JP6605938B2 - Secondary battery control device, control method, and control program - Google Patents

Secondary battery control device, control method, and control program Download PDF

Info

Publication number
JP6605938B2
JP6605938B2 JP2015245997A JP2015245997A JP6605938B2 JP 6605938 B2 JP6605938 B2 JP 6605938B2 JP 2015245997 A JP2015245997 A JP 2015245997A JP 2015245997 A JP2015245997 A JP 2015245997A JP 6605938 B2 JP6605938 B2 JP 6605938B2
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
value
battery
indicating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015245997A
Other languages
Japanese (ja)
Other versions
JP2017112754A (en
Inventor
尚志 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2015245997A priority Critical patent/JP6605938B2/en
Publication of JP2017112754A publication Critical patent/JP2017112754A/en
Application granted granted Critical
Publication of JP6605938B2 publication Critical patent/JP6605938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は二次電池の制御装置、制御方法及び制御プログラムに関し、特に、二次電池から放電可能な電力の許容量を示す放電電力許容量を算出する二次電池の制御装置、制御方法及び制御プログラムに関する。   The present invention relates to a control device, control method, and control program for a secondary battery, and more particularly, a control device, control method, and control for a secondary battery that calculates a discharge power allowable amount indicating an allowable amount of power that can be discharged from the secondary battery. Regarding the program.

近年、自動車等においても二次電池の利用が拡大している。二次電池には、充放電を繰り返すことで出力可能な電力が低下するメモリ効果がある。そのため、二次電池を利用する場合、メモリ効果を考慮して出力可能な電力の大きさ(以下、放電電力許容値)を決定する必要がある。そこで、メモリ効果による二次電池の出力特性の変化を推定する技術が特許文献1に開示されている。   In recent years, the use of secondary batteries has also expanded in automobiles and the like. The secondary battery has a memory effect that power that can be output is reduced by repeating charge and discharge. Therefore, when using a secondary battery, it is necessary to determine the magnitude of electric power that can be output (hereinafter, discharge power allowable value) in consideration of the memory effect. Therefore, Patent Document 1 discloses a technique for estimating a change in output characteristics of a secondary battery due to a memory effect.

特許文献1に記載の電気化学素子の制御方法では、電極とイオン伝導体とを具備する電気化学素子の状態を、電極の電位モデル、電極の電子輸送モデル、電極のイオン輸送モデル、イオン伝導体のイオン輸送モデル、電極とイオン伝導体との界面で生じる電気化学反応を表すモデルからなる群より選択される少なくとも一種のモデルを用いて分析し、その分析結果に基づいて電気化学素子の特定の特性を制御する。   In the method for controlling an electrochemical element described in Patent Document 1, the state of an electrochemical element including an electrode and an ionic conductor is changed to an electrode potential model, an electrode electron transport model, an electrode ion transport model, and an ion conductor. Analysis using at least one model selected from the group consisting of an ion transport model and a model representing an electrochemical reaction that occurs at the interface between an electrode and an ionic conductor. Control properties.

特開2000−100479号公報Japanese Patent Laid-Open No. 2000-1000047

ここで、メモリ効果に起因する二次電池の出力電圧の低下について説明する。そこで、図5に二次電池におけるメモリ効果を説明する充電率に対する出力電圧の変化を示すグラフを示す。図5に示すように、二次電池は、充電率の変化に伴い出力電圧が変化する。そして、二次電池は、出荷時には出荷時の出力電圧曲線(図5の二点鎖線)と下限出力電圧との差分に相当する放電電力許容値Wout1を有する。しかしながら、二次電池にメモリ効果の影響が現れると、ある充電率以下の出力電圧が出荷時の出力電圧よりも低下する。そのため、メモリ効果が現れたあとは、二次電池の放電電力許容値Wout2は、実線で示した出力電圧曲線と下限出力電圧との差分となる。   Here, a decrease in the output voltage of the secondary battery due to the memory effect will be described. FIG. 5 is a graph showing the change in output voltage with respect to the charging rate, explaining the memory effect in the secondary battery. As shown in FIG. 5, the output voltage of the secondary battery changes as the charging rate changes. The secondary battery has a discharge power allowable value Wout1 corresponding to the difference between the output voltage curve at the time of shipment (two-dot chain line in FIG. 5) and the lower limit output voltage at the time of shipment. However, when the influence of the memory effect appears on the secondary battery, the output voltage below a certain charging rate is lower than the output voltage at the time of shipment. Therefore, after the memory effect appears, the discharge power allowable value Wout2 of the secondary battery becomes a difference between the output voltage curve indicated by the solid line and the lower limit output voltage.

しかしながら、二次電池のメモリ効果による電圧降下の大きさ、或いは、電圧降下が生じる充電率は、例えば、充放電回数、充放電開始電圧等の二次電池の利用状態により変化する。そのため、特許文献1に記載の技術を用いてメモリ効果を解析しても、当該解析結果から得られる最悪条件に合わせて放電電力許容電力を設定しなければならない。図5では、メモリ効果による電圧降下の最悪条件に合わせた二次電池の出力電圧曲線を一点鎖線で示した。そして、図5に示した例では、放電可能許容電力Wout3は、最悪条件に合わせた二次電池の出力電圧と下限出力電圧との差分となる。つまり、特許文献1に記載したメモリ効果の推定方法を用いた場合、本来出力可能なはずの放電電力許容値Wout2は出力することは出来ず、放電電力許容値を過剰に制限した放電電力許容値Wout3としなければならい。   However, the magnitude of the voltage drop due to the memory effect of the secondary battery or the charging rate at which the voltage drop occurs varies depending on the usage state of the secondary battery, such as the number of charge / discharge cycles and the charge / discharge start voltage. Therefore, even if the memory effect is analyzed using the technique described in Patent Document 1, the discharge power allowable power must be set in accordance with the worst condition obtained from the analysis result. In FIG. 5, the output voltage curve of the secondary battery in accordance with the worst condition of the voltage drop due to the memory effect is shown by a one-dot chain line. In the example illustrated in FIG. 5, the dischargeable allowable power Wout3 is a difference between the output voltage of the secondary battery and the lower limit output voltage in accordance with the worst condition. That is, when the memory effect estimation method described in Patent Document 1 is used, the discharge power allowable value Wout2 that should be output originally cannot be output, and the discharge power allowable value in which the discharge power allowable value is excessively limited. Must be Wout3.

このように、特許文献1に記載の技術では予め二次電池の性能劣化を解析できるが、二次電池の現状に合わせた二次電池の制御を行うことは出来ない問題がある。   As described above, although the technique described in Patent Document 1 can analyze the performance deterioration of the secondary battery in advance, there is a problem that the secondary battery cannot be controlled in accordance with the current state of the secondary battery.

本発明は、上記事情に鑑みてなされたものであり、二次電池の現状の性能に合わせた制御を行うことを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to perform control in accordance with the current performance of a secondary battery.

本発明にかかる二次電池の制御装置の一態様は、二次電池から出力される電力を制御する二次電池の制御装置であって、前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出する電池電圧推定部と、前記二次電池の電圧の計測値である電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出する電圧誤差算出部と、前記電池電流値に基づき二次電池の充電率を推定する充電率推定部と、前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池のメモリ効果に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出する電池電圧誤差推定部と、前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出する補正値算出部と、を有し、前記補正値に基づき前記二次電池の制御を行う。   One aspect of a control apparatus for a secondary battery according to the present invention is a control apparatus for a secondary battery that controls electric power output from the secondary battery, and indicates a magnitude of a current discharged from the secondary battery. A battery voltage estimator that calculates a voltage estimated value obtained by estimating a voltage of the secondary battery based on a battery voltage model having a battery current value and temperature information indicating a temperature of the secondary battery as parameters; and the secondary battery A voltage error calculation unit that calculates a difference between a voltage measurement value that is a measurement value of a battery voltage and the voltage estimation value as a voltage error measurement value, and a charging rate that estimates a charging rate of the secondary battery based on the battery current value A battery voltage for calculating a voltage error estimated value indicating an error of the battery voltage generated due to the memory effect of the secondary battery, using an estimation unit and a voltage error model having the charging rate and the correction value as parameters. An error estimator and the voltage error Anda correction value calculation unit difference between the voltage error estimate and the measured value to calculate the correction value to be smaller, performs control of the secondary battery based on the correction value.

