JP6617978B2 - Optical imaging device - Google Patents

Optical imaging device Download PDF

Info

Publication number
JP6617978B2
JP6617978B2 JP2017076414A JP2017076414A JP6617978B2 JP 6617978 B2 JP6617978 B2 JP 6617978B2 JP 2017076414 A JP2017076414 A JP 2017076414A JP 2017076414 A JP2017076414 A JP 2017076414A JP 6617978 B2 JP6617978 B2 JP 6617978B2
Authority
JP
Japan
Prior art keywords
unit
optical
light
biological sample
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076414A
Other languages
Japanese (ja)
Other versions
JP2017138329A (en
Inventor
智生 篠山
智生 篠山
山本 聡
聡 山本
公平 曽我
公平 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Tokyo University of Science
Original Assignee
Shimadzu Corp
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Tokyo University of Science filed Critical Shimadzu Corp
Priority to JP2017076414A priority Critical patent/JP6617978B2/en
Publication of JP2017138329A publication Critical patent/JP2017138329A/en
Application granted granted Critical
Publication of JP6617978B2 publication Critical patent/JP6617978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、生体試料に光を照射し、その光に対して試料から得られる透過光、反射光、又は蛍光などの各種光を2次元的に検出することにより、該試料の光学的な性質や特徴などを示す画像を取得する光イメージング装置に関する。   The present invention irradiates a biological sample with light, and two-dimensionally detects various light such as transmitted light, reflected light, or fluorescence obtained from the sample, thereby optical properties of the sample. In particular, the present invention relates to an optical imaging apparatus that acquires an image showing characteristics and features.

ハロゲンランプや半導体レーザなどの光源から発せられた励起光を、蛍光ラベル化されたプローブを投与したマウスやラットなどの小動物に照射すると、蛍光ラベル化されたプローブが集積された臓器等の部位から蛍光が発せられる。この蛍光を高感度なカメラで検出してその強度分布を画像化することで、生きたままの状態(in vivo)の小動物に対し、着目している分子種の分布や挙動などを非侵襲で調べることができる。こうした計測を行うための装置として、例えば特許文献1、非特許文献1、2などに記載の光イメージング装置が知られている。   When excitation light emitted from a light source such as a halogen lamp or a semiconductor laser is irradiated to a small animal such as a mouse or a rat to which a fluorescently labeled probe is administered, the fluorescently labeled probe is collected from a site such as an organ where the probe is integrated. Fluorescence is emitted. By detecting this fluorescence with a highly sensitive camera and imaging its intensity distribution, the distribution and behavior of the molecular species of interest are non-invasive to a small animal in a living state (in vivo). You can investigate. As an apparatus for performing such measurement, for example, optical imaging apparatuses described in Patent Document 1, Non-Patent Documents 1 and 2, and the like are known.

従来の一般的な光イメージング装置では、上面が略水平であるステージ上に載置された生体試料(小動物など)に対して上方から照明光を照射し、その反射光又は照明光によって励起され発せられた蛍光を生体試料の上方に配置されたカメラによって検出する構成、或いは、ステージ上に載置された生体試料に対し下方から照明光を照射し、その照明光によって励起され発せられた蛍光を生体試料の上方に配置されたカメラによって検出する構成、が採られている。また、外光の影響を避けるため、通常、光源からカメラまでの光学系全体は高い遮光性を確保した筐体に収納されている。   In a conventional general optical imaging apparatus, a biological sample (such as a small animal) placed on a stage whose upper surface is substantially horizontal is irradiated with illumination light from above, and excited and emitted by the reflected light or illumination light. The detected fluorescence is detected by a camera disposed above the biological sample, or the biological sample placed on the stage is irradiated with illumination light from below, and the fluorescence excited and emitted by the illumination light is emitted. A configuration is adopted in which detection is performed by a camera disposed above the biological sample. In order to avoid the influence of outside light, the entire optical system from the light source to the camera is usually housed in a casing that ensures high light shielding properties.

しかしながら、上記のような光学系の構成を採用している従来の光イメージング装置ではいずれも、試料からの光を検出するための各種光学部品、例えば集光用レンズ系、光学フィルタ、カメラなどを垂直方向に延伸する軸に沿って並べて配置しているため、装置の全高が大きくなる傾向にある。また、一般に装置の全高を大きくしただけでは安定性が悪くなって倒れる危険性があるため、その高さに見合うように装置の横幅や奥行きも大きくする必要がある。そのため、従来の光イメージング装置は全体的に大形で且つ重く、広い設置場所を確保する必要がある、設置場所の床面の耐重量性を高める必要がある、移動に不便である、といった問題があった。   However, any of the conventional optical imaging apparatuses adopting the above-described optical system configuration includes various optical components for detecting light from the sample, such as a condensing lens system, an optical filter, and a camera. Since they are arranged side by side along an axis extending in the vertical direction, the overall height of the apparatus tends to increase. Also, generally, just increasing the overall height of the device has a risk of falling stability and falling down, so the width and depth of the device must be increased to match the height. For this reason, conventional optical imaging devices are generally large and heavy, and it is necessary to secure a wide installation place, it is necessary to increase the weight resistance of the floor surface of the installation place, and it is inconvenient to move. was there.

特開2009−257777号公報JP 2009-257777 A

矢嶋ほか13名、「小動物用in vivo 蛍光イメージング装置 Clairvivo OPTの開発」、島津評論編集部、島津評論、第66巻、第1・2号、2009年9月30日発行、p.21-27Yajima and 13 others, “Development of Clairvivo OPT for in vivo fluorescence imaging system for small animals”, Shimadzu Editorial Department, Shimazu Review, Vol. 66, No. 1, Issue 2, September 30, 2009, p.21-27 「IVIS Imaging System(Caliper社)」、住商ファーマインターナショナル株式会社、[online]、[平成24年11月22日検索]、インターネット<URL :http://www.summitpharma.co.jp/japanese/service/products/xenogen/index.html#1>"IVIS Imaging System (Caliper)", Sumisho Pharma International Co., Ltd., [online], [searched on November 22, 2012], Internet <URL: http://www.summitpharma.co.jp/english/service /products/xenogen/index.html#1>

本発明は上記課題を解決するためになされたものであり、その主な目的は、光学系の構成を工夫することにより、小形、軽量化を実現した取扱いの容易な光イメージング装置を提供することである。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its main object is to provide an optical imaging apparatus that is easy to handle and realizes a small size and light weight by devising a configuration of an optical system. It is.

上記課題を解決するために成された本発明は、生体試料に励起光を照射し、それに対して該試料から得られた光を検出して2次元画像化する光イメージング装置において、
a)生体試料を略水平に載置するための試料台であり、その載置面に光が透過する光透過部が設けられた試料台と、
b)前記試料台上に載置された生体試料に照射される励起光を発する複数の射出部を含み、該複数の射出部がそれぞれ、光学的屈折素子を用いて励起光光束を空間的に発散させつつ射出するものである照明部と、
c)該照明部による励起光に対して前記生体試料から放出された蛍光による像を取得する撮像部と、
d)前記照明部による励起が前記試料台の光透過部を通して前記生体試料に下方から照射されるように該励起光を導くとともに該生体試料から下方へ放出され前記光透過部を経た蛍光を前記撮像部に導くべく、前記励起光と前記光とを共に空間内で折り曲げる、前記試料台の下方に配置された共通の反射光学部を含む導光光学系と、
を備えることを特徴としている。
The present invention was made in order to solve the above-irradiated with excitation light to the biological sample, the optical imaging device for two-dimensional imaging by detecting fluorescence obtained from the sample with respect thereto,
a) a sample stage for placing a biological sample substantially horizontally, and a sample stage provided with a light transmitting part through which light is transmitted ;
b) saw including a plurality of emission units for emitting excitation light irradiated on a living body placed on the sample on the sample stage, spatial excitation light beam exit portion of said plurality of respectively, using optical refractive element A lighting unit that emits while diverging into ,
an imaging unit for acquiring an image by the fluorescence emitted from the biological sample to the excitation light by c) the illumination unit,
d) The fluorescence excitation light passed through the light transmitting portion is released from the biological sample downwardly guides the excitation light to be irradiated from below the biological sample through the sample stage of the light transmission portion by the illumination unit the order guided to the imaging unit, and the bending and the excitation light and the fluorescence, both in space, light guide optical system including a common reflective optical unit, which is arranged below the sample stage,
It is characterized in that to obtain Bei the.

