で蛍光が推定できるため、比較的簡単な演算で蛍光の推定ができ、カメラ40で撮影しながらリアルタイムで蛍光の推定ができるようになる。したがって、生物などの動く物体を撮影しながら、リアルタイムで蛍光を推定(測定)することができ、さまざまな物体の蛍光測定が非常に簡単にできるようになる効果を有する。しかも光源20として、HIDランプなどの一般的な光源が使用でき、蛍光を測定(推定)可能なシステムを安価に組むことが可能になる。   As described above, according to the image processing apparatus of the present example, it is possible to accurately estimate the fluorescence emitted from the object to be measured from one frame image captured by the camera 40 that obtains a spectral image. In addition, since the fluorescence can be estimated by the calculation of the determinant expressing the spectral reflectance in the basis, the fluorescence can be estimated by a relatively simple calculation, and the fluorescence can be estimated in real time while photographing with the camera 40. Therefore, it is possible to estimate (measure) the fluorescence in real time while photographing a moving object such as a living thing, which has an effect that the fluorescence measurement of various objects can be performed very easily. Moreover, a general light source such as an HID lamp can be used as the light source 20, and a system capable of measuring (estimating) fluorescence can be assembled at a low cost.

[5.変形例]
なお、本例の画像処理装置に適用可能な光源としては、既に市販された光源の中では、上述したようにHIDランプが存在するが、ここまで説明した照明光の要件を満たすものであれば、その他の種類の光源を使用してもよい。例えば、有機EL(Electro Luminescence)パネルを使った光源や、発光ダイオード(LED)を使った光源であっても、同様にシャープな高周波成分が複数箇所に存在するような照明光を出力するものが作成できれば、適用できる。
また、HIDランプについても、上述した波長特性は一例を示すものであり、その他の波長特性のものを使用してもよい。
[5. Modification]
As a light source applicable to the image processing apparatus of this example, among the light sources already on the market, an HID lamp exists as described above, but any light source that satisfies the requirements for the illumination light described so far can be used. , Other types of light sources may be used. For example, even a light source using an organic EL (Electro Luminescence) panel or a light source using a light emitting diode (LED) may output illumination light in which sharp high-frequency components are present at a plurality of locations. If it can be created, it can be applied.
The above-described wavelength characteristics of the HID lamp are merely examples, and other wavelength characteristics may be used.

また、図1に示す画像処理装置は、画像処理部や画像解析部を専用の回路で構成してもよいが、例えば図4のフローチャートで説明した画像処理や画像解析などを順に実行する工程よりなるプログラム(ソフトウェア)を作成して、そのプログラムをコンピュータ装置に実装することで、画像処理装置を実現してもよい。この場合のプログラムは、例えば、光ディスクや半導体メモリなどの記録媒体に記録してもよい。   Further, in the image processing apparatus shown in FIG. 1, the image processing unit and the image analysis unit may be configured by a dedicated circuit. For example, the image processing unit and the image analysis unit described in the flowchart of FIG. An image processing apparatus may be realized by creating a program (software) and mounting the program on a computer device. The program in this case may be recorded on a recording medium such as an optical disk or a semiconductor memory, for example.

また、図1に示すシステム構成では、撮影を行うカメラと、その撮影画像をリアルタイムで解析する画像処理装置によるシステムとしたが、例えば分光カメラが撮影した画像をメモリなどに記録しておき、その記録画像を、後日、画像処理装置(又は画像処理装置として機能するプログラムが実装されたコンピュータ装置)を使って解析して、蛍光を検出(推定)するようにしてもよい。あるいは、撮影した分光画像のデータを、通信回線を使って別の場所に用意された蛍光推定のための演算処理を行う画像処理装置(又はコンピュータ装置)に送って、その画像処理装置で蛍光の推定結果を得るようにしてもよい。   Further, in the system configuration shown in FIG. 1, the system includes a camera that captures an image and an image processing device that analyzes the captured image in real time. For example, an image captured by a spectroscopic camera is stored in a memory or the like. The recorded image may be analyzed at a later date using an image processing device (or a computer device in which a program functioning as an image processing device is installed) to detect (estimate) the fluorescence. Alternatively, the data of the captured spectral image is sent to an image processing device (or a computer device) that performs an arithmetic process for estimating the fluorescence prepared at another location using a communication line, and the image processing device transmits the fluorescence data. An estimation result may be obtained.

また、上述した蛍光を推定するための行列式についても、一例を示したものであり、同様の原理で、光源に含まれる高周波成分(蛍光よりも高い成分)を使って、蛍光を推定する処理を行うものであれば、その他の演算方法を適用してもよい。   Also, an example of the determinant for estimating the fluorescence described above is shown, and the process of estimating the fluorescence using a high-frequency component (a component higher than the fluorescence) included in the light source is performed based on the same principle. Other calculation methods may be applied as long as the calculation is performed.