本発明にかかる二次電池の制御装置の一態様によれば、二次電池の現状から算出された補正値に基づき二次電池を制御することができる。   According to the aspect of the secondary battery control device according to the present invention, the secondary battery can be controlled based on the correction value calculated from the current state of the secondary battery.

本発明にかかる二次電池の制御装置の第1の別の態様は、前記補正値が、前記メモリ効果が発生する充電率を示すメモリ効果発生充電率と、前記メモリ効果発生充電率よりも高い充電率の時に発生する前記二次電池の電圧上昇量を示す上昇変動電圧と、前記メモリ効果発生充電率よりも低い充電率の時に発生する前記二次電池の電圧下降量を示す下降変動電圧と、を少なくとも含む。   In another aspect of the control device for a secondary battery according to the present invention, the correction value is higher than a memory effect generation charge rate indicating a charge rate at which the memory effect is generated, and the memory effect generation charge rate. A rising fluctuation voltage indicating a voltage increase amount of the secondary battery generated at a charging rate, and a falling fluctuation voltage indicating a voltage decrease amount of the secondary battery generated at a charging rate lower than the memory effect generation charging rate; , At least.

本発明にかかる二次電池の制御装置の第1の別の態様によれば、二次電池で現在生じているメモリ効果に起因する出力電圧曲線を推定し、現状の二次電池の性能を把握することができる。   According to the first aspect of the secondary battery control device of the present invention, the output voltage curve resulting from the memory effect currently occurring in the secondary battery is estimated, and the performance of the current secondary battery is grasped. can do.

本発明にかかる二次電池の制御装置の第2の別の態様は、前記充電率に対する前記二次電池の初期の起電圧の変動曲線に対して前記補正値を適用して電池電圧推定曲線を算出し、前記二次電池に対して予め設定される下限出力電圧と、前記電池電圧推定曲線と、の差分を、前記二次電池から放電可能な電力の許容量を示す放電電力許容値として出力する放電電力許容量算出部を更に有する。   According to a second aspect of the control apparatus for a secondary battery according to the present invention, a battery voltage estimation curve is obtained by applying the correction value to a fluctuation curve of an initial electromotive voltage of the secondary battery with respect to the charging rate. Calculate and output the difference between the lower limit output voltage preset for the secondary battery and the battery voltage estimation curve as a discharge power allowable value indicating an allowable amount of power that can be discharged from the secondary battery. And a discharge power allowance calculation unit.

本発明にかかる二次電池の制御装置の第2の別の態様によれば、二次電池から得られたパラメータに基づき推定された電池電圧推定曲線に基づき、二次電池の現在の状態に合わせた放電電力許容値を得ることができる。   According to the second another aspect of the control device for the secondary battery according to the present invention, the secondary battery control device is adapted to the current state of the secondary battery based on the battery voltage estimation curve estimated based on the parameter obtained from the secondary battery. An allowable discharge power value can be obtained.

本発明にかかる二次電池の制御装置の第3の別の態様は、前記電圧誤差モデルは、前記充電率及び前記補正値をパラメータとするメモリ効果誤差モデルに基づき算出されるメモリ効果電圧誤差値と、前記二次電池から放電される電流を測定する電流センサに起因する誤差を示す電流センサオフセット誤差推定値と、を含む。   According to a third aspect of the control apparatus for a secondary battery according to the present invention, the voltage error model is calculated based on a memory effect error model using the charge rate and the correction value as parameters. And a current sensor offset error estimated value indicating an error caused by a current sensor that measures a current discharged from the secondary battery.

本発明にかかる二次電池の制御装置の第4の別の態様は、前記電流センサが出力した電流計測値に前記電流センサオフセット誤差推定値を引くことで前記電池電流値を算出する電池電流算出部を更に有する。   A fourth alternative embodiment of the control apparatus for a secondary battery according to the present invention is a battery current calculation for calculating the battery current value by subtracting the current sensor offset error estimated value from the current measurement value output by the current sensor. It further has a part.

本発明にかかる二次電池の制御装置の第3の別の態様及び第4の別の態様によれば、電流センサのオフセット誤差の影響を低減した精度の高い補正値を得ることができる。   According to the third and fourth aspects of the control apparatus for a secondary battery according to the present invention, it is possible to obtain a highly accurate correction value in which the influence of the offset error of the current sensor is reduced.

本発明にかかる二次電池の制御方法の一態様は、二次電池の温度、前記二次電池が出力する電圧を示す電圧計測値、及び、前記二次電池が出力する電流の大きさを示す電流計測値を取得して、前記温度、前記電圧計測値及び前記電流計測値に基づき前記二次電池の出力電圧の変動量を推定することにより補正値を算出して、当該補正値に基づき前記二次電池から出力される電力を制御する二次電池の制御方法であって、前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出し、前記電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出し、前記電池電流値に基づき二次電池の充電率を推定し、前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池の特性変動に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出し、前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出し、前記補正値に基づき前記二次電池の制御を行う。   One aspect of the control method of the secondary battery according to the present invention shows the temperature of the secondary battery, the voltage measurement value indicating the voltage output from the secondary battery, and the magnitude of the current output from the secondary battery. Obtaining a current measurement value, calculating a correction value by estimating a fluctuation amount of the output voltage of the secondary battery based on the temperature, the voltage measurement value, and the current measurement value, and based on the correction value A secondary battery control method for controlling power output from a secondary battery, wherein a battery current value indicating a magnitude of a current discharged from the secondary battery and temperature information indicating a temperature of the secondary battery. And calculating a voltage estimated value obtained by estimating the voltage of the secondary battery based on a battery voltage model using as a parameter, calculating a difference between the voltage measured value and the voltage estimated value as a voltage error measured value, The charging rate of the secondary battery based on the current value And using a voltage error model having the charging rate and the correction value as parameters, a voltage error estimated value indicating an error in the battery voltage caused by a characteristic variation of the secondary battery is calculated, and the voltage The correction value is calculated so that the difference between the error measurement value and the voltage error estimation value is small, and the secondary battery is controlled based on the correction value.

本発明にかかる二次電池の制御方法の一態様によれば、二次電池の現状から算出された補正値に基づき二次電池を制御することができる。   According to the aspect of the secondary battery control method according to the present invention, the secondary battery can be controlled based on the correction value calculated from the current state of the secondary battery.

