JP6619898B1 - DC-fed electric vehicle management system and DC-fed electric vehicle management method - Google Patents

DC-fed electric vehicle management system and DC-fed electric vehicle management method Download PDF

Info

Publication number
JP6619898B1
JP6619898B1 JP2019062587A JP2019062587A JP6619898B1 JP 6619898 B1 JP6619898 B1 JP 6619898B1 JP 2019062587 A JP2019062587 A JP 2019062587A JP 2019062587 A JP2019062587 A JP 2019062587A JP 6619898 B1 JP6619898 B1 JP 6619898B1
Authority
JP
Japan
Prior art keywords
electric vehicle
power
power supply
connection
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062587A
Other languages
Japanese (ja)
Other versions
JP2020162395A (en
Inventor
浅野 稔
稔 浅野
井出 一正
一正 井出
昇三 宮部
昇三 宮部
関 正明
正明 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2019062587A priority Critical patent/JP6619898B1/en
Application granted granted Critical
Publication of JP6619898B1 publication Critical patent/JP6619898B1/en
Priority to PCT/JP2020/012244 priority patent/WO2020196238A1/en
Publication of JP2020162395A publication Critical patent/JP2020162395A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Primary Health Care (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】地域内の直流の給電スポットを利用することができる直流給電電動移動体充電システムを提供する。【解決手段】直流給電電動移動体管理システム100は、管理されたエリアにおいて、所定電圧を有する直流電源母線DLと、直流電源母線DLから受電して、電動移動体Vに直流電力を供給する接続部JLを有する接続装置70と、を備え、接続部JLに電動移動体Vが物理的接続されたときに、電動移動体Vに付与されている電動移動体識別情報を取得して、電動移動体識別情報に基づき、電動移動体Vが給電対象電動移動体か否かを判定し、給電対象電動移動体と判定されたときに、接続装置70は直流電源母線DLと電動移動体Vとを電気的接続し、電動移動体Vの蓄電可能容量に到達するまで、又は、電動移動体Vが接続部JLから解列されるまで、接続部JLから電動移動体Vに直流電力を供給する。【選択図】図1Provided is a DC-powered electric vehicle charging system that can use a DC power supply spot in an area. A DC power supply electric vehicle management system (100) includes a DC power supply bus (DL) having a predetermined voltage in a managed area, and a connection that receives power from the DC power supply bus (DL) and supplies DC power to an electric vehicle (V). A connection device 70 having a portion JL, when the electric vehicle V is physically connected to the connection portion JL, acquires the electric vehicle identification information given to the electric vehicle V, and Based on the body identification information, it is determined whether or not the electric vehicle V is a power-supplying electric vehicle. When it is determined that the electric vehicle is a power-supplying electric vehicle, the connection device 70 connects the DC power bus DL with the electric vehicle V. DC power is supplied from the connecting portion JL to the electric vehicle V until the electric vehicle is electrically connected and reaches the storable capacity of the electric vehicle V or until the electric vehicle V is disconnected from the connecting portion JL. [Selection diagram] Fig. 1

Description

本発明は、直流給電電動移動体充電システム及び直流給電電動移動体管理方法に関する。   The present invention relates to a DC-fed electric vehicle charging system and a DC-fed electric vehicle management method.

ある地域の既設の風力発電設備については、FIT(再生可能エネルギーの固定価格買取制度)の契約で定められた20年間の電力系統への売電期間がまもなく終了する。売電期間終了後の風力発電設備の運用が望まれていた。   For existing wind power generation facilities in a certain region, the power selling period for the power system for 20 years specified in the FIT (Fixed Price Purchase System for Renewable Energy) contract will end soon. The operation of wind power generation facilities after the end of the power sale period was desired.

化石燃料価格の高騰、環境への配慮、地球温暖化防止などを背景に、大容量の蓄電池を搭載したプラグインハイブリッド電動車両、ピュア電動車両が注目され、その市場が急激に拡大している。この傾向がさらに加速するものと予測されている。   Plug-in hybrid electric vehicles and pure electric vehicles equipped with large-capacity storage batteries are attracting attention against the background of soaring fossil fuel prices, consideration for the environment, and prevention of global warming, and the market is expanding rapidly. This trend is expected to accelerate further.

特開2016−103971号公報Japanese Patent Laid-Open No. 2006-103971

しかしながら、電動車両は、所定の位置に配設する、長い充電時間を必要とする普通充電タイプか、短い充電時間で充電可能な急速充電タイプの給電設備を必要とする。特許文献1には、急速充電装置を連系して充電容量を確保することが提案されている。既存の充電装置は、基本的に交流の商用電力系統から充電装置を介して電力供給を受けている。従って、充電環境を改善しようとすると、これらの商用電力系統に充電設備を新たに設置することを要し、大きなコスト負担となっている。   However, the electric vehicle requires a power supply facility of a normal charging type that requires a long charging time or a quick charging type that can be charged in a short charging time, which is disposed at a predetermined position. Patent Document 1 proposes securing a charging capacity by connecting a quick charging device. The existing charging device basically receives power supply from an AC commercial power system via the charging device. Therefore, if it is going to improve a charging environment, it will be necessary to newly install a charging equipment in these commercial electric power systems, and will become a big cost burden.

他方、既存の風力発電設備の有効活用を図るため、地域内での自家消費型への電力供給に切り替えて運用することが望まれていた。さらに、地域内には、太陽光発電設備、自家発電設備等が存在している。このため、発明者らは、既存の電動車両の充電方式に限定せず、地域内の発電設備を有効利用した電動移動体の充電方式及びその構成を検討した。   On the other hand, in order to make effective use of existing wind power generation facilities, it has been desired to operate by switching to a self-consumption type power supply in the region. Furthermore, there are solar power generation facilities, private power generation facilities, and the like in the area. For this reason, the inventors examined the charging method and the configuration of the electric mobile body that effectively uses the power generation facilities in the area, without being limited to the charging method of the existing electric vehicle.

本発明は、前記した課題を解決するためになされたものであり、地域内の直流の給電スポットを利用することができる直流給電電動移動体管理システム及び直流給電電動移動体管理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a DC-fed electric vehicle management system and a DC-fed electric vehicle management method capable of using a DC feeding spot in a region. With the goal.

前記目的を達成するため、本発明の直流給電電動移動体管理システムは、管理されたエリアにおいて、所定の直流電圧を出力する電力変換器を出力部に備えた自然エネルギを利用する発電設備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた内燃力発電設備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた蓄電池の出力、及び、商用電力系統からの所用電源に所定の直流電圧を出力する電力変換器を備えた電源設備の出力、の組合せにより構成する所定電圧の直流電力を供給する直流電源母線と、通電用スイッチと接続部とから構成し、通電用スイッチをオンしたときに直流電源母線から直流電力を受電して接続部に供給し、接続部と電動移動体に配された受電接続部とを接続する給電用ケーブルを介して電動移動体に直流電力を供給する複数の接続装置と、を備え、接続部に電動移動体が給電用ケーブルにより物理的接続されたときに、電動移動体に付与されている電動移動体識別情報を取得して、電動移動体識別情報に基づき、電動移動体が給電対象電動移動体か否かを判定し、給電対象電動移動体と判定されたときに、接続装置は直流電源母線と電動移動体とを電気的接続し、電動移動体の蓄電可能容量に到達するまで、又は、電動移動体が接続部から解列されるまで、接続部から電動移動体に直流電力を供給することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 In order to achieve the above object, a DC-fed electric vehicle management system according to the present invention provides an output of a power generation facility that uses natural energy with a power converter that outputs a predetermined DC voltage in an output area in a managed area. From an output of an internal combustion power generation facility having a power converter that outputs a predetermined DC voltage in the output unit, an output of a storage battery having a power converter that outputs a predetermined DC voltage in the output unit, and a commercial power system It consists of a DC power supply bus that supplies DC power of a predetermined voltage , which is configured by a combination of outputs of a power supply facility equipped with a power converter that outputs a predetermined DC voltage to the required power supply, an energizing switch, and a connection part. electric through the power supply cable DC from the power supply bus by receiving DC power supplied to the connection portion, for connecting the power receiving connection part arranged on the connecting portion and the electric vehicle when turning on the power switch And a plurality of connection devices for supplying DC power to the moving body, when the electric vehicle is physically connected by a power supply cable to the connecting portion, obtains the electric vehicle identification information given to the electric vehicle Then, based on the electric vehicle identification information, it is determined whether or not the electric vehicle is a power supply target electric vehicle, and when the electric vehicle is determined to be a power supply target electric vehicle, the connecting device is connected to the DC power supply bus and the electric vehicle. Are connected, and DC power is supplied from the connecting portion to the electric vehicle until the electric storage capacity of the electric vehicle is reached or until the electric vehicle is disconnected from the connecting portion. . Other aspects of the present invention will be described in the embodiments described later.

本発明によれば、電動移動体は、地域内の直流の給電スポットを利用することができる。   According to the present invention, the electric vehicle can use a DC power supply spot in the area.

本実施形態に係る管理エリアの直流給電電動移動体管理システムの構成を示す図である。It is a figure which shows the structure of the direct current feeding electric vehicle management system of the management area which concerns on this embodiment. 本実施形態に係る電動移動体の構成を示す図である。It is a figure which shows the structure of the electrically-driven moving body which concerns on this embodiment. 本実施形態に係る管理装置の構成を示す図である。It is a figure which shows the structure of the management apparatus which concerns on this embodiment. 本実施形態に係る記憶部の固定情報の一例を示す図である。It is a figure which shows an example of the fixed information of the memory | storage part which concerns on this embodiment. 本実施形態に係る記憶部の変動情報の一例を示す図である。It is a figure which shows an example of the fluctuation | variation information of the memory | storage part which concerns on this embodiment. 本実施形態に係る管理装置の課金処理の例を示すフローチャートである。It is a flowchart which shows the example of the accounting process of the management apparatus which concerns on this embodiment. 本実施形態に係る選択装置及び電気的絶縁装置の構成を示す図である。It is a figure which shows the structure of the selection apparatus and electrical insulation apparatus which concern on this embodiment. 本実施形態に係る管理装置の通常充電モードの処理を示すフローチャートである。It is a flowchart which shows the process of the normal charge mode of the management apparatus which concerns on this embodiment. 本実施形態に係る管理装置の急速充電モードの処理を示すフローチャートである。It is a flowchart which shows the process of the quick charge mode of the management apparatus which concerns on this embodiment. 本実施形態に係る電圧補償装置の構成を示す図である。It is a figure which shows the structure of the voltage compensation apparatus which concerns on this embodiment. 本実施形態に係る歩道に設置された太陽光パネルの例を示す図である。It is a figure which shows the example of the solar panel installed in the sidewalk which concerns on this embodiment. 本実施形態に係る接続部の配置構成例を示す図である。It is a figure which shows the arrangement structural example of the connection part which concerns on this embodiment. 本実施形態に係る接続装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the connection apparatus which concerns on this embodiment. 本実施形態に係る管理エリアの給電スポットの他の構成を示す図である。It is a figure which shows the other structure of the electric power feeding spot of the management area which concerns on this embodiment.