10…制御部、20…光源、30…画像処理部、31…主成分分析部、32…蛍光推定部、40…カメラ、50…画像表示部、60…特性解析部、90…被写体(被測定対象物   DESCRIPTION OF SYMBOLS 10 ... Control part, 20 ... Light source, 30 ... Image processing part, 31 ... Principal component analysis part, 32 ... Fluorescence estimation part, 40 ... Camera, 50 ... Image display part, 60 ... Characteristic analysis part, 90 ... Subject (measurement object) Object

Claims (7)

蛍光が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光を発光させる光源と、
前記光源による照明光が照射された被測定対象物を、複数の波長帯域に分光して撮影することで分光成分を得る分光カメラと、
前記分光カメラで得た1フレームの画像データの複数の波長帯域ごとの分光成分から、前記被測定対象物の分光反射率を複数の基底で近似する主成分分析部と、
前記照明光の特性と前記主成分分析部で得た複数の基底とを使った演算で、前記被測定対象物の蛍光を推定する蛍光推定部とを備えた
画像処理装置。
A light source that emits illumination light having characteristics in which a frequency component higher than the frequency component of the fluorescence is included in a plurality of wavelength bands,
An object to be measured irradiated with illumination light by the light source, a spectral camera that obtains a spectral component by spectrally photographing a plurality of wavelength bands,
From the spectral components for each of a plurality of wavelength bands of one frame of image data obtained by the spectral camera, a principal component analysis unit that approximates the spectral reflectance of the measured object with a plurality of bases,
An image processing apparatus comprising: a fluorescence estimating unit configured to estimate fluorescence of the object to be measured by calculation using characteristics of the illumination light and a plurality of bases obtained by the principal component analysis unit.
前記照明光に含まれる前記高い周波数成分には、少なくとも10nmよりも長い波長の周波数成分が含まれるようにした
請求項1に記載の画像処理装置。
The image processing apparatus according to claim 1, wherein the high frequency component included in the illumination light includes a frequency component having a wavelength longer than at least 10 nm.
蛍光が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光を発光させる前記光源は、高輝度放電ランプである
請求項1又は2に記載の画像処理装置。
The image processing device according to claim 1, wherein the light source that emits illumination light having characteristics in which a frequency component higher than the frequency component of the fluorescence is included in a plurality of wavelength bands is a high-intensity discharge lamp.
蛍光成分が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光が照射された被測定対象物を、分光カメラで複数の波長帯域に分光して撮影する撮影工程と、
前記撮影工程で撮影して得た1フレームの画像データの複数の波長帯域ごとの分光成分から、前記被測定対象物の分光反射率を複数の基底で近似する主成分分析工程と、
前記照明光の特性と前記主成分分析工程で得た複数の基底とを使った演算で、前記被測定対象物の蛍光を推定する蛍光推定工程とを含む
画像処理方法。
A photographing step of photographing an object under measurement irradiated with illumination light having characteristics in which a frequency component higher than the frequency component of the fluorescent component is included in a plurality of wavelength bands, by spectrally capturing the object in a plurality of wavelength bands with a spectral camera,
A principal component analysis step of approximating the spectral reflectance of the object to be measured by a plurality of bases from spectral components for each of a plurality of wavelength bands of one frame of image data obtained in the imaging step;
An image processing method, comprising: a fluorescence estimation step of estimating fluorescence of the object to be measured by calculation using characteristics of the illumination light and a plurality of bases obtained in the principal component analysis step.
前記照明光に含まれる前記高い周波数成分には、少なくとも10nmよりも長い波長の周波数成分が含まれるようにした
請求項4に記載の画像処理方法。
The image processing method according to claim 4, wherein the high-frequency component included in the illumination light includes a frequency component having a wavelength longer than at least 10 nm.
前記照明光を発光させる光源として、不均一の高周波成分が含まれる発光強度の照明光を発光させる高輝度放電ランプを使用した
請求項4又は5に記載の画像処理方法。
As a light source for emitting the illumination light, an image processing method according to claim 4 or 5 using high intensity discharge lamps that emit light of the illumination light emission intensity that contains high-frequency components of the heterogeneous.
蛍光成分が持つ周波数成分よりも高い周波数成分が複数の波長帯域に含まれる特性の照明光が照射された被測定対象物を、複数の波長帯域に分光して撮影する撮影手順と、
前記撮影手順で撮影して得た1フレームの画像データの複数の波長帯域ごとの分光成分から、前記被測定対象物の分光反射率を複数の基底で近似する主成分分析手順と、
前記照明光の特性と前記主成分分析手順で得た複数の基底とを使った演算で、前記被測定対象物の蛍光を推定する蛍光推定手順とを、
コンピュータに実装させて実行する
プログラム。
A photographing procedure of spectrally photographing an object under measurement irradiated with illumination light having characteristics in which a frequency component higher than the frequency component of the fluorescent component is included in a plurality of wavelength bands,
A principal component analysis step of approximating the spectral reflectance of the object to be measured by a plurality of bases from spectral components for each of a plurality of wavelength bands of one frame of image data obtained by the imaging procedure;
In a calculation using the characteristics of the illumination light and a plurality of bases obtained in the principal component analysis procedure, a fluorescence estimation procedure for estimating the fluorescence of the measured object,
A program that is implemented on a computer and executed.
JP2015242719A 2015-12-11 2015-12-11 Image processing apparatus, image processing method, and program Active JP6671653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242719A JP6671653B2 (en) 2015-12-11 2015-12-11 Image processing apparatus, image processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242719A JP6671653B2 (en) 2015-12-11 2015-12-11 Image processing apparatus, image processing method, and program

