JP6625935B2 - Direct desulfurization method and crude oil with reduced heavy hydrocarbons - Google Patents

Direct desulfurization method and crude oil with reduced heavy hydrocarbons Download PDF

Info

Publication number
JP6625935B2
JP6625935B2 JP2016125683A JP2016125683A JP6625935B2 JP 6625935 B2 JP6625935 B2 JP 6625935B2 JP 2016125683 A JP2016125683 A JP 2016125683A JP 2016125683 A JP2016125683 A JP 2016125683A JP 6625935 B2 JP6625935 B2 JP 6625935B2
Authority
JP
Japan
Prior art keywords
crude oil
direct desulfurization
oil
molecular weight
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016125683A
Other languages
Japanese (ja)
Other versions
JP2017226799A (en
Inventor
小林 秀一
秀一 小林
拓 森山
拓 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2016125683A priority Critical patent/JP6625935B2/en
Publication of JP2017226799A publication Critical patent/JP2017226799A/en
Application granted granted Critical
Publication of JP6625935B2 publication Critical patent/JP6625935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直接脱硫の運転条件のシビアリティーを低くすることができる直接脱硫方法に関する。   The present invention relates to a direct desulfurization method capable of reducing the severity of operating conditions for direct desulfurization.

原油タンクに堆積した原油スラッジは、原油タンクから取り出された後、一般的には、産業廃棄物として処理されるが、その廃棄処理には高い費用を要する。一方で、原油スラッジは、多くの場合30〜80体積%程度の油分を含んでいるため、原油スラッジ中の油分の回収のニーズも大きい。   The crude oil sludge accumulated in the crude oil tank is generally treated as industrial waste after being removed from the crude oil tank, but the disposal of the sludge is expensive. On the other hand, since crude oil sludge often contains about 30 to 80% by volume of oil, there is a great need for recovery of oil in crude oil sludge.

そこで、従来、真空蒸留法、加熱分離法、遠心分離法等により、原油スラッジから油分を回収する試みが行われてきた(例えば、特許文献1〜3)。   Therefore, conventionally, attempts have been made to recover oil from crude oil sludge by a vacuum distillation method, a heat separation method, a centrifugal separation method or the like (for example, Patent Documents 1 to 3).

国際公開2012/141024号International Publication 2012/141024 特開平3−226481号公報JP-A-3-226481 特開2004−243300号公報JP-A-2004-243300

しかし、原油スラッジから回収された油分は、低品質であることから、これを原料油として良好な品質の燃料を製造する場合には、精製コストが高くなってしまう。そのため、原油スラッジから回収された油分は、直接、安価な外燃機関用の燃料油として使用されることが多い。   However, since the oil recovered from the crude oil sludge is of low quality, the refining cost will be high if a good quality fuel is produced using this as a feedstock. Therefore, oil recovered from crude oil sludge is often used directly as inexpensive fuel oil for external combustion engines.

ここで、原油スラッジから回収した油分を原油に混合すれば、安価な燃料油ではなく、より価格の高い原油として販売することが可能となる。ところが、本発明者らが検討したところ、原油スラッジから回収した油分を原油に混合し、得られる回収油分混合原油を、そのまま常圧蒸留し、得られる常圧残渣油を、直接脱硫処理すると、同等の品質の処理油を得るにあたって、原油スラッジからの回収油分を混合しない場合に比べ、直接脱硫処理の運転条件のシビアリティーが上昇することがわかった。   Here, if the oil recovered from the crude oil sludge is mixed with the crude oil, it can be sold not as a cheap fuel oil but as a more expensive crude oil. However, when the present inventors examined, the oil recovered from crude oil sludge was mixed with crude oil, and the resulting recovered oil-mixed crude oil was subjected to atmospheric distillation as it was, and the obtained atmospheric residual oil was directly desulfurized. It was found that in obtaining a treated oil of the same quality, the severity of the operating conditions for the direct desulfurization treatment was higher than when the recovered oil from the crude oil sludge was not mixed.

また、以前より、直接脱硫処理の原料油の基となる原油種の違いにより、直接脱硫処理の運転条件のシビアリティーが異なることは知られていたが、それが何に起因するかの詳細は、わからなかった。そのため、直接脱硫処理の運転条件のシビアリティーを低くする明確な方法はわからなかった。   In addition, it has been known that the severity of the operating conditions for direct desulfurization varies depending on the type of crude oil that is the basis of the feedstock oil for direct desulfurization. ,I did not understand. Therefore, there was no clear method for reducing the severity of the operating conditions of the direct desulfurization treatment.

従って、本発明の課題は、運転条件のシビアリティーを低くすることができる直接脱硫方法を提供することにある。   Therefore, an object of the present invention is to provide a direct desulfurization method capable of reducing the severity of operating conditions.

上記課題は、以下の本発明により解決される。
すなわち、本発明は、 原油スラッジ(A)と原油(B)とを、該原油スラッジ(A)及び該原油(B)の合計に対する該原油スラッジ(A)の割合が5〜90質量%となるように混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る加熱撹拌工程(1)と、
該加熱撹拌処理物を40〜95℃で遠心分離することにより、軽液層と、重液、水分及び固形分の層と、を分離させ、該軽液層を採取することにより、該加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る重質炭化水素削減工程(1)と、
該重質炭化水素削減原油(1)を原油(C)に混合して、混合原油(D)を得る原油混合工程(1)と、
常圧蒸留により、該混合原油(D)から常圧留出分を分離して、常圧残渣油(1)を得る常圧蒸留工程(1)と、
該常圧残渣油(1)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(1)と、
を有することを特徴とする直接脱硫方法を提供するものである。
The above problem is solved by the present invention described below.
That is, the present onset Ming, crude oil sludge (A) and crude oil (B), the ratio is 5 to 90 wt% of the raw oil sludge (A) to the sum of the raw oil sludge (A) and raw oil (B) Then, the mixture of the crude oil sludge (A) and the crude oil (B) is heated and stirred at 40 to 95 ° C. to obtain a heated and stirred product of the crude oil sludge (A) and the crude oil (B). Step (1),
By centrifuging the heat-stirred product at 40 to 95 ° C., the light liquid layer is separated from the heavy liquid, water and solid layers, and the light liquid layer is collected to obtain the heat-stirred liquid. A heavy hydrocarbon reduction step (1) of removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the processed product to obtain a heavy hydrocarbon reduced crude oil (1);
A crude oil mixing step (1) of mixing the heavy hydrocarbon reduced crude oil (1) with the crude oil (C) to obtain a mixed crude oil (D);
An atmospheric distillation step (1) of separating an atmospheric distillate from the mixed crude oil (D) by atmospheric distillation to obtain an atmospheric residue (1);
A direct desulfurization step (1) of performing a direct desulfurization treatment using the atmospheric residual oil (1) as a direct desulfurization raw material oil;
And a direct desulfurization method characterized by having the following.

また、本発明(2)は、原油(E)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(2)を得る重質炭化水素削減工程(2)と、
常圧蒸留により、該重質炭化水素削減原油(2)から常圧留出分を分離して、常圧残渣油(2)を得る常圧蒸留工程(2)と、
該常圧残渣油(2)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(2)と、
を有することを特徴とする直接脱硫方法を提供するものである。
In addition, the present invention (2) comprises removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the crude oil (E) to obtain a heavy hydrocarbon reduced crude oil (2). 2) and
An atmospheric distillation step (2) of separating an atmospheric distillate from the heavy hydrocarbon reduced crude oil (2) by atmospheric distillation to obtain an atmospheric residue (2);
A direct desulfurization step (2) of performing a direct desulfurization treatment using the normal pressure residual oil (2) as a direct desulfurization raw material oil;
And a direct desulfurization method characterized by having the following.

また、本発明(3)は、直接脱硫原料油(F)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減直接脱硫原料油(3)を得る重質炭化水素削減工程(3)と、
該重質炭化水素削減直接脱硫原料油(3)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(3)と、
を有することを特徴とする直接脱硫方法を提供するものである。
Further, the present invention (3) is a method for removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the direct desulfurization feedstock (F) to obtain a heavy hydrocarbon reduction direct desulfurization feedstock (3). Quality hydrocarbon reduction process (3),
A direct desulfurization step (3) of performing a direct desulfurization treatment using the heavy hydrocarbon reduced direct desulfurization feedstock (3) as a direct desulfurization feedstock;
And a direct desulfurization method characterized by having the following.

また、本発明(4)は、分子量が2500〜15000の高分子炭化水素の含有量が多い常圧残渣油(G)に、該常圧残渣油(G)に比べ、分子量が2500〜15000の高分子炭化水素の含有量が少ない常圧残渣油(H)を混合して、重質炭化水素減量直接脱硫原料油(4)を得る直接脱硫原料混合工程(4)と、
該重質炭化水素減量直接脱硫原料油(4)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(4)と、
を有することを特徴とする直接脱硫方法を提供するものである。
In addition, the present invention (4) provides a normal pressure residue oil (G) having a high content of a high molecular weight hydrocarbon having a molecular weight of 2500 to 15,000 as compared with the normal pressure residue oil (G). A direct desulfurization raw material mixing step (4) of mixing a normal pressure residual oil (H) having a low content of high molecular hydrocarbons to obtain a heavy hydrocarbon reduction direct desulfurization raw oil (4);
A direct desulfurization step (4) of performing a direct desulfurization treatment using the heavy hydrocarbon reduction direct desulfurization feedstock (4) as a direct desulfurization feedstock;
And a direct desulfurization method characterized by having the following.

また、本発明(5)は、原油スラッジ(A)と原油(B)とを、該原油スラッジ(A)及び該原油(B)の合計に対する該原油スラッジ(A)の割合が5〜90質量%となるように混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る加熱撹拌工程(1)と、
該加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る重質炭化水素削減工程(1)と、
該重質炭化水素削減原油(1)を原油(C)に混合して、混合原油(D)を得る混合工程(1)と、
を行い得られる重質炭化水素削減原油(1)を提供するものである。
In addition, the present invention (5) is characterized in that the crude oil sludge (A) and the crude oil (B) have a ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) of 5 to 90 mass%. %, And the mixture of the crude oil sludge (A) and the crude oil (B) is heated and stirred at 40 to 95 ° C. to obtain a heated and stirred product of the crude oil sludge (A) and the crude oil (B). Heating and stirring step (1);
A heavy hydrocarbon reduction step (1) of removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the heat-stirred product to obtain a heavy hydrocarbon reduced crude oil (1);
A mixing step (1) of mixing the heavy hydrocarbon reduced crude oil (1) with the crude oil (C) to obtain a mixed crude oil (D);
The present invention provides a heavy hydrocarbon reduced crude oil (1) obtained by performing the above method.

