JP6660910B2 - Automatic sample processing device - Google Patents

Automatic sample processing device Download PDF

Info

Publication number
JP6660910B2
JP6660910B2 JP2017066889A JP2017066889A JP6660910B2 JP 6660910 B2 JP6660910 B2 JP 6660910B2 JP 2017066889 A JP2017066889 A JP 2017066889A JP 2017066889 A JP2017066889 A JP 2017066889A JP 6660910 B2 JP6660910 B2 JP 6660910B2
Authority
JP
Japan
Prior art keywords
centrifuge
pump
sample
stage
pipette tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066889A
Other languages
Japanese (ja)
Other versions
JP2018169291A (en
Inventor
裕一 内保
裕一 内保
野田 英之
英之 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017066889A priority Critical patent/JP6660910B2/en
Priority to PCT/JP2017/036788 priority patent/WO2018179530A1/en
Publication of JP2018169291A publication Critical patent/JP2018169291A/en
Application granted granted Critical
Publication of JP6660910B2 publication Critical patent/JP6660910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Centrifugal Separators (AREA)

Description

本発明は、検体の自動処理装置に関する。   The present invention relates to an automatic sample processing apparatus.

近年、細菌感染症患者に対する抗菌剤の濫用により薬剤耐性菌の割合が増加しており、それに伴い院内感染の発生件数も増加傾向にある。しかし、新規抗菌剤の開発は、減少傾向にある。したがって、幅広い菌種に有効な広域スペクトルを持つ抗菌剤を濫用せず、細菌検査結果に基づき、感染症の起因菌に合った狭いスペクトルの抗菌剤を処方することが、薬剤耐性菌出現の抑制、院内感染の拡大防止、致死率の低減、患者の予後の改善のために重要となる。   In recent years, the ratio of drug-resistant bacteria has increased due to abuse of antibacterial agents in patients with bacterial infections, and the number of hospital-acquired infections has been increasing accordingly. However, the development of new antimicrobial agents is on a downward trend. Therefore, based on the results of bacterial tests, prescribing a narrow-spectrum antibacterial agent suitable for the infectious disease-causing bacteria will not suppress the emergence of drug-resistant bacteria, without abusing broad-spectrum antibacterial agents that are effective against a wide variety of bacterial species. It is important for preventing the spread of nosocomial infections, reducing mortality, and improving the prognosis of patients.

細菌感染症の中でも敗血症は、致死率が高く(院内死亡率30〜60%)、早期に起因菌に対し有効な抗菌剤の処置が求められる。通常、敗血症が疑われた場合、患者から採血し、起因菌の細菌同定試験(ID:Bacterial identification test)及び薬剤感受性試験(AST:Antimicrobial susceptibility test)が実施される。従来法では、患者から採取した検体は、まず血液培養にかけられる。血液中に細菌が存在する場合には、血液培養が陽性と判定され、通常1〜2日程度の時間を要する。次に、陽性の血液培養ボトルから感染症起因菌を特定し、単独コロニーを得るための分離培養を一昼夜行なう。分離培養後、単独コロニーを形成した菌を用いて一定濃度の菌液を調製し、薬剤・抗生物質が配置された容器に分注し、同定培養及び薬剤感受性培養を一昼夜行なう。培養後、菌の増殖度を濁度で判定し、感染症起因菌のID及びASTの結果が得られる。敗血症が疑われる症状の患者には、ID/ASTの結果を待たずに広域な抗菌スペクトルを示す抗菌剤を投与しており(経験的治療)、ID/ASTの結果が得られた後で必要に応じて適切な抗菌剤に変更する。そのため、患者から検体を採取してから、適切な投薬が行われるのは早くても4日目以降となる。菌種によっては増殖速度が遅く、長時間の培養が必要な場合があるため、適切な投薬にはさらに日数を要する。そこで近年、抗菌剤の早期適正化による患者の致死率低下、予後の改善による入院期間の短縮、医療費の削減、薬剤耐性菌の出現抑制といった観点から、薬剤感受性結果が迅速に得られる手法が求められている。   Among bacterial infections, sepsis has a high mortality rate (in-hospital mortality rate of 30 to 60%) and requires an early treatment of an effective antibacterial agent against the causative bacteria. Usually, when sepsis is suspected, blood is collected from a patient, and a bacterial identification test (ID: Bacterial identification test) and a drug susceptibility test (AST: Antimicrobial susceptibility test) of the causative bacterium are performed. In the conventional method, a sample collected from a patient is first subjected to blood culture. When bacteria are present in the blood, the blood culture is determined to be positive, and usually takes about 1-2 days. Next, the infection-causing bacterium is identified from the positive blood culture bottle, and the isolation culture is performed for 24 hours to obtain a single colony. After the isolation and culturing, a bacterial solution having a certain concentration is prepared by using the bacterium that has formed a single colony, dispensed into a container in which a drug / antibiotic is placed, and identification culture and drug-sensitive culture are carried out all day and night. After the cultivation, the degree of proliferation of the bacterium is determined by turbidity, and the ID of the bacterium causing the infection and the result of AST are obtained. Patients with suspected sepsis are given antimicrobial agents that show a broad antimicrobial spectrum without waiting for ID / AST results (empirical treatment) and are needed after ID / AST results are obtained Change to an appropriate antibacterial agent according to Therefore, after a sample is collected from a patient, appropriate medication is performed at the earliest on or after the fourth day. Depending on the bacterial species, the growth rate is slow and a long period of cultivation may be required, so that appropriate dosing requires additional days. Therefore, in recent years, a method that can quickly obtain drug susceptibility results from the viewpoint of reducing the mortality of patients due to early optimization of antimicrobial agents, shortening the hospital stay by improving the prognosis, reducing medical costs, and suppressing the emergence of drug-resistant bacteria. It has been demanded.

培養を用いずに迅速に細菌の増殖を検出する方法として、特許文献1に、細菌が持つATP(アデノシン三リン酸)を利用する手法が開示されている。ホタル由来の酵素ルシフェラーゼが、菌内にエネルギー源として存在するATPと基質であるルシフェリンを酸化し、発光する。この発光量はATP量に比例するため、発光量の変化から菌の増殖を迅速に評価可能である。   As a method for rapidly detecting the growth of bacteria without using culture, Patent Document 1 discloses a method using ATP (adenosine triphosphate) possessed by bacteria. The firefly-derived enzyme luciferase oxidizes ATP present as an energy source in the bacteria and luciferin as a substrate to emit light. Since the amount of luminescence is proportional to the amount of ATP, the growth of bacteria can be quickly evaluated from the change in the amount of luminescence.

AST試験の迅速化には、血液培養や分離培養を実施せずに薬剤の感受性を調べる必要がある。しかし、血液に代表される検体中には、血球等のヒト由来細胞にATPが大量に含まれているため、細菌由来のATPのみを検出し、感受性を試験することが困難となる。そこで、特許文献2に、細菌を殺さずに、ヒト由来細胞のみを除去する検体処理方法が開示されている。   To speed up the AST test, it is necessary to examine the sensitivity of the drug without performing blood culture or separation culture. However, in a sample represented by blood, since human-derived cells such as blood cells contain a large amount of ATP, it is difficult to detect only bacterial-derived ATP and test the sensitivity. Therefore, Patent Document 2 discloses a specimen processing method for removing only human-derived cells without killing bacteria.

WO2016/103433 A1WO2016 / 103433 A1 特開2014−235076号公報JP 2014-235076 A

遠心分離や上清除去、試薬分注を含む検体処理を自動で実行する装置を実現する場合、遠心分離とそのほかの処理で検体処理場所が異なるため、何度も検体容器を搬送する必要があり、検体処理に時間がかかってしまうという課題があった。   When realizing a device that automatically performs sample processing including centrifugation, supernatant removal, and reagent dispensing, it is necessary to transport the sample container many times because the sample processing location differs between centrifugation and other processes. However, there is a problem that it takes a long time to process the sample.