本発明に係る光イメージング装置において、照明部の各射出部から出射された励起光は導光光学系の反射光学部に当たってその光路が折り曲げられ、試料台上に載置された生体試料に下方から照射される。その励起光により励起されて試料から下方に放出された蛍光の一部は上記励起光と逆方向に進んで反射光学部に当たり、その光路が折り曲げられて撮像部に至る。このように共通の反射光学部により励起光と光とを共に折り曲げるようにしたので、照明部に含まれる光学部品・素子や撮像部に含まれる光学部品・素子を垂直方向に並べて配置する必要がなく、例えば水平方向に並べて配置すればよい。これにより、装置の全高を抑えることが可能となる。
また、本発明によれば、試料台の上方空間に反射光学部が配置されないので、試料台の上部を開閉可能な構造とし易く、そうした構造とすることで上方から生体試料を試料台上に載置することが可能となる。また、生体試料が自然な姿勢を維持した状態で、該生体試料の腹部側の蛍光画像や可視光画像を取得することができる。
In the optical imaging apparatus according to the present invention, the excitation light emitted from each emitting part of the illuminating part hits the reflecting optical part of the light guide optical system, the optical path thereof is bent, and the biological sample placed on the sample stage is viewed from below. Irradiated. Some are excited by the excitation light of that in the sample of the fluorescence emitted downward strikes the reflective optical unit proceeds to the excitation light in the opposite direction, it reaches the image pickup unit optical path is bent. Since this is common in the reflecting optical unit and the excitation light and fluorescence to be bent together to place the optical components and elements included in the optical parts and elements and imaging unit included in the lighting unit arranged in the vertical direction There is no need, for example, they may be arranged in the horizontal direction. As a result, the overall height of the apparatus can be suppressed.
In addition, according to the present invention, since the reflection optical unit is not disposed in the upper space of the sample table, the upper part of the sample table can be easily opened and closed. With such a structure, the biological sample is placed on the sample table from above. Can be placed. In addition, a fluorescent image or a visible light image on the abdomen side of the biological sample can be acquired in a state where the biological sample maintains a natural posture.

また本発明に係る光イメージング装置では、各射出部はレンズアレイなどの光学的屈折素子を用いて励起光光束を空間的に発散させつつ射出する。一般に、半導体レーザ等の光源から放出されたレーザ光束はエネルギ密度は高いもののスポット径が小さい。これに対し、本発明では、レンズアレイ等の光学的屈折素子によりレーザ光束を発散させることにより、光束を拡げ、或る程度の広い範囲を略均一な光強度で照明することができる。
In the optical imaging apparatus according to the present invention, each emitting unit emits an excitation light beam while spatially diverging it using an optical refractive element such as a lens array. In general, a laser beam emitted from a light source such as a semiconductor laser has a high energy density but a small spot diameter. On the other hand, in the present invention, by diverging the laser light beam with an optical refracting element such as a lens array, the light beam can be expanded and a certain wide range can be illuminated with a substantially uniform light intensity.

また本発明に係る光イメージング装置において、好ましくは、上記複数の射出部は、上記反射光学部から上記撮像部へと向かう光の光軸を囲むように複数配置され、上記生体試料から上記光学反射部へと向かう光の光軸と略同軸で該反射光学部から上記生体試料に励起光が照射される構成とするとよい。より好ましくは、複数の射出部を反射光学部から撮像部へと向かう光の光軸を囲んで略同一回転角度間隔で以て配置するとよい。
In the optical imaging device according to the present invention, preferably, the plurality of emission units are more disposed to surround the optical axis of the fluorescence towards the said imaging unit from said reflecting optical unit, the optical from the biological sample in the optical axis substantially coaxial fluorescence towards the reflecting portion from the reflected light faculty may be configured to excitation light to the biological sample is illuminated. More preferably, it may be arranged Te than at substantially the same rotational angle spacing surrounds the optical axis of the fluorescence towards the imaging unit a plurality of emission units from the reflective optical unit.

この構成によれば、反射光学部から撮像部へと向かう光の光軸上に照明部が位置していなくても、試料台上に載置された生体試料に対し略均一の強度で励起光を照射することができる。それによって、生体試料の内部に取り込まれた蛍光物質由来の蛍光強度分布画像を取得するような場合に、励起光強度分布依存性がなくなり、正確な蛍光強度分布画像を得ることが可能となる。
According to this arrangement, even if no located illumination unit on the optical axis of the fluorescence towards the imaging unit from the reflective optical unit, excitation intensity of substantially uniform with respect to a living body placed on the sample on a sample stage Light can be irradiated. Thereby, in the case so as to obtain a fluorescence intensity distribution image of the fluorescent substance derived incorporated inside the raw body samples, there is no excitation light intensity distribution dependent, it is possible to obtain accurate fluorescence intensity distribution image .

なお、上記複数の射出部はそれぞれが光源を有していてもよいが、好ましくは、高輝度半導体レーザなどの1個の光源から発した測定光を例えば光ファイバ等により複数に分岐させて各射出部に伝送し、射出部から空間に向けて射出する構成とするとよい。これにより、各射出部から射出する励起光の波長を同一にすることができるとともに、装置のコストを抑制することができる。
Each of the plurality of emission units may have a light source, but preferably, each of the measurement lights emitted from one light source such as a high-intensity semiconductor laser is divided into a plurality of parts by, for example, an optical fiber. It is good to set it as the structure which transmits to an injection | emission part and inject | emits toward the space from an injection | emission part. Thereby, the wavelength of the excitation light emitted from each emission part can be made the same, and the cost of the apparatus can be suppressed.

また本発明に係る光イメージング装置では、生体試料からの光を複数の波長域の光に分割する光学的分割部をさらに備え、上記撮像部は、その光学的分割部により分割された複数の波長域の光による像をそれぞれ取得する複数の撮像部を含む構成としてもよい。
In the optical imaging device according to the present invention may further comprise an optical dividing unit which divides the fluorescence from the biological sample to a plurality of wavelength regions of light, the imaging unit includes a plurality of divided by the optical dividing portion It is good also as a structure containing the some imaging part which each acquires the image by the light of a wavelength range.

例えば生体試料からの光が赤外又は近赤外波長域の蛍光と可視波長域の反射光とを含む場合には、上記構成により、生体試料の蛍光画像と可視光画像とを同時に得ることができる。また、光には励起光の反射光も含まれるから、励起光波長域と蛍光波長域とを分離してそれぞれ撮影してもよい。これにより、励起光の2次元強度分布が分かるから、励起光照射強度の均一性を評価したり、或いは、励起光照射強度を均一にするための調整を行ったりすることもできる。
For example, when fluorescence from the biological sample contains a reflected light fluorescence and visible wavelength region of the infrared or near infrared wavelength region, the above configuration, to obtain a fluorescence image and a visible light image of the biological sample simultaneously Can do. Further, since the fluorescence also includes reflected light of the excitation light may be captured respectively by separating the excitation light wavelength range and the fluorescence wavelength range. Thereby, since the two-dimensional intensity distribution of the excitation light is known, the uniformity of the excitation light irradiation intensity can be evaluated, or the adjustment for making the excitation light irradiation intensity uniform can be performed.

