JP6601161B2 - Manufacturing method of welded structure - Google Patents

Manufacturing method of welded structure Download PDF

Info

Publication number
JP6601161B2
JP6601161B2 JP2015214198A JP2015214198A JP6601161B2 JP 6601161 B2 JP6601161 B2 JP 6601161B2 JP 2015214198 A JP2015214198 A JP 2015214198A JP 2015214198 A JP2015214198 A JP 2015214198A JP 6601161 B2 JP6601161 B2 JP 6601161B2
Authority
JP
Japan
Prior art keywords
electrode
metal foil
laminated
negative electrode
stacking direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015214198A
Other languages
Japanese (ja)
Other versions
JP2017080792A (en
Inventor
強 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015214198A priority Critical patent/JP6601161B2/en
Publication of JP2017080792A publication Critical patent/JP2017080792A/en
Application granted granted Critical
Publication of JP6601161B2 publication Critical patent/JP6601161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、溶接構造体の製造方法に関する。   The present invention relates to a method for manufacturing a welded structure.

特許文献1には、次のような溶接構造体の製造方法が開示されている。具体的には、金属箔からなる複数の金属箔部が積層方向に積層された金属箔積層部(集電部)と、金属板(集電板)と、が溶接された溶接構造体(集電部に集電板が溶接された集電板付き電極体)の製造方法が開示されている。より具体的には、まず、加圧工程において、金属箔積層部(集電部)と金属板(集電板)とを積層方向に積層して(重ね合わせて)積層体とし、この積層体を一対の電極チップにより積層方向に挟み、一対の電極チップを通じて積層体に対し前記積層方向に一定の圧縮荷重をかけた加圧状態とする。その後、通電工程において、この加圧状態で、一対の電極チップ間に一定の大きさの電流を一定時間流して、金属箔積層部と金属板とを溶接する。   Patent Document 1 discloses a manufacturing method of a welded structure as follows. Specifically, a welded structure (current collector) in which a metal foil laminated portion (current collector) in which a plurality of metal foil portions made of metal foil are laminated in the lamination direction and a metal plate (current collector) are welded. A manufacturing method of an electrode body with a current collecting plate in which a current collecting plate is welded to an electric part is disclosed. More specifically, first, in the pressurizing step, a metal foil laminate (current collector) and a metal plate (current collector) are laminated in the laminating direction to form a laminate, and this laminate Is sandwiched between a pair of electrode chips in a stacking direction, and a pressure state is applied by applying a constant compressive load to the stack through the pair of electrode chips in the stacking direction. Thereafter, in the energization process, a current of a constant magnitude is passed between the pair of electrode chips in this pressurized state for a certain period of time to weld the metal foil laminated portion and the metal plate.

特開2014−203659号公報JP 2014-203659 A

ところで、通電工程では、当該通電工程を開始する(積層体への通電を開始する)と、通電により発生する抵抗熱(ジュール熱)により、積層体(金属箔積層部及び金属板)が形状変化(積層体の軟化及び溶融による形状変化)してゆく。この積層体の形状変化に伴って、一対の電極チップの少なくとも一方が加圧方向(積層方向)に移動してゆき、一対の電極チップ間の距離(積層方向の距離)は減少してゆく。すなわち、加圧工程において積層体を一定の圧縮荷重で積層方向に加圧した状態としたときの電極チップ間距離が、通電工程において減少してゆく。   By the way, in the energization process, when the energization process is started (energization to the laminate is started), the shape of the laminate (metal foil laminate and metal plate) changes due to resistance heat (Joule heat) generated by energization. (Shape change due to softening and melting of the laminate). With the change in the shape of the stacked body, at least one of the pair of electrode chips moves in the pressurizing direction (stacking direction), and the distance between the pair of electrode chips (distance in the stacking direction) decreases. That is, the distance between the electrode tips when the laminated body is pressed in the laminating direction with a constant compressive load in the pressurizing step decreases in the energizing step.

ところが、多数の溶接構造体を順次製造してゆく(すなわち、通電工程を順次行ってゆく)と、電極チップ表面の状態(例えば、酸化状態、表面の形状)は変化してゆく。また、金属箔積層部及び金属板の電気抵抗値も、一定とは限らない。このため、多数の溶接構造体を順次製造してゆく(すなわち、通電工程を順次行ってゆく)と、通電工程において発生する抵抗熱(ジュール熱)が変動し、これに伴う積層体の形状変化(積層体の軟化及び溶融による形状変化)が、積層体の間で大きく異なることがあった。このため、通電工程を順次行ってゆくと、通電工程における積層体の形状変化に伴って減少する一対の電極チップ間の距離の減少量が、大きく変動することがあった。換言すれば、通電工程間で、通電工程における積層体の形状変化に伴って減少する一対の電極チップ間の距離の減少量が大きく異なることがあった。これにより、金属箔積層部と金属板との溶接強度に大きなバラツキが生じることがあった。   However, when a large number of welded structures are sequentially manufactured (that is, the energization process is sequentially performed), the state of the electrode tip surface (for example, the oxidized state and the shape of the surface) changes. Moreover, the electrical resistance values of the metal foil laminate and the metal plate are not always constant. For this reason, when a large number of welded structures are manufactured sequentially (that is, the energization process is performed sequentially), the resistance heat (Joule heat) generated in the energization process fluctuates, resulting in a change in the shape of the laminate. (Shape change due to softening and melting of the laminated body) may differ greatly between the laminated bodies. For this reason, when the energization process is sequentially performed, the amount of decrease in the distance between the pair of electrode chips, which decreases with the shape change of the stacked body in the energization process, may fluctuate greatly. In other words, the amount of reduction in the distance between the pair of electrode chips that decreases with the change in the shape of the laminate in the energization process may differ greatly between the energization processes. Thereby, a big variation may arise in the welding strength of a metal foil laminated part and a metal plate.