本発明の一態様である検体処理装置は、検体容器内の検体を遠心分離する遠心機と、溶液を吸引及び吐出するポンプと、ポンプを移動させるステージと、ポンプの先端に装着する使い捨てピペットチップを収めるピペットチップラックと、試薬ボトルを収める試薬ボトルラックと、内部に遠心機、ポンプ、ステージ、ピペットチップラック、及び試薬ボトルラックが設置され、密閉した空間を形成可能な筐体と、筐体内の温度を調節する温調機と、遠心機、ポンプ及びステージを駆動する駆動制御装置とを備え、ポンプは、ステージにより、ピペットチップラックに収められた使い捨てピペットチップ、試薬ボトルラックに収められた試薬ボトル、及び遠心機内の検体容器に対してアクセスする位置に選択的に移動される。   A sample processing apparatus according to one embodiment of the present invention includes a centrifuge for centrifuging a sample in a sample container, a pump for sucking and discharging a solution, a stage for moving the pump, and a disposable pipette tip attached to a tip of the pump. Pipette tip rack for storing reagent bottles, a reagent bottle rack for storing reagent bottles, a housing in which a centrifuge, pump, stage, pipette tip rack, and reagent bottle rack are installed to form a closed space, A temperature controller for controlling the temperature of the pump, and a drive control device for driving the centrifuge, the pump and the stage. The pump is housed in a disposable pipette tip stored in a pipette tip rack and a reagent bottle rack by the stage. The reagent bottle is selectively moved to a position for accessing a sample container in the centrifuge.

また、本発明の別の態様である検体処理装置は、検体容器内の検体を遠心分離する遠心機と、溶液を吸引及び吐出するポンプと、ポンプを移動させるステージと、ポンプの先端に装着する使い捨てピペットチップを収めるピペットチップラックと、試薬ボトルを収める試薬ボトルラックと、遠心機内の温度を調節する温調機と、遠心機、ポンプ及びステージを駆動する駆動制御装置とを備え、ポンプは、ステージにより、ピペットチップラックに収められた使い捨てピペットチップ、試薬ボトルラックに収められた試薬ボトル、及び遠心機内の検体容器に対してアクセスする位置に選択的に移動され、遠心機はポンプの先端に装着された使い捨てピペットチップを内部に挿入させるための開閉機構を上部に有する。   A sample processing apparatus according to another aspect of the present invention includes a centrifuge for centrifuging a sample in a sample container, a pump for sucking and discharging a solution, a stage for moving the pump, and a tip mounted on the pump. A pipette tip rack that stores a disposable pipette tip, a reagent bottle rack that stores a reagent bottle, a temperature controller that controls the temperature in the centrifuge, and a drive control device that drives the centrifuge, the pump, and the stage. The stage selectively moves the disposable pipette tip in the pipette tip rack, the reagent bottle in the reagent bottle rack, and the position to access the sample container in the centrifuge. An opening / closing mechanism for inserting the mounted disposable pipette tip therein is provided at the upper part.

また、本発明の他の態様である検体処理方法は、検体容器に入った検体を上部が密閉された遠心機で遠心分離する工程と、遠心機の上部の一部を開放する工程と、ポンプを移動させるステージを駆動し、ポンプに装着されたピペットチップの先端を遠心機内の検体容器に挿入する工程と、ポンプを駆動して検体容器内の上清を吸引する工程と、ステージを駆動してピペットチップを遠心機の外部に取り出す工程と、遠心機の上部を再び密閉する工程と、を有する。   Also, a sample processing method according to another aspect of the present invention includes a step of centrifuging a sample contained in a sample container with a centrifuge having a sealed upper part, a step of opening a part of the upper part of the centrifuge, and a pump. Driving the stage, moving the stage, inserting the tip of the pipette tip attached to the pump into the sample container in the centrifuge, driving the pump to aspirate the supernatant in the sample container, and driving the stage. Removing the pipette tip to the outside of the centrifuge, and sealing the upper portion of the centrifuge again.

本発明によると、検体容器の搬送機構が不要となることで、装置の小型化及び部品点数の削減が可能となる。さらに、工程間で検体容器を搬送する必要がなくなるため、検体処理時間が短縮できる。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, since the conveyance mechanism of a sample container becomes unnecessary, the size reduction of an apparatus and reduction of the number of parts are attained. Further, since it is not necessary to transport the sample container between the processes, the sample processing time can be reduced.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

検体処理装置の一例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a sample processing apparatus. 遠心分離及び上清除去の手順例を示すフローチャート。9 is a flowchart illustrating an example of a procedure of centrifugation and removal of a supernatant. 試薬分取及び分注、攪拌、反応の手順例を示すフローチャート。7 is a flowchart showing an example of the procedure of reagent dispensing and dispensing, stirring, and reaction. 検体処理プロトコルの例を示す説明図。FIG. 4 is an explanatory diagram illustrating an example of a sample processing protocol. 検体処理後の薬剤感受性試験結果の例を示す図。The figure which shows the example of the drug sensitivity test result after a sample process. 検体処理装置の構成例を示す模式図。FIG. 2 is a schematic diagram illustrating a configuration example of a sample processing apparatus. 検体処理装置の遠心機の例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a centrifuge of a sample processing apparatus. 固定フタと可動フタを設置した遠心機を上から見た模式図。The schematic diagram which looked at the centrifuge which installed the fixed lid and the movable lid from the top. 固定フタと可動フタを設置した遠心機を上から見た模式図。The schematic diagram which looked at the centrifuge which installed the fixed lid and the movable lid from the top. 固定フタと可動フタを有する遠心機の断面を示す模式図。The schematic diagram which shows the cross section of the centrifuge which has a fixed lid and a movable lid. 固定フタと可動フタを有する遠心機の断面を示す模式図。The schematic diagram which shows the cross section of the centrifuge which has a fixed lid and a movable lid. 遠心分離及び上清除去の手順例を示すフローチャート。9 is a flowchart illustrating an example of a procedure of centrifugation and removal of a supernatant. 遠心機の可動フタの開閉機構の別の例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing another example of the opening and closing mechanism of the movable lid of the centrifuge. 遠心機の可動フタの開閉機構の別の例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing another example of the opening and closing mechanism of the movable lid of the centrifuge. 検体処理装置の構成例を示す断面模式図。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of a sample processing apparatus. 図15の部分拡大図。The elements on larger scale of FIG. 検体処理装置の別の構成例を示す模式図。FIG. 4 is a schematic diagram illustrating another configuration example of the sample processing apparatus. ATPを用いた薬剤感受性試験の手順例を示すフローチャート。7 is a flowchart showing an example of a procedure of a drug sensitivity test using ATP.

以下、図面を参照して本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施例1]
本実施例では、検体容器を直接遠心機内に設置し、検体の処理を自動で実行する検体処理装置の例について説明する。
[Example 1]
In this embodiment, an example of a sample processing apparatus in which a sample container is directly installed in a centrifuge and a sample is automatically processed will be described.

図1は、本実施例の検体処理装置の一例を示す模式図である。本実施例の検体処理装置は、密閉した空間を形成可能な筐体105内に、XZ自動ステージ110,111、ポンプ120、遠心機130、ピペットチップラック141、試薬ボトルラック143、廃棄ボックス145を備えている。ピペットチップラック141には、使い捨てピペットチップ140が収められている。試薬ボトルラック143には、試薬ボトル142が収められている。廃棄ボックス145は、使用後のピペットチップ140を保持する。また、ポンプ120は、XZ自動ステージ110,111によって筐体105内を移動される。より具体的に言うと、ポンプ120は、XZ自動ステージ110,111により、ピペットチップラック141に収められた使い捨てピペットチップ140、試薬ボトルラック143に収められた試薬ボトル142、及び遠心機130内の検体容器150に対するアクセス位置に選択的に移動される。   FIG. 1 is a schematic diagram illustrating an example of the sample processing apparatus according to the present embodiment. The sample processing apparatus of the present embodiment includes an XZ automatic stages 110 and 111, a pump 120, a centrifuge 130, a pipette tip rack 141, a reagent bottle rack 143, and a waste box 145 in a housing 105 capable of forming a closed space. Have. The pipette tip rack 141 stores the disposable pipette tips 140. The reagent bottle 142 is stored in the reagent bottle rack 143. The disposal box 145 holds the used pipette tip 140. The pump 120 is moved inside the housing 105 by the XZ automatic stages 110 and 111. More specifically, the pump 120 uses the XZ automatic stages 110 and 111 to dispose the disposable pipette tip 140 stored in the pipette tip rack 141, the reagent bottle 142 stored in the reagent bottle rack 143, and the centrifuge 130. The sample is selectively moved to an access position for the sample container 150.