また、本発明に係る光イメージング装置は、
上記照明部、上記導光光学系、及び上記撮像部を含む測光部と、上記試料台とを、該試料台の載置面に対し平行に、1次元的又は2次元的に相対移動させる移動機構部と、
該移動機構部により上記測光部と上記試料台とが所望の位置関係になるように測定者が操作を行う操作部と、
をさらに備え、測定者が上記操作部による操作を行うことで、上記試料台上に載置した生体試料の任意の部位から得られた光による2次元画像を取得可能とした構成とすることができる。
Moreover, an optical imaging apparatus according to the present invention includes:
A movement in which the photometric unit including the illumination unit, the light guide optical system, and the imaging unit and the sample stage are relatively moved in a one-dimensional or two-dimensional manner parallel to the mounting surface of the sample stage. A mechanism part;
An operation unit that is operated by a measurer so that the photometric unit and the sample stage are in a desired positional relationship by the moving mechanism unit;
And a configuration in which a measurer performs an operation using the operation unit so that a two-dimensional image by light obtained from an arbitrary part of a biological sample placed on the sample stage can be acquired. it can.

ここで、上記移動機構部はモータ等の駆動源を含まず、測定者が操作部を操作した量などに応じて機械的に試料台又は測光部を移動させるようにしてもよいが、好ましくは、電気的な制御により試料台又は測光部を移動させるほうがよい。   Here, the moving mechanism unit does not include a driving source such as a motor, and the sample table or the photometric unit may be mechanically moved according to the amount of operation of the operating unit by the measurer, but preferably It is better to move the sample stage or the photometry unit by electrical control.

即ち、本発明に係る光イメージング装置において、移動機構部は駆動源を含み、測定者による操作部の操作に応じて駆動源の駆動を制御する制御部をさらに備える構成とするとよい。   That is, in the optical imaging apparatus according to the present invention, the moving mechanism unit may include a drive source, and may further include a control unit that controls the drive of the drive source according to the operation of the operation unit by the measurer.

これら構成によれば、測光部により撮影可能な範囲に比べて試料がかなり大きい場合であっても、測定者は操作部を操作することにより、自分が観測又は測定したい部位を適宜選択して観測又は測定することができる。もちろん、操作部を操作しながら観測又は測定を繰り返すことで、広い範囲に亘る蛍光画像などを得ることもできる。   According to these configurations, even when the sample is considerably larger than the range that can be photographed by the photometry unit, the measurer operates the operation unit to appropriately select the site that he or she wants to observe or measure. Or it can be measured. Of course, it is also possible to obtain a fluorescent image over a wide range by repeating observation or measurement while operating the operation unit.

また、本発明に係る光イメージング装置は、
上記照明部、上記導光光学系、及び上記撮像部を含む測光部と、上記試料台とを、該試料台の載置面に対し平行に、1次元的又は2次元的に相対移動させる移動機構部と、
上記移動機構部により上記測光部又は上記試料台の少なくとも一方を1次元的又は2次元的に移動させつつ上記撮像部で上記生体試料からの放出光による像を複数回取得する撮影制御部と、
をさらに備える構成とすることもできる。
Further, an optical imaging apparatus according to the present invention includes:
A movement in which the photometric unit including the illumination unit, the light guide optical system, and the imaging unit and the sample stage are relatively moved in a one-dimensional or two-dimensional manner parallel to the mounting surface of the sample stage. A mechanism part;
An imaging control unit that acquires at least one of the photometry unit or the sample stage in a one-dimensional or two-dimensional manner by the moving mechanism unit, and acquires an image of light emitted from the biological sample a plurality of times by the imaging unit;
It can also be set as the structure further provided.

この構成によれば、測光部により撮影可能な範囲に比べて試料がかなり大きい場合であっても、測定者自身が面倒な操作や作業を行うことなく、撮影可能範囲よりも広い範囲の蛍光画像などを自動的に取得することができる。
上記構成において特に、撮影制御部の制御の下で取得された複数の画像を結合することにより、撮像部による1回の撮影で得られる範囲よりも広い範囲の2次元画像を再現する画像形成部をさらに備える構成とすれば、異なる部位に対する撮影画像ではなく、それらを繋ぎ合わせた1枚の画像を得ることができる。
According to this configuration, even if the sample is considerably larger than the range that can be photographed by the photometry unit, the fluorescent image in a wider range than the photographable range can be obtained without the troublesome operation and work by the measurer himself / herself. Etc. can be acquired automatically.
In the above-described configuration, in particular, an image forming unit that reproduces a two-dimensional image in a wider range than a range obtained by one shooting by the imaging unit by combining a plurality of images acquired under the control of the shooting control unit If it is set as the structure further equipped with, it is not the picked-up image with respect to a different site | part, but can obtain one image which connected them.

本発明に係る光イメージング装置によれば、生体試料に照射される励起光、生体試料から得られる光の両方が共通の反射光学部により折り曲げられるので、生体試料に対してその真下から、つまりは垂直方向に延伸する軸に沿って生体試料に励起光が照射され、且つ同軸に沿って生体試料か光が取り出される構成においても、照明部や撮像部に含まれる各種光学部品や光学素子を垂直方向でなく水平方向に並べて配置することができる。それによって、装置の高さを抑えることができ、装置全体をコンパクトな形状とすることができる。また、装置の全高を抑えることで安定性も向上するので、必要以上に重量を増やすことを回避することができ、装置の軽量化も実現できる。
According to the biological observation apparatus according to the present invention, excitation light is irradiated to the biological sample, since both of the fluorescent light obtained from a biological sample is bent by a common reflective optical unit, from the true bottom of its relative biological sample , that is, the excitation light to the biological sample is irradiated along an axis extending in the vertical direction, even in a configuration in which a biological sample or fluorescent light is removed and along the same axis, Ya various optical components included in illumination unit and the imaging unit The optical elements can be arranged side by side in the horizontal direction instead of the vertical direction. Thereby, the height of the apparatus can be suppressed, and the entire apparatus can be made compact. Moreover, since stability is also improved by suppressing the overall height of the apparatus, it is possible to avoid an increase in weight more than necessary, and it is possible to reduce the weight of the apparatus.

また本発明に係る光イメージング装置では、下方から励起光を照射し、下方への光を観測する構成としているので、生体試料がマウスやラットなどの小動物である場合に、いわゆる仰向けという不自然な姿勢でなく腹部を下にした自然な姿勢で、腹部側の観察を行うことができる。これにより、小動物に過度な負担を掛けることを避けることができ、それによって測定の信頼性も高まる。
Also the optical imaging device according to the present invention, irradiated with excitation light from below, since a configuration for observing the fluorescence downward, when the biological sample is a small animal such as mice and rats, so-called supine The abdominal side can be observed in a natural posture with the abdomen facing down instead of an unnatural posture. Thereby, it is possible to avoid placing an excessive burden on the small animal, thereby increasing the reliability of the measurement.

本発明の一実施例である光イメージング装置の試料載置用上蓋を開放した状態の外観斜視図。1 is an external perspective view of an optical imaging apparatus according to an embodiment of the present invention in a state in which a sample mounting upper lid is opened. FIG. 本実施例の光イメージング装置の外装筐体を取り外した状態での概略側面図。The schematic side view in the state where the exterior case of the optical imaging device of this example was removed. 本実施例の光イメージング装置における光学系構成図。1 is a configuration diagram of an optical system in an optical imaging apparatus according to the present embodiment. 本実施例の光イメージング装置における射出部及び可視発光部の配置を示す図。The figure which shows arrangement | positioning of the emission part and visible light emission part in the optical imaging apparatus of a present Example. 本発明の別の実施例である光イメージング装置の要部の構成図。The block diagram of the principal part of the optical imaging apparatus which is another Example of this invention. 本発明のさらに別の実施例である光イメージング装置の要部の構成図。The block diagram of the principal part of the optical imaging apparatus which is another Example of this invention.

以下、本発明の一実施例である光イメージング装置について、添付図面を参照して説明する。
図1は本発明の一実施例である光イメージング装置の試料載置用上蓋を開放した状態の外観斜視図、図2は本実施例の光イメージング装置の外装筐体を取り外した状態での一部破断面概略側面図、図3は本実施例の光イメージング装置における光学系構成図である。即ち、図2は本実施例の光イメージング装置における光学系の各部品や各素子の空間的な配置を具体的に示す図であり、図3はその光学系の機能的な構成を示す図である。
Hereinafter, an optical imaging apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an external perspective view of an optical imaging apparatus according to an embodiment of the present invention in a state in which a sample mounting upper lid is opened, and FIG. FIG. 3 is an optical system configuration diagram of the optical imaging apparatus of the present embodiment. That is, FIG. 2 is a diagram specifically showing a spatial arrangement of each component and each element of the optical system in the optical imaging apparatus of the present embodiment, and FIG. 3 is a diagram showing a functional configuration of the optical system. is there.