本発明にかかる二次電池の制御プログラムの一態様は、プログラムを実行可能な演算部で実行され、二次電池の温度、前記二次電池が出力する電圧を示す電圧計測値、及び、前記二次電池が出力する電流の大きさを示す電流計測値を取得して、前記温度、前記電圧計測値及び前記電流計測値に基づき前記二次電池の出力電圧の変動量を推定することにより補正値を算出して、当該補正値に基づき前記二次電池から出力される電力を制御する二次電池の制御プログラムであって、前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出し、前記電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出し、前記電池電流値に基づき二次電池の充電率を推定し、前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池の特性変動に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出し、前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出し、前記補正値に基づき前記二次電池の制御を行う。   One aspect of a control program for a secondary battery according to the present invention is executed by an arithmetic unit capable of executing the program, and a voltage measurement value indicating a temperature of the secondary battery, a voltage output by the secondary battery, and the second A correction value is obtained by obtaining a current measurement value indicating the magnitude of the current output from the secondary battery, and estimating a variation amount of the output voltage of the secondary battery based on the temperature, the voltage measurement value, and the current measurement value. And a secondary battery control program for controlling the power output from the secondary battery based on the correction value, the battery current value indicating the magnitude of the current discharged from the secondary battery; A voltage estimated value obtained by estimating the voltage of the secondary battery based on a battery voltage model having a temperature information indicating the temperature of the secondary battery as a parameter, and a difference between the measured voltage value and the estimated voltage value The voltage error measurement value and Generated by estimating the charge rate of the secondary battery based on the battery current value and using the voltage error model with the charge rate and the correction value as parameters. A voltage error estimated value indicating an error in battery voltage to be calculated, the correction value is calculated so that a difference between the voltage error measured value and the voltage error estimated value is small, and the secondary battery is based on the correction value. Control.

本発明にかかる二次電池の制御プログラムの一態様によれば、二次電池の現状から算出された補正値に基づき二次電池を制御することができる。   According to one aspect of the control program for a secondary battery according to the present invention, the secondary battery can be controlled based on the correction value calculated from the current state of the secondary battery.

本発明の二次電池の制御装置、制御方法及び制御プログラムによれば、二次電池の現在の性能に合わせた二次電池の制御を行うことが可能になる。   According to the secondary battery control device, control method, and control program of the present invention, it becomes possible to control the secondary battery in accordance with the current performance of the secondary battery.

実施の形態1にかかる制御装置のブロック図である。1 is a block diagram of a control device according to a first exemplary embodiment. 実施の形態1にかかる制御装置におけるモデル誤差値の算出に用いる電圧推定モデルを説明するグラフである。6 is a graph for explaining a voltage estimation model used for calculation of a model error value in the control device according to the first embodiment; 実施の形態1にかかる制御装置における補正値の算出手順を説明するフローチャートである。5 is a flowchart for explaining a correction value calculation procedure in the control apparatus according to the first embodiment; 実施の形態1にかかる制御装置において補正値から推定される起電圧曲線を説明する図である。It is a figure explaining the electromotive force curve estimated from a correction value in the control apparatus concerning Embodiment 1. FIG. 二次電池におけるメモリ効果を説明する充電率に対する出力電圧の変化を示すグラフである。It is a graph which shows the change of the output voltage with respect to the charging rate explaining the memory effect in a secondary battery.

説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。   In order to clarify the explanation, the following description and drawings are omitted and simplified as appropriate. Each element described in the drawings as a functional block for performing various processes can be configured by a CPU, a memory, and other circuits in terms of hardware, and a program loaded in the memory in terms of software. Etc. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any one. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.

また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non−transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。   Further, the above-described program can be stored using various types of non-transitory computer readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

実施の形態1
実施の形態1にかかる制御装置1は、二次電池から出力される電力を二次電池の出力電圧、出力電流、及び、温度に基づき制御する。また、実施の形態1にかかる制御装置1は、例えば、マイクロコントローラ等の演算装置において実行されるプログラムによって実現される。また、マイクロコントローラは、演算処理で利用される電圧等のアナログ値のパラメータをデジタル値として取り込むアナログデジタル変換回路を有する。さらにマイクロコントローラは、演算により得られ二次電池の制御パラメータ(以下の例では、放電電力許容値Wout)を上位のシステムに出力する出力インタフェース或いは通信インタフェースを有するものとする。以下の説明では、プログラムにおける処理を処理の種類毎に処理ブロックに置き換えたブロック図を用いて制御装置1を説明する。
Embodiment 1
The control device 1 according to the first embodiment controls the power output from the secondary battery based on the output voltage, output current, and temperature of the secondary battery. Moreover, the control apparatus 1 concerning Embodiment 1 is implement | achieved by the program run in arithmetic units, such as a microcontroller, for example. The microcontroller also has an analog-to-digital conversion circuit that takes in an analog value parameter such as a voltage used in arithmetic processing as a digital value. Furthermore, the microcontroller has an output interface or a communication interface that outputs a control parameter (in the following example, allowable discharge power value Wout) of the secondary battery obtained by calculation to a higher system. In the following description, the control device 1 will be described using a block diagram in which processing in a program is replaced with processing blocks for each type of processing.

また、実施の形態1にかかる制御装置1は、以下の説明では、制御装置1が行う制御の1つの例として、二次電池のメモリ効果に起因する出力電圧の低下を考慮した放電電力許容値の変化に対応した二次電池の制御を行う例を説明する。また、実施の形態1にかかる制御装置1は、二次電池の非線形性に対応するために拡張カルマンフィルタに基づく演算を行う。なお、実施の形態1にかかる制御装置1は、メモリ効果を考慮して二次電池を制御するため、メモリ効果の影響が大きい二次電池(例えば、ニッケル水素蓄電池)に好適である。   In the following description, the control device 1 according to the first embodiment, as an example of the control performed by the control device 1, is an allowable discharge power value in consideration of a decrease in output voltage due to the memory effect of the secondary battery. An example of performing control of the secondary battery corresponding to the change of will be described. Moreover, the control apparatus 1 concerning Embodiment 1 performs the calculation based on an extended Kalman filter in order to respond | correspond to the nonlinearity of a secondary battery. In addition, since the control apparatus 1 concerning Embodiment 1 controls a secondary battery in consideration of a memory effect, it is suitable for a secondary battery (for example, nickel hydride storage battery) with a large influence of a memory effect.

図1に実施の形態1にかかる制御装置1のブロック図を示す。図1に示すように、実施の形態1にかかる制御装置1は、電池電流算出部11、電池電圧推定部12、電圧誤差算出部13、観測誤差算出部14、補正値算出部15、電池電圧誤差推定部16、放電電力許容値算出部17、充電率推定部18を有する。   FIG. 1 shows a block diagram of a control device 1 according to the first embodiment. As shown in FIG. 1, the control device 1 according to the first embodiment includes a battery current calculation unit 11, a battery voltage estimation unit 12, a voltage error calculation unit 13, an observation error calculation unit 14, a correction value calculation unit 15, and a battery voltage. An error estimation unit 16, a discharge power allowable value calculation unit 17, and a charge rate estimation unit 18 are included.

電池電流算出部11は、図示を省略した電流センサが出力した電流計測値から電流センサオフセット誤差推定値δcuroffsetを引くことで電池電流値を算出する。図1に示した例では、電池電流算出部11は、電流計測値から電流センサオフセット誤差推定値δcuroffsetを引くことで電池電流値を算出する。 The battery current calculation unit 11 calculates the battery current value by subtracting the current sensor offset error estimated value δcur offset from the current measurement value output by the current sensor (not shown). In the example illustrated in FIG. 1, the battery current calculation unit 11 calculates the battery current value by subtracting the current sensor offset error estimated value δcur offset from the current measurement value.