本発明は、かかる現状に鑑みてなされたものであって、金属箔積層部と金属板との溶接強度のバラツキを小さくすることができる溶接構造体の製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the manufacturing method of the welded structure which can reduce the dispersion | variation in the welding strength of a metal foil laminated part and a metal plate.

本発明の一態様は、金属箔からなる複数の金属箔部が積層方向に積層された金属箔積層部と、金属板と、が溶接された溶接構造体の製造方法であって、前記金属箔積層部と前記金属板とを前記積層方向に積層した積層体を、抵抗溶接機の一対の電極チップにより前記積層方向に挟み、前記一対の電極チップを通じて前記積層体に対し前記積層方向に一定の圧縮荷重をかけた加圧状態とする加圧工程と、前記加圧状態で前記一対の電極チップ間に電流を流して、前記金属箔積層部と前記金属板とを溶接する通電工程と、を備え、前記通電工程では、当該通電工程を開始してからの(前記積層体の形状変化に伴って減少する)前記一対の電極チップ間の距離の減少量を、予め設定した一定値にする溶接構造体の製造方法において、前記一対の電極チップは、前記積層方向に移動する第1電極チップと、不動の第2電極チップと、であり、前記抵抗溶接機は、前記第1電極チップに連結されて前記第1電極チップと共に前記積層方向に移動する第1ストッパーと、前記第1ストッパーに対して前記積層方向に向かい合って配置された不動の第2ストッパーと、を備え、前記加圧工程では、前記加圧状態で、前記第1ストッパーと前記第2ストッパーとの間の前記積層方向にかかる距離が、前記一定値であるか否かを確認し、前記一定値でない場合は、前記第1ストッパーと前記第2ストッパーとの間の前記積層方向にかかる距離を前記一定値に調整し、前記通電工程では、前記第1電極チップと共に前記積層方向に移動してゆく前記第1ストッパーが前記第2ストッパーに当接して停止することで、前記第1電極チップの前記積層方向への移動を停止させて、これによって、当該通電工程を開始してからの前記第1電極チップと前記第2電極チップとの間の距離の減少量を、前記一定値にする溶接構造体の製造方法である。 One aspect of the present invention is a method for producing a welded structure in which a metal foil laminated portion in which a plurality of metal foil portions made of metal foil are laminated in a laminating direction and a metal plate are welded, and the metal foil the the the laminated portion and the metal plate laminated body obtained by laminating the laminating direction, sandwiching the stacking direction by a pair of electrode tips of the resistance welding machine, the constant in the stacking direction with respect to the laminated body through the pair of electrode tips A pressurizing step for applying a compressive load, and an energizing step for welding the metal foil laminate and the metal plate by passing a current between the pair of electrode tips in the pressurizing state. In the energization step, welding is performed so that the amount of decrease in the distance between the pair of electrode tips (decreasing with a change in the shape of the laminate) after the energization step is started is set to a predetermined constant value. the method of manufacturing a structure, the pair of electrodes Is a first electrode tip that moves in the stacking direction and a second electrode tip that does not move, and the resistance welder is connected to the first electrode tip and is stacked together with the first electrode tip. A first stopper that moves in a direction, and a stationary second stopper that is disposed to face the first stopper in the stacking direction. In the pressurizing step, the first stopper Check whether the distance in the stacking direction between the stopper and the second stopper is the constant value, and if not, the distance between the first stopper and the second stopper The distance applied in the stacking direction is adjusted to the constant value, and in the energization step, the first stopper moving in the stacking direction together with the first electrode chip comes into contact with the second stopper and stops. Thus, the movement of the first electrode chip in the stacking direction is stopped, and thereby the distance between the first electrode chip and the second electrode chip after the energization process is started is reduced. It is a manufacturing method of the welded structure which makes quantity the said constant value .