また、本発明(5)は、原油(E)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(2)を得る重質炭化水素削減工程(2)を行い得られる重質炭化水素削減原油(2)を提供するものである。   In addition, the present invention (5) provides a heavy hydrocarbon reduction step of removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the crude oil (E) to obtain a heavy hydrocarbon reduced crude oil (2) ( The present invention provides a heavy hydrocarbon reduced crude oil (2) obtained by performing 2).

本発明によれば、運転条件のシビアリティーを低くすることができる直接脱硫方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the direct desulfurization method which can reduce the severity of operating conditions can be provided.

原油スラッジaのGPC分析チャートである。It is a GPC analysis chart of crude oil sludge a. 常圧残渣油cのGPC分析チャートである。It is a GPC analysis chart of normal pressure residual oil c. 軽液dのGPC分析チャートである。It is a GPC analysis chart of light liquid d. 重質炭化水素含有油eのGPC分析チャートである。It is a GPC analysis chart of heavy hydrocarbon containing oil e. 直接脱硫原料油fのGPC分析チャートである。It is a GPC analysis chart of the direct desulfurization raw material oil f. 直接脱硫原料油gのGPC分析チャートである。It is a GPC analysis chart of direct desulfurization raw material oil g.

本発明の第一の形態の直接脱硫方法は、原油スラッジ(A)と原油(B)とを、該原油スラッジ(A)及び該原油(B)の合計に対する該原油スラッジ(A)の割合が5〜90質量%となるように混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る加熱撹拌工程(1)と、
該加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る重質炭化水素削減工程(1)と、
該重質炭化水素削減原油(1)を原油(C)に混合して、混合原油(D)を得る原油混合工程(1)と、
常圧蒸留により、該混合原油(D)から常圧留出分を分離して、常圧残渣油(1)を得る常圧蒸留工程(1)と、
該常圧残渣油(1)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(1)と、
を有することを特徴とする直接脱硫方法である。
In the direct desulfurization method according to the first aspect of the present invention, the ratio of the crude oil sludge (A) and the crude oil (B) to the total amount of the crude oil sludge (A) and the crude oil (B) is reduced. The mixture is mixed so as to have a concentration of 5 to 90% by mass, and then the mixture of the crude oil sludge (A) and the crude oil (B) is heated and stirred at 40 to 95 ° C., and the heated and stirred of the crude oil sludge (A) and the crude oil (B). A heating and stirring step (1) for obtaining a treated product;
A heavy hydrocarbon reduction step (1) of removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the heat-stirred product to obtain a heavy hydrocarbon reduced crude oil (1);
A crude oil mixing step (1) of mixing the heavy hydrocarbon reduced crude oil (1) with the crude oil (C) to obtain a mixed crude oil (D);
An atmospheric distillation step (1) of separating an atmospheric distillate from the mixed crude oil (D) by atmospheric distillation to obtain an atmospheric residue (1);
A direct desulfurization step (1) of performing a direct desulfurization treatment using the atmospheric residual oil (1) as a direct desulfurization raw material oil;
It is a direct desulfurization method characterized by having the following.

なお、本発明において高分子炭化水素の分子量は、ゲル浸透クロマトグラフィー(GPC)で測定される、ポリスチレン換算の分子量である。   In the present invention, the molecular weight of the high molecular weight hydrocarbon is a molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

本発明の第一の形態の直接脱硫方法に係る加熱撹拌工程(1)は、原油スラッジ(A)と原油(B)とを混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌して、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る工程である。   In the heating and stirring step (1) according to the direct desulfurization method of the first embodiment of the present invention, the crude oil sludge (A) and the crude oil (B) are mixed, and then the mixture of the crude oil sludge (A) and the crude oil (B) Is heated and stirred at 40 to 95 ° C. to obtain a heated and stirred product of the crude oil sludge (A) and the crude oil (B).

加熱撹拌工程(1)に係る原油スラッジ(A)は、原油が貯蔵されている原油中から発生し、原油タンクの底に堆積したスラッジである。原油スラッジ(A)としては、原油採掘後に固形分や水分等が除去されて原油タンクに貯蔵され、製油所に出荷される前の原油タンク中の原油から発生し、原油タンクの底部に堆積した原油スラッジ;原油タンカーの原油タンクの底部に堆積した原油スラッジ;製油所で精製される前の貯蔵用の原油タンク中の原油から発生し、原油タンクの底部に堆積した原油スラッジ等が挙げられる。原油スラッジ(A)は、1種類の原油から生成したものであってもよいし、複数種の原油から生成したものであってもよい。   Crude oil sludge (A) related to the heating and stirring step (1) is sludge generated from crude oil in which crude oil is stored and deposited on the bottom of a crude oil tank. As crude oil sludge (A), solids and water are removed from crude oil after being mined, stored in a crude oil tank, generated from crude oil in a crude oil tank before being shipped to a refinery, and deposited on the bottom of the crude oil tank. Crude oil sludge; crude oil sludge deposited on the bottom of a crude oil tank of a crude oil tanker; crude sludge generated from crude oil in a crude oil tank for storage before being refined in a refinery and deposited on the bottom of a crude oil tank; The crude oil sludge (A) may be produced from one kind of crude oil or may be produced from plural kinds of crude oil.

原油スラッジ(A)は、油分、アスファルテン、鉄分、砂、水等を含有している。原油スラッジ(A)中の油分は、主に、炭素数40以上のパラフィン及び芳香族炭化水素である。   Crude oil sludge (A) contains oil, asphaltenes, iron, sand, water, and the like. The oil component in the crude oil sludge (A) is mainly paraffins and aromatic hydrocarbons having 40 or more carbon atoms.

原油タンク内に堆積した原油スラッジ(A)を、原油タンク外へ取り出す方法としては、特に制限されず、例えば、原油タンク内の原油を原油タンク外へ抜き出した後に、原油タンク内に堆積した原油スラッジ(A)に高圧の原油を噴射し、破砕又は一部溶解した原油スラッジ(A)を原油で原油タンク外へ押し出す方法(COW:Crude Oil Washing)、原油タンク内の原油を原油タンク外へ抜き出した後に、人手により、原油タンク内に堆積した原油スラッジ(A)を取り出す方法等が挙げられる。   The method for removing the crude oil sludge (A) accumulated in the crude oil tank to the outside of the crude oil tank is not particularly limited. For example, the crude oil accumulated in the crude oil tank after the crude oil in the crude oil tank is extracted to the outside of the crude oil tank A method of injecting high-pressure crude oil into the sludge (A) and extruding the crushed or partially dissolved crude oil sludge (A) to the outside of the crude oil tank with crude oil (COW: Crude Oil Washing), the crude oil in the crude oil tank to the outside of the crude oil tank After the extraction, a method of manually extracting the crude oil sludge (A) accumulated in the crude oil tank may be used.

原油スラッジ(A)と混合する原油(B)は、特に制限されず、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵する前の原油であってもよいし、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵し間もない原油であり、原油スラッジが発生する前の原油であってもよいし、一定期間原油タンクに貯蔵することにより、原油タンクの底部に原油スラッジが発生した後の、原油タンク内の上澄みの原油であってもよい。原油(B)は、原油スラッジ(A)の生成源の原油と同じ種類の原油であっても、異なる種類の原油であってもよい。   The crude oil (B) to be mixed with the crude oil sludge (A) is not particularly limited, and may be crude oil after removing the solid content or water after the crude oil is mined and stored in the crude oil tank, or may be the solid content after the crude oil is mined. Crude oil that has just been stored in a crude oil tank after removing oil and water, etc., and may be crude oil before the generation of crude oil sludge. May be the supernatant crude oil in the crude oil tank after the occurrence of. The crude oil (B) may be the same type of crude oil as the source of the crude oil sludge (A) or a different type of crude oil.

なお、原油スラッジ(A)を原油タンクから取り出すときに、原油で原油スラッジ(A)を原油タンク外へ押し出すこと(例えば、COW)により、原油スラッジ(A)を取り出した場合、原油タンクから取り出されたものは、原油スラッジ(A)と原油スラッジ(A)の取り出しに用いられた原油の混合物であるが、この場合、原油スラッジ(A)の取り出しに用いられた原油は、原油(B)に含まれる。   When the crude oil sludge (A) is taken out of the crude oil tank, the crude oil sludge (A) is pushed out of the crude oil tank (for example, COW) to remove the crude oil sludge (A) from the crude oil tank. Is a mixture of crude oil sludge (A) and crude oil used for removing crude oil sludge (A). In this case, crude oil used for removing crude oil sludge (A) is crude oil (B) include.

加熱撹拌工程(1)においては、先ず、原油スラッジ(A)及び原油(B)の合計に対する原油スラッジ(A)の割合が、20〜95質量%、好ましくは40〜90質量%、より好ましくは60〜90質量%となるように、原油スラッジ(A)と原油(B)を混合する。原油スラッジ(A)及び原油(B)の合計に対する原油スラッジ(A)の割合が、上記範囲未満だと、次工程で分子量が2500〜15000の高分子炭化水素を、除去又は減量する際に、処理量が嵩み費用対効果が悪くなり、また、上記範囲を超えると、ハンドリングが悪く、過剰な加熱設備が必要となる。   In the heating and stirring step (1), first, the ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) is 20 to 95% by mass, preferably 40 to 90% by mass, more preferably The crude oil sludge (A) and the crude oil (B) are mixed so as to be 60 to 90% by mass. If the ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) is less than the above range, when removing or reducing the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 in the next step, If the processing amount is large, the cost-effectiveness becomes poor, and if it exceeds the above range, the handling is poor and an excessive heating equipment is required.