電池電圧推定部12は、二次電池から放電される電流の大きさを示す電池電流値と、二次電池の温度を示す温度情報(例えば、温度計測値)と、をパラメータとする電池電圧モデルに基づき二次電池の電圧を推定した電圧推定値を算出する。ここで、電池電圧モデルは、電極の電位モデル、電極の電子輸送モデル、電極のイオン輸送モデル、イオン伝導体のイオン輸送モデル、電極とイオン伝導体との界面で生じる電気化学反応を表すモデルからなる群より選択される少なくとも一種のモデルを含む。   The battery voltage estimation unit 12 uses a battery voltage model that uses as parameters the battery current value indicating the magnitude of the current discharged from the secondary battery and the temperature information (for example, temperature measurement value) indicating the temperature of the secondary battery. A voltage estimated value obtained by estimating the voltage of the secondary battery is calculated based on Here, the battery voltage model is an electrode potential model, an electrode electron transport model, an electrode ion transport model, an ion transport ion transport model, and a model representing an electrochemical reaction occurring at the interface between the electrode and the ion conductor. Including at least one model selected from the group consisting of:

電圧誤差算出部13は、二次電池の電圧の計測値である電圧計測値と電圧誤差算出部13が出力する電圧推定値との差分を電圧誤差計測値yとして算出する。図1に示す例では、電圧誤差算出部13は、電圧計測値から電圧推定値を引くことで電圧誤差計測値yを算出する。   The voltage error calculation unit 13 calculates a difference between a voltage measurement value that is a measurement value of the voltage of the secondary battery and a voltage estimation value output from the voltage error calculation unit 13 as a voltage error measurement value y. In the example illustrated in FIG. 1, the voltage error calculation unit 13 calculates the voltage error measurement value y by subtracting the voltage estimation value from the voltage measurement value.

観測誤差算出部14は、電圧誤差算出部13が出力する電圧誤差計測値yと電池電圧誤差推定部16が出力する電圧誤差推定値zとの差分を観測誤差値として算出する。図1に示す例では、観測誤差算出部14は、電圧誤差計測値yから電圧誤差推定値zを引くことで観測誤差値を算出する。   The observation error calculation unit 14 calculates a difference between the voltage error measurement value y output from the voltage error calculation unit 13 and the voltage error estimation value z output from the battery voltage error estimation unit 16 as an observation error value. In the example illustrated in FIG. 1, the observation error calculation unit 14 calculates the observation error value by subtracting the voltage error estimated value z from the voltage error measurement value y.

補正値算出部15は、電圧誤差計測値yと電圧誤差推定値zとの差分(観測誤差値)が小さくなるように補正値を算出する。実施の形態1にかかる制御装置1では、補正値には、メモリ効果が発生する充電率を示すメモリ効果発生充電率SOCmemoryと、メモリ効果発生充電率SOCmemoryよりも高い充電率の時に発生する二次電池の電圧上昇量を示す上昇変動電圧δvupと、メモリ効果発生充電率よりも低い充電率の時に発生する二次電池の電圧下降量を示す下降変動電圧δvdownと、を少なくとも含む。また、実施の形態1にかかる制御装置1で用いられる補正値には、二次電池から放電される電流を測定する電流センサに起因する誤差を示す電流センサオフセット誤差推定値δcuroffsetが含まれる。 The correction value calculation unit 15 calculates the correction value so that the difference (observation error value) between the voltage error measurement value y and the voltage error estimated value z becomes small. In the control device 1 according to the first embodiment, the correction value is generated when the memory effect generation charge rate SOC memory indicating the charge rate at which the memory effect occurs and the charge rate higher than the memory effect occurrence charge rate SOC memory. It includes at least a rising fluctuation voltage δv up indicating a voltage increase amount of the secondary battery, and a falling fluctuation voltage δv down indicating a voltage drop amount of the secondary battery generated when the charging rate is lower than the memory effect generation charging rate. The correction value used in the control device 1 according to the first embodiment includes a current sensor offset error estimated value δcur offset indicating an error caused by the current sensor that measures the current discharged from the secondary battery.

電池電圧誤差推定部16は、充電率と補正値とをパラメータとする電圧誤差モデルを用いて、二次電池のメモリ効果に起因して発生する電池電圧の誤差を示す電圧誤差推定値zを算出する。ここで、電圧誤差モデルVerr,mdlは、(1)式で表されるものであり、(1)式に基づき算出される値が電圧誤差推定値zとなる。

Figure 0006605938
The battery voltage error estimator 16 calculates a voltage error estimated value z indicating a battery voltage error generated due to the memory effect of the secondary battery, using a voltage error model having the charging rate and the correction value as parameters. To do. Here, the voltage error model V err, mdl is expressed by the equation (1), and a value calculated based on the equation (1) is the voltage error estimated value z.
Figure 0006605938

この(1)式において、Rdcは二次電池の直流抵抗であり、直流抵抗Rdcと電流センサオフセット誤差推定値δcuroffsetの積の項は電流センサオフセット電圧値である。また、(1)式におけるδVmdlの項はモデル誤差値である。このモデル誤差値δVmdlは、電圧推定モデルに基づき算出される。図2に実施の形態1にかかる制御装置におけるモデル誤差値の算出に用いる電圧推定モデルを説明するグラフを示す。 In this equation (1), R dc is the DC resistance of the secondary battery, and the product term of the DC resistance Rdc and the current sensor offset error estimated value δcur offset is the current sensor offset voltage value. In addition, the term of δV mdl in the expression (1) is a model error value. This model error value δV mdl is calculated based on the voltage estimation model. FIG. 2 shows a graph for explaining a voltage estimation model used for calculation of a model error value in the control apparatus according to the first embodiment.

図2に示すように、電圧推定モデルは、横軸を充電率SOC、縦軸を出力電圧変化量とし、上昇変動電圧δvup、下降変動電圧δvdown及びメモリ効果発生充電率SOCmemoryの3つのパラメータを有するグラフである。また、電圧推定モデルでは、メモリ効果発生充電率SOCmemoryを中心に電圧変化量が正から負に切り替わる充電率SOCの範囲の大きさを示すΔSOCを固定値として有する。そして、電池電圧誤差推定部16では、電圧推定モデルに対して充電率推定部18が出力するSOC推定値を入力し、図2のグラフにおいて入力されたSOC推定値に対応する出力電圧変化量をモデル誤差値ΔVmdlとして算出する。 As shown in FIG. 2, the voltage estimation model, the charging rate SOC of the horizontal axis, and the vertical axis represents the output voltage variation, rising varying voltage .delta.v Stay up-, falling varying voltage .delta.v down and three memory effect occurs the SOC memory It is a graph which has a parameter. In addition, the voltage estimation model has ΔSOC as a fixed value indicating the magnitude of the range of the charging rate SOC in which the voltage change amount switches from positive to negative with the memory effect generation charging rate SOC memory as a center. Then, the battery voltage error estimation unit 16 inputs the SOC estimation value output from the charging rate estimation unit 18 to the voltage estimation model, and calculates the output voltage change amount corresponding to the SOC estimation value input in the graph of FIG. Calculated as a model error value ΔV mdl .

実施の形態1にかかる制御装置1では、補正値算出部15において補正値に含まれる4つのパラメータを変化させることで、補正値算出部15が出力する電圧誤差推定値zの値を変化させる。そして、実施の形態1にかかる制御装置1では、電圧誤差観測値yと電圧誤差推定値zとの差分となる観測誤差値が十分に小さくなったと判断されたときの補正値のパラメータに基づき二次電池の制御を行う。具体的には、補正値に含まれるパラメータのうち上昇変動電圧δvup、下降変動電圧δvdown及びメモリ効果発生充電率SOCmemoryに基づき制御装置1の上位システムである車両に放電電力許容値Woutを出力する。また、補正値に含まれる電流センサオフセット誤差推定値δcuroffsetに基づき電池電流値を算出する。 In the control device 1 according to the first embodiment, the correction value calculation unit 15 changes the four parameters included in the correction value, thereby changing the voltage error estimated value z output from the correction value calculation unit 15. Then, in the control device 1 according to the first embodiment, two parameters are used based on the correction value parameter when it is determined that the observation error value that is the difference between the voltage error observation value y and the voltage error estimation value z is sufficiently small. Control the next battery. Specifically, among the parameters included in the correction value, the discharge power allowable value Wout is set to the vehicle that is the host system of the control device 1 based on the rising fluctuation voltage δv up , the falling fluctuation voltage δv down and the memory effect occurrence charging rate SOC memory. Output. Further, the battery current value is calculated based on the current sensor offset error estimated value δcur offset included in the correction value.