上述の製造方法では、加圧工程において、金属箔積層部と金属板とを積層方向に積層した(重ね合わせた)積層体を、一対の電極チップ(金属箔積層部に接触してこれを金属板側に押圧する第1電極チップと、金属板に接触してこれを金属箔積層部側に押圧する第2電極チップ)により積層方向に挟み、一対の電極チップを通じて、積層体(金属箔積層部と金属板)に対し積層方向に一定の圧縮荷重をかけた加圧状態(圧接状態)とする。すなわち、一対の電極チップにより、積層体(金属箔積層部と金属板)を一定の圧縮荷重で積層方向に加圧(圧接)した状態とする。その後、通電工程において、前記の加圧状態(積層体を一定の圧縮荷重で積層方向に加圧した状態)で一対の電極チップ間に電流を流して(通電して)、金属箔積層部と金属板とを溶接する(すなわち、積層体を溶接する)。   In the manufacturing method described above, in the pressurizing step, the metal foil laminated portion and the metal plate are laminated (superposed) in the laminating direction, and a pair of electrode chips (metal foil laminated portion is brought into contact with the metal foil. A laminated body (metal foil laminate) is sandwiched in the laminating direction by a first electrode chip that presses against the plate side and a second electrode chip that contacts the metal plate and presses the metal plate toward the metal foil laminate portion side, and passes through the pair of electrode chips. Part and the metal plate) are in a pressurized state (pressure contact state) in which a certain compressive load is applied in the stacking direction. That is, the laminated body (metal foil laminated portion and metal plate) is pressed (pressed) in the lamination direction with a certain compressive load by the pair of electrode chips. Thereafter, in the energization process, a current is passed between the pair of electrode chips in the above-described pressurization state (a state where the laminate is pressed in the laminating direction with a constant compressive load), and the metal foil laminate portion and A metal plate is welded (that is, a laminated body is welded).

ところで、前述のように、従来の製造方法では、多数の溶接構造体を順次製造してゆく(すなわち、通電工程を順次行ってゆく)と、通電工程における積層体の形状変化に伴って減少する一対の電極チップ間の距離の減少量が、大きく変動することがあった。換言すれば、通電工程間で、通電工程における積層体の形状変化に伴って減少する一対の電極チップ間の距離の減少量が大きく異なることがあった。これにより、金属箔積層部と金属板との溶接強度に大きなバラツキが生じることがあった。   As described above, in the conventional manufacturing method, when a large number of welded structures are sequentially manufactured (that is, the energization process is sequentially performed), the number decreases with a change in the shape of the laminate in the energization process. The amount of decrease in the distance between the pair of electrode tips sometimes fluctuated greatly. In other words, the amount of reduction in the distance between the pair of electrode chips that decreases with the change in the shape of the laminate in the energization process may differ greatly between the energization processes. Thereby, a big variation may arise in the welding strength of a metal foil laminated part and a metal plate.

これに対し、上述の製造方法では、通電工程において、当該通電工程を開始してからの(前記積層体の形状変化に伴って減少する)一対の電極チップ間の距離の減少量を、予め設定した一定値にする(一定値に制限する)。すなわち、通電工程を開始してからの一対の電極チップ間の距離の減少量が予め設定した一定値となるように制御する。換言すれば、通電工程において、当該通電工程を開始してからの一対の電極チップ間の距離の減少量が、予め設定した一定値に達したとき、前記一対の電極チップの移動を停止させる(一対の電極チップの位置を固定する)。これにより、金属箔積層部と金属板とを安定して溶接することができ、金属箔積層部と金属板との間の溶接強度のバラツキを小さくすることができる。   On the other hand, in the above-described manufacturing method, in the energization process, the amount of decrease in the distance between the pair of electrode chips (which decreases with the shape change of the laminate) after the energization process is started is set in advance. To a certain value (restricted to a certain value). That is, control is performed so that the amount of decrease in the distance between the pair of electrode chips after the start of the energization step becomes a predetermined constant value. In other words, in the energization process, when the amount of decrease in the distance between the pair of electrode chips after the energization process starts reaches a predetermined constant value, the movement of the pair of electrode chips is stopped ( Fix the position of the pair of electrode tips). Thereby, a metal foil laminated part and a metal plate can be welded stably, and the variation in the welding strength between a metal foil laminated part and a metal plate can be made small.

なお、金属箔積層部としては、複数の金属箔(あるいは、その一部)が積層方向に積層されたものが挙げられる。具体的には、例えば、二次電池の積層型電極体を構成する電極の集電箔(正極集電箔または負極集電箔)の端部(金属箔のみからなる活物質層未塗工部、これが金属箔部に相当する)が、複数、積層方向に積層されたものが挙げられる。この場合、金属板としては、例えば、板状の集電端子が挙げられる。なお、積層型電極体とは、複数のシート状の正極と複数のシート状の負極とが、正極と負極との間にセパレータが介在するようにして積層された電極体をいう。   In addition, as a metal foil laminated part, what laminated | stacked several metal foil (or one part) in the lamination direction is mentioned. Specifically, for example, the active material layer uncoated portion consisting only of metal foil of the current collector foil (positive electrode current collector foil or negative electrode current collector foil) of the electrode constituting the laminated electrode body of the secondary battery , Which corresponds to the metal foil portion), a plurality of layers laminated in the stacking direction. In this case, as the metal plate, for example, a plate-like current collecting terminal can be mentioned. The laminated electrode body refers to an electrode body in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated with a separator interposed between the positive electrode and the negative electrode.