筐体105内の温度を調整するため、温調機160が温調パイプ161を介して筐体105内に接続されている。温調パイプ161には不純物や空中浮遊菌等を除去するフィルタ162が設置されている。検体を収める検体容器150は、遠心機130内に設置される。XZ自動ステージ110,111は直交して設置されており、ポンプ120が固定されている。ポンプ120は、溶液を吸引する動作、吸引した溶液を吐出する動作を行うことができる。XZ自動ステージは、ポンプ120を水平方向及び上下方向に移動させて所望の場所に位置決めし、試薬の分取、分注、攪拌などを行って様々な検体処理(前処理)工程を実行する。検体処理は、制御PC170に格納されているアルゴリズムに従って実行され、XZ自動ステージ110,111やポンプ120、遠心機130、温調機160の駆動及び制御は、駆動制御装置171で実行される。   A temperature controller 160 is connected to the inside of the housing 105 via a temperature control pipe 161 to adjust the temperature inside the housing 105. The temperature control pipe 161 is provided with a filter 162 for removing impurities, airborne bacteria, and the like. A sample container 150 for storing a sample is installed in the centrifuge 130. The XZ automatic stages 110 and 111 are installed orthogonally, and the pump 120 is fixed. The pump 120 can perform an operation of sucking the solution and an operation of discharging the sucked solution. The XZ automatic stage moves the pump 120 in the horizontal and vertical directions to position the pump 120 at a desired location, and performs various sample processing (pre-processing) steps by performing reagent dispensing, dispensing, stirring, and the like. The sample processing is executed according to an algorithm stored in the control PC 170, and the drive and control of the XZ automatic stages 110 and 111, the pump 120, the centrifuge 130, and the temperature controller 160 are executed by the drive control device 171.

図2は、上記の検体処理装置を用いて実行する検体処理方法の例として、遠心分離及び上清除去を実行する際の手順例を示すフローチャートである。検体は検体容器150に入れて遠心機130内の所定位置に設置されているものとする。最初に、作業時の設定温度と現在の筐体105内の温度とを比較し(S11)、設定温度になっている場合にはステップS13に進み、予め設定されていた遠心分離の条件である回転数、時間で遠心分離を実行する。現在の温度が設定温度と異なる場合には、ステップS12に進み、温調機160を作動させて設定温度となるまで待機してから、ステップS13の処理を行う。遠心分離終了後、Xステージ110を駆動してポンプ120をピペットチップラック141上のピペットチップに対するアクセス位置に移動させる。次に、Zステージ111を駆動してポンプ120を下降させ、所定のピペットチップ140をポンプ120のノズル先端に装着する(S14)。   FIG. 2 is a flowchart illustrating an example of a procedure for performing centrifugation and supernatant removal as an example of a sample processing method performed using the above-described sample processing apparatus. It is assumed that the sample is placed in a sample container 150 and set at a predetermined position in the centrifuge 130. First, the set temperature at the time of work is compared with the current temperature in the housing 105 (S11). If the set temperature is reached, the process proceeds to step S13, where the conditions for centrifugation set in advance are set. Perform centrifugation at rotation speed and time. If the current temperature is different from the set temperature, the process proceeds to step S12, in which the temperature controller 160 is operated to wait until the temperature reaches the set temperature, and then the process of step S13 is performed. After the centrifugation, the X stage 110 is driven to move the pump 120 to an access position for the pipette tip on the pipette tip rack 141. Next, the Z stage 111 is driven to lower the pump 120, and a predetermined pipette tip 140 is mounted on the tip of the nozzle of the pump 120 (S14).

次に、遠心機130を回転させ、遠心機内の検体のうち、上清除去を実行する対象の検体の検体容器150を作業位置、すなわちポンプ120によってアクセスされる遠心機内の位置に移動させる(S15)。続いて、Xステージ110を駆動してポンプ120を遠心機130上の作業位置、すなわち遠心機内の検体容器に対するアクセス位置に移動させ(S16)、Zステージ111を駆動して検体容器150内の検体にピペットチップ140を浸し、設定された量の上清をポンプ120によって吸引する(S17)。次に、Zステージ111によりポンプ120を上方に移動した後、Xステージ110を駆動してポンプ120を廃棄ボックス145上のアクセス位置に移動し、上清とともにピペットチップ140を除去して廃棄ボックス145に廃棄する(S18)。ステップS19において処理すべき検体が残っているか判定し、残っている場合にはステップS14に戻り、次の検体を処理する。   Next, the centrifuge 130 is rotated, and among the samples in the centrifuge, the sample container 150 of the sample to be subjected to supernatant removal is moved to the working position, that is, the position in the centrifuge accessed by the pump 120 (S15). ). Subsequently, the X stage 110 is driven to move the pump 120 to the working position on the centrifuge 130, that is, the access position for the sample container in the centrifuge (S16), and the Z stage 111 is driven to drive the sample in the sample container 150. The pipette tip 140 is immersed in the sample, and a set amount of supernatant is sucked by the pump 120 (S17). Next, after the pump 120 is moved upward by the Z stage 111, the X stage 110 is driven to move the pump 120 to the access position on the waste box 145, the pipette chip 140 is removed together with the supernatant, and the waste box 145 is removed. (S18). In step S19, it is determined whether or not the sample to be processed remains. If the sample remains, the process returns to step S14 to process the next sample.

図3は、上記の検体処理装置を用いた別の検体処理方法の例として、試薬分取及び分注、攪拌、反応を実行する際の手順例を示すフローチャートである。   FIG. 3 is a flowchart showing an example of a procedure for executing reagent dispensing and dispensing, stirring, and reaction as an example of another sample processing method using the above-described sample processing apparatus.

図2と同様に、設定温度と現在の温度を比較し(S21)、異なる場合には温調機160を用いて設定温度に達するまで待機する(S22)。その後、Xステージ110で機械原点からピペットチップラック141の上方のアクセス位置にポンプ120を移動させ、Zステージ111を駆動して、所定のピペットチップ140をポンプ120の先端に装着する(S23)。ステップS21の判定で温度が設定温度になっている場合には、直ちにステップS23に進み、ポンプ120の先端にピペットチップ140を装着する。   As in FIG. 2, the set temperature is compared with the current temperature (S21). If the set temperature is different, the process waits until the set temperature is reached using the temperature controller 160 (S22). Thereafter, the pump 120 is moved from the mechanical origin to the access position above the pipette tip rack 141 on the X stage 110, and the Z stage 111 is driven to mount a predetermined pipette tip 140 on the tip of the pump 120 (S23). If it is determined in step S21 that the temperature has reached the set temperature, the process immediately proceeds to step S23, where the pipette tip 140 is attached to the tip of the pump 120.

続いて、Xステージ110を駆動して試薬ボトルラック143上方の試薬ボトルに対するアクセス位置にポンプ120を移動させ、Zステージ111で所定の試薬ボトル142内の試薬にピペットチップ140を浸し、設定された量の試薬をポンプ120によって分取する(S24)。次に、遠心機130を回転させ、遠心機130内の検体容器150のうち、試薬を分注する対象の検体が入った容器を作業位置に移動させる(S25)。続いて、Xステージ110でポンプ120を遠心機130の上方の作業位置に移動させる(S26)。続いて、Zステージ111を駆動して検体容器150内にピペットチップ140を下降させ、設定された量の試薬をポンプ120によって分注する(S27)。   Subsequently, the X stage 110 is driven to move the pump 120 to the access position for the reagent bottle above the reagent bottle rack 143, and the pipette chip 140 is immersed in the reagent in the predetermined reagent bottle 142 on the Z stage 111, and the setting is performed. An amount of the reagent is collected by the pump 120 (S24). Next, the centrifuge 130 is rotated, and among the sample containers 150 in the centrifuge 130, the container containing the sample to be dispensed with the reagent is moved to the working position (S25). Subsequently, the pump 120 is moved to a work position above the centrifuge 130 on the X stage 110 (S26). Subsequently, the Z stage 111 is driven to lower the pipette tip 140 into the sample container 150, and a set amount of reagent is dispensed by the pump 120 (S27).