なお、原油スラッジ(A)を原油タンクから取り出すときに、原油で原油スラッジ(A)を原油タンク外へ押し出すこと(例えば、COW洗浄)により、原油スラッジ(A)を取り出した場合、原油スラッジ(A)の取り出しに用いられた原油を、原油(B)に含めて、原油スラッジ(A)及び原油(B)の合計に対する原油スラッジ(A)の割合を算出する。そのため、この場合、原油タンクの底部に堆積している原油スラッジ(A)及び原油スラッジ(A)の取り出しに用いる原油の合計に対する原油スラッジ(A)の割合が、所定の混合割合、すなわち、原油スラッジ(A)及び原油(B)の合計に対する原油スラッジ(A)の割合が、20〜95質量%、好ましくは40〜90質量%、より好ましくは60〜90質量%となる量の原油を用いて、原油スラッジ(A)を原油タンク外へ取出し、取り出した原油スラッジ(A)と原油の混合物を、そのまま加熱撹拌に用いる原油スラッジ(A)と原油(B)の混合物としてもよい。あるいは、原油タンクの底部に堆積している原油スラッジ(A)を、少量の原油を用いて、原油タンク外へ取出し、取り出した原油スラッジ(A)と原油の混合物に、更に、原油スラッジ(A)の取り出しに用いた原油と同じ種類の原油又は異なる種類の原油を混合して、所定の混合割合、すなわち、原油スラッジ(A)及び原油(B)の合計に対する原油スラッジ(A)の割合が、20〜95質量%、好ましくは40〜90質量%、より好ましくは60〜90質量%にして、得られる混合物を、加熱撹拌に用いる原油スラッジ(A)と原油(B)の混合物としてもよい。   When the crude oil sludge (A) is removed from the crude oil tank, the crude oil sludge (A) is pushed out of the crude oil tank (for example, by COW cleaning) to remove the crude oil sludge (A). The crude oil used for taking out A) is included in the crude oil (B), and the ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) is calculated. Therefore, in this case, the ratio of the crude oil sludge (A) to the total amount of the crude oil sludge (A) deposited on the bottom of the crude oil tank and the crude oil used for taking out the crude oil sludge (A) is a predetermined mixing ratio, that is, the crude oil sludge (A). Crude oil is used in such an amount that the ratio of the crude oil sludge (A) to the total of the sludge (A) and the crude oil (B) is 20 to 95% by mass, preferably 40 to 90% by mass, more preferably 60 to 90% by mass. Then, the crude oil sludge (A) may be taken out of the crude oil tank, and the mixture of the taken out crude oil sludge (A) and crude oil may be used as it is as a mixture of crude oil sludge (A) and crude oil (B) used for heating and stirring. Alternatively, the crude oil sludge (A) deposited on the bottom of the crude oil tank is taken out of the crude oil tank using a small amount of crude oil, and a mixture of the taken crude oil sludge (A) and crude oil is further added to the crude oil sludge (A). ) Is mixed with the same type of crude oil or a different type of crude oil, and a predetermined mixing ratio, that is, a ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) is obtained. 20 to 95% by mass, preferably 40 to 90% by mass, more preferably 60 to 90% by mass, and the resulting mixture may be a mixture of crude oil sludge (A) and crude oil (B) used for heating and stirring. .

加熱撹拌工程(1)では、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃、好ましくは50〜95℃、より好ましくは60〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る。加熱撹拌温度が、上記範囲未満だと、次工程で分子量が2500〜15000の高分子炭化水素を、除去又は減量する際に、処理量が嵩み費用対効果が悪くなり、また、上記範囲を超えると、ハンドリングが悪く、過剰な加熱設備が必要となる。原油スラッジ(A)と原油(B)の混合物を、加熱撹拌する方法としては、特に制限されず、例えば、原油タンクから取り出された原油スラッジ(A)が貯留されるタンク内で、原油スラッジ(A)と原油(B)の混合物を、加熱撹拌する方法が挙げられる。加熱撹拌時間は、特に制限されず、均一な混合状態となるよう、撹拌条件に応じて選択される。   In the heating and stirring step (1), the mixture of the crude oil sludge (A) and the crude oil (B) is heated and stirred at 40 to 95 ° C., preferably 50 to 95 ° C., more preferably 60 to 95 ° C. A heat-stirred product of (A) and crude oil (B) is obtained. When the heating and stirring temperature is less than the above range, when removing or reducing the high molecular weight hydrocarbon having a molecular weight of 2,500 to 15,000 in the next step, the treatment amount is increased and the cost-effectiveness is deteriorated. If it exceeds, the handling is poor and excessive heating equipment is required. The method of heating and stirring the mixture of the crude oil sludge (A) and the crude oil (B) is not particularly limited. For example, the crude oil sludge (A) taken out of the crude oil tank is stored in a tank where the crude oil sludge (A) is stored. A method in which a mixture of A) and crude oil (B) is heated and stirred. The heating and stirring time is not particularly limited, and is selected according to the stirring conditions so as to obtain a uniform mixing state.

原油スラッジ(A)中の油分の含有量は、特に制限されないが、通常、30〜80質量%である。そして、この原油スラッジ(A)中の油分は、加熱撹拌工程(1)において、原油スラッジ(A)と原油(B)の混合物を40〜95℃、好ましくは50〜95℃、より好ましくは60〜95℃で加熱撹拌することにより、原油(B)に溶解する。   The content of the oil component in the crude oil sludge (A) is not particularly limited, but is usually 30 to 80% by mass. The oil content in the crude oil sludge (A) is obtained by heating the mixture of the crude oil sludge (A) and the crude oil (B) at 40 to 95 ° C, preferably 50 to 95 ° C, more preferably 60 to 60 in the heating and stirring step (1). It dissolves in crude oil (B) by heating and stirring at 9595 ° C.

本発明の第一の形態の直接脱硫方法に係る重質炭化水素削減工程(1)は、加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る工程である。   The heavy hydrocarbon reduction step (1) according to the direct desulfurization method according to the first aspect of the present invention comprises removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from a heat-stirred product, and removing the heavy hydrocarbon. This is the step of obtaining hydrogen-reduced crude oil (1).

重質炭化水素削減工程(1)において、加熱撹拌処理物から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、特に制限されず、加熱撹拌処理物中の分子量が2500〜15000の高分子炭化水素を除去又は削減することができる方法が、適宜選択される。   In the heavy hydrocarbon reduction step (1), the method for removing or reducing the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the heat-stirred product is not particularly limited. A method capable of removing or reducing 15,000 high molecular hydrocarbons is appropriately selected.

重質炭化水素削減工程(1)において、分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、例えば、加熱撹拌工程(1)を行い得られた原油スラッジ(A)と原油(B)の加熱撹拌処理物を、40〜95℃で遠心分離することにより、軽液と重液、水分、固形分とを分離して、軽液を得る方法(以下、遠心分離法とも記載する。)が挙げられる。そして、重質炭化水素削減工程(1)に係る遠心分離法を行い得られる軽液が、重質炭化水素削減原油(1)である。   In the heavy hydrocarbon reduction step (1), as a method for removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000, for example, crude oil sludge (A) obtained by performing a heating and stirring step (1) and crude oil A method of obtaining a light liquid by separating the light liquid from the heavy liquid, moisture, and solids by centrifuging the heat-stirred product of (B) at 40 to 95 ° C (hereinafter also referred to as a centrifugation method). Do). The light liquid obtained by performing the centrifugal separation method according to the heavy hydrocarbon reduction step (1) is the heavy hydrocarbon reduction crude oil (1).

重質炭化水素削減工程(1)に係る遠心分離法おいて、原油スラッジ(A)と原油(B)の加熱撹拌処理物の遠心分離を行うときの温度は、40〜95℃、好ましくは50〜95℃、より好ましくは60〜95℃である。遠心分離温度が、上記範囲未満だと、遠心分離中に、原油スラッジ(A)と原油(B)の加熱撹拌処理物の一部が凝固したり、加熱撹拌処理物の流動性が大きく低下したりするため、遠心分離が行えなくなり、また、上記範囲を超えると、軽質留分の損失によるデメリットが発生する。また、重質炭化水素削減工程(1)に係る遠心分離法において、原油スラッジ(A)と原油(B)の加熱撹拌処理物の遠心分離を行うときの温度は、加熱撹拌工程(1)における、原油スラッジ(A)と原油(B)の混合物の加熱撹拌温度と同じ程度である。   In the centrifugal separation method according to the heavy hydrocarbon reduction step (1), the temperature at which the heat-stirring treatment of the crude oil sludge (A) and the crude oil (B) is performed is 40 to 95 ° C, preferably 50 to 95 ° C. To 95 ° C, more preferably 60 to 95 ° C. If the centrifugal separation temperature is less than the above range, during the centrifugal separation, a part of the heat-stirred product of the crude oil sludge (A) and the crude oil (B) solidifies, or the fluidity of the heated-stirred product greatly decreases. Or above, the centrifugation cannot be performed, and if it exceeds the above range, a disadvantage occurs due to the loss of the light fraction. In the centrifugal separation method according to the heavy hydrocarbon reduction step (1), the temperature at which the heat-stirring treatment of the crude oil sludge (A) and the crude oil (B) is performed in the heat-stirring step (1) , The same as the heating and stirring temperature of the mixture of the crude oil sludge (A) and the crude oil (B).

重質炭化水素削減工程(1)に係る遠心分離法を行い得られる原油スラッジ(A)と原油(B)の加熱撹拌処理物は、比重が小さい軽液(重質炭化水素削減原油(1))と軽液より比重が大きい重液、水及び固形分からなる混合物であり、遠心分離法では、比重差により軽液と重液とを分離する。そして、軽液(重質炭化水素削減原油(1))は、加熱撹拌工程(1)で原油スラッジ(A)中の油分が原油(B)に溶解することにより得られる液体である。つまり、軽液(重質炭化水素削減原油(1))は、基本的に原油(B)と原油(B)に溶解した原油スラッジ(A)中の油分とからなる。重液は、加熱撹拌工程(1)で原油(B)には溶解しなかった原油スラッジ(A)中の油分を含み、主に、ワックス、アスファルテンを抱き込んで分離され難い状態にある油分などであり、原油スラッジ(A)中の分子量が2500〜15000の高分子炭化水素を多く含んでいる。   The heated and agitated product of the crude oil sludge (A) and the crude oil (B) obtained by performing the centrifugation method according to the heavy hydrocarbon reduction step (1) is a light liquid having a small specific gravity (the heavy hydrocarbon reduced crude oil (1)). ) And a mixture of heavy liquid, water, and solid having a specific gravity greater than that of the light liquid. In the centrifugation method, the light liquid and the heavy liquid are separated by a difference in specific gravity. The light liquid (heavy hydrocarbon reduced crude oil (1)) is a liquid obtained by dissolving the oil in the crude oil sludge (A) into the crude oil (B) in the heating and stirring step (1). That is, the light liquid (heavy hydrocarbon reduced crude oil (1)) basically consists of the crude oil (B) and the oil component in the crude oil sludge (A) dissolved in the crude oil (B). The heavy liquid contains oil in the crude oil sludge (A) that has not been dissolved in the crude oil (B) in the heating and stirring step (1), and mainly contains wax, asphaltene, and the like, which is difficult to be separated. And contains a large amount of high molecular hydrocarbons having a molecular weight of 2500 to 15000 in the crude oil sludge (A).