また、金属箔積層部は、1枚の金属箔の一部(金属箔部)が、複数、積層方向に積層されたものであっても良い。具体的には、例えば、二次電池の扁平捲回型電極体を構成する電極の集電箔(正極集電箔または負極集電箔)の端部(金属箔のみからなる活物質層未塗工部)のうち、積層方向(電極体の厚み方向)に並ぶ矩形状の部位(これが金属箔部に相当する)が、複数、積層方向に積層されたものが挙げられる。なお、扁平捲回型電極体とは、帯状の正極と帯状の負極とが、正極と負極との間にセパレータが介在するようにして扁平形状に捲回された電極体をいう。   Further, the metal foil laminate portion may be a laminate of a plurality of metal foil portions (metal foil portions) in the lamination direction. Specifically, for example, the end of the current collector foil (positive electrode current collector foil or negative electrode current collector foil) of the electrode constituting the flat wound electrode body of the secondary battery (uncoated active material layer made only of metal foil) Among the engineering parts), a plurality of rectangular portions (which correspond to metal foil portions) arranged in the stacking direction (thickness direction of the electrode body) are stacked in the stacking direction. The flat wound electrode body refers to an electrode body in which a belt-like positive electrode and a belt-like negative electrode are wound into a flat shape with a separator interposed between the positive electrode and the negative electrode.

実施形態にかかる二次電池の断面図である。It is sectional drawing of the secondary battery concerning embodiment. 同電池の電極体の斜視図である。It is a perspective view of the electrode body of the battery. 同電極体を構成する正極を示す図である。It is a figure which shows the positive electrode which comprises the same electrode body. 同電極体を構成する負極を示す図である。It is a figure which shows the negative electrode which comprises the same electrode body. 同電極体の作製方法を説明する図である。It is a figure explaining the manufacturing method of the electrode body. 実施形態にかかる二次電池の製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the secondary battery concerning embodiment. 実施形態にかかる端子付き蓋部材の正面図である。It is a front view of the lid member with a terminal concerning an embodiment. 実施形態にかかる端子付き電極体(溶接構造体)の製造方法を説明する図である。It is a figure explaining the manufacturing method of the electrode body with a terminal (welding structure) concerning an embodiment. 実施形態にかかる端子付き電極体(溶接構造体)の製造方法を説明する他の図である。It is another figure explaining the manufacturing method of the electrode body with a terminal (welding structure) concerning an embodiment. 実施形態にかかる端子付き電極体(溶接構造体)の製造方法を説明する他の図である。It is another figure explaining the manufacturing method of the electrode body with a terminal (welding structure) concerning an embodiment. 実施形態にかかる端子付き電極体(溶接構造体)の正面図である。It is a front view of an electrode body with a terminal (welding structure) concerning an embodiment. 溶接試験の結果を示す図である。It is a figure which shows the result of a welding test. 一定値L1と引張強度との相関図である。It is a correlation diagram of the fixed value L1 and tensile strength.

まず、本実施形態にかかる二次電池100について説明する。
二次電池100は、図1に示すように、直方体形状の電池ケース110と、正極外部端子121と、負極外部端子131とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、直方体形状の収容空間をなす金属製の角形収容部111と金属製の蓋部112とを有するハードケースである。電池ケース110(角形収容部111)の内部には、電極体150などが収容されている。
First, the secondary battery 100 according to the present embodiment will be described.
As shown in FIG. 1, the secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive external terminal 121, and a negative external terminal 131. Among these, the battery case 110 is a hard case having a metal rectangular housing part 111 and a metal lid part 112 forming a rectangular parallelepiped housing space. An electrode body 150 and the like are housed inside the battery case 110 (the square housing portion 111).

電極体150は、帯状の正極155と帯状の負極156とを、正極155と負極156との間にセパレータ157が介在するようにして扁平形状に捲回した扁平捲回型電極体である(図2参照)。   The electrode body 150 is a flat wound electrode body in which a belt-like positive electrode 155 and a belt-like negative electrode 156 are wound into a flat shape with a separator 157 interposed between the positive electrode 155 and the negative electrode 156 (see FIG. 2).

正極155は、図3に示すように、長手方向DAに延びる帯状で、アルミニウム箔からなる正極集電箔151と、この正極集電箔151の表面の一部に塗工された正極活物質層152とを有している。正極活物質層152は、正極活物質153と、アセチレンブラックからなる導電材と、バインダーとを含んでいる。   As shown in FIG. 3, the positive electrode 155 has a strip shape extending in the longitudinal direction DA, a positive electrode current collector foil 151 made of an aluminum foil, and a positive electrode active material layer coated on a part of the surface of the positive electrode current collector foil 151 152. The positive electrode active material layer 152 includes a positive electrode active material 153, a conductive material made of acetylene black, and a binder.