図1に示すように、本実施例の光イメージング装置は幅及び高さに比べて奥行き方向に長い略箱状であり、その外装筐体20の上面前部に、上方に蝶動自在である試料載置用上蓋21が設けられている。この試料載置用上蓋21を開放すると上面が略水平である試料台5が露出し、その試料台5の上に、測定対象であるマウスやラット等の生体試料7を載置することができる。試料載置用上蓋21を開放すると、試料台5上方には何らの障害物もなくなるので、測定者は生体試料7をきわめて容易に載置したり取り出したりすることができる。   As shown in FIG. 1, the optical imaging apparatus of the present embodiment has a substantially box shape that is longer in the depth direction than the width and height, and can be swung upward at the upper front part of the outer casing 20. A sample mounting upper lid 21 is provided. When the sample mounting upper lid 21 is opened, the sample table 5 whose upper surface is substantially horizontal is exposed, and a biological sample 7 such as a mouse or a rat to be measured can be mounted on the sample table 5. . When the sample placement upper lid 21 is opened, there are no obstacles above the sample stage 5, so that the measurer can place or take out the biological sample 7 very easily.

図2に示すように、試料台5は、中央部に大きな矩形状の開口窓6が形成された金属製の支持台5と、該支持台5の上に取り付けられるガラス等の透明板5とから成る。この透明板5及び開口窓6によって、生体試料7の下面、つまり通常の載置状態では生体試料7の腹部面は下方から透視可能である。試料台5の下方空間には、本発明における反射光学部に相当する反射鏡4、及びそれぞれ本発明における射出部に相当する4個の射出ユニット3が配置されている。また、これらが配置された空間の後方(図2では右方)には、対物レンズ10、分光ユニット11、蛍光撮影用カメラ12などが配置され、その上方には、レーザ光源ユニット1、可視撮影用カメラ13が配置されている。なお、後述する一部の光学部品・素子は図2では現れていない。
As shown in FIG. 2, the sample stage 5 is large and rectangular metallic support base 5 which opening window 6 is formed of b in the center, a transparent plate such as glass mounted on the said support base 5 b 5 a . By the transparent plate 5a and the opening window 6, the lower surface of the biological sample 7, that is, the abdominal surface of the biological sample 7 can be seen through from below in a normal placement state. In the lower space of the sample stage 5, a reflecting mirror 4 corresponding to the reflecting optical part in the present invention and four emitting units 3 each corresponding to the emitting part in the present invention are arranged. In addition, an objective lens 10, a spectroscopic unit 11, a fluorescent photographing camera 12, and the like are disposed behind the space in which these are disposed (to the right in FIG. 2), and above that, the laser light source unit 1 and visible photographing. A camera 13 is disposed. Note that some optical components and elements to be described later do not appear in FIG.

図2に加えて図3を参照しながら、本実施例の光イメージング装置における光学系の構成とそれぞれの光学部品・素子の機能について説明する。
測定に先立ち、測定対象であるマウス等の生体試料7には所定の蛍光物質によりラベル化されたプローブが投与される。測定者は図1に示したように試料載置用上蓋21を開放し、生きたままの状態の生体試料7を試料台5の上に載置し、試料載置用上蓋21を閉鎖する。
With reference to FIG. 3 in addition to FIG. 2, the configuration of the optical system and the function of each optical component / element in the optical imaging apparatus of the present embodiment will be described.
Prior to the measurement, a probe labeled with a predetermined fluorescent substance is administered to the biological sample 7 such as a mouse to be measured. As shown in FIG. 1, the measurer opens the sample placement upper lid 21, places the living biological sample 7 on the sample stage 5, and closes the sample placement upper lid 21.

測定者による測定開始の指示によりレーザ光源ユニット1が駆動されると、レーザ光源ユニット1から出射された測定光(この場合には励起光)は、光ファイバ2を通して4つに分岐された後4個の射出ユニット3に導かれる。各射出ユニット3はレンズアレイである光学屈折素子を備え、光ファイバ2の末端から出た比較的小径の光を所定角度に拡げるとともに照明領域内での強度むらが小さくなるように光を発散しながら射出する。4個の射出ユニット3は、後述する対物レンズ10の光軸Cを取り囲むように90°の回転角度間隔で略回転対称に配置される。   When the laser light source unit 1 is driven by a measurement start instruction by a measurer, the measurement light emitted from the laser light source unit 1 (in this case, excitation light) is branched into four through the optical fiber 2 and then 4 Guided to the individual injection units 3. Each emission unit 3 includes an optical refracting element that is a lens array, and divides light so that a relatively small-diameter light emitted from the end of the optical fiber 2 is expanded to a predetermined angle and intensity unevenness in the illumination area is reduced. While ejaculating. The four emission units 3 are arranged substantially rotationally symmetrically at 90 ° rotation angle intervals so as to surround an optical axis C of an objective lens 10 to be described later.

4個の射出ユニット3(3a、3b、3c、3d)及び可視発光部8の概略的な配置を図4に示す。4個の射出ユニット3(3a、3b、3c、3d)はそれぞれその出射光の光軸が内方に向く、つまりは光軸Cに近づくように所定角度だけ傾けて固定されている。これにより、それら4個の射出ユニット3から所定距離だけ離れた位置において、4個の射出ユニット3から射出された光が重なり合い、光強度が略均一である照明領域Bが形成される。   A schematic arrangement of the four injection units 3 (3a, 3b, 3c, 3d) and the visible light emitting unit 8 is shown in FIG. Each of the four emission units 3 (3a, 3b, 3c, 3d) is fixed by being inclined by a predetermined angle so that the optical axis of the emitted light faces inward, that is, approaches the optical axis C. As a result, the light emitted from the four ejection units 3 overlaps at a position away from the four ejection units 3 by a predetermined distance, and an illumination area B having a substantially uniform light intensity is formed.

図2に示すように、4個の射出ユニット3から空間内に射出された測定光の進行方向前方には、光軸Cに対して45°の角度傾けて固定された反射鏡4が配置されている。そのため、それら測定光はそれぞれ反射鏡4に当たって略直角に上向きに折り曲げられる。そして、測定光は試料台5の開口窓6及び透明板5を透過して、生体試料7の下面に当たる。通常、生体試料7は図1、図2中に示すように載置されているから、測定光はこの生体試料7の腹部面に当たる。
As shown in FIG. 2, a reflecting mirror 4 fixed at an angle of 45 ° with respect to the optical axis C is disposed in front of the traveling direction of the measurement light emitted from the four emission units 3 into the space. ing. Therefore, each of the measurement lights hits the reflecting mirror 4 and is bent upward at a substantially right angle. Then, the measurement light passes through the opening window 6 and the transparent plate 5 a of the sample stage 5 and strikes the lower surface of the biological sample 7. Usually, since the biological sample 7 is placed as shown in FIGS. 1 and 2, the measurement light strikes the abdominal surface of the biological sample 7.