ここで、攪拌が必要かどうか判定し(S28)、攪拌が必要な場合には、ポンプ120で検体の吸引及び吐出を繰り返すことにより攪拌する(S29)。このとき、必要に応じて、Zステージ111で吸引位置と吐出位置を変更することで、攪拌効率の向上や、検体容器150からの検体の飛散防止が可能となる。攪拌終了後、Zステージ111を駆動してポンプ120を上方に移動した後、Xステージ110を駆動してポンプ120を廃棄ボックス145上に移動し、ピペットチップ140を除去する(S30)。全ての検体に対する処理が終了したかどうかを判定し(S31)、終了していたらステップS32に進み、試薬の反応時間が必要であれば、設定された時間待機する。また、未処理の検体がある場合は、ステップS23に戻り、次の検体を処理する。   Here, it is determined whether stirring is necessary (S28), and when stirring is necessary, the sample is stirred by repeating the suction and discharge of the sample by the pump 120 (S29). At this time, by changing the suction position and the discharge position on the Z stage 111 as needed, it is possible to improve the stirring efficiency and prevent the sample from scattering from the sample container 150. After the stirring, the Z stage 111 is driven to move the pump 120 upward. Then, the X stage 110 is driven to move the pump 120 onto the waste box 145, and the pipette tip 140 is removed (S30). It is determined whether or not the processing for all the samples has been completed (S31). If the processing has been completed, the process proceeds to step S32, and if the reaction time of the reagent is necessary, the process waits for a set time. If there is an unprocessed sample, the process returns to step S23 to process the next sample.

本実施例の検体処理装置を用いると、検体処理中に検体容器を搬送させることなく遠心分離及び上清除去が可能となるため、遠心分離後にペレット側に存在する細菌が、搬送の振動等により上清側に移動してしまい、細菌回収率が減少してしまうことを防ぐことが可能となる。   By using the sample processing apparatus of the present embodiment, centrifugation and removal of the supernatant can be performed without transporting the sample container during sample processing. It is possible to prevent the bacteria from being moved to the supernatant side and decreasing the bacterial recovery rate.

上記の遠心分離、上清除去、試薬の分注、攪拌等の作業を組み合わせることで検体処理プロトコルを作成し、実行することで、自動で検体処理が完了する。図4は、検体処理プロトコルの例を示す説明図である。図4の例では、検体として1mLの血漿を入れた検体容器を遠心機にセットし、1800gで10分間遠心分離し、上清を除去する。その後、界面活性剤を1mL添加し、攪拌後15分間静置する。続いて、1800gで5分間遠心分離を行い、上清を除去する。その後、培地を1mL添加して攪拌した後、1800gで5分間遠心分離し、上清を除去する。次に、培地を300μL添加して攪拌した後、37℃で培養し、ASTを実施する。この例では、界面活性剤としてドデシル硫酸ナトリウム0.15%とサポニン0.2%を混合した試薬を、培地はミューラーヒントン培地を使用した。   A sample processing protocol is created and executed by combining the above operations of centrifugation, supernatant removal, reagent dispensing, stirring, and the like, whereby sample processing is automatically completed. FIG. 4 is an explanatory diagram illustrating an example of the sample processing protocol. In the example of FIG. 4, a sample container containing 1 mL of plasma as a sample is set in a centrifuge, centrifuged at 1800 g for 10 minutes, and the supernatant is removed. Thereafter, 1 mL of a surfactant is added, and the mixture is left standing for 15 minutes after stirring. Subsequently, centrifugation is performed at 1800 g for 5 minutes, and the supernatant is removed. Thereafter, 1 mL of the medium is added and stirred, and then centrifuged at 1800 g for 5 minutes to remove the supernatant. Next, 300 μL of a medium is added and stirred, and then cultured at 37 ° C. to perform AST. In this example, a reagent in which sodium dodecyl sulfate 0.15% and saponin 0.2% were mixed as a surfactant, and a Mueller Hinton medium was used as a medium.

図5は、抗菌剤としてのセフォキシチン(CFX)4μg/mLに対する黄色ブドウ球菌の耐性株及び感受性株のATP発光量の経時変化を示した図である。検体処理終了後を0時間とし、37℃で培養し、時間ごとにATP発光量を計測した。耐性株では、培養2時間以降でATP発光量が検体処理直後の0時間後よりも増加しているため、増殖していると判定できる。一方、感受性株では検体処理直後のATP発光量に比べて、2時間以降で減少しているため、阻止と判定できる。   FIG. 5 is a diagram showing the time-dependent changes in the ATP luminescence of Staphylococcus aureus resistant strains and susceptible strains to cefoxitin (CFX) 4 μg / mL as an antibacterial agent. The time after completion of the sample treatment was set to 0 hour, the cells were cultured at 37 ° C., and the amount of ATP luminescence was measured every hour. In the resistant strain, since the amount of ATP luminescence has increased after 2 hours of culture from 0 hour immediately after the sample treatment, it can be determined that the strain has proliferated. On the other hand, in the susceptible strain, since the amount of ATP emission immediately after the sample treatment is reduced after 2 hours, it can be determined that the ATP emission is inhibited.

[実施例2]
本実施例では、遠心機を密閉し、温調効率を向上させた検体処理装置の例について説明する。
[Example 2]
In the present embodiment, an example of a sample processing apparatus in which a centrifuge is sealed and temperature control efficiency is improved will be described.

図6は、本実施例の検体処理装置の構成例を示す模式図である。図1と同一の符号を付した部分については、重複する説明を省略する。   FIG. 6 is a schematic diagram illustrating a configuration example of the sample processing apparatus according to the present embodiment. For the parts denoted by the same reference numerals as those in FIG.

遠心機130は上部に、固定フタ600と可動フタ601を備えている。温調機160は温調パイプ161を介して遠心機130の内部に接続されている。遠心機130内部の温度は、遠心機130の内部に備えられた温度センサ652によって測定される。試薬ボトルラック143には、試薬ボトル142の温度を調節する試薬ボトル用の温調装置610が備えられている。また、本実施例では、遠心機130内の作業位置に検体容器が存在するか否かを検出する位置センサ650を備える。位置センサ650には、例えば反射光を利用した光学式センサや超音波センサなどを利用する。位置センサ650により、ポンプ120によってアクセスされる遠心機130内の位置に検体容器150が設置されていることを確認することで、ユーザが検体容器150を設置し忘れた場合に試薬分注等の操作により遠心機130内が汚染されることを防ぐ。   The centrifuge 130 has a fixed lid 600 and a movable lid 601 on the upper part. The temperature controller 160 is connected to the inside of the centrifuge 130 via a temperature control pipe 161. The temperature inside the centrifuge 130 is measured by a temperature sensor 652 provided inside the centrifuge 130. The reagent bottle rack 143 is provided with a reagent bottle temperature controller 610 for adjusting the temperature of the reagent bottle 142. In this embodiment, a position sensor 650 for detecting whether or not the sample container exists at the working position in the centrifuge 130 is provided. As the position sensor 650, for example, an optical sensor using reflected light, an ultrasonic sensor, or the like is used. By confirming that the sample container 150 is installed at a position in the centrifuge 130 accessed by the pump 120 by the position sensor 650, when a user forgets to install the sample container 150, reagent dispensing or the like can be performed. The operation prevents the inside of the centrifuge 130 from being contaminated.