正極155のうち、正極活物質層152が塗工されている部位を、正極活物質層塗工部155cという。一方、正極活物質層152が塗工されていない部位(すなわち、正極集電箔151のみからなる部位)を、正極活物質層未塗工部155bという。正極活物質層未塗工部155bは、正極集電箔151(正極155)の幅方向DB(図3において左右方向)の端部(図3において左端部)に位置し、正極集電箔151(正極155)の一方長辺に沿って、正極集電箔151(正極155)の長手方向DAに帯状に延びている。   A portion of the positive electrode 155 where the positive electrode active material layer 152 is coated is referred to as a positive electrode active material layer coating portion 155c. On the other hand, a portion where the positive electrode active material layer 152 is not coated (that is, a portion formed of only the positive electrode current collector foil 151) is referred to as a positive electrode active material layer uncoated portion 155b. The positive electrode active material layer uncoated portion 155b is located at the end (left end in FIG. 3) of the positive electrode current collector foil 151 (positive electrode 155) in the width direction DB (left and right direction in FIG. 3), and the positive electrode current collector foil 151 Along the one long side of (positive electrode 155), the positive electrode current collector foil 151 (positive electrode 155) extends in a band shape in the longitudinal direction DA.

正極活物質層未塗工部155bは、電極体150の幅方向DBの一方端部(図1及び図2において右端部)において、扁平形状に捲回されている。この正極活物質層未塗工部155bは、矩形状をなす複数の金属箔部155b1と、弧状をなす複数の上側弧状部155b2と、弧状をなす複数の下側弧状部155b3とにより構成されている(図2参照)。矩形状をなす複数の金属箔部155b1は、電極体150の厚み方向(積層方向DC)に並んで、金属箔積層部155dを構成している。従って、電極体150は、電極体150の幅方向DBの一方端部(図1及び図2において右端部)に、正極集電箔151の一部である矩形状をなす金属箔部155b1が、複数、積層方向DC(電極体150の厚み方向)に積層された金属箔積層部155dを有している。   The positive electrode active material layer uncoated portion 155b is wound in a flat shape at one end portion in the width direction DB of the electrode body 150 (the right end portion in FIGS. 1 and 2). The positive electrode active material layer uncoated portion 155b is composed of a plurality of rectangular metal foil portions 155b1, a plurality of arc-shaped upper arc-shaped portions 155b2, and a plurality of arc-shaped lower arc-shaped portions 155b3. (See FIG. 2). The plurality of rectangular metal foil portions 155b1 are arranged in the thickness direction (stacking direction DC) of the electrode body 150 to form a metal foil stacked portion 155d. Therefore, the electrode body 150 has a rectangular metal foil portion 155b1 that is a part of the positive electrode current collector foil 151 at one end portion (right end portion in FIGS. 1 and 2) of the electrode body 150 in the width direction DB. A plurality of metal foil laminated portions 155d are laminated in the lamination direction DC (the thickness direction of the electrode body 150).

また、負極156は、図4に示すように、長手方向DAに延びる帯状で銅箔からなる負極集電箔158と、この負極集電箔158の表面の一部に塗工された負極活物質層159とを有している。負極活物質層159は、負極活物質154とSBR(バインダー)とCMC(増粘剤)とを含んでいる。   Further, as shown in FIG. 4, the negative electrode 156 includes a negative electrode current collector foil 158 made of a copper foil in a strip shape extending in the longitudinal direction DA, and a negative electrode active material coated on a part of the surface of the negative electrode current collector foil 158 Layer 159. The negative electrode active material layer 159 includes a negative electrode active material 154, SBR (binder), and CMC (thickening agent).

負極156のうち、負極活物質層159が塗工されている部位を、負極活物質層塗工部156cという。一方、負極156のうち、負極活物質層159が塗工されていない部位(すなわち、負極集電箔158のみからなる部位)を、負極活物質層未塗工部156bという。負極活物質層未塗工部156bは、負極集電箔158(負極156)の一方長辺に沿って、負極集電箔158(負極156)の長手方向DA(図4において上下方向)に帯状に延びている。   A portion of the negative electrode 156 where the negative electrode active material layer 159 is coated is referred to as a negative electrode active material layer coating portion 156c. On the other hand, a portion of the negative electrode 156 where the negative electrode active material layer 159 is not coated (that is, a portion formed of only the negative electrode current collector foil 158) is referred to as a negative electrode active material layer uncoated portion 156b. The negative electrode active material layer uncoated portion 156b is a band in the longitudinal direction DA (vertical direction in FIG. 4) of the negative electrode current collector foil 158 (negative electrode 156) along one long side of the negative electrode current collector foil 158 (negative electrode 156). It extends to.