4個の射出ユニット3(3a、3b、3c、3d)から射出された測定光は試料台5の上面付近で重なり合うため、生体試料7は略均一の光強度で照明される。この光の照射によって、生体試料7内の蛍光物質が励起されて蛍光を発する。蛍光は一方向でなく様々な方向に発せられる。下方に発せられた一部の蛍光は透明板5及び開口窓6を透過し、下方に位置する反射鏡4に当たる。この蛍光は反射鏡4により先の測定光(励起光)とは反対向きに略垂直に折り曲げられ対物レンズ10に導かれる。そして、対物レンズ10で集束された蛍光は分光ユニット11を経て蛍光撮影用カメラ12に導入され、該カメラ12のイメージセンサ上に結像する。これにより、蛍光撮影用カメラ12では、生体試料7からの蛍光の強度分布を示す2次元画像が作成され、該画像が図示しないモニタに表示されるとともに記録される。
Since the measurement light emitted from the four injection units 3 (3a, 3b, 3c, 3d) overlaps near the upper surface of the sample stage 5, the biological sample 7 is illuminated with a substantially uniform light intensity. By this light irradiation, the fluorescent substance in the biological sample 7 is excited and emits fluorescence. Fluorescence is emitted in various directions instead of one direction. Some of fluorescence emitted downward passes through the transparent plate 5 a and the opening window 6, strikes the reflector 4 located below. This fluorescence is bent substantially perpendicularly in the direction opposite to the previous measurement light (excitation light) by the reflecting mirror 4 and guided to the objective lens 10. Then, the fluorescent light focused by the objective lens 10 is introduced into the fluorescent photographing camera 12 through the spectroscopic unit 11 and forms an image on the image sensor of the camera 12. Thereby, in the fluorescence imaging camera 12, a two-dimensional image showing the intensity distribution of the fluorescence from the biological sample 7 is created, and the image is displayed and recorded on a monitor (not shown).

なお、対物レンズ10に到達する光は、生体試料7由来の蛍光の波長成分のみならず、励起光の波長成分も含む。蛍光撮影用カメラ12に搭載されたイメージセンサが励起光の波長成分に対し感度を有しない場合には励起光が入射しても問題ないが、励起光の波長成分に対し感度を有する場合には該カメラ12に光が入射する前に励起光の波長成分を除去する必要がある。そこで、その場合には、蛍光撮影用カメラ12に光が入射するまでの光路上(図3の例では分光ユニット11と蛍光撮影用カメラ12との間)に、励起光の波長成分を除去する波長特性を有する光学フィルタ14を配置し、該光学フィルタ14により不要な励起光の波長成分を除去するとよい。   The light reaching the objective lens 10 includes not only the wavelength component of fluorescence derived from the biological sample 7 but also the wavelength component of excitation light. If the image sensor mounted on the fluorescence imaging camera 12 is not sensitive to the wavelength component of the excitation light, there is no problem even if the excitation light is incident, but if it is sensitive to the wavelength component of the excitation light. It is necessary to remove the wavelength component of the excitation light before the light enters the camera 12. Therefore, in that case, the wavelength component of the excitation light is removed on the optical path until light enters the fluorescence imaging camera 12 (between the spectroscopic unit 11 and the fluorescence imaging camera 12 in the example of FIG. 3). An optical filter 14 having wavelength characteristics may be disposed, and unnecessary wavelength components of the excitation light may be removed by the optical filter 14.

4個の射出ユニット3の間にそれぞれ配置された可視光LED等の可視発光部8は、所定の波長範囲の可視光を測定光と略同方向に射出する。それら可視発光部8から発した可視照明光は上記測定光と同様に反射鏡4で上方向に曲げられて、生体試料7の下面に当たる。そして、可視照明光に対する反射光は上記一部の蛍光と同様に生体試料7から下向きに進み、反射鏡4により略横方向に曲げられて対物レンズ10に導かれる。対物レンズ10を通過した可視反射光は蛍光と同様に分光ユニット11に導入されるが、分光ユニット11は可視光の波長成分のみを選択的に反射させ、近赤外〜赤外波長成分を透過させる2色ミラーを備える。そのため、導入された可視反射光は2色ミラーで上方向に折り曲げられ、可視撮影用カメラ13に導かれる。これにより、可視撮影用カメラ13では生体試料7の可視光像が得られる。   A visible light emitting unit 8 such as a visible light LED disposed between the four emission units 3 emits visible light in a predetermined wavelength range in substantially the same direction as the measurement light. The visible illumination light emitted from the visible light emitting portions 8 is bent upward by the reflecting mirror 4 and hits the lower surface of the biological sample 7 in the same manner as the measurement light. Then, the reflected light with respect to the visible illumination light travels downward from the biological sample 7 in the same manner as the above-described part of fluorescence, and is bent substantially laterally by the reflecting mirror 4 and guided to the objective lens 10. Visible reflected light that has passed through the objective lens 10 is introduced into the spectroscopic unit 11 like fluorescence, but the spectroscopic unit 11 selectively reflects only the wavelength component of visible light and transmits the near infrared to infrared wavelength components. A two-color mirror is provided. Therefore, the introduced visible reflected light is bent upward by the two-color mirror and guided to the visible photographing camera 13. As a result, a visible light image of the biological sample 7 is obtained by the visible imaging camera 13.

このようにして、本実施例の光イメージング装置では、生体試料7の下面つまりは腹部側の、可視光像と蛍光像とを同時に取得することができる。もちろん、可視光像を取得することは蛍光イメージングを行う上で必須ではない。   Thus, in the optical imaging apparatus of the present embodiment, a visible light image and a fluorescence image on the lower surface of the biological sample 7, that is, the abdomen side, can be acquired simultaneously. Of course, obtaining a visible light image is not essential for performing fluorescence imaging.

本実施例の光イメージング装置では、共通の反射鏡4を用いて、生体試料7に照射する測定光及び可視照明光と該試料7から得られる蛍光及び反射光をともに略90°折り曲げることで、生体試料7への測定光の照射及び該試料7からの蛍光の取り出しを垂直方向に行いながら、射出ユニット3等の照明光学系、対物レンズ10、分光ユニット11、蛍光撮影用カメラ12等の検出光学系の光学部品・素子を水平方向に並べて配置している。それによって、従来に比べて装置の全高を抑えることができ、装置の小形化・軽量化を図ることができる。   In the optical imaging apparatus of the present embodiment, by using the common reflector 4, the measurement light and visible illumination light irradiated on the biological sample 7 and the fluorescence and reflected light obtained from the sample 7 are both bent by approximately 90 °, Detection of the illumination optical system such as the emission unit 3, the objective lens 10, the spectroscopic unit 11, the fluorescence imaging camera 12, etc. while irradiating the biological sample 7 with measurement light and taking out fluorescence from the sample 7 in the vertical direction. Optical components and elements of the optical system are arranged side by side in the horizontal direction. As a result, the overall height of the apparatus can be suppressed as compared with the conventional apparatus, and the apparatus can be reduced in size and weight.

また、試料台5上に載置された生体試料7の下面に測定光や可視照明光を照射し、該下面から発した蛍光や反射光を検出するので、自然な姿勢のままの小動物の腹部側の観察を行うことができる。   In addition, the lower surface of the biological sample 7 placed on the sample stage 5 is irradiated with measurement light or visible illumination light, and fluorescence or reflected light emitted from the lower surface is detected. Side observation can be made.

なお、上記実施例の構成では、反射鏡4は平面鏡であるが、反射鏡4にパワーを持たせる、つまりは凹面鏡や凸面鏡を用いることで、測定野や照明野の広さ(つまり、照明範囲や撮像範囲)を調整した撮像を行うことができる。また、反射鏡4を平面鏡、凹面鏡、凸面鏡と切り替え可能又は交換可能な構成とすれば、撮影目的に応じたより的確な画像を取得することができる。   In the configuration of the above-described embodiment, the reflecting mirror 4 is a plane mirror. However, by providing the reflecting mirror 4 with power, that is, by using a concave mirror or a convex mirror, the width of the measurement field or the illumination field (that is, the illumination range) Or imaging range) can be performed. Further, if the reflecting mirror 4 is configured to be switchable or exchangeable with a plane mirror, a concave mirror, and a convex mirror, a more accurate image can be acquired according to the photographing purpose.