放電電力許容値算出部17は、充電率SOCに対する二次電池の初期の起電圧の変動曲線に対して補正値(例えば、補正値に含まれる電圧推定パラメータ)を適用して電池電圧推定曲線を算出する。電圧推定パラメータには、上昇変動電圧δvup、下降変動電圧δvdown及びメモリ効果発生充電率SOCmemoryが含まれる。また、放電電力許容値算出部17は、二次電池に対して予め設定される下限出力電圧と、算出した電池電圧推定曲線と、の差分を、二次電池から放電可能な電力の許容量を示す放電電力許容値Woutとして出力する。この放電電力許容値Woutは制御装置1の上位システムである車両に対して送信される。車両は受信した放電電力許容量Woutに基づき二次電池から放電させる電力の大きさを調節する。 Discharge power allowable value calculation unit 17 applies a correction value (for example, a voltage estimation parameter included in the correction value) to a variation curve of an initial electromotive voltage of the secondary battery with respect to the charging rate SOC, and calculates a battery voltage estimation curve. calculate. The voltage estimation parameters include a rising fluctuation voltage δv up , a falling fluctuation voltage δv down, and a memory effect generation charge rate SOC memory . In addition, the discharge power allowable value calculation unit 17 calculates the allowable amount of power that can be discharged from the secondary battery by calculating the difference between the lower limit output voltage that is preset for the secondary battery and the calculated battery voltage estimation curve. It outputs as the discharge power allowable value Wout shown. This discharge power allowable value Wout is transmitted to the vehicle that is the host system of the control device 1. The vehicle adjusts the magnitude of power discharged from the secondary battery based on the received discharge power allowable amount Wout.

充電率推定部18は、電池電流算出部11が出力する電池電流値に基づき二次電池の充電率SOCを推定する。より具体的には、充電率推定部18は、電池電流値を積算する積算処理により生成された積算値に基づき充電率SOCを算出する。算出された充電率SOCはSOC推定値として電池電圧誤差推定部16に出力される。また、SOC推定値は、上位システムである車両にも出力される。   The charging rate estimation unit 18 estimates the charging rate SOC of the secondary battery based on the battery current value output by the battery current calculation unit 11. More specifically, the charging rate estimation unit 18 calculates the charging rate SOC based on the integrated value generated by the integrating process that integrates the battery current value. The calculated charging rate SOC is output to the battery voltage error estimating unit 16 as an SOC estimated value. The estimated SOC value is also output to a vehicle that is a host system.

続いて、実施の形態1にかかる制御装置1におけるメモリ効果の推定手順について説明する。そこで、図3に実施の形態1にかかる制御装置1における補正値の算出手順を説明するフローチャートを示す。実施の形態1にかかる制御装置1では、図3に示したフローを電圧誤差計測値yと電圧誤差推定値zとの差が十分に小さくなるまで繰り返し実行する。また、図3に示したフローは、補正値算出部15及び電池電圧誤差推定部16により行われる処理である。   Next, a memory effect estimation procedure in the control device 1 according to the first embodiment will be described. FIG. 3 is a flowchart for explaining a correction value calculation procedure in the control device 1 according to the first embodiment. In the control device 1 according to the first embodiment, the flow shown in FIG. 3 is repeatedly executed until the difference between the voltage error measurement value y and the voltage error estimated value z becomes sufficiently small. 3 is a process performed by the correction value calculation unit 15 and the battery voltage error estimation unit 16.

また、図3では、各処理で利用される式を示したが、式中のkは1つの補正値を算出する1処理期間中の計算サイクルの番号を示す整数である。文字の右上に付された“+”は、その値がk番目の計算サイクルにおいて新しく算出された値であることを示し、“−”は、その値がk番目よりも前の計算サイクルにおいて算出された古い値であることを示す。文字の上に付されたハット記号は、当該文字が示す値が推定値であることを示すものである。また、図3では、補正値をxで表した。このxは、上述した4つのパラメータを含む転置行列であり、(2)式で表されるものである。

Figure 0006605938
In FIG. 3, equations used in each process are shown. In the equation, k is an integer indicating the number of a calculation cycle in one process period for calculating one correction value. “+” Added to the upper right of the letter indicates that the value is a newly calculated value in the kth calculation cycle, and “−” is calculated in the calculation cycle before the kth. Indicates that the old value was set. The hat symbol added on the character indicates that the value indicated by the character is an estimated value. In FIG. 3, the correction value is represented by x. This x is a transposed matrix including the above-described four parameters, and is expressed by equation (2).
Figure 0006605938

図3に示すように、実施の形態1にかかる制御装置1では、メモリ効果に起因する出力電圧の変化を補正するための補正値の算出処理をステップS1〜S4の処理により実施する。   As shown in FIG. 3, in the control device 1 according to the first embodiment, the correction value calculation process for correcting the change in the output voltage due to the memory effect is performed by the processes in steps S <b> 1 to S <b> 4.

ステップS1では、1つ前の計算サイクルにおいて算出した推定値(例えば、補正値)の線形化処理を行う。ステップS1の線形化処理は、(3)式に基づき行われ、線形化処理により行列Aが求められる。

Figure 0006605938
In step S1, the estimated value (for example, correction value) calculated in the previous calculation cycle is linearized. The linearization process in step S1 is performed based on the equation (3), and the matrix Ad is obtained by the linearization process.
Figure 0006605938

ステップS2では、推定値の時間更新処理を行う。これは、前の計算サイクルで算出された値を現在の計算サイクルにおける過去の値にするための処理である。この時間更新処理は、(4)式〜(6)式に基づき行われる。

Figure 0006605938
Figure 0006605938
Figure 0006605938
In step S2, an estimated value time update process is performed. This is a process for making the value calculated in the previous calculation cycle a past value in the current calculation cycle. This time update process is performed based on the equations (4) to (6).
Figure 0006605938
Figure 0006605938
Figure 0006605938

(4)式では、前計算サイクルで算出された補正値xを関数f(x)に代入して現在の計算サイクルにおける古い補正値とする。(5)式では、(4)式で算出された前計算サイクルの補正値xを関数h(x)に代入して現在の計算サイクルにおける電圧誤差推定値zとする。(6)式では前計算サイクルにおいて算出された共分散行列Pに基づき現在の計算サイクルにおける古い共分散行列Pを得る。なお(6)式におけるQは、電圧誤差モデルと実際の二次電池の特性とのズレを示すプロセスノイズの共分散行列である。   In equation (4), the correction value x calculated in the previous calculation cycle is substituted into the function f (x) to obtain the old correction value in the current calculation cycle. In equation (5), the correction value x of the previous calculation cycle calculated in equation (4) is substituted into the function h (x) to obtain the voltage error estimated value z in the current calculation cycle. In equation (6), the old covariance matrix P in the current calculation cycle is obtained based on the covariance matrix P calculated in the previous calculation cycle. Note that Q in the equation (6) is a process noise covariance matrix indicating a deviation between the voltage error model and the actual characteristics of the secondary battery.