負極活物質層未塗工部156bは、電極体150の幅方向DBの他方端部(図1及び図2において左端部)において、扁平形状に捲回されている。この負極活物質層未塗工部156bは、矩形状をなす複数の金属箔部156b1と、弧状をなす複数の上側弧状部156b2と、弧状をなす複数の下側弧状部156b3とにより構成されている(図2参照)。矩形状をなす複数の金属箔部156b1は、電極体150の厚み方向(積層方向DC)に並んで、金属箔積層部156dを構成している。従って、電極体150は、電極体150の幅方向DBの他方端部(図1及び図2において左端部)に、負極集電箔158の一部である矩形状をなす金属箔部156b1が、複数、積層方向DC(電極体150の厚み方向)に積層された金属箔積層部156dを有している。   The negative electrode active material layer uncoated portion 156b is wound in a flat shape at the other end portion in the width direction DB of the electrode body 150 (the left end portion in FIGS. 1 and 2). The negative electrode active material layer uncoated part 156b is composed of a plurality of rectangular metal foil parts 156b1, a plurality of arcuate upper arc parts 156b2, and a plurality of arcuate lower arc parts 156b3. (See FIG. 2). The plurality of rectangular metal foil portions 156b1 are arranged in the thickness direction (stacking direction DC) of the electrode body 150 to form a metal foil stacked portion 156d. Therefore, the electrode body 150 has a rectangular metal foil portion 156b1 that is a part of the negative electrode current collector foil 158 at the other end portion (left end portion in FIGS. 1 and 2) of the electrode body 150 in the width direction DB. A plurality of metal foil laminated portions 156d are laminated in the lamination direction DC (thickness direction of the electrode body 150).

また、正極活物質層未塗工部155bの金属箔積層部155dには、アルミニウム製の板状の正極集電端子122(金属板)が、超音波溶接により接合されている。これにより、正極活物質層未塗工部155b(正極155)は、正極集電端子122を通じて、正極外部端子121に電気的に接続されている(図1参照)。   Further, an aluminum plate-like positive electrode current collecting terminal 122 (metal plate) is joined to the metal foil laminated portion 155d of the positive electrode active material layer uncoated portion 155b by ultrasonic welding. Thereby, the positive electrode active material layer uncoated part 155b (positive electrode 155) is electrically connected to the positive electrode external terminal 121 through the positive electrode current collecting terminal 122 (see FIG. 1).

また、負極活物質層未塗工部156bの金属箔積層部156dには、銅製の板状の負極集電端子132(金属板)が、抵抗溶接により接合されている。これにより、負極活物質層未塗工部156b(負極156)は、負極集電端子132を通じて、負極外部端子131に電気的に接続されている(図1参照)。   A copper plate-like negative electrode current collector terminal 132 (metal plate) is joined to the metal foil laminated portion 156d of the negative electrode active material layer uncoated portion 156b by resistance welding. Thereby, the negative electrode active material layer uncoated part 156b (negative electrode 156) is electrically connected to the negative electrode external terminal 131 through the negative electrode current collection terminal 132 (refer FIG. 1).

なお、本実施形態では、正極外部端子121と正極集電端子122とは一体に形成され、正極端子部材120を構成している。また、負極外部端子131と負極集電端子132とは一体に形成され、負極端子部材130を構成している。   In the present embodiment, the positive external terminal 121 and the positive current collecting terminal 122 are integrally formed to constitute the positive terminal member 120. Further, the negative electrode external terminal 131 and the negative electrode current collecting terminal 132 are integrally formed to constitute the negative electrode terminal member 130.

セパレータ157は、電気絶縁性を有する樹脂フィルムからなるセパレータである。このセパレータ157は、正極155と負極156との間に介在して、これらを離間させている。セパレータ157には、リチウムイオンを有する非水電解液140が含浸している。   The separator 157 is a separator made of a resin film having electrical insulation. The separator 157 is interposed between the positive electrode 155 and the negative electrode 156 to separate them. The separator 157 is impregnated with a non-aqueous electrolyte solution 140 having lithium ions.

次に、本実施形態にかかる溶接構造体(端子付き電極体)及び二次電池の製造方法について説明する。図6は、実施形態にかかる溶接構造体(端子付き電極体)及び二次電池の製造方法の流れを示すフローチャートである。
図6に示すように、ステップS1において、端子付き蓋部材160(図7参照)を作製する。具体的には、蓋部112と、正極端子部材120と、負極端子部材130とを用意して、これらを組み付けて一体にする。これにより、図7に示すような、蓋部112と正極端子部材120と負極端子部材130とを有する端子付き蓋部材160を得る。
Next, the manufacturing method of the welding structure (electrode body with a terminal) and secondary battery concerning this embodiment is demonstrated. FIG. 6 is a flowchart illustrating a flow of a manufacturing method of the welded structure (electrode body with terminal) and the secondary battery according to the embodiment.
As shown in FIG. 6, in step S1, a terminal-attached lid member 160 (see FIG. 7) is produced. Specifically, the lid part 112, the positive electrode terminal member 120, and the negative electrode terminal member 130 are prepared, and these are assembled and integrated. Thereby, the lid member 160 with a terminal which has the cover part 112, the positive electrode terminal member 120, and the negative electrode terminal member 130 as shown in FIG. 7 is obtained.