本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
図1は、本実施形態に係る管理エリアA1の直流給電電動移動体管理システム100の構成を示す図である。直流給電電動移動体管理システム100は、特定の管理エリアA1に電力を供給する1以上の再生可能エネルギーの風力発電設備である第1発電設備10と、1以上の再生可能エネルギーの太陽光発電設備である第2発電設備20と、熱機関を動作させて発電する1以上の第3発電設備30と、商用電力系統41の交流系統からの供給設備40と、第1発電設備10,第2発電設備20、第3発電設備30の余剰電力を蓄電・放電する蓄電設備50と、直流電源装置の出力部を同一の電力線(直流電源母線DL)に物理的接続して直流電源母線DLを構成する電源接続装置60と、電動移動体Vを直流電源母線DLに物理的接続する接続装置70と、管理エリアA1への電力供給量を制御する管理装置80とを含んで構成されている。接続装置70は、通電用スイッチ71と接続部JL(給電スポット)とを含んでいる。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
FIG. 1 is a diagram showing a configuration of a DC-fed electric vehicle management system 100 in the management area A1 according to the present embodiment. The DC-fed electric vehicle management system 100 includes a first power generation facility 10 that is a wind power generation facility of one or more renewable energies that supplies power to a specific management area A1, and a solar power generation facility of one or more renewable energies. The second power generation facility 20, one or more third power generation facilities 30 that generate power by operating the heat engine, the supply facility 40 from the AC system of the commercial power system 41, the first power generation facility 10, and the second power generation The DC power supply bus DL is configured by physically connecting the power storage equipment 50 for storing and discharging surplus power of the equipment 20 and the third power generation equipment 30 and the output unit of the DC power supply device to the same power line (DC power supply bus DL). The power supply connection device 60 includes a connection device 70 that physically connects the electric vehicle V to the DC power supply bus DL, and a management device 80 that controls the amount of power supplied to the management area A1. The connection device 70 includes an energization switch 71 and a connection portion JL (power feeding spot).

第1発電設備10は、風力発電機11からの交流電力を電力変換器12で所定電圧の直流電力に変換してから直流電源母線DLに接続されている。同様に、第2発電設備20は、太陽光発電機21からの直流電力を電力変換器22で所定電圧の直流電力に変換してから直流電源母線DLに接続されている。第3発電設備30は、熱機関を動作させて発電する発電機31の交流電力を電力変換器32で所定電圧の直流電力に変換してから直流電源母線DLに接続されている。供給設備40は、商用電力系統41の交流電力を電力変換器42で所定電圧の直流電力に変換してから直流電源母線DLに接続されている。蓄電設備50は、電力蓄電装置51の直流電力を電力変換器52で変換してから直流電源母線DLに接続されている。なお、図1においては、供給設備40は、系統内の電力需要が足りているため直流電源母線DLから遮断されている。   The first power generation facility 10 is connected to the DC power supply bus DL after the AC power from the wind power generator 11 is converted into DC power of a predetermined voltage by the power converter 12. Similarly, the second power generation facility 20 is connected to the DC power supply bus DL after the DC power from the solar power generator 21 is converted into DC power of a predetermined voltage by the power converter 22. The third power generation facility 30 is connected to the DC power supply bus DL after converting the AC power of the generator 31 that generates power by operating the heat engine into DC power of a predetermined voltage by the power converter 32. Supply facility 40 is connected to DC power supply bus DL after AC power of commercial power system 41 is converted to DC power of a predetermined voltage by power converter 42. The power storage facility 50 is connected to the DC power supply bus DL after the DC power of the power storage device 51 is converted by the power converter 52. In FIG. 1, the supply facility 40 is disconnected from the DC power supply bus DL because the power demand in the system is sufficient.

直流給電電動移動体管理システム100は、さらに、電動移動体Vを直流電源母線DLに物理的接続する接続装置70Aと、直流電源母線DLと接続装置70Aとの間に急速充電用電力変換器65を備えている。   The DC-fed electric vehicle management system 100 further includes a connection device 70A that physically connects the electric vehicle V to the DC power supply bus DL, and a rapid charging power converter 65 between the DC power supply bus DL and the connection device 70A. It has.

直流電源母線DLには、接続装置70,70Aを介して、電動移動体Vに電力を供給するための1以上の接続部JL(給電スポット)を有する。電動移動体Vは、両端に接続部JC1,JC2(図2参照)を有するケーブルCを介して電力供給を受ける。電動移動体VへのケーブルCが接続されていない状態では、接続装置70,70Aは、遮断されている。なお、接続装置70の詳細は、図12、図13で説明する。   The DC power supply bus DL has one or more connection portions JL (power feeding spots) for supplying electric power to the electric vehicle V via the connection devices 70 and 70A. The electric vehicle V is supplied with power via a cable C having connecting portions JC1 and JC2 (see FIG. 2) at both ends. In a state where the cable C to the electric vehicle V is not connected, the connection devices 70 and 70A are blocked. Details of the connection device 70 will be described with reference to FIGS.

また、直流電源母線DLには、予め定められた位置に電圧低下を補償する電圧補償装置90を備え、直流電源母線に備えられたすべての接続部JLにおいて所定電圧を供給する。なお、電圧補償装置90の詳細は、図10、図11で説明する。   Further, the DC power supply bus DL is provided with a voltage compensation device 90 that compensates for a voltage drop at a predetermined position, and a predetermined voltage is supplied to all the connecting portions JL provided in the DC power supply bus. Details of the voltage compensator 90 will be described with reference to FIGS.

第3発電設備30は、例えば、木質ガス化発電機、液化天然ガス発電機、バイオガス発電機、ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ケロシンエンジン、ロータリエンジン、ガスタービンによる発電設備等である。木質ガス化発電機は、廃棄する予定の間伐材等を利用して発電するため、直流給電電動移動体管理システム100において低コスト化が図れるというメリットがある。   The third power generation facility 30 is, for example, a wood gasification generator, a liquefied natural gas generator, a biogas generator, a gasoline engine, a diesel engine, a gas engine, a kerosene engine, a rotary engine, a power generation facility using a gas turbine, or the like. Since the wood gasification power generator generates power using thinned wood or the like to be discarded, there is an advantage that the cost can be reduced in the DC-fed electric vehicle management system 100.

第1発電設備10及び第2発電設備20の構成は、特に限定されるものではないが、第1発電設備10及び第2発電設備20は、再生可能エネルギーを利用した発電機であることが好ましく、第3発電設備30は、発電コストが安い自家発電機であることが好ましい。   The configurations of the first power generation facility 10 and the second power generation facility 20 are not particularly limited, but the first power generation facility 10 and the second power generation facility 20 are preferably generators using renewable energy. The third power generation facility 30 is preferably a private power generator with a low power generation cost.

本実施形態では、管理エリア(地域)の既設の風力発電設備がFIT(再生可能エネルギーの固定価格買取制度)の契約で定められた20年間の電力系統への売電期間がまもなく終了するため、売電期間終了後の風力発電設備を運用することを図った。風力発電設備、太陽光発電設備の運用を行うことにより、燃料コストを掛けずに地域内へ電力を供給することが可能となる。   In the present embodiment, the existing wind power generation facility in the management area (region) will soon end its power selling period to the power system for 20 years specified by the FIT (Fixed Price Purchase System for Renewable Energy) We planned to operate the wind power generation facilities after the end of the electricity sales period. By operating wind power generation facilities and solar power generation facilities, it is possible to supply power to the region without incurring fuel costs.

また、風力発電設備及び太陽光発電設備における発電量が要求負荷に対して足りなくなった場合に、例えば、木質ガス化発電機において追炊き運転を行って発電出力を上げると共に、電力を追加で供給することができる。   In addition, when the amount of power generation in the wind power generation facility and solar power generation facility is insufficient for the required load, for example, a wood gasification generator performs additional cooking operation to increase the power generation output and supply additional power can do.

管理装置80は、接続装置70を介して電動移動体Vが直流電源母線DLに物理的接続されたときに通常充電モードを選択し、電動移動体Vに予め付与された電動移動体識別情報を取得して、電動移動体識別情報が直流電源母線DLに電気的接続可能な登録情報と判別したときに電動移動体Vに非走行モードを設定し、直流電源母線DLから電動移動体Vに必要量の直流電力を供給して電動移動体Vに搭載された電力貯蔵装置4(図2参照)を充電し、電動移動体Vに必要量の直流電力を供給したときに非走行モードを解除し、直流電源母線DLと電動移動体Vとを解列する。   The management device 80 selects the normal charging mode when the electric vehicle V is physically connected to the DC power supply bus DL via the connection device 70, and the electric vehicle identification information given in advance to the electric vehicle V is displayed. The non-running mode is set for the electric vehicle V when the electric vehicle identification information is acquired and determined as registration information that can be electrically connected to the DC power source bus DL, and is necessary for the electric vehicle V from the DC power source bus DL. The amount of DC power is supplied to charge the power storage device 4 (see FIG. 2) mounted on the electric vehicle V, and when the required amount of DC power is supplied to the electric vehicle V, the non-running mode is canceled. The DC power source bus DL and the electric vehicle V are disconnected.

また、管理装置80は、接続装置70Aを介して電動移動体Vが急速充電用電力変換器65に物理的接続されたときに急速充電モードを選択し、電動移動体識別情報を取得して、電動移動体識別情報が急速充電用電力変換器65に電気的接続可能な登録情報と判別したときに電動移動体Vに非走行モードを設定し、急速充電用電力変換器65を介して、直流電源母線DLから供給するより高圧な大容量の直流電力を電動移動体Vに必要量供給して電動移動体Vに搭載された電力貯蔵装置4(図2参照)を充電し、電動移動体Vに必要量の直流電力を供給したときに非走行モードを解除し、直流電源母線DLと電動移動体Vとを解列する。   In addition, the management device 80 selects the quick charge mode when the electric vehicle V is physically connected to the quick charge power converter 65 via the connection device 70A, acquires the electric vehicle identification information, When the electric vehicle identification information is determined to be registered information that can be electrically connected to the rapid charging power converter 65, the non-running mode is set for the electric vehicle V, and the direct current is passed through the rapid charging power converter 65. A required amount of high-voltage, large-capacity DC power supplied from the power supply bus DL is supplied to the electric vehicle V to charge the power storage device 4 (see FIG. 2) mounted on the electric vehicle V, and the electric vehicle V When the necessary amount of DC power is supplied, the non-running mode is canceled, and the DC power supply bus DL and the electric vehicle V are disconnected.