重質炭化水素削減工程(1)に係る遠心分離法において、加熱撹拌処理物を遠心分離するための遠心分離装置としては、特に制限されず、上記遠心分離温度を保ったまま、連続的に軽液と重液とを、比重の差により分離できるものであればよい。例えば、デカンター式遠心分離機、ディスクセパレータ式遠心分離機、又はこれらを組み合わせた遠心分離機が挙げられる。   In the centrifugal separation method according to the heavy hydrocarbon reduction step (1), the centrifugal separator for centrifuging the heated and agitated product is not particularly limited, and the centrifugal separator is continuously lightened while maintaining the centrifugal separation temperature. What is necessary is just to be able to separate the liquid and the heavy liquid by the difference in specific gravity. For example, a decanter-type centrifuge, a disk separator-type centrifuge, or a centrifuge that combines these is used.

重質炭化水素削減工程(1)を行い得られる軽液(重質炭化水素削減原油(1))の物性は、特に制限されないが、密度は好ましくは0.80〜0.95g/cm、より好ましくは0.80〜0.88g/cmであり、融点は好ましくは40〜95℃、より好ましくは40〜95℃、さらに好ましくは40〜95℃であり、凝固点は好ましくは30〜90℃、より好ましくは30〜85℃、さらに好ましくは30〜80℃であり、油分含有量は60質量%以上である。 The physical properties of the light liquid (heavy hydrocarbon reduced crude oil (1)) obtained by performing the heavy hydrocarbon reduction step (1) are not particularly limited, but the density is preferably 0.80 to 0.95 g / cm 3 , More preferably 0.80 to 0.88 g / cm 3 , the melting point is preferably 40 to 95 ° C., more preferably 40 to 95 ° C., even more preferably 40 to 95 ° C., and the freezing point is preferably 30 to 90 ° C. ° C, more preferably 30 to 85 ° C, still more preferably 30 to 80 ° C, and the oil content is 60% by mass or more.

重質炭化水素削減工程(1)において、加熱撹拌処理物から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、他に、加熱撹拌処理物に高分子凝集剤を添加し、生成する沈殿凝集物を加熱撹拌処理物から分離除去する方法や、加熱撹拌処理物にパラフィン溶剤を混合し、高分子炭化水素を加熱撹拌処理物から抽出除去する方法が挙げられる。   In the heavy hydrocarbon reduction step (1), as a method for removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15,000 from the heat-stirred product, a polymer flocculant is added to the heat-stirred product. And a method of separating and removing formed precipitates and aggregates from the heated and stirred product, and a method of mixing a paraffin solvent with the heated and stirred product and extracting and removing high molecular hydrocarbons from the heated and stirred product.

本発明の第一の形態の直接脱硫方法に係る原油混合工程(1)は、重質炭化水素削減工程(1)を行い得られる重質炭化水素削減原油(1)を原油(C)に混合する工程である。重質炭化水素削減工程(1)を行い得られる重質炭化水素削減原油(1)を、原油(C)に混合する方法としては、特に制限されず、例えば、原油(C)の移送管中に、重質炭化水素削減原油(1)を導入する方法や、原油(C)の原油タンクに重質炭化水素削減原油(1)を供給する方法等が挙げられる。   In the crude oil mixing step (1) according to the direct desulfurization method of the first embodiment of the present invention, the heavy hydrocarbon reduced crude oil (1) obtained by performing the heavy hydrocarbon reduction step (1) is mixed with the crude oil (C). This is the step of doing. The method of mixing the heavy hydrocarbon reduced crude oil (1) obtained by performing the heavy hydrocarbon reduction step (1) with the crude oil (C) is not particularly limited. Examples of the method include a method of introducing the heavy hydrocarbon reduced crude oil (1) and a method of supplying the heavy hydrocarbon reduced crude oil (1) to the crude oil tank of the crude oil (C).

原油混合工程(1)において、重質炭化水素削減原油(1)を混合する原油(C)は、特に制限されず、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵する前の原油であってもよいし、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵し間もない原油であり、原油スラッジが発生する前の原油であってもよいし、一定期間原油タンクに貯蔵することにより、原油タンクの底部に原油スラッジが発生した後の、原油タンク内の上澄みの原油であってもよい。原油(C)は、原油スラッジ(A)の生成源の原油と同じ種類の原油であっても、異なる種類の原油であってもよく、また、原油(B)と同じ種類の原油であっても、異なる種類の原油であってもよい。   In the crude oil mixing step (1), the crude oil (C) to be mixed with the heavy hydrocarbon reduced crude oil (1) is not particularly limited, and the crude oil before removing the solid content and water after the crude oil is mined and stored in the crude oil tank. It may be a crude oil that has not yet been stored in a crude oil tank after removing solids and moisture after extracting the crude oil, and may be crude oil before the generation of crude oil sludge, or may be stored in the crude oil tank for a certain period of time. After storage, the crude oil in the crude oil tank after the crude oil sludge is generated at the bottom of the crude oil tank may be used. The crude oil (C) may be the same kind of crude oil as the crude oil from which the crude oil sludge (A) is produced, may be a different kind of crude oil, or may be the same kind of crude oil as the crude oil (B). May also be different types of crude oil.

原油混合工程(1)において、原油(C)への重質炭化水素削減原油(1)の混合量は、原油(C)100体積部に対し、好ましくは45体積部以下、より好ましくは2〜15体積部である。   In the crude oil mixing step (1), the amount of the heavy hydrocarbon reduced crude oil (1) mixed with the crude oil (C) is preferably 45 parts by volume or less, more preferably 2 to 100 parts by volume of the crude oil (C). 15 parts by volume.

重質炭化水素削減工程(1)において、遠心分離法により、重質炭化水素削減原油(1)である軽液を得た場合は、原油混合工程(1)では、軽液を融点以上の温度にし、融点以上の温度の軽液を原油移送管内の原油(C)に混合することが、原油中にスラッジが発生し難い点で好ましい。そして、原油スラッジ(A)中の油分は、炭素数が40以上と、分子量が大きい炭化水素が主であるため、軽液(重質炭化水素削減原油(1))の温度が、加熱撹拌工程(1)で加熱撹拌を行ったときの温度より低くなり過ぎると、軽液が凝固するか又は軽液の流動性が著しく低くなるため、混合工程(1)では、軽液を融点以上の温度にして、軽液を原油(C)に混合する。軽液の温度は、好ましくは融点以上の温度で、且つ40〜200℃、より好ましくは50〜150℃、さらに好ましくは60〜100℃の範囲内である。また、原油混合工程(1)において、原油(C)に軽液を混合するときの原油(C)と軽液の温度の関係であるが、原油(C)の温度が軽液の温度以上の温度である場合は、原油(C)の温度と軽液の温度の差は、好ましくは10℃以内、より好ましくは5℃以内である。但し、原油(C)の温度が高過ぎると、軽質留分の損失によるデメリットが発生するので、原油(C)の温度は、60℃以下が好ましく、50℃以下がより好ましい。また、原油(C)の温度が軽液の温度未満の温度である場合は、原油(C)の温度は、軽液の温度より低く且つ軽液の温度と原油(C)の温度の差が40℃以内である。   In the heavy hydrocarbon reduction step (1), when the light liquid as the heavy hydrocarbon reduced crude oil (1) is obtained by centrifugation, in the crude oil mixing step (1), the light liquid is heated to a temperature equal to or higher than the melting point. It is preferable to mix a light liquid having a temperature equal to or higher than the melting point with the crude oil (C) in the crude oil transfer pipe because sludge is hardly generated in the crude oil. The oil component in the crude oil sludge (A) is mainly composed of hydrocarbons having a carbon number of 40 or more and a high molecular weight. Therefore, the temperature of the light liquid (heavy hydrocarbon reduced crude oil (1)) is increased by the heating and stirring process. If the temperature is too low when the heating and stirring is performed in (1), the light liquid solidifies or the fluidity of the light liquid becomes extremely low. Therefore, in the mixing step (1), the light liquid is heated to a temperature higher than the melting point. Then, the light liquid is mixed with the crude oil (C). The temperature of the light liquid is preferably a temperature equal to or higher than the melting point, and is in the range of 40 to 200C, more preferably 50 to 150C, and still more preferably 60 to 100C. In the crude oil mixing step (1), the relationship between the temperature of the crude oil (C) and the temperature of the light liquid when the light liquid is mixed with the crude oil (C) is as follows. When it is a temperature, the difference between the temperature of the crude oil (C) and the temperature of the light liquid is preferably within 10 ° C, more preferably within 5 ° C. However, if the temperature of the crude oil (C) is too high, a disadvantage occurs due to the loss of the light fraction, so the temperature of the crude oil (C) is preferably 60 ° C or lower, more preferably 50 ° C or lower. Further, when the temperature of the crude oil (C) is lower than the temperature of the light liquid, the temperature of the crude oil (C) is lower than the temperature of the light liquid and the difference between the temperature of the light liquid and the temperature of the crude oil (C). It is within 40 ° C.