ステップS3では、現在の計算サイクルにおいて入力されている補正値xの線形化を行う。ステップS3の線形化処理は、(7)式に基づき行列Cを算出する。

Figure 0006605938
In step S3, the correction value x input in the current calculation cycle is linearized. In the linearization process in step S3, the matrix C is calculated based on the equation (7).
Figure 0006605938

ステップS4では、観測値の時間更新処理を行う。これは、現在の計算サイクルで算出された値を最新の値として保持するための処理である。この時間更新処理は、(8)式〜(10)式に基づき行われる。なお、(8)式で算出されるKはカルマンゲインであり、(8)式内のRは観測ノイズの共分散行列であり、(9)式におけるIは単位行列である。また、(10)式のyは電圧誤差計測値であり、zは電圧誤差推定値である。

Figure 0006605938
Figure 0006605938
Figure 0006605938
In step S4, the observed value time update process is performed. This is a process for holding the value calculated in the current calculation cycle as the latest value. This time update process is performed based on the equations (8) to (10). Note that K calculated by equation (8) is a Kalman gain, R in equation (8) is a covariance matrix of observation noise, and I in equation (9) is a unit matrix. In the equation (10), y is a voltage error measurement value, and z is a voltage error estimation value.
Figure 0006605938
Figure 0006605938
Figure 0006605938

実施の形態1にかかる制御装置1では、上記のような手順により算出した補正値に基づき放電電力許容値Woutを算出する。より具体的には、実施の形態1にかかる制御装置1では、放電電力許容値算出部17が、算出された補正値に基づき起電圧曲線(初期の起電圧曲線)を補正した推定起電圧曲線を生成する。そこで、図4に実施の形態1にかかる制御装置において補正値から推定される電池電圧推定曲線(例えば、推定起電圧曲線)を説明する図を示す。   In the control device 1 according to the first embodiment, the discharge power allowable value Wout is calculated based on the correction value calculated by the procedure as described above. More specifically, in the control device 1 according to the first embodiment, the estimated electromotive force curve in which the discharge power allowable value calculating unit 17 corrects the electromotive voltage curve (initial electromotive voltage curve) based on the calculated correction value. Is generated. FIG. 4 is a diagram for explaining a battery voltage estimation curve (for example, an estimated electromotive voltage curve) estimated from the correction value in the control device according to the first embodiment.

図4に示すように、実施の形態1にかかる制御装置1が生成する推定起電圧曲線は、メモリ効果に起因して充電率SOCが低い領域において初期の起電圧よりも電圧が低くなる。そして、実施の形態1にかかる制御装置1では、放電電力許容値算出部17が推定器電圧曲線と予め設定した下限出力電圧との差分を放電電力許容値Woutとして出力する。   As shown in FIG. 4, the estimated electromotive force curve generated by the control device 1 according to the first embodiment has a voltage lower than the initial electromotive voltage in a region where the charging rate SOC is low due to the memory effect. In the control device 1 according to the first embodiment, the allowable discharge power calculation unit 17 outputs the difference between the estimator voltage curve and the preset lower limit output voltage as the allowable discharge power value Wout.

上記説明より、実施の形態1にかかる制御装置1では、現状の二次電池から取得した電圧計測値、電流計測値及び温度計測値に基づき算出した電圧誤差観測値と、充電率と補正値とをパラメータとする電圧誤差モデルを用いて算出した電圧誤差推定値と、の差が無くなるように補正値の値を求める。そして、当該補正値を用いて初期の起電圧を補正することで現状の二次電池で発生しているメモリ効果の影響を考慮した推定起電圧曲線を生成する。そして、実施の形態1にかかる制御装置1では、推定起電圧曲線と予め設定した下限出力電圧との差を放電電力許容値Woutとして出力する。つまり、実施の形態1にかかる制御装置1を用いることで、現状の二次電池の状態に基づきメモリ効果の影響を考慮して動的に変化する放電電力許容値Woutを出力することができる。   From the above description, in the control device 1 according to the first embodiment, the voltage error observation value calculated based on the voltage measurement value, the current measurement value, and the temperature measurement value acquired from the current secondary battery, the charging rate, and the correction value are calculated. The value of the correction value is obtained so that there is no difference between the estimated voltage error value calculated using the voltage error model using as a parameter. And the estimated electromotive force curve which considered the influence of the memory effect which has generate | occur | produced in the present secondary battery is produced | generated by correcting the initial electromotive voltage using the said correction value. Then, the control device 1 according to the first embodiment outputs the difference between the estimated electromotive voltage curve and the preset lower limit output voltage as the discharge power allowable value Wout. That is, by using the control device 1 according to the first embodiment, it is possible to output the discharge power allowable value Wout that dynamically changes in consideration of the influence of the memory effect based on the current state of the secondary battery.

これにより、実施の形態1にかかる制御装置1は、二次電池のメモリ効果に起因する電圧出力特性の劣化具合が使用状態の違いに基づきばらついた場合であっても、当該ばらつきの影響を考慮したマージンをとることなく、又は、マージンを小さくして、二次電池の性能に応じた放電電力許容値Woutを出力することができる。そして、実施の形態1にかかる制御装置1により制御される二次電池は、このようなメモリ効果に起因する性能劣化具合のばらつきを考慮したマージンを削減することによる出力性能を実質的に向上させることができる。また、性能劣化具合のばらつきを考慮したマージンを削減することで、二次電池から取り出すことができる電力が増加するため、二次電池が自動車の駆動モータに電力を供給する用途で利用されている場合には自動車の燃費を高めることができる。   As a result, the control device 1 according to the first embodiment takes into consideration the influence of the variation even when the deterioration degree of the voltage output characteristic due to the memory effect of the secondary battery varies based on the difference in the usage state. The allowable discharge power value Wout according to the performance of the secondary battery can be output without taking the margin or reducing the margin. The secondary battery controlled by the control device 1 according to the first embodiment substantially improves the output performance by reducing the margin in consideration of the variation in the performance degradation caused by the memory effect. be able to. Moreover, since the power that can be taken out from the secondary battery is increased by reducing the margin in consideration of the variation in performance deterioration, the secondary battery is used for the purpose of supplying power to the drive motor of the automobile. In some cases, the fuel consumption of the car can be increased.

また、上記説明では、実施の形態1にかかる制御装置1をメモリ効果の影響を考慮した放電電力許容値Woutの算出に用いたが、制御装置1は、放電電力許容値Wout以外の値であってもメモリ効果に起因して変動する特性値を算出することができる。そのため、制御装置1を放電電力許容値Wout以外の特性値の算出及び当該特性値に基づく二次電池の制御に用いても良い。   In the above description, the control device 1 according to the first embodiment is used to calculate the allowable discharge power value Wout in consideration of the influence of the memory effect. However, the control device 1 has a value other than the allowable discharge power value Wout. However, it is possible to calculate a characteristic value that varies due to the memory effect. Therefore, you may use the control apparatus 1 for calculation of characteristic values other than discharge power allowable value Wout, and control of a secondary battery based on the said characteristic value.

また、実施の形態1にかかる制御装置1では、補正値が電流センサオフセット誤差推定値δcuroffsetを含む。これにより、実施の形態1にかかる制御装置1は、現状に応じた電流センサの検出誤差を反映した電池電流値の算出を行うことができる。つまり、実施の形態1にかかる制御装置1は、電池電流値の精度を高めることができる。これにより、実施の形態1にかかる制御装置1は、電池電圧推定部12が算出する電圧推定値と、充電率推定部18が算出するSOC推定値の精度を高め、結果的に得られる値の精度を全体的に高めることができる。 In the control device 1 according to the first embodiment, the correction value includes the current sensor offset error estimated value δcur offset . Thereby, the control apparatus 1 concerning Embodiment 1 can calculate the battery electric current value reflecting the detection error of the current sensor according to the present condition. That is, the control device 1 according to the first embodiment can increase the accuracy of the battery current value. Thereby, the control apparatus 1 concerning Embodiment 1 raises the precision of the estimated voltage value which the battery voltage estimation part 12 calculates, and the SOC estimated value which the charge rate estimation part 18 calculates, and the value obtained as a result Overall accuracy can be increased.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 制御装置
11 電池電流算出部
12 電池電圧推定部
13 電圧誤差算出部
14 観測誤差算出部
15 補正値算出部
16 電池電圧誤差推定部
17 放電電力許容値算出部
18 充電率推定部
DESCRIPTION OF SYMBOLS 1 Control apparatus 11 Battery current calculation part 12 Battery voltage estimation part 13 Voltage error calculation part 14 Observation error calculation part 15 Correction value calculation part 16 Battery voltage error estimation part 17 Discharge electric power allowable value calculation part 18 Charging rate estimation part