すなわち、接続部JLに電動移動体Vが物理的接続されたときに、電動移動体Vに付与されている電動移動体識別情報を取得して、電動移動体識別情報に基づき、電動移動体が給電対象電動移動体か否かを判定し、給電対象電動移動体と判定されたときに、接続装置70、70Aは、直流電源母線DLと電動移動体Vとを電気的接続し、電動移動体Vの蓄電可能容量に到達するまで、又は、電動移動体が接続部JLから解列されるまで、接続部JLから電動移動体Vに直流電力を供給する。   That is, when the electric vehicle V is physically connected to the connection portion JL, the electric vehicle identification information given to the electric vehicle V is obtained, and the electric vehicle is obtained based on the electric vehicle identification information. When it is determined whether or not it is a power supply target electric mobile body, and when it is determined as a power supply target electric mobile body, the connection devices 70 and 70A electrically connect the DC power supply bus DL and the electric mobile body V, and the electric mobile body The DC power is supplied from the connecting portion JL to the electric vehicle V until it reaches the chargeable capacity of V or until the electric vehicle is disconnected from the connecting portion JL.

図2は、本実施形態に係る電動移動体Vの構成を示す図である。電動移動体Vは、電力を供給して駆動用電動装置5を回転駆動させて走行する電動移動体である。電動移動体Vは、外部から直流電力を受電する第1の受電接続部J1と、第1の受電接続部J1から直流電力を受給して交流電力に変換する第1の電力変換器1と、電力を貯蔵し、駆動用電動装置5を回転駆動するのに必要な電力を供給する電力貯蔵装置4と、電力貯蔵装置4の直流電力を交流電力に変換する第2の電力変換器2と、第2の電力変換器2と第1の電力変換器1及び駆動用電動装置5との中間位置に配設され、第2の電力変換器2に第1の電力変換器1、又は、駆動用電動装置5、の何れかを選択して接続する選択装置3と、選択装置3と第1の電力変換器1との間に配設されている電気的絶縁装置6(図7参照)と、第1の電力変換器1、第2の電力変換器2等を制御する制御装置7とを含んで構成されている。また、電動移動体Vは、電力貯蔵装置4に直結する第2の受電接続部J2を有している。   FIG. 2 is a diagram illustrating a configuration of the electric vehicle V according to the present embodiment. The electric vehicle V is an electric vehicle that travels by supplying electric power and rotationally driving the driving electric device 5. The electric vehicle V includes a first power receiving connection portion J1 that receives DC power from the outside, a first power converter 1 that receives DC power from the first power receiving connection portion J1 and converts it into AC power, A power storage device 4 for storing electric power and supplying electric power necessary for rotationally driving the driving electric device 5; a second power converter 2 for converting DC power of the power storage device 4 into AC power; The second power converter 2 is disposed at an intermediate position between the first power converter 1 and the drive electric device 5, and the second power converter 2 is connected to the first power converter 1 or the drive. A selection device 3 for selecting and connecting one of the electric devices 5, an electrical insulation device 6 (see FIG. 7) disposed between the selection device 3 and the first power converter 1, And a control device 7 that controls the first power converter 1, the second power converter 2, and the like. Further, the electric vehicle V has a second power receiving connection portion J2 that is directly connected to the power storage device 4.

選択装置3は、電動移動体Vが走行時に、駆動用電動装置5を選択して第2の電力変換器2を介して電力貯蔵装置4に接続し、電動移動体Vが非走行時に第1の電力変換器1を選択して、第2の電力変換器2を介して電力貯蔵装置4に接続する。   The selection device 3 selects the drive electric device 5 when the electric vehicle V is traveling and connects it to the power storage device 4 via the second power converter 2, and the first when the electric vehicle V is not running. The power converter 1 is selected and connected to the power storage device 4 via the second power converter 2.

また、選択装置3は、電動移動体Vが走行時に、駆動用電動装置5を選択して、電力貯蔵装置4から出力される直流電力を第2の電力変換器2により交流電力に変換して駆動用電動装置5に供給し、電動移動体Vが非走行時に、第1の電力変換器1を選択して、準備された直流電力供給装置(本実施形態では、直流給電電動移動体管理システム100)から受給する直流電力を第1の電力変換器1により変換した交流電力を第2の電力変換器2に供給して直流電力に変換し、電力貯蔵装置4に供給して充電する。   Further, the selection device 3 selects the driving electric device 5 when the electric vehicle V is traveling, and converts the DC power output from the power storage device 4 into AC power by the second power converter 2. A DC power supply device (in this embodiment, a DC power supply electric vehicle management system) prepared by selecting the first power converter 1 when the electric vehicle V is not traveling and is supplied to the drive electric device 5. 100), the AC power obtained by converting the DC power received by the first power converter 1 is supplied to the second power converter 2 to be converted to DC power, and is supplied to the power storage device 4 for charging.

図2の構成をさらに詳細に説明する。電動移動体Vは、外部から直流電力を受給する第1の受電接続部J1と、第1の受電接続部J1から第1の接続部J11を介して受給する、直流電力を交流電力に変換する第1の電力変換器1と、電動移動体Vを走行させる駆動用電動装置5を回転駆動する駆動用電力を発生させる電力貯蔵装置4と、電力貯蔵装置4から第1の接続部J21を介して、電力貯蔵装置4から供給される直流電力を交流電力に変換する第2の電力変換器2と、第2の電力変換器2の第2の接続部J22に、電気的絶縁装置6を介して第1の電力変換器1の第2の接続部J12、又は、駆動用電動装置5の接続部J5、の何れかを選択して接続する選択装置3と、を含んでいる。   The configuration of FIG. 2 will be described in more detail. The electric vehicle V converts the DC power received from the first power receiving connection portion J1 that receives DC power from the outside and the first power receiving connection portion J1 through the first connection portion J11 into AC power. The first power converter 1, the power storage device 4 that generates driving power for rotationally driving the driving electric device 5 that drives the electric vehicle V, and the power storage device 4 through the first connection portion J21. The second power converter 2 that converts the DC power supplied from the power storage device 4 into AC power, and the second connection J22 of the second power converter 2 are connected to the second power converter 2 via the electrical insulation device 6. And a selection device 3 that selects and connects either the second connection portion J12 of the first power converter 1 or the connection portion J5 of the drive electric device 5.

電動移動体Vは、非走行モードのときに、第1の受電接続部J1が接続装置70(第1の接続装置)を介して直流電源母線DLに物理的接続されると、電動移動体識別情報を管理装置80に送信するとともに、第1の受電接続部J1と直流電源母線DLとの間で電気的接続が成立してから解列するまでの間、第1の受電接続部J1を介して直流電源母線DLから受電した直流電力を第1の電力変換器1により交流電力に変換して、第2の電力変換器2に供給し、直流電力に変換して電力貯蔵装置4に供給して充電する。   When the first power receiving connection portion J1 is physically connected to the DC power supply bus DL via the connection device 70 (first connection device) in the non-running mode, the electric vehicle V is identified. Information is transmitted to the management device 80, and during the period from when the electrical connection is established between the first power receiving connection portion J1 and the DC power supply bus DL to the disconnection, the first power receiving connection portion J1 is used. The DC power received from the DC power supply bus DL is converted into AC power by the first power converter 1 and supplied to the second power converter 2, converted to DC power and supplied to the power storage device 4. To charge.

また、電動移動体Vは、非走行モードのときに、第2の受電接続部J2が接続装置70A(第2の接続装置)を介して急速充電用電力変換器65に物理的接続された場合、電動移動体識別情報を管理装置80に送信するとともに、第2の受電接続部J2と急速充電用電力変換器65との間で電気的接続が成立してから解列するまでの間、第2の受電接続部J2を介して急速充電用電力変換器65から受電した直流電力を電力貯蔵装置4に供給して充電する。   In addition, when the electric vehicle V is in the non-running mode, the second power receiving connection portion J2 is physically connected to the rapid charging power converter 65 via the connection device 70A (second connection device). In addition to transmitting the electric vehicle identification information to the management device 80, the first time from when the electrical connection is established between the second power receiving connection portion J2 and the rapid charging power converter 65 until the disconnection, The direct current power received from the rapid charging power converter 65 via the second power receiving connection J2 is supplied to the power storage device 4 and charged.

電動移動体Vは、非走行モードが解除されたときに、電力貯蔵装置4から出力される直流電力を第2の電力変換器2に供給して交流電力に変換し、駆動用電動装置5に供給して走行モードに移行する。   When the non-running mode is released, the electric vehicle V supplies the DC power output from the power storage device 4 to the second power converter 2 to convert it into AC power, and the drive electric device 5 Supply and shift to driving mode.

また、電動移動体Vは、回生ブレーキ装置(図示せず)を備え、走行モードにおいて、電力貯蔵装置4の出力が抑制されたときに、駆動用電動装置5により生じた電力を第2の電力変換器2を介して電力貯蔵装置4に供給して電力貯蔵装置4に充電するとよい。   In addition, the electric vehicle V includes a regenerative brake device (not shown), and when the output of the power storage device 4 is suppressed in the traveling mode, the electric power generated by the driving electric device 5 is the second electric power. The power storage device 4 may be supplied via the converter 2 to charge the power storage device 4.

図3は、本実施形態に係る管理装置80の構成を示す図である。管理装置80は、処理部81、記憶部82、入力部83、表示部84、通信部85を有する。処理部81は、中央演算処理装置(CPU)であり、接続装置70,70Aを制御する接続装置制御部811、電動移動体Vの充電のための必要給電時間を算出する電動移動体の必要給電時間算出部812、単位時間あたりの必要容量に基づき電源を選択するため電源接続装置60を制御する電源接続装置制御部813、電動移動体Vへの課金情報を作成する課金算出部814、電動移動体Vの移動経路パターン情報を作成する移動経路パターン作成部815等を有する。   FIG. 3 is a diagram illustrating a configuration of the management device 80 according to the present embodiment. The management device 80 includes a processing unit 81, a storage unit 82, an input unit 83, a display unit 84, and a communication unit 85. The processing unit 81 is a central processing unit (CPU), a connection device control unit 811 that controls the connection devices 70 and 70A, and a required power supply of the electric mobile body that calculates a required power supply time for charging the electric mobile body V. A time calculation unit 812, a power connection device control unit 813 for controlling the power connection device 60 to select a power source based on a required capacity per unit time, a charge calculation unit 814 for generating charging information for the electric vehicle V, an electric movement A movement path pattern creation unit 815 that creates movement path pattern information of the body V is included.

記憶部82には、電動移動体Vの管理情報である電動移動体管理情報821(図4参照)、接続部JLの管理情報である接続部管理情報822(図4参照)、通常充電モードと急速充電モードのモード別の単価情報であるモード別単価情報823(図4参照)、電動移動体Vの充電状態を示す電動移動体充電情報826(図5参照)、直流電源の管理情報である直流電源管理情報827、電動移動体Vの移動経路パターン情報828等が記憶されている。   The storage unit 82 includes the electric vehicle management information 821 (see FIG. 4) that is the management information of the electric vehicle V, the connection management information 822 (see FIG. 4) that is the management information of the connection unit JL, and the normal charging mode. Mode-specific unit price information 823 (see FIG. 4), which is unit price information for each mode of the quick charge mode, electric mobile unit charging information 826 (see FIG. 5) indicating the charging state of the electric vehicle V, and DC power source management information. DC power management information 827, movement route pattern information 828 of the electric vehicle V, and the like are stored.