重質炭化水素削減工程(1)において、遠心分離法により、重質炭化水素削減原油(1)である軽液を得た場合は、原油混合工程(1)においては、原油移送管内の原油(C)に軽液を混合することにより、原油(C)に軽液を混合する。原油移送管は、原油(C)を移送するための移送管であり、原油(C)はその中を流れているので、軽液を原油移送管内の原油(C)に混合するとは、原油移送管内を流れている状態の原油(C)に軽液を混合することを指す。そして、原油混合工程(1)では、流れている状態の原油(C)に軽液を混合する。軽液を原油移送管内の原油(C)に混合する方法としては、ラインミキシング、スタティックミキサー、インジェクションノズル、ミキシングバルブ等による混合が挙げられる。原油混合工程(1)において、原油(C)への軽液の混合量は、原油(C)100体積部に対し、好ましくは45体積部以下、より好ましくは2〜15体積部である。原油(C)への軽液の混合量が上記範囲にあることにより、原油(C)中でスラッジが生じ難くなる。また、原油混合工程(1)において、原油移送管内を流れる原油(C)に軽液を混合する場合、原油移送管内を流れる原油(C)の線速度は、好ましくは1cm/秒以上、より好ましくは4cm/秒以上、さらに好ましくは6cm/秒以上である。原油移送管内を流れる原油(C)の線速度が上記範囲にあることにより、原油(C)中で析出した原油スラッジ(A)の油分が分散し易くなるので、原油(C)中でスラッジが生じ難くなる。なお、原油移送管内を流れる原油(C)の線速度に上限値はないが、通常の原油移送配管内の原油の線速度は500cm/秒以下となることが多い。   In the heavy hydrocarbon reduction step (1), when a light liquid that is the heavy hydrocarbon reduced crude oil (1) is obtained by centrifugation, in the crude oil mixing step (1), the crude oil ( The light liquid is mixed with the crude oil (C) by mixing the light liquid with C). The crude oil transfer pipe is a transfer pipe for transferring the crude oil (C). Since the crude oil (C) flows through the pipe, mixing the light liquid with the crude oil (C) in the crude oil transfer pipe means that the crude oil is transferred. This refers to mixing a light liquid with crude oil (C) flowing in a pipe. Then, in the crude oil mixing step (1), the light liquid is mixed with the flowing crude oil (C). Examples of a method for mixing the light liquid with the crude oil (C) in the crude oil transfer pipe include a line mixing, a static mixer, an injection nozzle, and a mixing valve. In the crude oil mixing step (1), the mixing amount of the light liquid with the crude oil (C) is preferably 45 parts by volume or less, more preferably 2 to 15 parts by volume, per 100 parts by volume of the crude oil (C). When the amount of the light liquid mixed with the crude oil (C) is within the above range, sludge is less likely to be generated in the crude oil (C). Further, in the crude oil mixing step (1), when mixing the light liquid with the crude oil (C) flowing in the crude oil transfer pipe, the linear velocity of the crude oil (C) flowing in the crude oil transfer pipe is preferably 1 cm / sec or more, more preferably. Is 4 cm / sec or more, more preferably 6 cm / sec or more. When the linear velocity of the crude oil (C) flowing in the crude oil transfer pipe is within the above range, the oil component of the crude oil sludge (A) precipitated in the crude oil (C) is easily dispersed. It is unlikely to occur. The linear velocity of the crude oil (C) flowing in the crude oil transfer pipe has no upper limit, but the linear velocity of the crude oil in the ordinary crude oil transfer pipe is often 500 cm / sec or less.

そして、原油混合工程(1)を行うことにより、重質炭化水素削減原油(1)を原油(C)に混合させた混合原油(D)を得る。   Then, by performing the crude oil mixing step (1), a mixed crude oil (D) in which the heavy hydrocarbon reduced crude oil (1) is mixed with the crude oil (C) is obtained.

本発明の第一の形態の直接脱硫方法に係る常圧蒸留工程(1)は、混合原油(D)の常圧蒸留を行い、常圧蒸留により、混合原油(D)から常圧留出分を分離して、常圧残渣油(1)を得る工程である。   In the atmospheric distillation step (1) according to the direct desulfurization method of the first embodiment of the present invention, atmospheric distillation of the mixed crude (D) is performed, and the atmospheric distillation is performed from the mixed crude (D) by atmospheric distillation. Is obtained to obtain an atmospheric residual oil (1).

常圧蒸留工程(1)は、通常、石油精製プロセスにおいて行われる常圧蒸留である。つまり、常圧蒸留工程(1)は、石油精製プロセスの常圧蒸留の蒸留対象の原油として、混合工程(1)を行い得られる混合原油(D)を用いて、常圧蒸留を行う工程である。   The atmospheric distillation step (1) is an atmospheric distillation usually performed in a petroleum refining process. That is, the atmospheric distillation step (1) is a step of performing atmospheric distillation using the mixed crude oil (D) obtained by performing the mixing step (1) as the crude oil to be distilled in the atmospheric distillation of the petroleum refining process. is there.

本発明の第一の形態の直接脱硫方法に係る直接脱硫工程(1)は、常圧蒸留工程(1)を行い得られた常圧残渣油(1)を、直接脱硫原料油として用いて、直接脱硫処理を行う工程、すなわち、常圧残渣油(1)を、脱硫触媒の存在下に、水素化脱硫する工程である。直接脱硫工程(1)における直接脱硫方法は、通常の石油精製プロセスにおいて行われる直接脱硫方法と同様である。例えば、直接脱硫工程(1)における運転条件としては、水素圧が5〜15MPa、脱硫温度が250〜450℃である。直接脱硫工程(1)に用いられる水素化脱硫触媒は、通常の石油精製プロセスにおいて行われる直接脱硫に用いられる水素化脱硫触媒である。   In the direct desulfurization step (1) according to the direct desulfurization method of the first embodiment of the present invention, the atmospheric residue (1) obtained by performing the atmospheric distillation step (1) is used as a direct desulfurization feedstock, This is a step of performing a direct desulfurization treatment, that is, a step of hydrodesulfurizing the atmospheric residual oil (1) in the presence of a desulfurization catalyst. The direct desulfurization method in the direct desulfurization step (1) is the same as the direct desulfurization method performed in an ordinary petroleum refining process. For example, as operating conditions in the direct desulfurization step (1), the hydrogen pressure is 5 to 15 MPa, and the desulfurization temperature is 250 to 450 ° C. The hydrodesulfurization catalyst used in the direct desulfurization step (1) is a hydrodesulfurization catalyst used for direct desulfurization performed in an ordinary petroleum refining process.

本発明者らは、直接脱硫処理において、直接脱硫原料油中に、分子量が2500〜15000の高分子炭化水素が多く存在すると、直接脱硫処理の運転条件のシビアリティーが上昇してしまうこと、例えば、処理油中の硫黄分の量を同じ目標値とした場合に、分子量が2500〜15000の高分子炭化水素の含有量が多い直接脱硫原料油は、分子量が2500〜15000の高分子炭化水素の含有量が少ない直接脱硫原料油に比べ、要求処理温度が高くなってしまうことを見出した。言い換えると、本発明者らは、直接脱硫原料油から、分子量が2500〜15000の高分子炭化水素を除去又は削減することにより、直接脱硫処理の運転条件のシビアリティーを低くすることができることを見出した。   The present inventors have found that, in a direct desulfurization treatment, if a large amount of a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 is present in the direct desulfurization feedstock, the severity of the operating conditions of the direct desulfurization treatment increases, for example, When the amount of sulfur in the treated oil is set to the same target value, a direct desulfurization feedstock having a high content of a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 is a high molecular weight hydrocarbon having a high molecular weight of 2500 to 15000. It has been found that the required processing temperature is higher than that of a direct desulfurization feedstock having a small content. In other words, the present inventors have found that by removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the direct desulfurization feedstock, the severity of the operating conditions of the direct desulfurization treatment can be reduced. Was.

そして、本発明の第一の形態の直接脱硫方法では、加熱撹拌工程(1)及び重質炭化水素削減工程(1)を行うことにより、直接脱硫工程(1)における直接脱硫処理の原料油中の分子量が2500〜15000の高分子炭化水素を削減することができるので、本発明の第一の形態の直接脱硫方法によれば、直接脱硫処理の運転条件のシビアリティーを低くすることができる。   In the direct desulfurization method according to the first embodiment of the present invention, the heating and stirring step (1) and the heavy hydrocarbon reduction step (1) are performed, so that the raw oil for the direct desulfurization treatment in the direct desulfurization step (1) can be used. Can reduce high molecular weight hydrocarbons having a molecular weight of 2,500 to 15,000, and according to the direct desulfurization method of the first embodiment of the present invention, the severity of operating conditions for direct desulfurization can be reduced.

本発明の第二の形態の直接脱硫方法は、原油(E)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(2)を得る重質炭化水素削減工程(2)と、
常圧蒸留により、該重質炭化水素削減原油(2)から常圧留出分を分離して、常圧残渣油(2)を得る常圧蒸留工程(2)と、
該常圧残渣油(2)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(2)と、
を有することを特徴とする直接脱硫方法。
In the direct desulfurization method according to the second aspect of the present invention, heavy hydrocarbons having a molecular weight of 2500 to 15000 are removed or reduced from crude oil (E) to obtain heavy hydrocarbon reduced crude oil (2). Hydrogen reduction process (2),
An atmospheric distillation step (2) of separating an atmospheric distillate from the heavy hydrocarbon reduced crude oil (2) by atmospheric distillation to obtain an atmospheric residue (2);
A direct desulfurization step (2) of performing a direct desulfurization treatment using the normal pressure residual oil (2) as a direct desulfurization raw material oil;
A direct desulfurization method comprising:

本発明の第二の形態の直接脱硫方法に係る重質炭化水素削減工程(2)は、原油(E)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(2)を得る工程である。   The heavy hydrocarbon reduction step (2) according to the direct desulfurization method according to the second aspect of the present invention comprises removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the crude oil (E), This is a step of obtaining hydrogen-reduced crude oil (2).

重質炭化水素削減工程(2)に係る原油(E)は、特に制限されず、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵する前の原油であってもよいし、原油採掘後に固形分や水分等を除去し原油タンクに貯蔵し間もない原油であり、原油スラッジが発生する前の原油であってもよいし、一定期間原油タンクに貯蔵することにより、原油タンクの底部に原油スラッジが発生した後の、原油タンク内の上澄みの原油であってもよい。   The crude oil (E) according to the heavy hydrocarbon reduction step (2) is not particularly limited, and may be crude oil after removing crude oil and removing solids and water before storing the crude oil in a crude oil tank, or crude oil mining. It is crude oil that has just been stored in a crude oil tank after removing solids and water, etc., and may be crude oil before the generation of crude oil sludge. May be the supernatant crude oil in the crude oil tank after the crude oil sludge is generated.

重質炭化水素削減工程(2)において、原油(E)から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、特に制限されず、原油(E)中の分子量が2500〜15000の高分子炭化水素を除去又は削減することができる方法が、適宜選択される。重質炭化水素削減工程(2)において、原油(E)から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、例えば、遠心分離法、原油(E)に高分子凝集剤を添加し、生成する沈殿凝集物を原油(E)から分離除去する方法、原油(E)にパラフィン溶剤を混合し、高分子炭化水素を原油(E)から抽出除去する方法等が挙げられる。   In the heavy hydrocarbon reduction step (2), the method for removing or reducing the high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the crude oil (E) is not particularly limited, and the molecular weight in the crude oil (E) may be 2,500 to 2,500. A method capable of removing or reducing 15,000 high molecular hydrocarbons is appropriately selected. In the heavy hydrocarbon reduction step (2), as a method for removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the crude oil (E), for example, a centrifugal separation method, a polymer flocculant is added to the crude oil (E). And a method of separating and removing precipitated aggregates generated from the crude oil (E), a method of mixing a paraffin solvent with the crude oil (E), and extracting and removing high-molecular hydrocarbons from the crude oil (E).