Claims (5)

二次電池から出力される電力を制御する二次電池の制御装置であって、
前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出する電池電圧推定部と、
前記二次電池の電圧の計測値である電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出する電圧誤差算出部と、
前記電池電流値に基づき二次電池の充電率を推定する充電率推定部と、
前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池のメモリ効果に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出する電池電圧誤差推定部と、
前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出する補正値算出部と、
前記充電率に対する前記二次電池の初期の起電圧の変動曲線に対して前記補正値を適用して電池電圧推定曲線を算出し、前記二次電池に対して予め設定される下限出力電圧と、前記電池電圧推定曲線と、の差分を、前記二次電池から放電可能な電力の許容量を示す放電電力許容値として出力する放電電力許容量算出部と、を有し、
前記補正値は、前記メモリ効果が発生する充電率を示すメモリ効果発生充電率と、前記メモリ効果発生充電率よりも高い充電率の時に発生する前記二次電池の電圧上昇量を示す上昇変動電圧と、前記メモリ効果発生充電率よりも低い充電率の時に発生する前記二次電池の電圧下降量を示す下降変動電圧と、を少なくとも含み、
前記電圧誤差モデルは、前記メモリ効果発生充電率を範囲の中心とし、かつ、電圧変化量が正から負に切り替わる充電率の範囲を示す充電率変化範囲を固定値として含む二次電池の制御装置。
A control device for a secondary battery that controls electric power output from the secondary battery,
A voltage obtained by estimating the voltage of the secondary battery based on a battery voltage model having as parameters the battery current value indicating the magnitude of the current discharged from the secondary battery and the temperature information indicating the temperature of the secondary battery. A battery voltage estimator for calculating an estimated value;
A voltage error calculation unit that calculates a difference between a voltage measurement value that is a measurement value of the voltage of the secondary battery and the voltage estimation value as a voltage error measurement value;
A charge rate estimator for estimating a charge rate of a secondary battery based on the battery current value;
A battery voltage error estimator for calculating a voltage error estimated value indicating an error in the battery voltage generated due to the memory effect of the secondary battery using a voltage error model having the charging rate and the correction value as parameters; ,
A correction value calculation unit that calculates the correction value so that a difference between the voltage error measurement value and the voltage error estimation value is small;
A battery voltage estimation curve is calculated by applying the correction value to a fluctuation curve of an initial electromotive voltage of the secondary battery with respect to the charging rate, and a lower limit output voltage set in advance for the secondary battery; A discharge power allowable amount calculation unit that outputs a difference between the battery voltage estimation curve and a discharge power allowable value indicating an allowable amount of electric power that can be discharged from the secondary battery ;
The correction value includes a memory effect generation charge rate indicating a charge rate at which the memory effect occurs, and a rising fluctuation voltage indicating a voltage increase amount of the secondary battery generated at a charge rate higher than the memory effect generation charge rate. And a falling fluctuation voltage indicating a voltage drop amount of the secondary battery generated at a charging rate lower than the memory effect generating charging rate,
The voltage error model includes a charge rate change range indicating a range of a charge rate in which the voltage change amount is switched from positive to negative as a fixed value, with the memory effect generation charge rate being the center of the range, and a control device for a secondary battery .
前記電圧誤差モデルは、前記充電率及び前記補正値をパラメータとするモデル誤差値と、前記二次電池から放電される電流を測定する電流センサに起因する誤差を示す電流センサオフセット誤差推定値に基づき算出される電流センサオフセット電圧値と、を含む請求項に記載の二次電池の制御装置。 The voltage error model is based on a model error value using the charging rate and the correction value as parameters, and a current sensor offset error estimated value indicating an error caused by a current sensor that measures a current discharged from the secondary battery. The secondary battery control device according to claim 1 , further comprising: a calculated current sensor offset voltage value. 前記電流センサが出力した電流計測値に前記電流センサオフセット誤差推定値を引くことで前記電池電流値を算出する電池電流算出部を更に有する請求項に記載の二次電池の制御装置。 The secondary battery control device according to claim 2 , further comprising a battery current calculation unit that calculates the battery current value by subtracting the current sensor offset error estimated value from the current measurement value output by the current sensor. 二次電池の温度、前記二次電池が出力する電圧を示す電圧計測値、及び、前記二次電池が出力する電流の大きさを示す電流計測値を取得して、前記温度、前記電圧計測値及び前記電流計測値に基づき前記二次電池の出力電圧の変動量を推定することにより補正値を算出して、当該補正値に基づき前記二次電池から出力される電力を制御する二次電池の制御方法であって、
前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出し、
前記電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出し、
前記電池電流値に基づき二次電池の充電率を推定し、
前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池のメモリ効果に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出し、
前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出し、
前記充電率に対する前記二次電池の初期の起電圧の変動曲線に対して前記補正値を適用して電池電圧推定曲線を算出し、前記二次電池に対して予め設定される下限出力電圧と、前記電池電圧推定曲線と、の差分を、前記二次電池から放電可能な電力の許容量を示す放電電力許容値として出力し、
前記補正値が、前記メモリ効果が発生する充電率を示すメモリ効果発生充電率と、前記メモリ効果発生充電率よりも高い充電率の時に発生する前記二次電池の電圧上昇量を示す上昇変動電圧と、前記メモリ効果発生充電率よりも低い充電率の時に発生する前記二次電池の電圧下降量を示す下降変動電圧と、を少なくとも含み、
前記電圧誤差モデルは、前記メモリ効果発生充電率を範囲の中心とし、かつ、電圧変化量が正から負に切り替わる充電率の範囲を示す充電率変化範囲を固定値として含む二次電池の制御方法。
Obtaining the temperature of the secondary battery, the voltage measurement value indicating the voltage output from the secondary battery, and the current measurement value indicating the magnitude of the current output from the secondary battery, the temperature and the voltage measurement value And calculating a correction value by estimating a variation amount of the output voltage of the secondary battery based on the current measurement value, and controlling a power output from the secondary battery based on the correction value. A control method,
A voltage obtained by estimating the voltage of the secondary battery based on a battery voltage model having as parameters the battery current value indicating the magnitude of the current discharged from the secondary battery and the temperature information indicating the temperature of the secondary battery. Calculate an estimate,
The difference between the voltage measurement value and the voltage estimation value is calculated as a voltage error measurement value,
Estimating the charging rate of the secondary battery based on the battery current value,
Using a voltage error model with the charging rate and the correction value as parameters, a voltage error estimation value indicating a battery voltage error generated due to the memory effect of the secondary battery is calculated,
Calculating the correction value such that the difference between the voltage error measurement value and the voltage error estimation value is small;
A battery voltage estimation curve is calculated by applying the correction value to a fluctuation curve of an initial electromotive voltage of the secondary battery with respect to the charging rate, and a lower limit output voltage set in advance for the secondary battery; The difference between the battery voltage estimation curve and the discharge power allowable value indicating the allowable amount of power that can be discharged from the secondary battery is output,
A memory effect generating charging rate indicating the charging rate at which the memory effect is generated, and a rising fluctuation voltage indicating a voltage increasing amount of the secondary battery generated when the charging rate is higher than the memory effect generating charging rate. And a falling fluctuation voltage indicating a voltage drop amount of the secondary battery generated at a charging rate lower than the memory effect generating charging rate,
The voltage error model includes a charge rate change range as a fixed value, the charge rate change range indicating the range of the charge rate in which the voltage change amount is switched from positive to negative, with the memory effect occurrence charge rate being the center of the range. .
プログラムを実行可能な演算部で実行され、二次電池の温度、前記二次電池が出力する電圧を示す電圧計測値、及び、前記二次電池が出力する電流の大きさを示す電流計測値を取得して、前記温度、前記電圧計測値及び前記電流計測値に基づき前記二次電池の出力電圧の変動量を推定することにより補正値を算出して、当該補正値に基づき前記二次電池から出力される電力を制御する二次電池の制御プログラムであって、
前記二次電池から放電される電流の大きさを示す電池電流値と、前記二次電池の温度を示す温度情報と、をパラメータとする電池電圧モデルに基づき前記二次電池の電圧を推定した電圧推定値を算出し、
前記電圧計測値と前記電圧推定値との差分を電圧誤差計測値として算出し、
前記電池電流値に基づき二次電池の充電率を推定し、
前記充電率と補正値とをパラメータとする電圧誤差モデルを用いて、前記二次電池のメモリ効果に起因して発生する電池電圧の誤差を示す電圧誤差推定値を算出し、
前記電圧誤差計測値と前記電圧誤差推定値との差分が小さくなるように前記補正値を算出し、
前記充電率に対する前記二次電池の初期の起電圧の変動曲線に対して前記補正値を適用して電池電圧推定曲線を算出し、前記二次電池に対して予め設定される下限出力電圧と、前記電池電圧推定曲線と、の差分を、前記二次電池から放電可能な電力の許容量を示す放電電力許容値として出力し、
前記補正値が、前記メモリ効果が発生する充電率を示すメモリ効果発生充電率と、前記メモリ効果発生充電率よりも高い充電率の時に発生する前記二次電池の電圧上昇量を示す上昇変動電圧と、前記メモリ効果発生充電率よりも低い充電率の時に発生する前記二次電池の電圧下降量を示す下降変動電圧と、を少なくとも含み、
前記電圧誤差モデルは、前記メモリ効果発生充電率を範囲の中心とし、かつ、電圧変化量が正から負に切り替わる充電率の範囲を示す充電率変化範囲を固定値として含む二次電池の制御プログラム。
It is executed by a calculation unit capable of executing a program, and a voltage measurement value indicating the temperature of the secondary battery, a voltage output from the secondary battery, and a current measurement value indicating the magnitude of the current output from the secondary battery. And obtaining a correction value by estimating a fluctuation amount of the output voltage of the secondary battery based on the temperature, the voltage measurement value, and the current measurement value, and from the secondary battery based on the correction value. A control program for a secondary battery that controls the output power,
A voltage obtained by estimating the voltage of the secondary battery based on a battery voltage model having as parameters the battery current value indicating the magnitude of the current discharged from the secondary battery and the temperature information indicating the temperature of the secondary battery. Calculate an estimate,
The difference between the voltage measurement value and the voltage estimation value is calculated as a voltage error measurement value,
Estimating the charging rate of the secondary battery based on the battery current value,
Using a voltage error model with the charging rate and the correction value as parameters, a voltage error estimation value indicating a battery voltage error generated due to the memory effect of the secondary battery is calculated,
Calculating the correction value such that the difference between the voltage error measurement value and the voltage error estimation value is small;
A battery voltage estimation curve is calculated by applying the correction value to a fluctuation curve of an initial electromotive voltage of the secondary battery with respect to the charging rate, and a lower limit output voltage set in advance for the secondary battery; The difference between the battery voltage estimation curve and the discharge power allowable value indicating the allowable amount of power that can be discharged from the secondary battery is output,
A memory effect generating charging rate indicating the charging rate at which the memory effect is generated, and a rising fluctuation voltage indicating a voltage increasing amount of the secondary battery generated when the charging rate is higher than the memory effect generating charging rate. And a falling fluctuation voltage indicating a voltage drop amount of the secondary battery generated at a charging rate lower than the memory effect generating charging rate,
The voltage error model is a control program for a secondary battery including, as a fixed value, a charge rate change range indicating a range of a charge rate in which the voltage change amount is switched from positive to negative, with the memory effect generation charge rate being the center of the range. .
JP2015245997A 2015-12-17 2015-12-17 Secondary battery control device, control method, and control program Active JP6605938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245997A JP6605938B2 (en) 2015-12-17 2015-12-17 Secondary battery control device, control method, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245997A JP6605938B2 (en) 2015-12-17 2015-12-17 Secondary battery control device, control method, and control program