Publications (2)

Publication Number Publication Date
JP2017106877A JP2017106877A (en) 2017-06-15
JP6671653B2 true JP6671653B2 (en) 2020-03-25

Family

ID=59059388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242719A Active JP6671653B2 (en) 2015-12-11 2015-12-11 Image processing apparatus, image processing method, and program

Country Status (1)

Country Link
JP (1) JP6671653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195138A1 (en) * 2019-03-28 2020-10-01 浜松ホトニクス株式会社 Inspection device and inspection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561611A (en) * 1994-10-04 1996-10-01 Noran Instruments, Inc. Method and apparatus for signal restoration without knowledge of the impulse response function of the signal acquisition system
JP3599230B2 (en) * 1999-03-15 2004-12-08 ヒーハイスト精工株式会社 Spectral image imaging method using wide-band transmittance variable filter
US6697652B2 (en) * 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
US6687620B1 (en) * 2001-08-01 2004-02-03 Sandia Corporation Augmented classical least squares multivariate spectral analysis
JP4174707B2 (en) * 2002-05-16 2008-11-05 独立行政法人情報通信研究機構 Spectroscopic measurement system, color reproduction system
JP2010082141A (en) * 2008-09-30 2010-04-15 Fujinon Corp Electronic endoscope apparatus
WO2015080275A1 (en) * 2013-11-29 2015-06-04 国立大学法人東京大学 Image processing device, image processing method, and recording medium
CN106999021B (en) * 2014-06-05 2021-06-04 海德堡大学 Method and component for multispectral imaging

Also Published As

Publication number Publication date
JP2017106877A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
US10161796B1 (en) LED lighting based multispectral imaging system for color measurement
JP6676398B2 (en) Colorimetric system for display inspection
US20180224333A1 (en) Image capturing apparatus and image capturing computer program product
JP6670327B2 (en) Gemstone color measurement
US20180259394A1 (en) Color measurement apparatus and color information processing apparatus
JP5796348B2 (en) Feature amount estimation apparatus, feature amount estimation method, and computer program
JP2015010834A (en) Method for estimating emission wavelength of luminous body and device therefore
JP2016033489A5 (en)
JP2010127739A (en) Spectral sensitivity characteristic measurement apparatus and spectral sensitivity characteristic measurement method
CN105928895A (en) Systems And Methods For Wavelength Spectrum Analysis For Detection Of Various Gases By Using Treated Tape
JP6481762B2 (en) Imaging device
JP6671653B2 (en) Image processing apparatus, image processing method, and program
US10107745B2 (en) Method and device for estimating optical properties of a sample
JP5424163B2 (en) Film thickness measuring method, film thickness measuring apparatus and program
JP6471942B2 (en) Image processing apparatus, image processing method, and recording medium
JP4174707B2 (en) Spectroscopic measurement system, color reproduction system
JP6826972B2 (en) Imaging device
JP7284457B2 (en) Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorophotometer and display device
JP2010251958A (en) Image processing apparatus
JP6502195B2 (en) Measuring device and measuring method
JP6432968B2 (en) Object shape estimation apparatus and program
KR101257324B1 (en) Method of measuring optical properties of an led die
KR102171773B1 (en) Inspection area determination method and visual inspection apparatus using the same
JP2021001777A (en) Growth state evaluation method and evaluation device for plant
KR20160148091A (en) Hyperspectral image measurement device and calibration method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6671653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250