固定フタ600は取り外し可能な構造となっており、遠心機130に検体容器150を設置又は取り出す際には固定フタ600を取り外すことができる。検体処理中には、固定フタ600は、遠心機130の上部に固定される。図7は、検体処理装置の遠心機の例を示す模式図であり、固定フタ600を取り除いた状態の遠心機130を上から見た図である。遠心機130内部に温調パイプ161が接続されており、温調機160により遠心機130内部の温度を調整する。温調パイプ161には、フィルタ162が備えられており、空中浮遊菌や不純物等が検体容器150内に混入することを防ぐことができる。   The fixed lid 600 has a detachable structure, and the fixed lid 600 can be removed when the sample container 150 is installed or removed from the centrifuge 130. During sample processing, the fixing lid 600 is fixed on the upper part of the centrifuge 130. FIG. 7 is a schematic diagram illustrating an example of the centrifuge of the sample processing apparatus, and is a view of the centrifuge 130 with the fixed lid 600 removed, as viewed from above. A temperature control pipe 161 is connected inside the centrifuge 130, and the temperature inside the centrifuge 130 is adjusted by the temperature controller 160. The temperature control pipe 161 is provided with a filter 162, which can prevent airborne bacteria, impurities, and the like from being mixed into the sample container 150.

図8及び図9は、固定フタ600と可動フタ601を設置した遠心機130を上から見た模式図である。可動フタ601は、自動ステージ603によってスライドし、開閉可能となっている。図8は可動フタ601を閉じた状態を示し、図9は可動フタ601を開けた状態を示している。固定フタ600は、遠心機130の上部全面を覆うのではなく、遠心機内の作業位置に置かれた検体容器150に上方からアクセス可能なように一部が切欠かれた形状を有する。一方、可動フタ601は、固定フタ600の切欠かれた開口部を塞ぎ、固定フタ600と共同して遠心機130の上部を密閉することのできる形状を有する。従って、可動フタ601を閉じると、図8に示すように遠心機は上部が密閉され、可動フタ601を開けると、図9に示すように固定フタ600の切欠かれた開口部から遠心機内部の作業位置にアクセスすることができる。   8 and 9 are schematic views of the centrifuge 130 in which the fixed lid 600 and the movable lid 601 are installed, as viewed from above. The movable lid 601 is slid by an automatic stage 603 and can be opened and closed. FIG. 8 shows a state where the movable lid 601 is closed, and FIG. 9 shows a state where the movable lid 601 is opened. The fixed lid 600 does not cover the entire upper part of the centrifuge 130 but has a shape in which a part is cut out so as to access the sample container 150 placed at the working position in the centrifuge 130 from above. On the other hand, the movable lid 601 has a shape capable of closing the notched opening of the fixed lid 600 and sealing the upper part of the centrifuge 130 in cooperation with the fixed lid 600. Therefore, when the movable lid 601 is closed, the upper part of the centrifuge is sealed as shown in FIG. 8, and when the movable lid 601 is opened, as shown in FIG. Work position can be accessed.

図10及び図11は固定フタと可動フタを有する遠心機の断面を示す模式図であり、図10は可動フタ601を開けた状態を示し、図11は可動フタ601を閉じた状態を示す。図10に示すように、遠心機130内の検体容器150に対してポンプ120を用いた処理を実施するときのみ可動フタ601が開けられ、処理が終了すると可動フタ601が閉じられる。遠心分離などの検体処理を実行しているときは、図11に示すように可動フタ601が閉じられ、遠心機130は密閉されている。   10 and 11 are schematic views showing a cross section of a centrifuge having a fixed lid and a movable lid. FIG. 10 shows a state where the movable lid 601 is opened, and FIG. 11 shows a state where the movable lid 601 is closed. As shown in FIG. 10, the movable lid 601 is opened only when processing using the pump 120 is performed on the sample container 150 in the centrifuge 130, and when the processing is completed, the movable lid 601 is closed. When performing sample processing such as centrifugation, the movable lid 601 is closed and the centrifuge 130 is sealed as shown in FIG.

図12は、本実施例の検体処理装置で遠心分離及び上清除去を行うときの手順例を示すフローチャートである。   FIG. 12 is a flowchart illustrating an example of a procedure when centrifugation and supernatant removal are performed by the sample processing apparatus according to the present embodiment.

試料交換等の作業後で可動フタ601が開いていた場合には可動フタ601を閉じ、遠心機130の上部を密閉する(S41)。作業時の設定温度と現在の温度を比較し(S42)、設定温度になっている場合はステップS44に進み、設定温度と異なる場合には、温調機160を用いて設定温度となるまで待機する(S43)。ステップS44では、予め設定されていた遠心分離の条件である所定の回転数・時間で遠心分離を実行する。遠心分離終了後、Xステージ110でピペットチップラック141上のアクセス位置にポンプ120を移動させる。続いて、Zステージ111を駆動してポンプ120を下降させ、所定のピペットチップ140をポンプ120の先端に装着する(S45)。遠心機130を回転させ、遠心機130内の検体容器150のうち、上清除去を実行する対象の検体が入った検体容器を作業位置に移動させる(S46)。   If the movable lid 601 is open after the work such as the sample exchange, the movable lid 601 is closed, and the upper part of the centrifuge 130 is sealed (S41). The set temperature at the time of the operation is compared with the current temperature (S42). If the set temperature is reached, the process proceeds to step S44. If the set temperature is different, the temperature controller 160 is used to wait until the set temperature is reached. (S43). In step S44, centrifugation is performed at a predetermined number of revolutions / time which is a preset centrifugation condition. After the centrifugation, the pump 120 is moved to the access position on the pipette tip rack 141 by the X stage 110. Subsequently, the Z stage 111 is driven to lower the pump 120, and a predetermined pipette tip 140 is mounted on the tip of the pump 120 (S45). The centrifuge 130 is rotated, and among the sample containers 150 in the centrifuge 130, the sample container containing the sample to be subjected to supernatant removal is moved to the working position (S46).

続いて、Xステージ110を遠心機130上の作業位置、すなわち遠心機内の検体容器に対するアクセス位置に移動させる(S47)。次に、遠心機130の可動フタ601を開けて遠心機130の上部を一部開放した後、Zステージ111を駆動してポンプ120を下降させ、固定フタ600の切欠かれた開口部を通して検体容器150内の検体にピペットチップ140を浸し、設定された量の上清をポンプ120によって吸引する(S48)。吸引が終了するとZステージ111を駆動してポンプ120を上方に移動させ、ピペットチップ140を遠心機の外部に取り出した後、可動フタ601を閉じて遠心機の上部を再び密閉する(S49)。次に、Xステージ110を駆動してポンプ120を廃棄ボックス145上に移動し、上清とともにピペットチップ140を除去する(S50)。全ての検体に対する処理が終了したか判定し(S51)、未処理の検体が残っている場合にはステップS45に戻り、次の検体を処理する。このように、可動フタ601の開閉を、ポンプ120が検体容器150内の検体に処理を実施するときに限定することで、遠心機130内の温度変動が小さくなり、温度が安定する。また、不純物等のコンタミのリスクを減らすことができる。   Subsequently, the X stage 110 is moved to a working position on the centrifuge 130, that is, an access position for a sample container in the centrifuge (S47). Next, after opening the movable lid 601 of the centrifuge 130 and partially opening the upper part of the centrifuge 130, the Z stage 111 is driven to lower the pump 120, and the specimen container is passed through the cutout opening of the fixed lid 600. The pipette tip 140 is immersed in the sample in 150, and a set amount of supernatant is aspirated by the pump 120 (S48). When the suction is completed, the Z stage 111 is driven to move the pump 120 upward, the pipette tip 140 is taken out of the centrifuge, the movable lid 601 is closed, and the upper part of the centrifuge is sealed again (S49). Next, the X stage 110 is driven to move the pump 120 onto the waste box 145, and the pipette tip 140 is removed together with the supernatant (S50). It is determined whether the processing has been completed for all the samples (S51). If any unprocessed samples remain, the process returns to step S45 to process the next sample. As described above, by restricting the opening and closing of the movable lid 601 when the pump 120 performs processing on the sample in the sample container 150, the temperature fluctuation in the centrifuge 130 is reduced, and the temperature is stabilized. In addition, the risk of contamination such as impurities can be reduced.