また、上記実施例では、生体試料7の蛍光像と可視光像とを取得することができるが、分光ユニット11において励起光の波長成分を分離して取り出し、この励起光をさらに別のカメラに導入して画像化することで、励起光強度の2次元分布を得ることができる。こうした励起光強度の2次元分布は、例えば測定者が励起光の照明むらがないかどうかを目視で確認するのに利用したり、或いは、励起光の照明むらが小さくなるように自動的に照射を調整するのに利用したりすることができる。   Moreover, in the said Example, although the fluorescence image and visible light image of the biological sample 7 can be acquired, the wavelength component of excitation light is isolate | separated and taken out in the spectroscopic unit 11, and this excitation light is further sent to another camera. By introducing and imaging, a two-dimensional distribution of excitation light intensity can be obtained. Such a two-dimensional distribution of the excitation light intensity can be used, for example, by the operator to visually check whether there is any uneven illumination of the excitation light, or automatically irradiated so that the uneven illumination of the excitation light is reduced. Can be used to adjust.

また、蛍光物質によっては1つの励起光に対し異なる複数波長の蛍光を発するものがあり、こうした蛍光物質を用いたラベル化を行い、複数波長の蛍光をそれぞれ分離して取り出し別々のカメラに導入して画像化する構成としてもよい。これにより、異なる波長の蛍光毎の2次元分布画像を得ることができる。   In addition, some fluorescent substances emit different wavelengths of fluorescence for one excitation light. Labeling with such fluorescent substances is performed, and multiple wavelengths of fluorescence are separated and introduced into separate cameras. It is good also as a structure imaged. Thereby, the two-dimensional distribution image for every fluorescence of a different wavelength can be obtained.

次に、本発明の別の実施例である光イメージング装置について、図5を参照して説明する。図5はこの実施例の光イメージング装置の要部の構成図である。上記実施例の光イメージング装置では、試料台5上に載置された生体試料7の所定範囲の蛍光強度分布画像が得られ、その撮影範囲は決まっている。そのため、例えば生体試料のサイズが大きく、該試料において撮影したい範囲が装置に決められている撮影範囲よりも広い場合には、試料台上で生体試料の載置位置を変えながら複数回の撮影を行う必要がある。こうした手間の軽減を図ったのが、この実施例の光イメージング装置である。   Next, an optical imaging apparatus according to another embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram of the main part of the optical imaging apparatus of this embodiment. In the optical imaging apparatus of the above embodiment, a fluorescence intensity distribution image of a predetermined range of the biological sample 7 placed on the sample stage 5 is obtained, and the photographing range is determined. For this reason, for example, when the size of the biological sample is large and the imaging range of the sample is wider than the imaging range determined by the apparatus, multiple imagings are performed while changing the mounting position of the biological sample on the sample stage. There is a need to do. The optical imaging apparatus according to this embodiment is designed to reduce such time and effort.

この実施例の光イメージング装置において、試料台5は、例えばモータやスライドレールなどを含む試料台移動機構30により、試料台5上の載置面に平行で互いに直交するX軸及びY軸の二軸方向に移動可能となっている。試料台駆動部31は制御部32からの制御信号に応じて試料台移動機構30に含まれるモータを作動させることにより、試料台5をX軸及びY軸上の任意の位置(例えば図5中の符号5’の位置)に移動させる。レーザ光源ユニット1、射出ユニット3、反射鏡4、対物レンズ10、分光ユニット11、蛍光撮影用カメラ12などを含む測光部Aの位置は固定であるため、試料台5が上述したように移動されると、試料台5(又は5’)上に載置された生体試料7下面において励起光の照射範囲が変化し、それによって放出される励起光強度の撮影範囲も変化する。   In the optical imaging apparatus of this embodiment, the sample stage 5 is divided into two of an X axis and a Y axis that are parallel to the mounting surface on the sample stage 5 and orthogonal to each other by a sample stage moving mechanism 30 including a motor, a slide rail, and the like. It can move in the axial direction. The sample stage drive unit 31 operates the motor included in the sample stage moving mechanism 30 in response to a control signal from the control unit 32, thereby moving the sample stage 5 to any position on the X axis and the Y axis (for example, in FIG. 5). To the position 5 ′). Since the position of the photometry unit A including the laser light source unit 1, the emission unit 3, the reflecting mirror 4, the objective lens 10, the spectroscopic unit 11, the fluorescent photographing camera 12 and the like is fixed, the sample stage 5 is moved as described above. Then, the irradiation range of the excitation light changes on the lower surface of the biological sample 7 placed on the sample stage 5 (or 5 ′), and the imaging range of the emitted excitation light intensity changes accordingly.

本実施例の光イメージング装置では、以下のようにして生体試料7の広い範囲に亘る蛍光強度分布画像を得ることができる。
即ち、制御部32は試料台5が予め決められた初期位置に来るように試料台駆動部31を制御し、試料台駆動部31はこれに応じて駆動信号を試料台移動機構30に含まれるモータへ送る。これにより、試料台5は初期位置に設定されるから、この状態で蛍光撮影用カメラ12は生体試料7から到来した蛍光に基づく蛍光強度分布画像を撮影し、得られた画像データを画像処理部33へ送る。画像処理部33では受け取った画像データを画像メモリ331に一旦格納する。
In the optical imaging apparatus of the present embodiment, a fluorescence intensity distribution image over a wide range of the biological sample 7 can be obtained as follows.
That is, the control unit 32 controls the sample stage driving unit 31 so that the sample stage 5 comes to a predetermined initial position, and the sample stage driving unit 31 includes a drive signal in the sample stage moving mechanism 30 accordingly. Send to motor. As a result, the sample stage 5 is set to the initial position. In this state, the fluorescence imaging camera 12 captures a fluorescence intensity distribution image based on the fluorescence that has arrived from the biological sample 7, and the obtained image data is used as an image processing unit. Send to 33. The image processing unit 33 temporarily stores the received image data in the image memory 331.

1回の撮影が終了すると制御部32は、試料台5がX軸及び/又はY軸に沿って所定距離だけ移動するように試料台駆動部31を制御し、試料台5が移動したあとに蛍光撮影用カメラ12は蛍光強度分布画像を再び取得する。こうした動作を所定範囲に亘って複数回繰り返すことにより、1回の撮影範囲よりも広い予め決められた範囲内を漏れなく撮影する。そうした撮影が終了すると、画像処理部33において画像合成処理部332は画像メモリ331から異なる撮影範囲に対する画像データをそれぞれ読み出し、例えば一部重複して撮影された部位を判断することで全ての画像を繋ぎ合わせ、予め決められた範囲に対応する蛍光強度分布画像を作成する。そして、この画像をモニタ34に表示する。もちろん、こうした画像の繋ぎ合わせを行わずに、それぞれ得られた画像をモニタ34上に描出できるようにしてもよい。   When one imaging is completed, the control unit 32 controls the sample stage driving unit 31 so that the sample stage 5 moves by a predetermined distance along the X axis and / or the Y axis, and after the sample stage 5 has moved. The fluorescence imaging camera 12 acquires a fluorescence intensity distribution image again. By repeating such an operation a plurality of times over a predetermined range, a predetermined range wider than a single imaging range is imaged without omission. When such imaging is completed, in the image processing unit 33, the image composition processing unit 332 reads out image data for different imaging ranges from the image memory 331, and for example, determines all parts of the image that have been captured by overlapping some images. A fluorescence intensity distribution image corresponding to a predetermined range is created by joining. Then, this image is displayed on the monitor 34. Of course, the obtained images may be drawn on the monitor 34 without connecting the images.

同様の撮影を可能とした別の実施例の光イメージング装置の要部の構成を図6に示す。この図6に示した実施例では、試料台5の位置を固定し、測光部A全体を測光部移動機構40によりX軸及びY軸の二軸方向に移動可能としている。そして、制御部42の制御の下に、測光部駆動部41が測光部移動機構40に含まれるモータを作動させることにより、測光部AをX軸及びY軸上の任意の位置(例えば図6中の符号A’の位置)に移動させる。この構成によっても、試料台5上に載置された生体試料7における撮影範囲の位置を変化させることが可能であり、図5に示した実施例と同様の撮影が可能であることは明らかである。   FIG. 6 shows the configuration of the main part of an optical imaging apparatus according to another embodiment that enables similar imaging. In the embodiment shown in FIG. 6, the position of the sample stage 5 is fixed, and the entire photometry unit A can be moved in the biaxial directions of the X axis and the Y axis by the photometry unit moving mechanism 40. Then, under the control of the control unit 42, the photometry unit driving unit 41 operates a motor included in the photometry unit moving mechanism 40, so that the photometry unit A can be moved to any position on the X axis and the Y axis (for example, FIG. 6). The position is moved to the position of the symbol A ′ in the middle. Even with this configuration, it is possible to change the position of the imaging range in the biological sample 7 placed on the sample stage 5, and it is obvious that imaging similar to that in the embodiment shown in FIG. 5 is possible. is there.