本発明の第二の形態の直接脱硫方法に係る常圧蒸留工程(2)は、常圧蒸留により、重質炭化水素削減原油(2)から常圧留出分を分離して、常圧残渣油を得る工程である。常圧蒸留工程(2)は、常圧蒸留を行う対象が、重質炭化水素削減原油(1)ではなく、重質炭化水素削減原油(2)であること以外は、常圧蒸留工程(1)と同様である。   The atmospheric distillation step (2) according to the direct desulfurization method according to the second embodiment of the present invention comprises separating an atmospheric distillate from the heavy hydrocarbon reduced crude oil (2) by atmospheric distillation to obtain an atmospheric residue. This is the step of obtaining oil. The atmospheric distillation step (2) is the same as the atmospheric distillation step (1) except that the atmospheric distillation is performed not on the heavy hydrocarbon reduced crude oil (1) but on the heavy hydrocarbon reduced crude oil (2). ).

本発明の第二の形態の直接脱硫方法に係る直接脱硫工程(2)は、常圧残渣油(2)を直接脱硫原料油として用いて、直接脱硫処理を行う工程である。直接脱硫工程(2)は、直接脱硫の原料油が、常圧残渣油(1)ではなく、常圧残渣油(2)であること以外は、直接脱硫工程(1)と同様である。   The direct desulfurization step (2) according to the direct desulfurization method of the second embodiment of the present invention is a step of performing a direct desulfurization treatment using the atmospheric residual oil (2) as a direct desulfurization raw material oil. The direct desulfurization step (2) is the same as the direct desulfurization step (1) except that the raw oil for the direct desulfurization is not the atmospheric residue (1) but the atmospheric residue (2).

本発明の第二の形態の直接脱硫方法では、重質炭化水素削減工程(2)を行うことにより、直接脱硫工程(2)における直接脱硫原料油中の分子量が2500〜15000の高分子炭化水素を削減することができるので、本発明の第二の形態の直接脱硫方法によれば、直接脱硫処理の運転条件のシビアリティーを低くすることができる。   In the direct desulfurization method of the second embodiment of the present invention, by performing the heavy hydrocarbon reduction step (2), the high-molecular hydrocarbon having a molecular weight of 2500 to 15000 in the direct desulfurization feedstock in the direct desulfurization step (2). Therefore, according to the direct desulfurization method of the second aspect of the present invention, the severity of the operating conditions of the direct desulfurization treatment can be reduced.

本発明の第三の形態の直接脱硫方法は、直接脱硫原料油(F)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減直接脱硫原料油(3)を得る重質炭化水素削減工程(3)と、
該重質炭化水素削減直接脱硫原料油(3)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(3)と、
を有することを特徴とする直接脱硫方法である。
The direct desulfurization method according to the third aspect of the present invention comprises removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15,000 from the direct desulfurization feedstock (F) to reduce the heavy hydrocarbons. And (3) a heavy hydrocarbon reduction step for obtaining
A direct desulfurization step (3) of performing a direct desulfurization treatment using the heavy hydrocarbon reduced direct desulfurization feedstock (3) as a direct desulfurization feedstock;
It is a direct desulfurization method characterized by having the following.

本発明の第三の形態の直接脱硫方法に係る重質炭化水素削減工程(3)は、直接脱硫原料油(F)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減直接脱硫原料油(3)を得る工程である。   The heavy hydrocarbon reduction step (3) according to the direct desulfurization method according to the third aspect of the present invention comprises removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the direct desulfurization feedstock (F), This is a step of obtaining a heavy oil reduced direct desulfurization feedstock (3).

重質炭化水素削減工程(3)に係る直接脱硫原料油(F)は、通常の石油精製プロセスにおいて直接脱硫処理の原料油として用いられる油分である。   The direct desulfurization feedstock (F) according to the heavy hydrocarbon reduction step (3) is an oil component used as a feedstock for direct desulfurization treatment in an ordinary petroleum refining process.

重質炭化水素削減工程(3)において、直接脱硫原料油(F)から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、特に制限されず、直接脱硫原料油(F)中の分子量が2500〜15000の高分子炭化水素を除去又は削減することができる方法が、適宜選択される。重質炭化水素削減工程(3)において、直接脱硫原料油(F)から分子量が2500〜15000の高分子炭化水素を除去又は削減する方法としては、例えば、直接脱硫原料油(F)に高分子凝集剤を添加し、生成する沈殿凝集物を直接脱硫原料油(F)から分離除去する方法、直接脱硫原料油(F)にパラフィン溶剤を混合し、高分子炭化水素を直接脱硫原料油(F)から抽出除去する方法等が挙げられる。   In the heavy hydrocarbon reduction step (3), the method for directly removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the direct desulfurization feedstock (F) is not particularly limited, and the direct desulfurization feedstock (F) A method capable of removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 is appropriately selected. In the heavy hydrocarbon reduction step (3), as a method for directly removing or reducing high molecular weight hydrocarbons having a molecular weight of 2500 to 15,000 from the desulfurized raw material oil (F), for example, a method in which a polymer is directly added to the desulfurized raw material oil (F) A method of adding a flocculant and separating and removing precipitated sediment directly from the desulfurized feedstock (F). A paraffin solvent is mixed with the direct desulfurized feedstock (F) to directly convert a high-molecular hydrocarbon into a desulfurized feedstock (F). And the like.

本発明の第三の形態の直接脱硫方法に係る直接脱硫工程(3)は、重質炭化水素削減直接脱硫原料油(3)を直接脱硫原料油として用いて、直接脱硫処理を行う工程である。直接脱硫工程(3)は、直接脱硫の原料油が、減圧残渣油(1)ではなく、重質炭化水素削減直接脱硫原料油(3)であること以外は、直接脱硫工程(1)と同様である。   The direct desulfurization step (3) according to the direct desulfurization method of the third embodiment of the present invention is a step of performing a direct desulfurization treatment using the heavy hydrocarbon reduced direct desulfurization feedstock (3) as the direct desulfurization feedstock. . The direct desulfurization step (3) is the same as the direct desulfurization step (1) except that the raw oil for the direct desulfurization is not the vacuum residue oil (1) but the heavy hydrocarbon reduced direct desulfurization oil (3). It is.

本発明の第三の形態の直接脱硫方法では、重質炭化水素削減工程(3)により、直接脱硫工程(3)における直接脱硫処理の原料油中の分子量が2500〜15000の高分子炭化水素を削減するので、本発明の第三の形態の直接脱硫方法によれば、直接脱硫処理の運転条件のシビアリティーを低くすることができる。   In the direct desulfurization method according to the third embodiment of the present invention, the heavy hydrocarbon reduction step (3) allows the high-molecular-weight hydrocarbon having a molecular weight of 2500 to 15000 in the feedstock oil of the direct desulfurization treatment in the direct desulfurization step (3) to be removed. Therefore, according to the direct desulfurization method of the third embodiment of the present invention, the severity of the operating conditions of the direct desulfurization treatment can be reduced.

本発明の第四の直接脱硫方法は、分子量が2500〜15000の高分子炭化水素の含有量が多い常圧残渣油(G)に、該常圧残渣油(G)に比べ、分子量が2500〜15000の高分子炭化水素の含有量が少ない常圧残渣油(H)を混合して、重質炭化水素減量直接脱硫原料油(4)を得る直接脱硫原料混合工程(4)と、
該重質炭化水素減量直接脱硫原料油(4)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(4)と、
を有することを特徴とする直接脱硫方法である。
The fourth direct desulfurization method of the present invention provides a normal pressure residue oil (G) having a high content of a high molecular weight hydrocarbon having a molecular weight of 2,500 to 15,000, a molecular weight of 2,500 to 2,500 compared to the normal pressure residue oil (G). A direct desulfurization raw material mixing step (4) of mixing an atmospheric residue (H) having a low content of 15000 high molecular hydrocarbons to obtain a heavy hydrocarbon reduction direct desulfurization raw oil (4);
A direct desulfurization step (4) of performing a direct desulfurization treatment using the heavy hydrocarbon reduction direct desulfurization feedstock (4) as a direct desulfurization feedstock;
It is a direct desulfurization method characterized by having the following.

本発明の第四の直接脱硫方法に係る直接脱硫原料混合工程(4)は、分子量が2500〜15000の高分子炭化水素の含有量が多い常圧残渣油(G)に、常圧残渣油(G)に比べ、分子量が2500〜15000の高分子炭化水素の含有量が少ない常圧残渣油(H)を混合して、重質炭化水素減量直接脱硫原料油(4)を得る工程である。   In the direct desulfurization raw material mixing step (4) according to the fourth direct desulfurization method of the present invention, the atmospheric residual oil (G) containing a large amount of a high molecular weight hydrocarbon having a molecular weight of 2500 to 15,000 is added to the atmospheric residual oil (G). This is a step of mixing a normal pressure residual oil (H) having a smaller content of a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 as compared with G) to obtain a heavy hydrocarbon reduced direct desulfurization raw material oil (4).

直接脱硫原料混合工程(4)に係る常圧残渣油(G)及び常圧残渣油(H)は、いずれも、通常の石油精製プロセスにおいて常圧蒸留を行うことにより、原油から常圧留出分を分離して得られる常圧残渣油である。そして、原油の油種により、原油中に含まれている分子量が2500〜15000の高分子炭化水素の含有量は異なり、常圧残渣油中の分子量が2500〜15000の高分子炭化水素の含有量は、原油中の分子量が2500〜15000の高分子炭化水素の含有量に依存する。そのため、常圧残渣油(H)は、常圧残渣油(G)の常圧蒸留原料となった原油に比べ、分子量が2500〜15000の高分子炭化水素の含有量が少ない原油を常圧蒸留して得られる常圧残渣油である。言い換えると、常圧残渣油(G)は、常圧残渣油(H)の常圧蒸留原料となった原油に比べ、分子量が2500〜15000の高分子炭化水素の含有量が多い原油を常圧蒸留して得られる常圧残渣油である。   Both the atmospheric residue (G) and the atmospheric residue (H) according to the direct desulfurization raw material mixing step (4) are subjected to atmospheric distillation in a normal petroleum refining process, thereby distilling the crude oil from atmospheric pressure. This is a normal pressure residual oil obtained by separating the components. And, depending on the type of crude oil, the content of the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 contained in the crude oil is different, and the content of the high molecular weight hydrocarbon having the molecular weight of 2500 to 15000 in the normal pressure residue oil is different. Depends on the content of the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 in the crude oil. For this reason, the atmospheric residue (H) is a crude oil having a molecular weight of 2500 to 15000 and a lower content of high molecular weight hydrocarbons than the crude oil used as the atmospheric distillation material for the atmospheric residue (G). It is an atmospheric residue obtained by the above method. In other words, the atmospheric residue (G) is a crude oil having a molecular weight of 2500 to 15,000 and a high content of high molecular weight hydrocarbons as compared with the crude oil used as the atmospheric distillation raw material for the atmospheric residue (H). It is an atmospheric residue obtained by distillation.