可動フタ601の大きさ、換言すると固定フタ600の開口部の大きさは、図10に示すように、ピペットチップ140が検体容器150内に挿入できるように、ピペットチップ140の外径及びポンプ120のノズルの外径よりも大きく、できるだけ小さいのが好ましい。実際上は、検体容器150の開口部の面積に対して1〜4倍程度の面積の開口部とすることが望ましい。固定フタ600の開口部面積を小さくすることで、遠心機130内の温度変動を抑制することが可能となり、安定した検体処理結果が得られる。また、遠心機130内を開放する時間が短くなることで、空中浮遊菌等の混入を防ぐことができる。   As shown in FIG. 10, the size of the movable lid 601, in other words, the size of the opening of the fixed lid 600, is such that the outer diameter of the pipette tip 140 and the pump 120 can be inserted so that the pipette tip 140 can be inserted into the sample container 150. Is preferably larger than the outer diameter of the nozzle and as small as possible. In practice, it is desirable that the opening has an area of about 1 to 4 times the area of the opening of the sample container 150. By reducing the opening area of the fixed lid 600, it is possible to suppress the temperature fluctuation in the centrifuge 130, and to obtain a stable sample processing result. In addition, since the time for opening the inside of the centrifuge 130 is shortened, the incorporation of airborne bacteria and the like can be prevented.

可動フタ601の開閉機構は、スライド式に限定されることはない。図13及び図14は、遠心機の可動フタの開閉機構の別の例を示す断面模式図である。可動フタは、例えば図13に示す例のように、上下に開閉してもよい。また、図14に示すように、左右2つの可動フタが上下に開閉する構造としてもよい。可動フタ601は駆動部605によって駆動され、固定フタ600の開口部を開閉する。   The opening and closing mechanism of the movable lid 601 is not limited to a sliding type. FIGS. 13 and 14 are schematic cross-sectional views showing another example of the opening and closing mechanism of the movable lid of the centrifuge. The movable lid may be opened and closed vertically, for example, as in the example shown in FIG. Further, as shown in FIG. 14, a structure in which two left and right movable lids open and close vertically may be employed. The movable lid 601 is driven by the drive unit 605 to open and close the opening of the fixed lid 600.

[実施例3]
本実施例では、遠心機に遠心分離後のペレット量を測定し、上清除去の効率を向上させることのできる検体処理装置の例について説明する。
[Example 3]
In the present embodiment, an example of a sample processing apparatus capable of measuring the amount of pellet after centrifugation in a centrifuge and improving the efficiency of supernatant removal will be described.

図15は、本実施例の検体処理装置の構成例を示す断面模式図である。図16は図15の部分拡大図である。図1や図6と同一の符号を付した部分については、重複する説明を省略する。   FIG. 15 is a schematic cross-sectional view illustrating a configuration example of the sample processing apparatus of the present embodiment. FIG. 16 is a partially enlarged view of FIG. 1 and FIG. 6 are denoted by the same reference numerals, and redundant description is omitted.

本実施例の検体処理装置は、遠心機130の作業位置に面する外壁に透明窓1201を有し、遠心機130内に、作業位置に来た検体容器150を照らす光源1202が備えられている。遠心機130の外部には透明窓1201に対面して界面検知センサ1203が設けられている。図16に示すように、界面検知センサ1203は、透明窓1201を通して、ポンプ120によってアクセスされる遠心機130内の位置に配置された検体容器150内の検体の気液界面1205の位置及び/又は遠心分離後のペレットと上清の界面1207の位置を検知する。透明窓1201と界面検知センサ1203は、遠心機130内の作業位置近傍に設置される。   The sample processing apparatus of this embodiment has a transparent window 1201 on the outer wall facing the working position of the centrifuge 130, and a light source 1202 that illuminates the sample container 150 that has come to the working position in the centrifuge 130. . An interface detection sensor 1203 is provided outside the centrifuge 130 so as to face the transparent window 1201. As shown in FIG. 16, the interface detection sensor 1203 passes through the transparent window 1201, and / or the position of the gas-liquid interface 1205 of the sample in the sample container 150 located at the position in the centrifuge 130 accessed by the pump 120. The position of the interface 1207 between the pellet after centrifugation and the supernatant is detected. The transparent window 1201 and the interface detection sensor 1203 are installed near the working position in the centrifuge 130.

界面検知センサ1203で得られた気液界面1205やペレットの界面1207の位置情報は、検体容器150の底面からの距離に変換されて制御PC170に記録され、ポンプ120に取り付けられたピペットチップ140の先端位置の制御に用いられる。例えば、遠心分離後の上清除去時は、ペレットを巻き上げることなく上清だけを吸引する必要があるため、ピペットチップ140の先端は、できるだけペレットから離れた位置で吸上げることが望ましい。そこで、制御PC170は上清除去時の気液界面1205の高さを界面検知センサ1203で監視し、その情報をもとに駆動制御装置171がZステージ111を駆動して、上清を吸引する際に低下していく気液界面1205の高さとピペットチップ140の先端の高さを等しくするように常に連動させて調整することで、ペレットを巻き上げることなく上清を除去できる。さらに、ピペットチップ140の先端の高さを、ペレットと上清の界面1207より高い位置に制限することで、ペレットを吸引することを回避できる。検体の量やペレットの量は、検体ごとに異なるため、検体ごとに気液界面1205やペレットと上清の界面1207を検知することで、検体処理効率を高めて、低いATPバックグラウンドが得られる。   The position information of the gas-liquid interface 1205 and the pellet interface 1207 obtained by the interface detection sensor 1203 is converted into a distance from the bottom surface of the sample container 150 and recorded in the control PC 170, and the position information of the pipette tip 140 attached to the pump 120 is recorded. Used to control the tip position. For example, when removing the supernatant after centrifugation, it is necessary to aspirate only the supernatant without winding up the pellet. Therefore, it is desirable that the tip of the pipette tip 140 be sucked up as far as possible from the pellet. Therefore, the control PC 170 monitors the height of the gas-liquid interface 1205 at the time of removing the supernatant with the interface detection sensor 1203, and based on the information, the drive control device 171 drives the Z stage 111 and aspirates the supernatant. By constantly adjusting the height of the gas-liquid interface 1205, which is decreasing at the time, and the height of the tip of the pipette tip 140 so as to be equal to each other, the supernatant can be removed without winding up the pellet. Further, by restricting the height of the tip of the pipette tip 140 to a position higher than the interface 1207 between the pellet and the supernatant, it is possible to avoid aspirating the pellet. Since the amount of the sample and the amount of the pellet are different for each sample, by detecting the gas-liquid interface 1205 and the interface 1207 between the pellet and the supernatant for each sample, the sample processing efficiency can be increased and a low ATP background can be obtained. .

界面検知センサ1203は、例えばCCDやCMOSなどの撮像装置を用いて検体容器150内の検体を撮影する。各工程後に、検体の様子を撮像することで、検体処理効果を視認できる。界面検知センサ1203は、レーザの反射光や透過光を用いて界面検知を実施しても良い。また、超音波や電波を利用した液面検知技術や、静電容量式の液面検知技術を用いてもよい。界面検知センサ1203は、遠心機130の内部に設置してもよい。その場合、透明窓1201が不要となるという利点がある。内部に界面検知センサ1203を設置すると、遠心機130内部の体積が減少するため、温調効率が向上するという効果が得られる。   The interface detection sensor 1203 captures an image of the sample in the sample container 150 using an imaging device such as a CCD or a CMOS. By imaging the state of the sample after each step, the sample processing effect can be visually recognized. The interface detection sensor 1203 may perform interface detection using reflected light or transmitted light of a laser. Further, a liquid level detection technology using an ultrasonic wave or a radio wave, or a capacitance type liquid level detection technology may be used. The interface detection sensor 1203 may be installed inside the centrifuge 130. In that case, there is an advantage that the transparent window 1201 becomes unnecessary. When the interface detection sensor 1203 is installed inside, the volume inside the centrifuge 130 is reduced, and the effect of improving the temperature control efficiency is obtained.

[実施例4]
本実施例では、発光計測用容器を備え、培養時間ごとに検体の一部を分取してATP消去・抽出処理を実施することのできる検体処理装置の例について説明する。
[Example 4]
In the present embodiment, an example of a sample processing apparatus including a luminescence measurement container and capable of performing a ATP elimination / extraction process by collecting a part of a sample at each incubation time will be described.