入力部83は、キーボードやマウス等のコンピュータに指示を入力するための装置であり、プログラム起動等の指示を入力する。表示部84は、ディスプレイ等であり、管理装置80による処理の実行状況や実行結果等を表示する。通信部85は、ネットワーク等を介して、他の装置と各種データやコマンドを交換する。   The input unit 83 is a device for inputting an instruction to a computer such as a keyboard and a mouse, and inputs an instruction for starting a program. The display unit 84 is a display or the like, and displays the execution status and execution result of the processing by the management device 80. The communication unit 85 exchanges various data and commands with other devices via a network or the like.

図4は、本実施形態に係る記憶部82の固定情報の一例を示す図である。固定情報には、電動移動体管理情報821、接続部管理情報822、モード別単価情報823がある。電動移動体管理情報821には、電動移動体管理ID(電動移動体識別情報)、前記電動移動体識別情報が有効か否かを示す有効可否情報、電動移動体Vの電力貯蔵装置4の最大貯蔵量、通常充電モードを許可するか否かを示す通常充電モード可否情報、急速充電モードを許可するか否かを示す急速充電モード可否情報、電動移動体Vの所有者情報、その所有者の連絡先等が含まれる。   FIG. 4 is a diagram illustrating an example of fixed information in the storage unit 82 according to the present embodiment. The fixed information includes electric vehicle management information 821, connection management information 822, and unit price information 823 by mode. The electric vehicle management information 821 includes an electric vehicle management ID (electric vehicle identification information), validity information indicating whether the electric vehicle identification information is valid, and the maximum power storage device 4 of the electric vehicle V. Storage amount, normal charge mode availability information indicating whether or not the normal charge mode is permitted, quick charge mode availability information indicating whether or not the rapid charge mode is permitted, owner information of the electric vehicle V, the owner's information Includes contact information.

接続部管理情報822には、接続部JLの接続部管理ID(接続部識別情報)、接続部JLから給電される接続モード種別、接続部JLの設置位置情報(緯度と経度との情報)、設置位置の住所情報、設置日、管理者、連絡先等が含まれる。   The connection part management information 822 includes a connection part management ID (connection part identification information) of the connection part JL, a connection mode type fed from the connection part JL, installation position information of the connection part JL (latitude and longitude information), Includes address information of installation location, installation date, administrator, contact information, etc.

モード別単価情報823には、時間帯毎(第1時間、第2時間、第3時間)の単位時間単価等が含まれる。例えば、第1時間は、8:00〜10:00、14:00〜18:00であり、第2時間は、10:00〜14:00、第3時間は、18:00〜8:00である。夜間の第3時間は、単価を安くするなど、発電設備の発電実績を考慮して時間帯別の料金が決められている。また、急速充電モードは、通常充電モードより高い料金となる。   The unit price information 823 by mode includes a unit time unit price for each time zone (first time, second time, and third time). For example, the first time is 8:00 to 10:00, 14:00 to 18:00, the second time is 10:00 to 14:00, and the third time is 18:00 to 8:00 It is. For the third hour at night, the unit price is determined in consideration of the power generation performance of the power generation facilities, such as lowering the unit price. In addition, the quick charge mode has a higher charge than the normal charge mode.

図5は、本実施形態に係る記憶部82の変動情報の一例を示す図である。変動情報には、電動移動体充電情報826がある。電動移動体充電情報826には、電動移動体管理ID(電動移動体識別情報)、電動移動体Vが接続された日時、接続された接続部管理ID、接続許可された電動移動体Vの現在の電力貯蔵量、通常充電モードか急速充電モードかの接続モード種別、電動移動体の必要給電時間算出部812で算出された必要給電時間(=(最大貯蔵量−現在貯蔵量)/単位時間当たりの給電量)、電動移動体Vが解列された日時、解列までに給電した給電時間等が含まれる。   FIG. 5 is a diagram illustrating an example of variation information in the storage unit 82 according to the present embodiment. The variation information includes electric vehicle charging information 826. The electric vehicle charging information 826 includes an electric vehicle management ID (electric vehicle identification information), the date and time when the electric vehicle V was connected, the connected connection management ID, and the current status of the electric vehicle V that is permitted to be connected. Power storage amount, connection mode type of normal charge mode or quick charge mode, required power supply time calculated by electric vehicle required power supply time calculation unit 812 (= (maximum storage amount−current storage amount) / per unit time) Power supply amount), the date and time when the electric vehicle V is disconnected, the power supply time during which power is supplied before the disconnection, and the like.

管理装置80は、電動移動体Vが接続部JLに電気的接続されて直流電源母線DLから電動移動体Vに直流電力の供給を開始したときに、年月日と時刻とを示す給電開始日時刻情報を接続部識別情報(接続部管理ID)と電動移動体識別情報(電動移動体管理ID)とに対応付けて管理し、さらに電気的接続が解列されて対応付けが解除されたときの年月日と時刻とを示す給電終了日時刻情報を接続部識別情報と前記電動移動体識別情報とに対応付けて管理する。これにより、各電動移動体Vへの給電状況を把握することができる。   When the electric vehicle V is electrically connected to the connection portion JL and the supply of DC power from the DC power supply bus DL to the electric vehicle V is started, the management device 80 indicates a power supply start date indicating the date and time. When the time information is managed in association with the connection part identification information (connection part management ID) and the electric vehicle identification information (electric vehicle management ID), and when the electric connection is disconnected and the association is released The power supply end date and time information indicating the date and time is managed in association with the connection part identification information and the electric vehicle identification information. Thereby, the power feeding situation to each electric vehicle V can be grasped.

管理装置80は、給電終了日時刻情報から給電開始日時刻情報を減算して給電時間を算出し、電動移動体識別情報に対応付けた単価情報に給電時間を乗算して電動移動体Vに課金するための課金情報を算出する。これにより、電動移動体Vの所有者に料金を請求することができる。   The management device 80 calculates the power supply time by subtracting the power supply start date / time information from the power supply end date / time information, and charges the electric vehicle V by multiplying the unit price information associated with the electric vehicle identification information by the power supply time. Accounting information is calculated for this purpose. Thereby, a charge can be charged to the owner of the electric vehicle V.

管理装置80は、接続部識別情報と、電動移動体識別情報と、単価情報と、を固定情報として記憶部82に記憶して管理し(図4参照)、給電開始日時刻情報と、給電終了日時刻情報と、給電時間と、課金情報と、を変動情報(図5参照、図6参照)として記憶部82に記憶して管理する。これにより、管理装置80が記憶する各情報を、固定情報、変動情報として管理することができる。   The management device 80 stores and manages the connection unit identification information, the electric vehicle identification information, and the unit price information as fixed information in the storage unit 82 (see FIG. 4), the power supply start date / time information, and the power supply end. The date / time information, the power supply time, and the billing information are stored and managed in the storage unit 82 as variation information (see FIGS. 5 and 6). Thereby, each information which the management apparatus 80 memorize | stores can be managed as fixed information and fluctuation information.

接続部JLは、直流電源母線DLの予め定められた接続部設置位置で直流電源母線DLに物理的接続され、管理装置80は、接続部設置位置に対応する住所情報を紐づけて記憶部82に記憶する。これにより、接続部JLの管理およびメンテナンスを含めた保守作業が容易となる。   The connection unit JL is physically connected to the DC power supply bus DL at a predetermined connection unit installation position of the DC power supply bus DL, and the management device 80 associates address information corresponding to the connection unit installation position and stores the storage unit 82. To remember. This facilitates maintenance work including management and maintenance of the connecting portion JL.

管理装置80は、電動移動体識別情報ごとに、直流電源母線DLに電気的接続をしたときの接続部JLの住所情報を、給電開始日時刻情報に紐づけて時系列で移動経路パターン情報828として記憶し、電動移動体Vが新たに接続部JLを介して直流電源母線DLに電気的接続されたときに移動経路パターン情報828を更新するとよい。これにより、電動移動体Vごとに、使用者の充電位置を把握することができる。   For each electric vehicle identification information, the management device 80 associates the address information of the connection portion JL when electrically connected to the DC power supply bus DL with the power supply start date / time information in time series, and the movement route pattern information 828. And the moving path pattern information 828 may be updated when the electric vehicle V is newly electrically connected to the DC power supply bus DL via the connection portion JL. Thereby, a user's charge position can be grasped | ascertained for every electric vehicle V. FIG.

図6は、本実施形態に係る管理装置の課金処理の例を示すフローチャートである。適宜図1〜図5を参照する。処理部81の課金算出部814は、電動移動体管理IDを取得し(ステップS61)、課金対象月を取得する(ステップS62)。処理部81は、ステップS61で取得した電動移動体管理IDに対し、電動移動体充電情報826を参照して接続部JLに接続が有るか否かを判定する(ステップS63)。接続があった場合(ステップS63,Yes)、接続日時の給電時間を取得し(ステップS64)、接続日時の接続モードを取得し(ステップS65)、給電時間にモード別単価情報823に基づき単位時間単価情報を乗算して課金情報を算出する(ステップS66)。そして、処理部81は、接続日時の課金情報を、記憶部82に記憶し(ステップS67)、全ての接続日時の処理が終了したか否かを判定する(ステップS68)。全ての接続日時の処理が終了していない場合(ステップS68,No)、ステップS64に戻り、次の接続日時についてステップS64〜ステップS68を繰り返す。   FIG. 6 is a flowchart illustrating an example of the accounting process of the management apparatus according to the present embodiment. Reference is made to FIGS. The accounting calculation unit 814 of the processing unit 81 acquires the electric vehicle management ID (Step S61) and acquires the accounting target month (Step S62). The processing unit 81 refers to the electric vehicle charging information 826 for the electric vehicle management ID acquired in step S61 and determines whether or not there is a connection to the connection unit JL (step S63). If there is a connection (step S63, Yes), the power supply time of the connection date and time is acquired (step S64), the connection mode of the connection date and time is acquired (step S65), and the unit time based on the unit price information 823 by mode for the power supply time The billing information is calculated by multiplying the unit price information (step S66). And the process part 81 memorize | stores the charging information of a connection date in the memory | storage part 82 (step S67), and determines whether the process of all the connection dates was completed (step S68). If all the connection dates and times have not been processed (No at step S68), the process returns to step S64, and steps S64 to S68 are repeated for the next connection date and time.