また、図5及び図6の例はいずれも、蛍光撮影用カメラ12による撮影範囲よりも広い範囲に亘る撮影を自動的に行うものであったが、自動的ではなく測定者による操作に応じて撮影範囲を設定できるようにしてもよい。例えば図5の構成において、制御部32に付設された操作部を測定者が操作すると、その操作量等に応じて制御部32から試料台駆動部31へと制御信号が送られ、その制御信号に応じて試料台駆動部31が試料台移動機構30に含まれるモータを作動させることで試料台5をX軸及び/又はY軸に沿って所定量だけ移動させるようにする。測光部Aに対し試料台5が相対的に移動すると撮影範囲の位置が変化するから、モニタ34に表示される蛍光強度分布画像の位置が変わり、測定者はこれを見ながら生体試料7の所望の部位を観察することができる。   5 and 6 both automatically perform photographing over a wider range than the photographing range by the fluorescent photographing camera 12, but not automatically, depending on the operation by the measurer. The shooting range may be set. For example, in the configuration of FIG. 5, when a measurer operates the operation unit attached to the control unit 32, a control signal is sent from the control unit 32 to the sample stage driving unit 31 according to the operation amount and the like. Accordingly, the sample stage drive unit 31 operates a motor included in the sample stage moving mechanism 30 to move the sample stage 5 by a predetermined amount along the X axis and / or the Y axis. When the sample stage 5 moves relative to the photometric unit A, the position of the imaging range changes, so that the position of the fluorescence intensity distribution image displayed on the monitor 34 changes. Can be observed.

さらに、より簡易な構成としては、試料台移動機構30や測光部移動機構40がモータ等の駆動源を有さず、測定者がツマミ(ノブ)を回動操作したりスライドさせたりすることで、その駆動力に応じて試料台5や測光部Aが移動するようにしてもよい。
また、図5及び図6の例では試料台5又は測光部Aを2次元的に移動させていたが、一軸方向にのみ移動させる構成としてもよい。
Furthermore, as a simpler configuration, the sample stage moving mechanism 30 and the photometric unit moving mechanism 40 do not have a driving source such as a motor, and the measurer rotates and slides the knob (knob). Depending on the driving force, the sample stage 5 and the photometry unit A may be moved.
5 and 6, the sample stage 5 or the photometry unit A is moved two-dimensionally, but it may be configured to move only in one axis direction.

また、上記実施例はいずれも本発明の単に一例であり、上記記載の変形例以外に、本発明の趣旨の範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。   In addition, any of the above-described embodiments is merely an example of the present invention, and other than the above-described modified examples, any appropriate modification, correction, or addition within the spirit of the present invention is included in the scope of the claims of the present application. It is clear.

1…レーザ光源ユニット
2…光ファイバ
3、3a、3b、3c、3d…射出ユニット
4…反射鏡
5…試料台
5a…透明板
5b…支持台
6…開口窓
7…生体試料
8…可視発光部
10…対物レンズ
11…分光ユニット
12…蛍光撮影用カメラ
13…可視撮影用カメラ
14…光学フィルタ
20…外装筐体
21…試料載置用上蓋
30…試料台移動機構
31…試料台駆動部
32、42…制御部
33…画像処理部
331…画像メモリ
332…画像合成処理部
34…モニタ
40…測光部移動機構
41…測光部駆動部
DESCRIPTION OF SYMBOLS 1 ... Laser light source unit 2 ... Optical fiber 3, 3a, 3b, 3c, 3d ... Ejection unit 4 ... Reflection mirror 5 ... Sample stand 5a ... Transparent board 5b ... Support stand 6 ... Opening window 7 ... Biological sample 8 ... Visible light emission part DESCRIPTION OF SYMBOLS 10 ... Objective lens 11 ... Spectroscopic unit 12 ... Fluorescence imaging camera 13 ... Visible imaging camera 14 ... Optical filter 20 ... Outer housing 21 ... Sample mounting upper cover 30 ... Sample stage moving mechanism 31 ... Sample stage drive part 32, 42 ... Control unit 33 ... Image processing unit 331 ... Image memory 332 ... Image composition processing unit 34 ... Monitor 40 ... Metering unit moving mechanism 41 ... Metering unit driving unit

Claims (8)