また、ステップS2において、電極体150を作製する。具体的には、図5に示すように、負極156、セパレータ157、正極155、及びセパレータ157を、この順に重ねるようにして捲回する。詳細には、正極155の正極活物質層未塗工部155bと負極156の負極活物質層未塗工部156bとが、幅方向DB(図5において左右方向)について互いに反対側に位置するようにして、負極156、セパレータ157、正極155、及びセパレータ157を扁平形状に捲回して、電極体150を形成する(図2参照)。   In step S2, the electrode body 150 is produced. Specifically, as shown in FIG. 5, the negative electrode 156, the separator 157, the positive electrode 155, and the separator 157 are wound so as to overlap in this order. Specifically, the positive electrode active material layer uncoated portion 155b of the positive electrode 155 and the negative electrode active material layer uncoated portion 156b of the negative electrode 156 are positioned on opposite sides in the width direction DB (left and right direction in FIG. 5). Thus, the negative electrode 156, the separator 157, the positive electrode 155, and the separator 157 are wound into a flat shape to form the electrode body 150 (see FIG. 2).

この電極体150は、電極体150の幅方向DBの一方端部(図1及び図2において右端部)に、正極集電箔151の一部である矩形状をなす金属箔部155b1が、複数、積層方向DC(電極体150の厚み方向)に積層された金属箔積層部155dを有し、且つ、電極体150の幅方向DBの他方端部(図1及び図2において左端部)に、負極集電箔158の一部である矩形状をなす金属箔部156b1が、複数、積層方向DC(電極体150の厚み方向)に積層された金属箔積層部156dを有している。   The electrode body 150 includes a plurality of metal foil portions 155b1 having a rectangular shape that is a part of the positive electrode current collector foil 151 at one end portion (right end portion in FIGS. 1 and 2) of the electrode body 150 in the width direction DB. The metal foil laminated portion 155d is laminated in the lamination direction DC (thickness direction of the electrode body 150), and at the other end portion (left end portion in FIGS. 1 and 2) of the width direction DB of the electrode body 150, A plurality of metal foil portions 156b1 having a rectangular shape, which is a part of the negative electrode current collector foil 158, have a metal foil laminated portion 156d laminated in the lamination direction DC (thickness direction of the electrode body 150).

次に、電極体150のうち負極活物質層未塗工部156bの金属箔積層部156dに、端子付き蓋部材160に含まれる板状の負極集電端子132(金属板)を、抵抗溶接により接合する。
まず、本実施形態で用いる抵抗溶接機10について説明する。抵抗溶接機10は、図8に示すように、第1電極チップ30と、第2電極チップ40と、金属箔押さえ部50と、第1ストッパーボルト60と、第2ストッパーボルト70とを有する。
Next, a plate-like negative electrode current collector terminal 132 (metal plate) included in the terminal-equipped lid member 160 is attached to the metal foil laminated portion 156d of the negative electrode active material layer uncoated portion 156b of the electrode body 150 by resistance welding. Join.
First, the resistance welder 10 used in this embodiment will be described. As shown in FIG. 8, the resistance welder 10 includes a first electrode tip 30, a second electrode tip 40, a metal foil pressing portion 50, a first stopper bolt 60, and a second stopper bolt 70.

第1電極チップ30と第2電極チップ40は、一対の電極チップであり、両者の間に金属箔積層部156dと負極集電端子132(金属板)とを積層方向DCに積層した(重ね合わせた)積層体181を挟んで加圧した状態とし、積層体181に溶接電流を流すための部材である。なお、第1電極チップ30は、積層方向DC(図8において上下方向)に移動可能とされている。一方、第2電極チップ40は固定されており、不動である。ここで、積層方向DCのうち金属箔積層部156d側から負極集電端子132側に向かう方向(図8において下方)を第1積層方向DC1、その反対方向(図8において上方)を第2積層方向DC2とする。   The first electrode chip 30 and the second electrode chip 40 are a pair of electrode chips, and a metal foil laminated portion 156d and a negative electrode current collecting terminal 132 (metal plate) are laminated in the lamination direction DC between them (overlapping). It is a member for applying a welding current to the laminated body 181 with the laminated body 181 being pressed. The first electrode chip 30 is movable in the stacking direction DC (vertical direction in FIG. 8). On the other hand, the second electrode tip 40 is fixed and does not move. Here, in the stacking direction DC, the direction from the metal foil stacking part 156d toward the negative electrode current collector terminal 132 (downward in FIG. 8) is the first stacking direction DC1, and the opposite direction (upward in FIG. 8) is the second stacking. The direction is DC2.