ステップS68において、全ての接続日時の処理が終了した場合(ステップS68,Yes)、処理部81は、課金対象月の合計値を算出し(ステップS69)、課金対象月の合計値を請求額として記憶部82に記憶し(ステップS70)、請求書を発行し(ステップS71)、一連の処理を終了する。なお、ステップS63において、課金対象月に接続部JLに接続がない場合(ステップS63,No)、処理を終了する。   In step S68, when the processing for all the connection dates and times is completed (step S68, Yes), the processing unit 81 calculates the total value of the billing month (step S69), and uses the total value of the billing month as a billing amount. It memorize | stores in the memory | storage part 82 (step S70), issues a bill (step S71), and complete | finishes a series of processes. In step S63, if there is no connection to the connection unit JL in the billing month (step S63, No), the process ends.

これにより、電動移動体管理IDの所有者に対し、各電動移動体管理IDについて給電時間、接続モードに基づき、月ごとに料金を請求することができる。なお、図6においては、月ごとで説明したが、日ごと、週ごとに課金情報を算出し料金を請求してもよい。   Thereby, it is possible to charge the owner of the electric vehicle management ID monthly for each electric vehicle management ID based on the power supply time and the connection mode. In FIG. 6, the description has been made on a monthly basis, but it may be possible to calculate the charging information for each day or each week and charge a fee.

図7は、本実施形態に係る選択装置3及び電気的絶縁装置6の構成を示す図である。適宜図2を参照する。選択装置3は、3相の切替装置である。受電状態のときは、切替スイッチ3u,3v,3wは、第2の電力変換器2と電気的絶縁装置6を介して第1の電力変換器1とが接続されており(実線参照)、受電状態でないときは、切替スイッチ3u,3v,3wは、第2の電力変換器2と駆動用電動装置5とが接続されている(破線参照)。   FIG. 7 is a diagram illustrating the configuration of the selection device 3 and the electrical insulation device 6 according to the present embodiment. Reference is made to FIG. 2 as appropriate. The selection device 3 is a three-phase switching device. In the power receiving state, the changeover switches 3u, 3v, 3w are connected to the first power converter 1 via the second power converter 2 and the electrical insulation device 6 (see the solid line). When not in the state, the changeover switches 3u, 3v, 3w are connected to the second power converter 2 and the driving electric device 5 (see broken lines).

従来の自動車用急速充電規格であるCHAdeMO規格(登録商標)では、系統電源(商用電源)と電気自動車との間を絶縁することが義務付けられている。これと類似形態とするため、第1の電力変換器1と第2の電力変換器2との間に電気的絶縁装置6を配置している。電気的絶縁装置6は、例えば、絶縁電圧変圧器である。   In the CHAdeMO standard (registered trademark), which is a conventional rapid charging standard for automobiles, it is obliged to insulate between a system power supply (commercial power supply) and an electric vehicle. In order to make it similar to this, an electrical insulating device 6 is arranged between the first power converter 1 and the second power converter 2. The electrical insulation device 6 is, for example, an insulation voltage transformer.

即ち、選択装置3と第1の電力変換器1の第2の接続部J12との中間位置に、第1の電力変換器1の第2の接続部J12と第2の電力変換器2の第2の接続部J22とが接続されたときに、第1の電力変換器1と第2の電力変換器2とを電気的に絶縁する電気的絶縁装置6を配設している。   That is, the second connection portion J12 of the first power converter 1 and the second power converter 2 of the second connection portion J12 of the first power converter 1 and the second connection portion J12 of the first power converter 1 An electrical insulating device 6 that electrically insulates the first power converter 1 and the second power converter 2 when the two connecting portions J22 are connected is provided.

図8は、本実施形態に係る管理装置80の通常充電モードの処理を示すフローチャートである。適宜図1〜図3を参照する。処理部81は、第1の接続装置(接続装置70)の接続を検知したか否かを判定する(ステップS81)。処理部81は、第1の接続装置の接続を検知した場合(ステップS81,Yes)、通常充電モードを選択し(ステップS82)、ステップS83に進み、第1の接続装置の接続を検知しない場合(ステップS81,No)、ステップS81に戻る。   FIG. 8 is a flowchart showing processing in the normal charging mode of the management device 80 according to the present embodiment. 1 to 3 will be referred to as appropriate. The processing unit 81 determines whether or not the connection of the first connection device (connection device 70) has been detected (step S81). When the processing unit 81 detects the connection of the first connection device (step S81, Yes), the normal charging mode is selected (step S82), and the process proceeds to step S83 where the connection of the first connection device is not detected. (Step S81, No), it returns to Step S81.

ステップS83において、処理部81は、接続された電動移動体Vから電動移動体管理ID(電動移動体識別情報)を取得し、電動移動体管理情報821を参照して、登録情報と合致するか否かを判定する(ステップS84)。登録情報と合致する場合(ステップS84,Yes)、ステップS85に進み、合致しない場合(ステップS84,No)、電動移動体Vに登録されていない旨を通知し、ステップS81に戻る。   In step S83, the processing unit 81 obtains an electric vehicle management ID (electric vehicle identification information) from the connected electric vehicle V, and refers to the electric vehicle management information 821 so as to match the registration information. It is determined whether or not (step S84). When it matches with the registration information (step S84, Yes), the process proceeds to step S85. When it does not match (step S84, No), it is notified that it is not registered in the electric vehicle V, and the process returns to step S81.

ステップS85において、処理部81は、非走行モードに設定し、充電に必要な必要量を算出し、充電を開始する(ステップS86)。充電を開始後、電動移動体Vからの解列指令信号を受信したか否かを判定し(ステップS87)、解列指令信号を受信しない場合(ステップS87,No)、ステップS88に進み、解列指令信号を受信した場合(ステップS87,Yes)、ステップS89に進む。   In step S85, the processing unit 81 sets the non-running mode, calculates a necessary amount necessary for charging, and starts charging (step S86). After starting charging, it is determined whether or not a disconnection command signal is received from the electric vehicle V (step S87). If no disconnection command signal is received (step S87, No), the process proceeds to step S88. When the column command signal is received (step S87, Yes), the process proceeds to step S89.

ステップS88において、処理部81は、電動移動体Vの最大貯蔵量に到達したか否かを判定し、最大貯蔵量に到達した場合(ステップS88,Yes)、ステップS89に進み、最大貯蔵量に到達していない場合(ステップS88,No)、ステップS87に戻る。ステップS89において、処理部81は、充電を終了し、非走行モードを解除する。そして、処理部81は、第1の接続装置(接続装置70)を遮断し(ステップS8E)、一連の処理を終了する。   In step S88, the processing unit 81 determines whether or not the maximum storage amount of the electric vehicle V has been reached. When the maximum storage amount has been reached (Yes in step S88), the processing unit 81 proceeds to step S89 and sets the maximum storage amount. If not reached (No at Step S88), the process returns to Step S87. In step S89, the processing unit 81 ends the charging and cancels the non-running mode. And the process part 81 interrupts | blocks a 1st connection apparatus (connection apparatus 70) (step S8E), and complete | finishes a series of processes.

図9は、本実施形態に係る管理装置80の急速充電モードの処理を示すフローチャートである。適宜図1〜図3を参照する。処理部81は、第2の接続装置(接続装置70A)の接続を検知したか否かを判定する(ステップS91)。処理部81は、第2の接続装置の接続を検知した場合(ステップS91,Yes)、急速充電モードを選択し(ステップS92)、ステップS93に進み、第2の接続装置の接続を検知しない場合(ステップS91,No)、ステップS91に戻る。   FIG. 9 is a flowchart showing a process in the quick charge mode of the management device 80 according to the present embodiment. 1 to 3 will be referred to as appropriate. The processing unit 81 determines whether or not the connection of the second connection device (connection device 70A) has been detected (step S91). When the processing unit 81 detects the connection of the second connection device (step S91, Yes), selects the quick charge mode (step S92), and proceeds to step S93, and does not detect the connection of the second connection device. (Step S91, No), it returns to step S91.

ステップS93において、処理部81は、接続された電動移動体Vから電動移動体管理ID(電動移動体識別情報)を取得し、電動移動体管理情報821を参照して、登録情報と合致するか否かを判定する(ステップS94)。登録情報と合致する場合(ステップS94,Yes)、ステップS95に進み、合致しない場合(ステップS94,No)、電動移動体Vに登録されていない旨を通知し、ステップS91に戻る。   In step S93, the processing unit 81 obtains an electric vehicle management ID (electric vehicle identification information) from the connected electric vehicle V and matches the registration information with reference to the electric vehicle management information 821. It is determined whether or not (step S94). When it matches with the registration information (step S94, Yes), the process proceeds to step S95, and when it does not match (step S94, No), it is notified that it is not registered in the electric vehicle V, and the process returns to step S91.

ステップS95において、処理部81は、非走行モードに設定し、充電に必要な必要量を算出し、充電を開始する(ステップS96)。充電を開始後、電動移動体Vからの解列指令信号を受信したか否かを判定し(ステップS97)、解列指令信号を受信しない場合(ステップS97,No)、ステップS98に進み、解列指令信号を受信した場合(ステップS97,Yes)、ステップS99に進む。   In step S95, the processing unit 81 sets the non-running mode, calculates a necessary amount necessary for charging, and starts charging (step S96). After starting charging, it is determined whether or not a disconnection command signal is received from the electric vehicle V (step S97). If no disconnection command signal is received (step S97, No), the process proceeds to step S98. When the column command signal is received (step S97, Yes), the process proceeds to step S99.

ステップS98において、処理部81は、電動移動体Vの最大貯蔵量に到達したか否かを判定し、最大貯蔵量に到達した場合(ステップS98,Yes)、ステップS99に進み、最大貯蔵量に到達していない場合(ステップS98,No)、ステップS97に戻る。ステップS99において、処理部81は、充電を終了し、非走行モードを解除する。そして、処理部81は、第2の接続装置(接続装置70A)を遮断し(ステップS9E)、一連の処理を終了する。   In step S98, the processing unit 81 determines whether or not the maximum storage amount of the electric vehicle V has been reached. When the maximum storage amount has been reached (Yes in step S98), the processing unit 81 proceeds to step S99 and sets the maximum storage amount. If not reached (No at Step S98), the process returns to Step S97. In step S99, the processing unit 81 ends the charging and cancels the non-running mode. And the process part 81 interrupts | blocks a 2nd connection apparatus (connection apparatus 70A) (step S9E), and complete | finishes a series of processes.

管理装置80は、同一の電動移動体識別情報に対して、第1の接続装置(接続装置70)により電気的接続が確立している間は第2の接続装置(接続装置70A)による電気的接続を設定せず、第2の接続装置により電気的接続が確立している間は第1の接続装置による電気的接続を設定しない。これにより、同一の電動移動体識別情報における電動移動体Vに対し、通常充電モードと急速充電モードとの重複する充電モードの設定を回避することができる。   The management device 80 uses the second connection device (connection device 70A) for electrical connection to the same electric vehicle identification information while the first connection device (connection device 70) establishes an electrical connection. While the connection is not set and the electrical connection is established by the second connection device, the electrical connection by the first connection device is not set. Thereby, the setting of the charge mode which overlaps with normal charge mode and quick charge mode with respect to the electric vehicle V in the same electric vehicle identification information can be avoided.