直接脱硫原料混合工程(4)では、分子量が2500〜15000の高分子炭化水素の含有量が多い常圧残渣油(G)に、分子量が2500〜15000の高分子炭化水素の含有量が少ない常圧残渣油(H)を混合することにより、直接脱硫工程(4)に用いられる直接脱硫原料油(重質炭化水素減量直接脱硫原料油(4))中の分子量が2500〜15000の高分子炭化水素の含有量を、常圧残渣油(G)中の分子量が2500〜15000の高分子炭化水素の含有量に比べ少なくする。   In the direct desulfurization raw material mixing step (4), a normal pressure residue oil (G) having a high content of a high molecular hydrocarbon having a molecular weight of 2500 to 15000 is added to a normal pressure residual oil having a low content of a high molecular hydrocarbon having a molecular weight of 2500 to 15000. By mixing the pressure-residue oil (H), the high-molecular-weight carbonized material having a molecular weight of 2500 to 15000 in the direct desulfurization feedstock (heavy hydrocarbon reduced direct desulfurization feedstock (4)) used in the direct desulfurization step (4). The content of hydrogen is made smaller than the content of high molecular weight hydrocarbons having a molecular weight of 2,500 to 15,000 in the atmospheric residue (G).

常圧残渣油(G)中の分子量が2500〜15000の高分子炭化水素の含有量と、常圧残渣油(H)中の分子量が2500〜15000の高分子炭化水素の含有量の差((G)−(H))及び常圧残渣油(G)と常圧残渣油(H)の混合割合は、直接脱硫原料油中の分子量が2500〜15000の高分子炭化水素の含有量を、常圧残渣油(G)に比べどの程度少なくするかにより、適宜選択される。   The difference between the content of the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 in the normal pressure residual oil (G) and the content of the high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 in the normal pressure residual oil (H) (( G)-(H)) and the mixing ratio of the atmospheric residual oil (G) and the atmospheric residual oil (H) are determined based on the content of the high-molecular hydrocarbon having a molecular weight of 2,500 to 15,000 in the direct desulfurization raw material oil. It is appropriately selected depending on how much the pressure residue oil (G) is reduced.

本発明の第四の形態の直接脱硫方法に係る直接脱硫工程(4)は、重質炭化水素減量直接脱硫原料油(4)を直接脱硫原料油として用いて、直接脱硫処理を行う工程である。直接脱硫工程(4)は、直接脱硫の原料油が、減圧残渣油(1)ではなく、重質炭化水素減量直接脱硫原料油(4)であること以外は、直接脱硫工程(1)と同様である。   The direct desulfurization step (4) according to the direct desulfurization method of the fourth embodiment of the present invention is a step of performing a direct desulfurization treatment using the heavy hydrocarbon reduced direct desulfurization feedstock (4) as the direct desulfurization feedstock. . The direct desulfurization step (4) is the same as the direct desulfurization step (1) except that the raw oil for the direct desulfurization is not the vacuum residue oil (1) but the heavy hydrocarbon reduction direct desulfurization raw oil (4). It is.

本発明の第四の形態の直接脱硫方法では、直接脱硫原料混合工程(4)により、直接脱硫工程(4)における直接脱硫処理の原料油中の分子量が2500〜15000の高分子炭化水素を少なくするので、本発明の第四の形態の直接脱硫方法によれば、直接脱硫処理の運転条件のシビアリティーを低くすることができる。   In the direct desulfurization method according to the fourth aspect of the present invention, the direct desulfurization raw material mixing step (4) reduces the amount of high molecular weight hydrocarbons having a molecular weight of 2,500 to 15,000 in the feed oil of the direct desulfurization treatment in the direct desulfurization step (4). Therefore, according to the direct desulfurization method of the fourth aspect of the present invention, the severity of the operating conditions of the direct desulfurization treatment can be reduced.

本発明の第一の形態の重質炭化水素削減原油(1)は、原油スラッジ(A)と原油(B)とを、該原油スラッジ(A)及び該原油(B)の合計に対する該原油スラッジ(A)の割合が5〜90質量%となるように混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る加熱撹拌工程(1)と、
該加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る重質炭化水素削減工程(1)と、
該重質炭化水素削減原油(1)を原油(C)に混合して、混合原油(D)を得る原油混合工程(1)と、
を行い得られる重質炭化水素削減原油(1)である。
The heavy oil reduced crude oil (1) according to the first aspect of the present invention is a crude oil sludge (A) and a crude oil (B), and the crude oil sludge with respect to the sum of the crude oil sludge (A) and the crude oil (B). The mixture of the crude oil sludge (A) and the crude oil (B) is heated and stirred at 40 to 95 ° C. to mix the crude oil sludge (A) and the crude oil. A heating and stirring step (1) for obtaining a heating and stirring treatment product of (B),
A heavy hydrocarbon reduction step (1) of removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the heat-stirred product to obtain a heavy hydrocarbon reduced crude oil (1);
A crude oil mixing step (1) of mixing the heavy hydrocarbon reduced crude oil (1) with the crude oil (C) to obtain a mixed crude oil (D);
And a heavy hydrocarbon reduced crude oil (1) obtained by the above method.

また、本発明の第二の形態の重質炭化水素削減原油(2)は、原油(E)から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(2)を得る重質炭化水素削減工程(2)を行い得られる重質炭化水素削減原油(2)である。   Further, the heavy hydrocarbon reduced crude oil (2) of the second aspect of the present invention removes or reduces high molecular weight hydrocarbons having a molecular weight of 2500 to 15000 from the crude oil (E), and reduces the heavy hydrocarbon reduced crude oil. A heavy hydrocarbon reduced crude oil (2) obtained by performing the heavy hydrocarbon reduction step (2) for obtaining (2).

本発明の第一の形態の重質炭化水素削減原油(1)は、本発明の第一の形態の直接脱硫方法に用いられる重質炭化水素削減原油(1)である。つまり、本発明の第一の形態の重質炭化水素削減原油(1)を用いて、本発明の第一の形態の直接脱硫方法に係る常圧蒸留工程(1)及び直接脱硫工程(1)を順に行うことができる。また、本発明の第二の形態の重質炭化水素削減原油(2)は、本発明の第二の形態の直接脱硫方法に用いられる重質炭化水素削減原油(2)である。つまり、本発明の第二の形態の重質炭化水素削減原油(2)を用いて、本発明の第二の形態の直接脱硫方法に係る常圧蒸留工程(2)及び直接脱硫工程(2)を順に行うことができる。   The heavy hydrocarbon reduced crude oil (1) of the first embodiment of the present invention is the heavy hydrocarbon reduced crude oil (1) used in the direct desulfurization method of the first embodiment of the present invention. That is, the atmospheric distillation step (1) and the direct desulfurization step (1) according to the direct desulfurization method of the first embodiment of the present invention using the heavy hydrocarbon reduced crude oil (1) of the first embodiment of the present invention. Can be performed in order. Moreover, the heavy hydrocarbon reduced crude oil (2) of the second embodiment of the present invention is the heavy hydrocarbon reduced crude oil (2) used in the direct desulfurization method of the second embodiment of the present invention. That is, using the heavy hydrocarbon reduced crude oil (2) of the second embodiment of the present invention, the atmospheric distillation step (2) and the direct desulfurization step (2) according to the direct desulfurization method of the second embodiment of the present invention. Can be performed in order.

なお、本発明において、油中の分子量が2500〜15000の高分子炭化水素の含有量、及び油中の分子量が2500〜15000の高分子炭化水素の含有量が、削減されたことは、GPC分析により確認される。   Note that, in the present invention, the reduction in the content of the high molecular weight hydrocarbon having a molecular weight in the oil of 2500 to 15000 and the content of the high molecular weight hydrocarbon in the oil having a molecular weight of 2500 to 15000 was confirmed by GPC analysis. Confirmed by

以下に実施例を示して本発明を更に具体的に説明するが、本発明はこれに制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

<GPC分析>
装置:Shodex GPC−101
カラム:Shodex GPC LF−804×3本(排除限界200万)
検出器:RI(示唆屈折検出器)(40℃)
移動相:テトラヒドロフラン
流量:1mL/分
試料濃度:0.8mass/vol%
*試料の全てについて、THFに溶解後、0.45μmフィルターによりろ過を実施した。
注入量:100μL
分子量計算:ポリスチレン換算
<GPC analysis>
Apparatus: Shodex GPC-101
Column: Shodex GPC LF-804 x 3 (exclusion limit 2 million)
Detector: RI (indicative refraction detector) (40 ° C)
Mobile phase: tetrahydrofuran Flow rate: 1 mL / min Sample concentration: 0.8 mass / vol%
* After dissolving all of the samples in THF, filtration was performed with a 0.45 μm filter.
Injection volume: 100 μL
Molecular weight calculation: polystyrene conversion

<原油スラッジ>
原油タンクから回収された原油スラッジa
分析値:油分64.3質量%、アスファルテン分11.4質量%、水分21.0質量%、セジメント分3.3質量%、GPC分析結果を図1に示す。
<原油>
以下の分析値を有する原油b
API 37.9°、水泥分 0体積%
<常圧残渣油>
GPC分析結果が図2の常圧残渣油cを用意した。
分析値:油分98.8質量%、アスファルテン分1.2質量%
<Crude oil sludge>
Crude oil sludge recovered from crude oil tank
Analytical value: 64.3% by mass of oil, 11.4% by mass of asphaltene, 21.0% by mass of water, 3.3% by mass of sediment, GPC analysis result is shown in FIG.
<Crude oil>
Crude oil b having the following analytical values
API 37.9 °, water mud content 0% by volume
<Normal pressure residue>
The GPC analysis result prepared the atmospheric pressure residual oil c of FIG.
Analytical value: 98.8% by mass of oil component, 1.2% by mass of asphaltene component