図17は、本実施例の検体処理装置の別の構成例を示す模式図である。図1や図6と同一の符号を付した部分については、重複する説明を省略する。   FIG. 17 is a schematic diagram illustrating another configuration example of the sample processing apparatus of the present embodiment. 1 and FIG. 6 are denoted by the same reference numerals, and redundant description is omitted.

本実施例の検体処理装置は、筐体105内に、発光測定容器1303を複数格納する発光測定容器ラック1301を備える。ATP発光計測を実施する際には、検体中に存在する細菌由来ではない浮遊ATPを消去するATP消去処理と、生菌を破壊して内包するATPを抽出するATP抽出処理を実施して、生菌由来のATPのみを測定する。   The sample processing apparatus of this embodiment includes a luminescence measurement container rack 1301 that stores a plurality of luminescence measurement containers 1303 in the housing 105. When performing the ATP emission measurement, an ATP elimination process for eliminating floating ATP not derived from bacteria existing in the sample and an ATP extraction process for destroying viable bacteria and extracting ATP contained therein are performed. Only ATP derived from bacteria is measured.

図18は、本実施例の検体処理装置を用いてATPを利用した薬剤感受性試験を実施する手順の例を示すフローチャートである。検体を含む検体容器150を遠心機130内に設置する(S61)。このとき、あわせて必要な試薬やピペットチップも検体処理装置内に設置する。検体処理プロトコルを制御PC170で指定し、検体処理を実行する(S62)。検体処理終了後、各検体容器150に所定の抗菌剤をポンプ120で分注する。抗菌剤は、試薬ボトルラック143内の試薬ボトル142に格納しておく。遠心機130内の温度を37℃に設定し、培養する(S63)。感受性を測定する時間(例えば2時間毎に6時間まで)となったら、検体容器150内の検体の一部を発光測定容器ラック1301内の発光測定容器1303にポンプ120で分注する(S64)。続いて、試薬ボトル142内のATP消去液を発光測定容器1303に分注し、検体内の浮遊ATPを消去する(S65)。さらに、ATP抽出液を発光測定容器1303に分注し、生菌由来のATPを抽出する(S66)。ステップS67において全ての計測準備が終了したかを判定し、終了していなければステップS64からS66までの操作を、感受性を測定する抗菌剤種及び濃度にわたって繰り返す。また、測定時間ごとにも繰り返す。その後、発光測定容器ラック1301を検体処理装置から取り出し、既知の発光測定装置へ設置する(S68)。発光測定装置において既知の方法によりATP発光量を測定する(S69)。最後に、各測定時間のATP量の変化から細菌の増殖又は阻止を判定する(S70)。   FIG. 18 is a flowchart illustrating an example of a procedure for performing a drug sensitivity test using ATP using the sample processing apparatus of the present embodiment. The sample container 150 containing the sample is set in the centrifuge 130 (S61). At this time, necessary reagents and pipette tips are also installed in the sample processing apparatus. A sample processing protocol is designated by the control PC 170, and sample processing is executed (S62). After completion of the sample processing, a predetermined antibacterial agent is dispensed into each sample container 150 by the pump 120. The antibacterial agent is stored in the reagent bottle 142 in the reagent bottle rack 143. The temperature in the centrifuge 130 is set to 37 ° C., and the culture is performed (S63). When the time for measuring the sensitivity is reached (for example, every 2 hours up to 6 hours), a part of the sample in the sample container 150 is dispensed by the pump 120 into the luminescence measurement container 1303 in the luminescence measurement container rack 1301 (S64). . Subsequently, the ATP elimination liquid in the reagent bottle 142 is dispensed into the luminescence measurement container 1303 to eliminate the floating ATP in the sample (S65). Further, the ATP extract is dispensed into the luminescence measurement container 1303 to extract ATP derived from viable bacteria (S66). In step S67, it is determined whether or not all measurement preparations have been completed. If not, the operations in steps S64 to S66 are repeated for the antibacterial agent type and concentration whose sensitivity is to be measured. The measurement is repeated every measurement time. After that, the luminescence measurement container rack 1301 is taken out of the sample processing apparatus and installed in a known luminescence measurement apparatus (S68). The ATP light emission amount is measured by a known method in the light emission measuring device (S69). Finally, the growth or inhibition of bacteria is determined from the change in the amount of ATP at each measurement time (S70).

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.

120 ポンプ
130 遠心機
150 検体容器
160 温調機
170 制御PC
600 固定フタ
601 可動フタ
650 位置センサ
1203 界面検知センサ
120 Pump 130 Centrifuge 150 Sample container 160 Temperature controller 170 Control PC
600 Fixed lid 601 Movable lid 650 Position sensor 1203 Interface detection sensor

Claims (8)