以上説明したように、管理装置80は、電動移動体識別情報に対応する電力貯蔵装置4の最大貯蔵量を紐付けて予め記憶部82に記憶し、非走行モードのときに、最大貯蔵量と、電動移動体Vから取得した電力貯蔵装置4の現在貯蔵量と、の差分を算出して必要量、又は必要量を単位時間当たりの充電容量で除算した給電時間を設定することができる。   As described above, the management device 80 associates the maximum storage amount of the power storage device 4 corresponding to the electric vehicle identification information and stores the maximum storage amount in advance in the storage unit 82. The difference between the current storage amount of the power storage device 4 acquired from the electric vehicle V and the required amount, or the power supply time obtained by dividing the required amount by the charge capacity per unit time can be set.

管理装置80は、非走行モードが設定された電動移動体Vに設定した必要量の合計値を算出し、必要量の合計値に応じて直流電源母線DLに物理的接続された直流電源装置の中から必要なものを選択して直流電源母線DLに電気的接続するとよい。これにより、合計必要量が増加したときに、直流電源からの供給を増加することができ、合計必要量が減少したときに、直流電源からの供給を減少することができる。   The management device 80 calculates a total value of the necessary amount set for the electric vehicle V in which the non-running mode is set, and the DC power supply device physically connected to the DC power supply bus DL according to the total value of the necessary amount. It is preferable to select a necessary one and electrically connect it to the DC power supply bus DL. Thereby, when the total necessary amount increases, the supply from the DC power source can be increased, and when the total necessary amount decreases, the supply from the DC power source can be decreased.

図10は、本実施形態に係る電圧補償装置90の構成を示す図である。電圧補償装置90は、設置する位置の周辺地形状況に応じて、形状と設置方法等を定める太陽光発電設備である。電圧補償装置90は、太陽光パネル91、電力変換器92、制御装置93を含んで構成されている。太陽光パネル91で発電された直流電力は、電力変換器92で所定の電圧に変換され、直流電源母線DLに供給されている。制御装置93は、直流電源母線DLの電圧値を監視し、所定電圧を維持するように電力変換器92の出力を制御する。   FIG. 10 is a diagram illustrating a configuration of the voltage compensation device 90 according to the present embodiment. The voltage compensator 90 is a photovoltaic power generation facility that determines the shape, installation method, and the like according to the surrounding terrain situation of the installation location. The voltage compensation device 90 includes a solar panel 91, a power converter 92, and a control device 93. The DC power generated by the solar panel 91 is converted to a predetermined voltage by the power converter 92 and supplied to the DC power supply bus DL. The control device 93 monitors the voltage value of the DC power supply bus DL and controls the output of the power converter 92 so as to maintain a predetermined voltage.

図11は、本実施形態に係る歩道に設置された太陽光パネル91の例を示す図である。直流電源母線DLが、町中の地下に敷設される際は、太陽光パネル91を地上部の歩道等に敷設するとよい。これにより、電圧降下のある箇所に適切に、電圧補償装置90を配置することができる。   FIG. 11 is a diagram illustrating an example of the solar panel 91 installed on the sidewalk according to the present embodiment. When the DC power source bus DL is laid in the basement of the town, the solar panel 91 may be laid on a sidewalk or the like on the ground. Thereby, the voltage compensation apparatus 90 can be appropriately disposed at a location where there is a voltage drop.

図12は、本実施形態に係る接続部JLの配置構成例を示す図である。直流電源母線DLは、防食加工が施された被覆部材に覆われて、地上から所定深度の地下部に埋設され、接続部JLは、直流電源母線DLの予め定められた接続部設置位置で直流電源母線DLに物理的接続され、接続部設置位置において地上部に配設された支柱78に、地上から所定高さ位置に下向きに配設されて、使用時及び不使用時にワンタッチロック機能を有するカバー75を備える。   FIG. 12 is a diagram illustrating an arrangement configuration example of the connection portion JL according to the present embodiment. The DC power supply bus DL is covered with a coating member that has been subjected to anticorrosion processing, and is embedded in the underground portion at a predetermined depth from the ground. The connection portion JL is a direct current at a predetermined connection portion installation position of the DC power supply bus DL. It is physically connected to the power supply bus DL, and is disposed downwardly at a predetermined height position from the ground on the support 78 disposed on the ground portion at the connection portion installation position, and has a one-touch lock function when in use and not in use. A cover 75 is provided.

図13は、本実施形態に係る接続装置70の回路構成例を示す図である。図13においては、直流2線式を例に説明する。直流電源母線DLは、母線DL+と母線DL−とで構成されている。接続装置70は、通電用スイッチ71、接続部JL、異常検知用スイッチ72、直流電流検知器73を含んで構成されている。接続装置70は、母線DL+から通電用スイッチ71を介して接続部JLの一端に接続され、接続JLの他端から母線DL−に接続されている。また、通電用スイッチ71と接続部JLとの途中から分岐され一端が異常検知用スイッチ72に接続され、異常検知用スイッチ72の他端から、直流電流検知器73を介して母線DL−に接続されている。   FIG. 13 is a diagram illustrating a circuit configuration example of the connection device 70 according to the present embodiment. In FIG. 13, a direct current 2-wire system will be described as an example. The DC power supply bus DL is composed of a bus DL + and a bus DL−. The connection device 70 includes an energization switch 71, a connection portion JL, an abnormality detection switch 72, and a direct current detector 73. The connection device 70 is connected from the bus DL + to one end of the connection portion JL via the energization switch 71, and is connected to the bus DL− from the other end of the connection JL. Further, a branch is made between the energizing switch 71 and the connecting portion JL, one end is connected to the abnormality detecting switch 72, and the other end of the abnormality detecting switch 72 is connected to the bus DL− via the DC current detector 73. Has been.

管理装置80は、電動移動体Vが物理的接続されていない接続部JLに対し、異常検知用スイッチ72を閉状態にするとともに、電動移動体Vが電気的接続された状態として通電用スイッチ71を閉状態にすると、異常検知用信号としての電流を異常検知用スイッチ72及び直流電流検知器73に流し、直流電流検知器73の異常検知用信号の導通状態により異常を検知する異常検知モードを有する。   The management device 80 closes the abnormality detection switch 72 to the connection portion JL to which the electric vehicle V is not physically connected, and sets the electric vehicle V as an electrically connected state to the energization switch 71. Is closed, a current as an abnormality detection signal is supplied to the abnormality detection switch 72 and the DC current detector 73, and an abnormality detection mode for detecting an abnormality by the conduction state of the abnormality detection signal of the DC current detector 73 is set. Have.

管理装置80は、異常検知モードをくり返し、電動移動体Vが物理的接続されていない、すべての接続部JLに対して行うとよい。これにより、接続装置70について異常があるか否かを検査することができる。   The management device 80 may repeat the abnormality detection mode and perform it for all the connection portions JL to which the electric vehicle V is not physically connected. Thereby, it can be checked whether or not there is an abnormality in the connection device 70.

なお、図13においては、直流電源母線DLを直流2線式で説明したが、直流3線式でも同様に行える。   In FIG. 13, the DC power supply bus DL has been described with a DC 2-wire system, but a DC 3-wire system can be used similarly.

本実施形態の電動移動体Vは、ケーブルCを介して、比較的低圧(例えば、DC200V)の直流電源母線DLから受電し、DC−ACコンバータ(DC−ACインバータともいう)としての第1の電力変換器1で交流電力に変換し、AC−DCコンバータとしての第2の電力変換器2で高圧(例えば、DC360〜400V)の直流電力に変換して電力貯蔵装置4に充電できる。従来、地域に比較的高価な急速充電装置を配置する必要があったが、本願発明では、電動移動体Vに第1の電力変換器1(DC−ACコンバータ)及び選択装置3を配置することにより、急速ではないが、充電可能となる。また、地域内に給電スポットである接続部JL(図1参照)を多数設けてあれば、どこの接続部JLからも、電動移動体Vに充電可能となる。急速充電が必要なときは、接続装置70A、急速充電用電力変換器65を介して、充電可能である。   The electric vehicle V of the present embodiment receives power from a DC power supply bus DL having a relatively low voltage (for example, DC 200 V) via the cable C, and serves as a first DC-AC converter (also referred to as a DC-AC inverter). The power storage device 4 can convert the AC power into AC power, and the second power converter 2 serving as an AC-DC converter can convert the power storage device 4 into DC power having a high voltage (for example, DC 360 to 400 V). Conventionally, it has been necessary to arrange a relatively expensive quick charger in the area. In the present invention, the first power converter 1 (DC-AC converter) and the selector 3 are arranged in the electric vehicle V. Allows charging, although not rapidly. Moreover, if many connection parts JL (refer FIG. 1) which are electric power feeding spots are provided in an area, the electric vehicle V can be charged from any connection part JL. When quick charging is required, charging is possible via the connecting device 70A and the rapid charging power converter 65.

(変形例)
図1に示す実施形態では、直流電源母線DLは単一の場合について示したが、これに限定されるわけではない。直流電源母線DLが分岐して、管理エリアに配置されていてもよい。
(Modification)
In the embodiment shown in FIG. 1, the case where the DC power supply bus DL is single is shown, but the present invention is not limited to this. The DC power supply bus DL may be branched and arranged in the management area.

図14は、本実施形態に係る管理エリアA2の給電スポットの他の構成を示す図である。図14には、管理エリアA2において給電スポットを分岐直流母線に多数設けた構成を示す。管理エリアA2には、直流電源母線DLから分岐直流母線DL1,DL2,DL3,…,DLNが分岐されている。各分岐直流母線DL1,DL2,DL3,…,DLNには、複数の接続部JLがある。また、各分岐直流母線DL1,DL2,DL3,…,DLNの途中には、電圧補償装置90が配置されている。電動移動体Vは、どこの接続部JL(給電スポット)から随時充電可能となる。   FIG. 14 is a diagram illustrating another configuration of the power feeding spot in the management area A2 according to the present embodiment. FIG. 14 shows a configuration in which a large number of power feeding spots are provided on the branch DC bus in the management area A2. In the management area A2, branch DC buses DL1, DL2, DL3,..., DLN are branched from the DC power supply bus DL. Each branch DC bus DL1, DL2, DL3,..., DLN has a plurality of connecting portions JL. In addition, a voltage compensation device 90 is disposed in the middle of each branch DC bus DL1, DL2, DL3,. The electric vehicle V can be charged at any time from any connecting portion JL (power feeding spot).

管理エリアA2が、所定の市町村であれば、電力ケーブルで分岐直流母線DL1,DL2,DL3,…,DLN等を配置すれば、予め登録された電動移動体Vは、充電装置場所まで移動せずに、近い接続部JL(給電スポット)から充電可能となる。また、電動移動体Vは、充電容量が少なくなった場合においても、近くの接続部JLから充電可能となる。   If the management area A2 is a predetermined municipality, if the branch DC buses DL1, DL2, DL3,..., DLN, etc. are arranged with power cables, the pre-registered electric vehicle V does not move to the charging device location. In addition, charging can be performed from a connection portion JL (power feeding spot) close to the above. Further, the electric vehicle V can be charged from the nearby connection portion JL even when the charging capacity is reduced.