<軽液及び重質炭化水素含有油の採取>
原油スラッジaと原油bとを、その合計に対する原油スラッジaの割合が70質量%になるように撹拌容器に加え、混合物を80℃で加熱撹拌した。
次いで、80℃を保ったまま、加熱撹拌処理物を、80℃に設定された遠心分離器に入れ、80℃、1000G、1分間の条件で、遠心分離を行った。遠心分離により、加熱撹拌処理物は、4層に分離した。
次いで、デカンテーションにより、1層目の軽液d(1番上の層)と、2層目の重質炭化水素含有油e(上から2番目の層)を採取した。得られた軽液dのGPC分析結果を図3に、重質炭化水素含有油eのGPC分析結果を図4に示す。
<Sampling of light liquid and heavy hydrocarbon-containing oil>
Crude oil sludge a and crude oil b were added to a stirring vessel such that the ratio of crude oil sludge a to the total was 70% by mass, and the mixture was heated and stirred at 80 ° C.
Next, while maintaining the temperature at 80 ° C., the heat-stirred product was put into a centrifuge set at 80 ° C., and centrifuged at 80 ° C., 1000 G for 1 minute. The heat-stirred product was separated into four layers by centrifugation.
Next, the first layer of the light liquid d (the top layer) and the second layer of the heavy hydrocarbon-containing oil e (the second layer from the top) were collected by decantation. FIG. 3 shows a GPC analysis result of the obtained light liquid d, and FIG. 4 shows a GPC analysis result of the heavy hydrocarbon-containing oil e.

<直接脱硫原料油の調製>
常圧残渣油cに、常圧残渣油cに対し3質量%の軽液dを混合して、直接脱硫原料油fを得た。また、常圧残渣油cに、常圧残渣油cに対し8質量%の重質炭化水素含有油eを混合して、直接脱硫原料油gを得た。得られた直接脱硫原料油fのGPC分析結果を図5に、直接脱硫原料油gのGPC分析結果を図6に示す。
<Preparation of raw oil for direct desulfurization>
A light liquid d of 3% by mass based on the normal pressure residual oil c was mixed with the normal pressure residual oil c to directly obtain a desulfurization raw material oil f. Further, a heavy hydrocarbon-containing oil e of 8% by mass with respect to the normal pressure residue oil c was mixed with the normal pressure residue oil c to directly obtain a desulfurization raw material oil g. FIG. 5 shows the GPC analysis result of the obtained directly desulfurized raw material oil f, and FIG. 6 shows the GPC analysis result of the directly desulfurized raw material oil g.

(実施例1)
直接脱硫原料油fを原料に用いて、水素化脱硫触媒を10mL充填した固定床流通式マイクロリアクターで、プロダクトの硫黄分が0.25質量%となるようにして、水素化脱硫試験を行った。運転条件は、LHSVが0.2h−1、水素分圧が10MPaであった。その結果を表1に示す。
(Example 1)
A hydrodesulfurization test was carried out using a direct desulfurization feedstock f as a raw material and a fixed-bed flow type microreactor filled with 10 mL of a hydrodesulfurization catalyst so that the sulfur content of the product was 0.25% by mass. . The operating conditions were LHSV of 0.2 h -1 and hydrogen partial pressure of 10 MPa. Table 1 shows the results.

(比較例1)
直接脱硫原料油gを原料に用いて、水素化脱硫触媒を10mL充填した固定床流通式マイクロリアクターで、プロダクトの硫黄分が0.25質量%となるようにして、水素化脱硫試験を行った。運転条件は、LHSVが0.2h−1、水素分圧が10MPaであった。その結果を表1に示す。
(Comparative Example 1)
A hydrodesulfurization test was performed using a direct-desulfurization feed oil g as a raw material and a fixed-bed flow-type microreactor filled with 10 mL of a hydrodesulfurization catalyst so that the sulfur content of the product was 0.25% by mass. . The operating conditions were an LHSV of 0.2 h -1 and a hydrogen partial pressure of 10 MPa. Table 1 shows the results.

1)表1中、高分子炭化水素(Area%)とは、直接脱硫原料油のGPC分析チャート中のポリスチレン換算の分子量が2500〜15000に相当する部分の面積%である。 1) In Table 1, the high-molecular hydrocarbon (Area%) is the area% of a portion corresponding to a polystyrene-equivalent molecular weight of 2500 to 15000 in a GPC analysis chart of a direct desulfurization raw material oil.

実施例1と比較例1の対比は、直接脱硫処理に用いる原料油中の分子量が2500〜15000の高分子炭化水素を削減した場合と削減しなかった場合の直接脱硫処理のシビアリティーの対比と同等な結果と推測される。そして、それらの結果、直接脱硫原料油中の分子量が2500〜15000の高分子炭化水素が、少ないと、原料油中の硫黄分量が同じであっても、要求温度が低くなる、つまり、直接脱硫処理のシビアリティーが低くなることがわかった。   The comparison between Example 1 and Comparative Example 1 is a comparison of the severity of the direct desulfurization treatment in the case where the molecular weight in the feedstock oil used in the direct desulfurization treatment was reduced and the case where the high molecular weight hydrocarbons of 2500 to 15000 were not reduced. Presumably equivalent results. As a result, if the amount of the high molecular weight hydrocarbon having a molecular weight of 2,500 to 15,000 in the direct desulfurization feedstock is small, the required temperature decreases even if the sulfur content in the feedstock oil is the same, that is, the direct desulfurization It was found that the severity of the treatment was low.

Claims (1)

原油スラッジ(A)と原油(B)とを、該原油スラッジ(A)及び該原油(B)の合計に対する該原油スラッジ(A)の割合が5〜90質量%となるように混合し、次いで、原油スラッジ(A)と原油(B)の混合物を、40〜95℃で加熱撹拌し、原油スラッジ(A)と原油(B)の加熱撹拌処理物を得る加熱撹拌工程(1)と、
該加熱撹拌処理物を40〜95℃で遠心分離することにより、軽液層と、重液、水分及び固形分の層と、を分離させ、該軽液層を採取することにより、該加熱撹拌処理物から、分子量が2500〜15000の高分子炭化水素を、除去又は減量し、重質炭化水素削減原油(1)を得る重質炭化水素削減工程(1)と、
該重質炭化水素削減原油(1)を原油(C)に混合して、混合原油(D)を得る原油混合工程(1)と、
常圧蒸留により、該混合原油(D)から常圧留出分を分離して、常圧残渣油(1)を得る常圧蒸留工程(1)と、
該常圧残渣油(1)を直接脱硫原料油として用いて、直接脱硫処理を行う直接脱硫工程(1)と、
を有することを特徴とする直接脱硫方法。
The crude oil sludge (A) and the crude oil (B) are mixed such that the ratio of the crude oil sludge (A) to the total of the crude oil sludge (A) and the crude oil (B) is 5 to 90% by mass, Heating and stirring a mixture of crude oil sludge (A) and crude oil (B) at 40 to 95 ° C. to obtain a heated and stirred product of crude oil sludge (A) and crude oil (B);
By centrifuging the heat-stirred product at 40 to 95 ° C., the light liquid layer is separated from the heavy liquid, water and solid layers, and the light liquid layer is collected to obtain the heat-stirred liquid. A heavy hydrocarbon reduction step (1) of removing or reducing a high molecular weight hydrocarbon having a molecular weight of 2500 to 15000 from the processed product to obtain a heavy hydrocarbon reduced crude oil (1);
A crude oil mixing step (1) of mixing the heavy hydrocarbon reduced crude oil (1) with the crude oil (C) to obtain a mixed crude oil (D);
An atmospheric distillation step (1) of separating an atmospheric distillate from the mixed crude oil (D) by atmospheric distillation to obtain an atmospheric residue (1);
A direct desulfurization step (1) of performing a direct desulfurization treatment using the atmospheric residual oil (1) as a direct desulfurization raw material oil;
A direct desulfurization method comprising:
JP2016125683A 2016-06-24 2016-06-24 Direct desulfurization method and crude oil with reduced heavy hydrocarbons Active JP6625935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125683A JP6625935B2 (en) 2016-06-24 2016-06-24 Direct desulfurization method and crude oil with reduced heavy hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125683A JP6625935B2 (en) 2016-06-24 2016-06-24 Direct desulfurization method and crude oil with reduced heavy hydrocarbons

Publications (2)

Publication Number Publication Date
JP2017226799A JP2017226799A (en) 2017-12-28
JP6625935B2 true JP6625935B2 (en) 2019-12-25

Family

ID=60891006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125683A Active JP6625935B2 (en) 2016-06-24 2016-06-24 Direct desulfurization method and crude oil with reduced heavy hydrocarbons

Country Status (1)

Country Link
JP (1) JP6625935B2 (en)

Also Published As

Publication number Publication date
JP2017226799A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6073882B2 (en) Method for stabilizing heavy hydrocarbons
US5948242A (en) Process for upgrading heavy crude oil production
CA2667240C (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
JP6215826B2 (en) Integrated process to produce asphalt and desulfurized oil
CA2890371C (en) Method for the selective deasphalting of heavy feedstocks
JPS6158110B2 (en)
EP3565871B1 (en) Processes for deasphalting oil
JP2017525802A (en) Integrated manufacturing process for asphalt, petroleum coke, and liquid and gas coking unit products
BRPI0714607A2 (en) process for converting heavy feed loads
BRPI1008161B1 (en) PROCESS FOR PRODUCTION OF AGGLOMERANT ADDITIVE FOR COKE PRODUCTION AND PROCESS FOR COKE PRODUCTION
JP2014524483A5 (en)
US4021335A (en) Method for upgrading black oils
WO2010015366A1 (en) Process and system for re-refining used lubeoils
WO2015119815A1 (en) Fluid compositions and methods for using cross-linked phenolic resins
WO2011075526A1 (en) Process for producing a high stability desulfurized heavy oils stream
JP6625935B2 (en) Direct desulfurization method and crude oil with reduced heavy hydrocarbons
CA2584003C (en) Process for improving and recuperating waste, heavy and extra heavy hydrocarbons
JP6136042B2 (en) Method for treating oil content in crude sludge
CN110573227B (en) Physical separation of refinery purge streams
CA2855693C (en) Process for producing a bitumen product
JP2018002937A (en) Recover method of oil content in crude oil sludge
US20140360922A1 (en) Producing improved upgraded heavy oil
JPH0147520B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6625935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250