検体容器内の検体を遠心分離する遠心機と、
溶液を吸引及び吐出するポンプと、
前記ポンプを移動させるステージと、
前記ポンプの先端に装着する使い捨てピペットチップを収めるピペットチップラックと、
試薬ボトルを収める試薬ボトルラックと、
内部に前記遠心機、前記ポンプ、前記ステージ、前記ピペットチップラック、及び前記試薬ボトルラックが設置され、密閉した空間を形成可能な筐体と、
前記筐体内の温度を調節する温調機と、
前記遠心機、前記ポンプ及び前記ステージを駆動する駆動制御装置と
前記ポンプによってアクセスされる前記遠心機内の位置に配置された検体容器内の液面及びペレットの界面の位置を検出するセンサと、
を備え、
前記駆動制御装置は、前記検出された液面及びペレットの界面の位置情報をもとに前記ステージを制御し、
前記ポンプは、前記ステージにより、前記ピペットチップラックに収められた使い捨てピペットチップ、前記試薬ボトルラックに収められた試薬ボトル、及び前記遠心機内の検体容器に対してアクセスする位置に選択的に移動される、検体処理装置。
A centrifuge for centrifuging the sample in the sample container;
A pump for sucking and discharging the solution,
A stage for moving the pump,
A pipette tip rack for storing a disposable pipette tip attached to the tip of the pump,
A reagent bottle rack for storing reagent bottles,
Inside the centrifuge, the pump, the stage, the pipette tip rack, and the reagent bottle rack are installed, a housing capable of forming a closed space,
A temperature controller for adjusting the temperature in the housing,
A drive control device that drives the centrifuge, the pump and the stage ,
A sensor for detecting the position of the liquid level in the sample container and the interface of the pellet, which is arranged at a position in the centrifuge accessed by the pump,
With
The drive control device controls the stage based on the detected liquid level and position information of the interface of the pellet,
The stage is selectively moved by the stage to a position for accessing a disposable pipette tip stored in the pipette tip rack, a reagent bottle stored in the reagent bottle rack, and a sample container in the centrifuge. Sample processing device.
前記ポンプによってアクセスされる前記遠心機内の位置に検体容器が存在するか否かを検出するセンサを備える、請求項1に記載の検体処理装置。   The sample processing apparatus according to claim 1, further comprising a sensor that detects whether a sample container is present at a position in the centrifuge accessed by the pump. 検体容器内の検体を遠心分離する遠心機と、
溶液を吸引及び吐出するポンプと、
前記ポンプを移動させるステージと、
前記ポンプの先端に装着する使い捨てピペットチップを収めるピペットチップラックと、
試薬ボトルを収める試薬ボトルラックと、
前記遠心機内の温度を調節する温調機と、
前記遠心機、前記ポンプ及び前記ステージを駆動する駆動制御装置と
前記ポンプによってアクセスされる前記遠心機内の位置に配置された検体容器内の液面及びペレットの界面の位置を検出するセンサと、
を備え、
前記駆動制御装置は、前記検出された液面及びペレットの界面の位置情報をもとに前記ステージを制御し、
前記ポンプは、前記ステージにより、前記ピペットチップラックに収められた使い捨てピペットチップ、前記試薬ボトルラックに収められた試薬ボトル、及び前記遠心機内の検体容器に対してアクセスする位置に選択的に移動され、
前記遠心機は前記ポンプの先端に装着された前記使い捨てピペットチップを内部に挿入させるための開閉機構を上部に有する、検体処理装置。
A centrifuge for centrifuging the sample in the sample container;
A pump for sucking and discharging the solution,
A stage for moving the pump,
A pipette tip rack for storing a disposable pipette tip attached to the tip of the pump,
A reagent bottle rack for storing reagent bottles,
A temperature controller for adjusting the temperature in the centrifuge,
A drive control device that drives the centrifuge, the pump and the stage ,
A sensor for detecting the position of the liquid level in the sample container and the interface of the pellet, which is arranged at a position in the centrifuge accessed by the pump,
With
The drive control device controls the stage based on the detected liquid level and position information of the interface of the pellet,
The stage is selectively moved by the stage to a position for accessing a disposable pipette tip stored in the pipette tip rack, a reagent bottle stored in the reagent bottle rack, and a sample container in the centrifuge. ,
A sample processing apparatus, wherein the centrifuge has an opening / closing mechanism for inserting the disposable pipette tip mounted on the tip of the pump into the upper part thereof.
前記遠心機は上部に、開口部を有する固定フタと前記開口部を塞ぐことのできる可動フタを備え、前記開閉機構は前記可動フタを開閉する、請求項に記載の検体処理装置。 4. The sample processing apparatus according to claim 3 , wherein the centrifuge includes a fixed lid having an opening and a movable lid capable of closing the opening at an upper part, and the opening and closing mechanism opens and closes the movable lid. 5. 前記固定フタの前記開口部は、前記検体容器の開口部面積の1〜4倍の面積を有する、請求項に記載の検体処理装置。 The sample processing apparatus according to claim 4 , wherein the opening of the fixed lid has an area of 1 to 4 times the area of the opening of the sample container. 前記ポンプによってアクセスされる前記遠心機内の位置に検体容器が存在するか否かを検出するセンサを備える、請求項に記載の検体処理装置。 4. The sample processing apparatus according to claim 3 , further comprising a sensor that detects whether a sample container is present at a position in the centrifuge accessed by the pump. 検体容器に入った検体を上部が密閉された遠心機で遠心分離する工程と、
前記遠心機の上部を一部開放する工程と、
ポンプを移動させるステージを駆動し、前記ポンプに装着されたピペットチップの先端を前記遠心機内の前記検体容器に挿入する工程と、
遠心分離後に前記検体容器内の液面及びペレットの界面の位置を検知する工程と、
前記ポンプを駆動して前記検体容器内の上清を吸引する工程であって、低下していく前記液面の高さと前記ピペットチップの先端の高さを連動させ、かつ、前記ピペットチップの先端の高さを前記ペレットの高さより高い位置に制限する、上清を吸引する工程と、
前記ステージを駆動して前記ピペットチップを前記遠心機の外部に取り出す工程と、
前記遠心機の上部を再び密閉する工程と、
を有する検体処理方法。
A step of centrifuging the sample in the sample container with a centrifuge having a closed top,
Partially opening the upper part of the centrifuge,
Driving a stage that moves a pump, and inserting the tip of a pipette tip attached to the pump into the sample container in the centrifuge,
A step of detecting the position of the interface between the liquid surface and the pellet in the sample container after centrifugation,
A step of driving the pump to aspirate the supernatant in the sample container, interlocking the height of the decreasing liquid level with the height of the tip of the pipette tip, and the tip of the pipette tip Limiting the height of the pellet to a position higher than the height of the pellet, aspirating the supernatant ,
Driving the stage to take out the pipette tip outside the centrifuge;
Re-sealing the top of the centrifuge;
A sample processing method comprising:
前記遠心機の上部は固定フタと可動フタで覆われており、
前記遠心機の上部を一部開放する工程は前記可動フタを開けることによって行われる、請求項に記載の検体処理方法。
The upper part of the centrifuge is covered with a fixed lid and a movable lid,
The sample processing method according to claim 7 , wherein the step of partially opening the upper part of the centrifuge is performed by opening the movable lid.
JP2017066889A 2017-03-30 2017-03-30 Automatic sample processing device Active JP6660910B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017066889A JP6660910B2 (en) 2017-03-30 2017-03-30 Automatic sample processing device
PCT/JP2017/036788 WO2018179530A1 (en) 2017-03-30 2017-10-11 Automatic sample processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066889A JP6660910B2 (en) 2017-03-30 2017-03-30 Automatic sample processing device

Publications (2)

Publication Number Publication Date
JP2018169291A JP2018169291A (en) 2018-11-01
JP6660910B2 true JP6660910B2 (en) 2020-03-11

Family

ID=63675013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066889A Active JP6660910B2 (en) 2017-03-30 2017-03-30 Automatic sample processing device

Country Status (2)

Country Link
JP (1) JP6660910B2 (en)
WO (1) WO2018179530A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262361A1 (en) * 2019-06-24 2020-12-30 積水メディカル株式会社 Automatic analysis device
CN113906286A (en) * 2019-07-02 2022-01-07 株式会社堀场先进技术 Biological sample analyzer and biological sample analyzing method
KR102168826B1 (en) * 2019-11-29 2020-10-22 주식회사 한국바이오 셀프 Apparatus and method for separating sample
CN111965291B (en) * 2020-05-12 2022-06-07 长治市农产品质量安全检验监测中心 Pesticide residue sample treatment method
KR102332602B1 (en) * 2021-03-08 2021-12-02 주식회사 싸이토딕스 Fluid disposing system
KR20230022564A (en) * 2021-08-09 2023-02-16 주식회사 싸이토딕스 Fluid disposing system and centrifugal separation method using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080734A (en) * 1983-10-07 1985-05-08 Hitachi Ltd Automatic analytical apparatus for liquid sample
JP3295014B2 (en) * 1997-03-19 2002-06-24 株式会社大日本精機 Automatic extraction device for component substances in liquid samples and automatic concentration measurement device for component substances in liquid samples
US6503457B1 (en) * 2000-04-14 2003-01-07 Discovery Partners International, Inc. Container and method for high volume treatment of samples on solid supports
JP2009058409A (en) * 2007-08-31 2009-03-19 Nsk Ltd Centrifugal force applying device and specimen liquid analyzer
JP6177009B2 (en) * 2013-06-03 2017-08-09 株式会社日立ハイテクノロジーズ Blood cell destruction reagent and blood cell destruction method using the same
EP3321688B1 (en) * 2015-07-07 2019-11-20 Konica Minolta, Inc. Detection device and detection method
JP6539545B2 (en) * 2015-08-28 2019-07-03 富士フイルム株式会社 Inspection apparatus and method of operating the same

Also Published As

Publication number Publication date
WO2018179530A1 (en) 2018-10-04
JP2018169291A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6660910B2 (en) Automatic sample processing device
CN208367018U (en) The electromechanical assemblies of Laboratory Instruments, automated system and mobile microbiological test plate that analyte is tested
US9856503B2 (en) Combined detection instrument for culture specimen containers and instrument for identification and/or characterization of a microbial agent in a sample
JP6019143B2 (en) System and method for rapid identification and / or characterization of microbial agents in a sample
US11578300B2 (en) Test apparatus
US20190128910A1 (en) Performing antimicrobial susceptibility testing and related systems and methods
JP6998325B2 (en) Systems and methods for transporting specimen containers between detection devices
KR20170132856A (en) Instruments and systems for rapid microbiological identification and antimicrobial susceptibility testing
JP7073278B2 (en) Systems and methods for load balancing specimen containers in detection equipment
US20120295301A1 (en) Floating bacteria trapping device, floating bacteria counting method and floating bacteria counting system
JP4245984B2 (en) Culture treatment apparatus and automatic culture apparatus
TW202141041A (en) Automatic processing device for liquid samples
JP2018186839A (en) Inspection apparatus
JP2005341813A (en) Culture treatment apparatus and automatic culture apparatus
JPWO2016103433A1 (en) Drug sensitivity test method, apparatus and system
JP2005333824A (en) Specimen introduction device and culture treatment apparatus
JP2019041774A (en) Drug sensitivity testing system
JP2006081432A (en) Method for using vital tissue cell in cell-based assay system for medicine development screening and medicine development screening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R151 Written notification of patent or utility model registration

Ref document number: 6660910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151