また、管理エリアA2が、生産工場とすると、各生産工場内に電力ケーブルで分岐直流母線DL1,DL2,DL3,…,DLN等を配置するとよい。図1に示す実施形態では、電動移動体Vとして、電気自動車等を図示したが、これに限定されない。電動移動体Vとして、工場内に配置されたバッテリー式のフォークリフト等であってもよい。   Further, when the management area A2 is a production factory, branch DC buses DL1, DL2, DL3,. In the embodiment shown in FIG. 1, an electric vehicle or the like is illustrated as the electric vehicle V, but is not limited to this. The electric vehicle V may be a battery-type forklift arranged in a factory.

また、第3発電設備30は、元々廃棄することとなる地域内の間伐材等を利用した木質ガス化発電機であれば、輸入品である天然ガスや石油を燃料とする発電機に比べ、輸送コスト等を考慮すればコストパフォーマンスにすぐれたものであることはいうまでもない。   Moreover, if the 3rd power generation equipment 30 is a wood gasification generator using the thinned wood etc. in the area which will be discarded originally, compared with the generator which uses natural gas and oil which are imported goods, Needless to say, it is excellent in cost performance in consideration of transportation costs.

本実施形態に係る直流給電電動移動体管理システム100によれば、燃料コストが不要となる既設の再生可能エネルギー発電機(例えば、風力発電機)によって、優先的に管理エリアへと電力を供給し、電力が不足する場合に、燃料を要する他の発電機(例えば、木質ガス化発電機)によって、追加的に管理エリアへと電力を供給することができる。これにより、コストを抑えつつ、電動移動体V等に安定した電力を供給することできる。   According to the DC-fed electric vehicle management system 100 according to the present embodiment, power is preferentially supplied to the management area by an existing renewable energy generator (for example, a wind power generator) that eliminates the need for fuel costs. When the power is insufficient, the power can be additionally supplied to the management area by another generator (for example, a wood gasification generator) that requires fuel. Thereby, stable electric power can be supplied to the electric vehicle V or the like while suppressing costs.

1 第1の電力変換器
2 第2の電力変換器
3 選択装置
3u,3v,3w 切替スイッチ
4 電力貯蔵装置
5 駆動用電動装置
6 電気的絶縁装置
7 制御装置
10 第1発電設備
11 風力発電機
12,22,32,42,52,92 電力変換器
20 第2発電設備
21 太陽光発電機
30 第3発電設備
31 発電機
40 供給設備
41 商用電力系統
50 蓄電設備
51 電力蓄電装置
60 電源接続装置
65 急速充電用電力変換器
70 接続装置
71 通電用スイッチ
72 異常検知用スイッチ
73 直流電流検知器
75 カバー
80 管理装置
81 処理部
811 接続装置制御部
812 電動移動体の必要給電時間算出部
813 電源接続装置制御部
814 課金算出部
815 移動経路パターン作成部
82 記憶部
821 電動移動体管理情報
822 接続部管理情報
823 モード別単価情報
826 電動移動体充電情報
827 直流電源管理情報
828 移動経路パターン情報
83 入力部
84 表示部
85 通信部
90 電圧補償装置
91 太陽光パネル
93 制御装置
100 直流給電電動移動体管理システム
A1,A2,A3 管理エリア
C ケーブル
DL 直流電源母線
DL+,DL− 母線
DL1,DL2,DL3,DLN 分岐直流母線
J1 第1の受電接続部
J2 第2の受電接続部
J11,J21 第1の接続部
J12,J22 第2の接続部
J5 接続部
JC1,JC2 接続部
JL 接続部(給電スポット)
V 電動移動体
DESCRIPTION OF SYMBOLS 1 1st power converter 2 2nd power converter 3 Selection apparatus 3u, 3v, 3w Changeover switch 4 Power storage apparatus 5 Electric drive apparatus 6 Electrical insulation apparatus 7 Control apparatus 10 1st power generation equipment 11 Wind generator 12, 22, 32, 42, 52, 92 Power converter 20 Second power generation facility 21 Solar power generator 30 Third power generation facility 31 Generator 40 Supply facility 41 Commercial power system 50 Power storage facility 51 Power storage device 60 Power connection device 65 Power converter for quick charging 70 Connection device 71 Switch for energization 72 Switch for abnormality detection 73 DC current detector 75 Cover 80 Management device 81 Processing unit 811 Connection device control unit 812 Necessary power supply time calculation unit for electric vehicle 813 Power connection Device control unit 814 Charge calculation unit 815 Movement route pattern creation unit 82 Storage unit 821 Electric vehicle management information 8 22 Connection unit management information 823 Unit price information by mode 826 Electric vehicle charging information 827 DC power management information 828 Movement path pattern information 83 Input unit 84 Display unit 85 Communication unit 90 Voltage compensation device 91 Solar panel 93 Control device 100 DC power supply motor Mobile management system A1, A2, A3 Management area C Cable DL DC power supply bus DL +, DL- Bus DL1, DL2, DL3, DLN Branch DC bus J1 1st power receiving connection J2 2nd power receiving connection J11, J21 1st 1 connection part J12, J22 2nd connection part J5 connection part JC1, JC2 connection part JL connection part (feeding spot)
V Electric vehicle

Claims (12)