Publications (2)

Publication Number Publication Date
JP2017112754A JP2017112754A (en) 2017-06-22
JP6605938B2 true JP6605938B2 (en) 2019-11-13

Family

ID=59079855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245997A Active JP6605938B2 (en) 2015-12-17 2015-12-17 Secondary battery control device, control method, and control program

Country Status (1)

Country Link
JP (1) JP6605938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139921A1 (en) * 2022-01-21 2023-07-27 日本碍子株式会社 Battery control device and battery control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560867B2 (en) * 1999-08-31 2004-09-02 本田技研工業株式会社 Hybrid vehicle battery control device
JP4304923B2 (en) * 2002-06-17 2009-07-29 トヨタ自動車株式会社 Secondary battery remaining capacity estimating apparatus and remaining capacity estimating method
JP4866156B2 (en) * 2006-06-13 2012-02-01 プライムアースEvエナジー株式会社 Secondary battery charge state estimation device, charge state estimation method, and program
JP5886225B2 (en) * 2013-03-08 2016-03-16 プライムアースEvエナジー株式会社 Battery control device and battery control method
JP5997081B2 (en) * 2013-03-21 2016-09-21 プライムアースEvエナジー株式会社 Secondary battery state estimation device and secondary battery state estimation method

Also Published As

Publication number Publication date
JP2017112754A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6507375B2 (en) Battery state estimation device and battery state estimation method
KR102177721B1 (en) Apparatus and Method for estimating deterioration of battery pack
JP6488105B2 (en) Storage battery evaluation apparatus and method
JP5997081B2 (en) Secondary battery state estimation device and secondary battery state estimation method
JP5393837B2 (en) Battery charge rate estimation device
JP6657967B2 (en) State estimation device and state estimation method
JP4547908B2 (en) Secondary battery input / output possible power estimation device
US20180045788A1 (en) Battery state estimating apparatus
JP2018096953A (en) Battery state estimation device
JP2017223537A (en) Device for estimating battery state and method for estimating battery state
JP2007147487A (en) Inputtable/outputtable power estimation apparatus for secondary battery
EP3593155A1 (en) A battery cell state of charge estimation method and a battery state monitoring system
JPWO2018179562A1 (en) Battery condition estimation device
JP2018084578A (en) Method and apparatus for estimating state of battery based on error correction
JP6213333B2 (en) Estimation program, estimation method, and estimation apparatus
JP2019070621A (en) Secondary battery system
JP6330605B2 (en) Estimation program, estimation method, and estimation apparatus
JP6221884B2 (en) Estimation program, estimation method, and estimation apparatus
JP2015224975A (en) Battery charge/discharge current detection device
JP6171897B2 (en) Approximation function creation program, approximation function creation method, approximation function creation device, and charging rate estimation program
JP6299187B2 (en) Estimation program, estimation method, and estimation apparatus
JP2010169609A (en) Battery system and i/o electric power estimation method
JP2017223536A (en) Device for estimating battery state and method for estimating battery state
KR101399345B1 (en) Method for estimating state of charge in battery
JP6421411B2 (en) Estimation program for estimating battery charging rate, estimation method for estimating battery charging rate, and estimation device for estimating battery charging rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6605938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250