生体試料に励起光を照射し、それに対して該試料から得られた蛍光を検出して2次元画像化する光イメージング装置において、
a)その上面の前部に、水平軸を中心に上方後部側に蝶動自在である上蓋を有する筐体と、
b)前記上蓋が上方後部側に蝶動され開放されたときに、その上方に何らの障害物もない状態で露出する、上面に生体試料を略水平に載置するための試料台であり、その載置面に光が透過する光透過部が設けられた試料台と、
c)前記試料台上に載置された生体試料に照射される励起光を発する複数の射出部を含み、該複数の射出部がそれぞれ、光学的屈折素子を用いて励起光光束を空間的に発散させつつ射出するものである照明部と、
d)該照明部による励起光に対して前記生体試料から放出された蛍光による像を取得する撮像部と、
e)前記照明部による励起光が前記試料台の光透過部を通して前記生体試料に下方から照射されるように該励起光を導くとともに該生体試料から下方へ放出され前記光透過部を経た蛍光を前記撮像部に導くべく、前記励起光と前記蛍光とを共に空間内で折り曲げる、前記試料台の下方の空間に配置された共通の反射光学部、を含む導光光学系と、
を備えることを特徴とする光イメージング装置。
In an optical imaging apparatus that irradiates a biological sample with excitation light and detects fluorescence obtained from the biological sample to form a two-dimensional image,
a) a housing having an upper lid that is swingable on the upper rear side around the horizontal axis at the front of the upper surface;
b) a sample stage for placing the biological sample substantially horizontally on the upper surface, exposed when the upper lid is swung and opened to the upper rear side without any obstacles above it ; A sample stage provided with a light transmitting portion through which light is transmitted on the mounting surface;
c) including a plurality of emission units that emit excitation light irradiated on the biological sample placed on the sample table, and each of the plurality of emission units spatially transmits the excitation light beam using an optical refracting element. An illumination unit that emits while diverging,
d) an imaging unit that acquires an image of fluorescence emitted from the biological sample with respect to excitation light by the illumination unit;
e) guiding the excitation light so that excitation light from the illumination unit is irradiated from below onto the biological sample through the light transmission part of the sample stage, and emitting fluorescence emitted downward from the biological sample through the light transmission part. A light guide optical system including a common reflecting optical unit disposed in a space below the sample stage, which bends the excitation light and the fluorescence together in space to guide the imaging unit;
An optical imaging apparatus comprising:
請求項1に記載の光イメージング装置であって、
前記複数の射出部は、前記反射光学部から前記撮像部へと向かう蛍光の光軸を囲むように配置され、前記生体試料から前記反射光学部へと向かう蛍光の光軸と略同軸で該反射光学部から前記生体試料に励起光が照射されることを特徴とする光イメージング装置。
The optical imaging apparatus according to claim 1,
The plurality of emission units are arranged to surround an optical axis of fluorescence from the reflection optical unit toward the imaging unit, and are substantially coaxial with the optical axis of fluorescence from the biological sample to the reflection optical unit. An optical imaging apparatus, wherein the biological sample is irradiated with excitation light from an optical unit.
請求項1又は2に記載の光イメージング装置であって、
前記生体試料からの蛍光を複数の波長域の光に分割する光学的分割部をさらに備え、前記撮像部は、前記光学的分割部により分割された複数の波長域の光による像をそれぞれ取得する複数の撮像部を含むことを特徴とする光イメージング装置。
The optical imaging apparatus according to claim 1 or 2,
It further includes an optical dividing unit that divides fluorescence from the biological sample into light of a plurality of wavelength ranges, and the imaging unit acquires images of light of a plurality of wavelength ranges divided by the optical dividing unit, respectively. An optical imaging apparatus comprising a plurality of imaging units.
請求項1〜3のいずれか1項に記載の光イメージング装置であって、
前記光学的屈折素子はレンズアレイを含むことを特徴とする光イメージング装置。
The optical imaging apparatus according to any one of claims 1 to 3,
The optical imaging device, wherein the optical refractive element includes a lens array.
請求項1〜4のいずれか1項に記載の光イメージング装置であって、
前記照明部、前記導光光学系、及び前記撮像部を含む測光部と、前記試料台とを、該試料台の載置面に対し平行に、1次元的又は2次元的に相対移動させる移動機構部と、
該移動機構部により前記測光部と前記試料台とが所望の位置関係になるように測定者が操作を行う操作部と、
とをさらに備え、測定者が前記操作部による操作を行うことで、前記試料台上に載置された生体試料の下面の任意の部位から得られた光による2次元画像を取得可能としたことを特徴とする光イメージング装置。
The optical imaging apparatus according to any one of claims 1 to 4,
A movement that causes the photometric unit including the illumination unit, the light guide optical system, and the imaging unit, and the sample stage to move relative to each other in a one-dimensional or two-dimensional manner parallel to the mounting surface of the sample stage. A mechanism part;
An operation unit that is operated by a measurer so that the photometric unit and the sample stage are in a desired positional relationship by the moving mechanism unit;
In addition, the measurement person can acquire a two-dimensional image by light obtained from an arbitrary part of the lower surface of the biological sample placed on the sample stage by performing an operation using the operation unit. An optical imaging apparatus characterized by the above.
請求項5に記載の光イメージング装置であって、
前記移動機構部は駆動源を含み、
測定者による前記操作部の操作に応じて前記駆動源の駆動を制御する制御部をさらに備えることを特徴とする光イメージング装置。
The optical imaging apparatus according to claim 5,
The moving mechanism unit includes a drive source,
An optical imaging apparatus, further comprising: a control unit that controls driving of the drive source in accordance with an operation of the operation unit by a measurer.
請求項1〜4のいずれか1項に記載の光イメージング装置であって、
前記照明部、前記導光光学系、及び前記撮像部を含む測光部と、前記試料台とを、該試料台の載置面に対し平行に、1次元的又は2次元的に相対移動させる移動機構部と、
前記移動機構部により前記測光部又は前記試料台の少なくとも一方を1次元的又は2次元的に移動させつつ前記撮像部で前記生体試料からの蛍光による像を複数回取得する撮影制御部と、
をさらに備えることを特徴とする光イメージング装置。
The optical imaging apparatus according to any one of claims 1 to 4,
A movement that causes the photometric unit including the illumination unit, the light guide optical system, and the imaging unit, and the sample stage to move relative to each other in a one-dimensional or two-dimensional manner parallel to the mounting surface of the sample stage. A mechanism part;
An imaging control unit for acquiring images of fluorescence from the biological sample by the imaging unit a plurality of times while moving at least one of the photometry unit or the sample stage in a one-dimensional or two-dimensional manner by the moving mechanism unit;
An optical imaging apparatus further comprising:
請求項7に記載の光イメージング装置であって、
前記撮影制御部の制御の下で取得された複数の画像を結合することにより、前記撮像部による1回の撮影で得られる範囲よりも広い範囲の2次元画像を再現する画像形成部をさらに備えることを特徴とする光イメージング装置。
The optical imaging apparatus according to claim 7,
An image forming unit that reproduces a two-dimensional image in a wider range than a range obtained by one shooting by the imaging unit by combining a plurality of images acquired under the control of the shooting control unit. An optical imaging apparatus.
JP2017076414A 2017-04-07 2017-04-07 Optical imaging device Active JP6617978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076414A JP6617978B2 (en) 2017-04-07 2017-04-07 Optical imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076414A JP6617978B2 (en) 2017-04-07 2017-04-07 Optical imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012268502A Division JP2014115151A (en) 2012-12-07 2012-12-07 Optical imaging device

Publications (2)

Publication Number Publication Date
JP2017138329A JP2017138329A (en) 2017-08-10
JP6617978B2 true JP6617978B2 (en) 2019-12-11

Family

ID=59565830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076414A Active JP6617978B2 (en) 2017-04-07 2017-04-07 Optical imaging device

Country Status (1)

Country Link
JP (1) JP6617978B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113217B2 (en) * 2001-07-13 2006-09-26 Xenogen Corporation Multi-view imaging apparatus
US7616985B2 (en) * 2002-07-16 2009-11-10 Xenogen Corporation Method and apparatus for 3-D imaging of internal light sources
US6970240B2 (en) * 2003-03-10 2005-11-29 Applera Corporation Combination reader
US20040225222A1 (en) * 2003-05-08 2004-11-11 Haishan Zeng Real-time contemporaneous multimodal imaging and spectroscopy uses thereof
JP4470464B2 (en) * 2003-11-27 2010-06-02 株式会社島津製作所 Spectrophotometer
US7873407B2 (en) * 2004-12-06 2011-01-18 Cambridge Research & Instrumentation, Inc. Systems and methods for in-vivo optical imaging and measurement
JP2006275964A (en) * 2005-03-30 2006-10-12 Olympus Corp Shading correction method for scanning fluorescence microscope
JP4952784B2 (en) * 2007-03-19 2012-06-13 株式会社島津製作所 Fluorescence measurement apparatus for living body and excitation light irradiation apparatus for fluorescence measurement
FR2920874B1 (en) * 2007-09-10 2010-08-20 Biospace Lab LUMINESCENCE IMAGING INSTALLATION AND METHOD
JP2009109787A (en) * 2007-10-31 2009-05-21 Olympus Corp Laser scanning type microscope
EP2391452B1 (en) * 2009-01-30 2015-06-17 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
JP5766958B2 (en) * 2011-01-21 2015-08-19 オリンパス株式会社 Microscope system, information processing apparatus, and information processing program

Also Published As

Publication number Publication date
JP2017138329A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP2014115151A (en) Optical imaging device
US11460685B2 (en) Systems and methods for three-dimensional imaging
US7474399B2 (en) Dual illumination system for an imaging apparatus and method
JP4672260B2 (en) Imaging device
CN101495022B (en) Capsule camera with variable illumination of the surrounding tissue
US9918640B2 (en) Method and device for multi-spectral photonic imaging
US8842173B2 (en) Biological image acquisition device
US7304282B2 (en) Focus detection device and fluorescent observation device using the same
US7474398B2 (en) Illumination system for an imaging apparatus with low profile output device
JP2007114542A (en) Microscope observation apparatus and microscope observation method
JP2006505804A6 (en) Method and apparatus for time-resolved optical imaging of biological tissue as part of an animal
CN106264476B (en) Tongue picture detection equipment
CN103718022A (en) Drug detection device and drug detection method
CN111344624B (en) Fast, high dynamic range image acquisition with Charge Coupled Device (CCD) camera
JP2017176811A5 (en)
Bullen et al. Two-photon imaging of the immune system: a custom technology platform for high-speed, multicolor tissue imaging of immune responses
JP6617978B2 (en) Optical imaging device
JP2005287964A (en) Observation apparatus for observing living body, organ and tissue
JP7137422B2 (en) microscope equipment
KR102064190B1 (en) Optical coherence tomography device
KR100869782B1 (en) Bio-optical imaging system
EP2021774B1 (en) A system comprising a dual illumination system and an imaging apparatus and method using said system
CN1867292A (en) A method of determining a property of a fluid and spectroscopic system
JP2011022087A (en) Living body image acquisition device
JP2023502482A (en) Infrared imaging system and related method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6617978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250