管理されたエリアにおいて、
所定の直流電圧を出力する電力変換器を出力部に備えた自然エネルギを利用する発電設
備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた内燃力発電設備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた蓄電池の出力、及び、商用電力系統からの所用電源に所定の直流電圧を出力する電力変換器を備えた電源設備の出力、の組合せにより構成する所定電圧の直流電力を供給する直流電源母線と、
通電用スイッチと接続部とから構成し、前記通電用スイッチをオンしたときに前記直流電源母線から前記直流電力を受電して前記接続部に供給し、前記接続部と電動移動体に配された受電接続部とを接続する給電用ケーブルを介して前記電動移動体に直流電力を供給する複数の接続装置と、を備え、
前記接続部に前記電動移動体が前記給電用ケーブルにより物理的接続されたときに、前記電動移動体に付与されている電動移動体識別情報を取得して、前記電動移動体識別情報に基づき、前記電動移動体が給電対象電動移動体か否かを判定し、前記給電対象電動移動体と判定されたときに、
前記接続装置は前記直流電源母線と前記電動移動体とを電気的接続し、前記電動移動体の蓄電可能容量に到達するまで、又は、前記電動移動体が前記接続部から解列されるまで、前記接続部から前記電動移動体に前記直流電力を供給する
ことを特徴とする直流給電電動移動体管理システム。
In the controlled area
A power generation facility that uses natural energy and has a power converter that outputs a predetermined DC voltage at its output.
Output, output of an internal combustion power generation facility equipped with a power converter that outputs a predetermined DC voltage in the output unit, output of a storage battery equipped with a power converter that outputs a predetermined DC voltage in the output unit, and commercial A DC power supply bus that supplies DC power of a predetermined voltage configured by a combination of power supply facilities provided with a power converter that outputs a predetermined DC voltage to a required power source from the power system ;
It is composed of an energizing switch and a connecting portion, and when the energizing switch is turned on, the DC power is received from the DC power supply bus and supplied to the connecting portion, and is arranged in the connecting portion and the electric vehicle. A plurality of connection devices that supply direct-current power to the electric vehicle via a power feeding cable that connects a power receiving connection part; and
When the electric mobile body is physically connected to the connection portion by the power supply cable, the electric mobile body identification information given to the electric mobile body is obtained, based on the electric mobile body identification information, when the electric vehicle is determined whether the power supply target electric vehicle, it is determined that the power supply target electric vehicle,
The connecting device electrically connects the DC power supply bus and the electric vehicle, until the electric storage body reaches a chargeable capacity, or until the electric vehicle is disconnected from the connection unit, DC feed electric vehicle management system characterized by supplying the DC power to the electric vehicle from the connection portion.
前記直流電源母線は、予め定められた位置に電圧低下を補償する電圧補償装置を備え、
前記直流電源母線に備えられたすべての前記接続部において前記所定電圧を供給する
ことを特徴とする請求項1に記載の直流給電電動移動体管理システム。
The DC power supply bus comprises a voltage compensation device that compensates for a voltage drop at a predetermined position;
The DC-powered electric vehicle management system according to claim 1, wherein the predetermined voltage is supplied to all the connection portions provided in the DC power supply bus.
前記電圧補償装置は、太陽光発電設備である
ことを特徴とする請求項2に記載の直流給電電動移動体管理システム。
The DC power supply electric vehicle management system according to claim 2, wherein the voltage compensation device is a photovoltaic power generation facility.
前記直流電源母線は、防食加工が施された被覆部材に覆われて、地上から所定深度の地下部に埋設され、
前記接続部は、前記直流電源母線の予め定められた接続部設置位置で前記直流電源母線に物理的接続され、前記接続部設置位置において地上部に配設された支柱に、地上から所定高さ位置に下向きに配設されて、不使用時にワンタッチロック機能を有するカバーを備える
ことを特徴とする請求項1に記載の直流給電電動移動体管理システム。
The DC power supply bus is covered with a coating member that has been subjected to anticorrosion processing, and is buried in the basement at a predetermined depth from the ground,
The connection portion is physically connected to the DC power supply bus at a predetermined connection portion installation position of the DC power supply bus, and a predetermined height from the ground is provided on a column disposed on the ground portion at the connection portion installation position. The direct-current-feed electric vehicle management system according to claim 1, further comprising a cover that is disposed downward at a position and has a one-touch lock function when not in use.
前記直流給電電動移動体管理システムは、管理装置を備え、
前記接続部には、予め接続部識別情報が付与され、
前記管理装置は、前記電動移動体が前記接続部に電気的接続されて前記直流電源母線から前記電動移動体に直流電力の供給を開始したときに、年月日と時刻とを示す給電開始日時刻情報を前記接続部識別情報と前記電動移動体識別情報とに対応付けて管理し、さらに電気的接続が解列されて対応付けが解除されたときの年月日と時刻とを示す給電終了日時刻情報を前記接続部識別情報と前記電動移動体識別情報とに対応付けて管理する
ことを特徴とする請求項1に記載の直流給電電動移動体管理システム。
The DC-fed electric vehicle management system includes a management device,
Connection part identification information is given in advance to the connection part,
The management device, when the electric mobile body is electrically connected to the connection portion and starts supplying DC power from the DC power supply bus to the electric mobile body, a power supply start date indicating a date and time The time information is managed in association with the connection part identification information and the electric vehicle identification information, and furthermore, the end of power supply indicating the date and time when the electrical connection is disconnected and the association is released 2. The DC-powered electric vehicle management system according to claim 1, wherein date / time information is managed in association with the connection part identification information and the electric vehicle identification information.
前記管理装置は、前記給電終了日時刻情報から前記給電開始日時刻情報を減算して給電時間を算出し、前記電動移動体識別情報に対応付けた単価情報に前記給電時間を乗算して前記電動移動体に課金するための課金情報を算出する
ことを特徴とする請求項5に記載の直流給電電動移動体管理システム。
The management device calculates a power supply time by subtracting the power supply start date / time information from the power supply end date / time information, and multiplies the power supply time by unit price information associated with the electric vehicle identification information. 6. The DC-fed electric mobile body management system according to claim 5, wherein billing information for charging the mobile body is calculated.
前記管理装置は、前記接続部識別情報と、前記電動移動体識別情報と、前記単価情報と、を固定情報として記憶部に記憶して管理し、前記給電開始日時刻情報と、前記給電終了日時刻情報と、前記給電時間と、前記課金情報と、を変動情報として前記記憶部に記憶して管理する
ことを特徴とする請求項6に記載の直流給電電動移動体管理システム。
The management device stores and manages the connection unit identification information, the electric vehicle identification information, and the unit price information as fixed information in a storage unit, and manages the power supply start date / time information and the power supply end date. The DC-powered electric vehicle management system according to claim 6, wherein time information, the power supply time, and the billing information are stored and managed as variation information in the storage unit.
前記接続部は、前記直流電源母線の予め定められた接続部設置位置で前記直流電源母線に物理的接続され、
前記管理装置は、前記接続部設置位置に対応する住所情報を紐づけて記憶部に記憶する
ことを特徴とする請求項5に記載の直流給電電動移動体管理システム。
The connection portion is physically connected to the DC power supply bus at a predetermined connection location of the DC power supply bus,
The DC power supply electric vehicle management system according to claim 5, wherein the management device associates address information corresponding to the connection unit installation position and stores the address information in a storage unit.
前記管理装置は、前記電動移動体識別情報ごとに、前記直流電源母線に電気的接続をしたときの前記接続部の前記住所情報を、前記給電開始日時刻情報に紐づけて時系列で移動経路パターン情報として記憶し、前記電動移動体が新たに前記接続部を介して前記直流電源母線に電気的接続されたときに前記移動経路パターン情報を更新する
ことを特徴とする請求項8に記載の直流給電電動移動体管理システム。
The management device associates the address information of the connection portion when the electrical connection is made to the DC power supply bus for each electric vehicle identification information with the power supply start date and time information in a time series. 9. The movement path pattern information is stored as pattern information, and the movement path pattern information is updated when the electric vehicle is newly electrically connected to the DC power supply bus via the connection unit. DC powered electric vehicle management system.
前記接続装置は、前記電動移動体が電気的接続された模擬状態としての異常検知用スイッチを備え、
前記管理装置は、前記電動移動体が物理的接続されていない前記接続部の前記異常検知用スイッチを閉状態にするとともに、前記電動移動体が電気的接続された模擬状態として前記通電用スイッチを閉状態することにより電圧を印加して直流電流検知器の出力電圧の状態により前記接続装置の異常を検知する異常検知モードを有する
ことを特徴とする請求項5に記載の直流給電電動移動体管理システム。
The connection device includes an abnormality detection switch as a simulated state in which the electric vehicle is electrically connected ,
The management device closes the abnormality detection switch of the connection portion to which the electric mobile body is not physically connected, and sets the energization switch as a simulated state in which the electric mobile body is electrically connected. 6. A DC-fed electric vehicle management system according to claim 5, further comprising an abnormality detection mode in which a voltage is applied by closing and an abnormality of the connection device is detected by a state of an output voltage of the DC current detector. system.
前記管理装置は、前記異常検知モードをくり返し、前記電動移動体が物理的接続されていない、すべての前記接続部に対して行う
ことを特徴とする請求項10に記載の直流給電電動移動体管理システム。
The said management apparatus repeats the said abnormality detection mode, and performs with respect to all the said connection parts to which the said electrically-driven moving body is not physically connected. The DC electric power feeding electrically-moving body management of Claim 10 characterized by the above-mentioned. system.
管理されたエリアにおいて、所定の直流電圧を出力する電力変換器を出力部に備えた自然エネルギを利用する発電設備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた内燃力発電設備の出力、所定の直流電圧を出力する電力変換器を出力部に備えた蓄電池の出力、及び、商用電力系統からの所用電源に所定の直流電圧を出力する電力変換器を備えた電源設備の出力、の組合せにより構成する所定電圧の直流電力を供給する直流電源母線と、通電用スイッチと接続部とから構成し、前記通電用スイッチをオンしたときに前記直流電源母線から前記直流電力を受電して前記接続部に供給し、前記接続部と電動移動体に配された受電接続部とを接続する給電用ケーブルを介して前記電動移動体に直流電力を供給する複数の接続装置と、管理装置とを備えるシステムの直流給電電動移動体管理方法であって、
前記管理装置は、
前記接続部に前記電動移動体が前記給電用ケーブルにより物理的接続されたときに、前記電動移動体に付与されている電動移動体識別情報を取得して、前記電動移動体識別情報に基づき、前記電動移動体が給電対象電動移動体か否かを判定し、前記給電対象電動移動体と判定されたときに、
前記接続装置によって前記直流電源母線と前記電動移動体とを電気的接続し、前記電動移動体の蓄電可能容量に到達するまで、又は、前記電動移動体が前記接続部から解列されるまで、前記接続部から前記電動移動体に前記直流電力を供給する
ことを特徴とする直流給電電動移動体管理方法。
In a controlled area, an output of a power generation facility using natural energy having a power converter that outputs a predetermined DC voltage in the output unit, and an internal combustion power having a power converter that outputs a predetermined DC voltage in the output unit Output of power generation equipment, output of a storage battery equipped with a power converter that outputs a predetermined DC voltage in the output unit, and power supply equipment equipped with a power converter that outputs a predetermined DC voltage to a commercial power source from the commercial power system A DC power supply bus that supplies DC power of a predetermined voltage configured by a combination of outputs, a switch for energization, and a connection portion, and the DC power is supplied from the DC power supply bus when the switch for energization is turned on. receiving and supplied to the connecting portion, and a plurality of connection devices for supplying DC power to the electric vehicle via a power supply cable connecting the power receiving connecting portion disposed on the connecting portion and the electric vehicle A DC power supply electric vehicle management method of a system comprising a management device,
The management device
When the electric mobile body is physically connected to the connection portion by the power supply cable, the electric mobile body identification information given to the electric mobile body is obtained, based on the electric mobile body identification information, when the electric vehicle is determined whether the power supply target electric vehicle, it is determined that the power supply target electric vehicle,
The DC power supply bus and the electric vehicle are electrically connected by the connecting device, until the electric storage body reaches a chargeable capacity, or until the electric vehicle is disconnected from the connection unit, DC feed electric vehicle management method characterized by supplying the DC power to the electric vehicle from the connection portion.
JP2019062587A 2019-03-28 2019-03-28 DC-fed electric vehicle management system and DC-fed electric vehicle management method Active JP6619898B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019062587A JP6619898B1 (en) 2019-03-28 2019-03-28 DC-fed electric vehicle management system and DC-fed electric vehicle management method
PCT/JP2020/012244 WO2020196238A1 (en) 2019-03-28 2020-03-19 Dc power supply electrically-driven moving body management system and dc power supply electrically-driven moving body management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062587A JP6619898B1 (en) 2019-03-28 2019-03-28 DC-fed electric vehicle management system and DC-fed electric vehicle management method

Publications (2)

Publication Number Publication Date
JP6619898B1 true JP6619898B1 (en) 2019-12-11
JP2020162395A JP2020162395A (en) 2020-10-01

Family

ID=68836058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062587A Active JP6619898B1 (en) 2019-03-28 2019-03-28 DC-fed electric vehicle management system and DC-fed electric vehicle management method

Country Status (2)

Country Link
JP (1) JP6619898B1 (en)
WO (1) WO2020196238A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2004746C2 (en) * 2010-05-19 2011-11-22 Epyon B V Charging system for electric vehicles.
JP5246239B2 (en) * 2010-10-01 2013-07-24 株式会社日本自動車部品総合研究所 Power supply
US20130346166A1 (en) * 2011-03-08 2013-12-26 Nec Corporation Charging service system, server apparatus, and charging service method
JP2013041377A (en) * 2011-08-12 2013-02-28 Nec Corp Charger installation plan support device and charger installation plan support method
JP5879522B2 (en) * 2011-09-06 2016-03-08 パナソニックIpマネジメント株式会社 Electric vehicle charging device
JP6019222B2 (en) * 2012-05-31 2016-11-02 コリア レイルロード リサーチ インスティチュート Multi-function charger for electric vehicle for DC distribution network using large capacity DC-DC converter
JP5886333B2 (en) * 2014-02-04 2016-03-16 ソフトバンク株式会社 Power supply system
JP2014230301A (en) * 2013-05-17 2014-12-08 株式会社エネルギー応用技術研究所 Power supply system for quick charge
WO2018003581A1 (en) * 2016-06-28 2018-01-04 株式会社Gsユアサ Power storage system

Also Published As

Publication number Publication date
WO2020196238A1 (en) 2020-10-01
JP2020162395A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6629482B1 (en) Electric vehicle and electric vehicle charging system
US8504227B2 (en) Charging control device and charging control method
JP5682702B2 (en) Power conversion equipment, electric vehicle, and electric vehicle charging system
AU2007287139A1 (en) Power system
KR101777150B1 (en) Charging system of electric vehicle
JP2013509850A (en) Managing recharging of a set of batteries
CN112154087B (en) Electric vehicle and electric vehicle control method
CN102468519A (en) Apparatus and method for extending battery life of plug-in hybrid vehicle
JP6615399B1 (en) Electric mobile charging system
CA3192104A1 (en) Charging column
JP6619898B1 (en) DC-fed electric vehicle management system and DC-fed electric vehicle management method
JP3165170U (en) Electric vehicle quick charging facility in outdoor parking lot
Satheesh Kumar et al. Review of electric vehicle (EV) charging using renewable solar photovoltaic (PV) nano grid
US20230219448A1 (en) Power management system, vehicle, and management server
JP2013226007A (en) Vehicle and control method of the same
JP2020150717A (en) Electric vehicle and charge/discharge system of electric vehicle
JP7472777B2 (en) Power system, server, and method for adjusting power supply and demand
WO2020184484A1 (en) Electric moving body and electric moving body charging system
JP6570779B1 (en) Electric vehicle
JP6029356B2 (en) Combined heat and power system
US11677263B2 (en) Off grid power supply system
US20230234465A1 (en) Hybrid electric vehicle management device, hybrid electric vehicle management method, and hybrid electric vehicle management system
JP6016719B2 (en) Charge control system
WO2022224530A1 (en) Charge/discharge system, charge/discharge system control method, and computer program
US20230347774A1 (en) Charging pole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190328

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150