本実施形態では、第1電極チップ30と第2電極チップ40との間に積層体181を配置した状態で、第1電極チップ30によって、金属箔積層部156dに対し、第1積層方向DC1(図8において下方)に一定(規定)の圧縮荷重F1をかけることで、第1電極チップ30と第2電極チップ40とにより、積層体181(金属箔積層部156dと負極集電端子132)を一定の圧縮荷重F1で積層方向DCに加圧(圧接)した状態とすることができる(図9参照)。   In the present embodiment, in the state in which the stacked body 181 is disposed between the first electrode chip 30 and the second electrode chip 40, the first stacking direction DC 1 ( By applying a constant (regular) compressive load F1 (downward in FIG. 8), the laminated body 181 (the metal foil laminated portion 156d and the negative electrode current collecting terminal 132) is formed by the first electrode chip 30 and the second electrode chip 40. It can be in a state of being pressed (pressed) in the stacking direction DC with a constant compressive load F1 (see FIG. 9).

金属箔押さえ部50は、複数の金属箔部156b1が積層方向DCに隙間を空けて積層されている金属箔積層部156dを、複数の金属箔部156b1を隙間無く積層方向DCに重ね合わせるようにして、負極集電端子132(金属板)に対し積層方向DCに押圧する部材である。従って、金属箔押さえ部50により金属箔積層部156dを押圧することで、金属箔押さえ部50と負極集電端子132(金属板)との間に、複数の金属箔部156b1が隙間無く積層方向DCに積層された(重ね合わされた)金属箔積層部156dが配置される。なお、金属箔押さえ部50は、積層方向DC(図8において上下方向)に移動可能とされている。また、金属箔押さえ部50は、貫通孔51を有する円筒形状であり、貫通孔51内に第1電極チップ30を挿通可能としている。   The metal foil holding part 50 is configured so that a plurality of metal foil parts 156b1 are stacked with a gap in the stacking direction DC and a plurality of metal foil parts 156b1 are stacked in the stacking direction DC without a gap. The member is pressed against the negative electrode current collecting terminal 132 (metal plate) in the stacking direction DC. Accordingly, by pressing the metal foil laminated portion 156d by the metal foil holding portion 50, the plurality of metal foil portions 156b1 are laminated in the stacking direction without any gap between the metal foil holding portion 50 and the negative electrode current collecting terminal 132 (metal plate). A metal foil laminated portion 156d laminated (overlaid) on the DC is disposed. The metal foil pressing portion 50 is movable in the stacking direction DC (vertical direction in FIG. 8). The metal foil pressing part 50 has a cylindrical shape having a through hole 51, and allows the first electrode chip 30 to be inserted into the through hole 51.

第1ストッパーボルト60と第2ストッパーボルト70とは、一対のストッパーである。第1ストッパーボルト60は、図示しない部材を介して第1電極チップ30に連結されており(第1電極チップ30と一体になっており)、第1電極チップ30と共に積層方向DCに移動する。従って、第1電極チップ30が積層方向DCへ移動すると、同一の距離だけ、第1ストッパーボルト60も積層方向DCへ移動する。但し、第1ストッパーボルト60は、図示しないサーボモータの駆動により、独立して(第1電極チップ30とは別で)、積層方向DCに移動可能にもされている。一方、第2ストッパーボルト70は固定されており、不動である。第1ストッパーボルト60と第2ストッパーボルト70とは同軸で、積層方向DCに向かい合って配置されている(図8参照)。第1ストッパーボルト60が、第2ストッパーボルト70よりも上方(第2積層方向DC2)に配置されている。   The first stopper bolt 60 and the second stopper bolt 70 are a pair of stoppers. The first stopper bolt 60 is connected to the first electrode chip 30 via a member (not shown) (integrated with the first electrode chip 30), and moves in the stacking direction DC together with the first electrode chip 30. Therefore, when the first electrode chip 30 moves in the stacking direction DC, the first stopper bolt 60 also moves in the stacking direction DC by the same distance. However, the first stopper bolt 60 can be moved in the stacking direction DC independently by driving a servo motor (not shown) (separate from the first electrode chip 30). On the other hand, the second stopper bolt 70 is fixed and does not move. The first stopper bolt 60 and the second stopper bolt 70 are coaxial and are arranged facing the stacking direction DC (see FIG. 8). The 1st stopper volt | bolt 60 is arrange | positioned rather than the 2nd stopper volt | bolt 70 (2nd lamination direction DC2).

従って、後述する通電工程において、第1電極チップ30と共に第1積層方向DC1(下方)に移動してゆく第1ストッパーボルト60を、第2ストッパーボルト70に当接させて停止させることで、第1電極チップ30の第1積層方向DC1(下方)への移動を停止させることができる。
より具体的には、後述する加圧工程において、第1電極チップ30と第2電極チップ40とにより、積層体181(金属箔積層部156dと負極集電端子132)を一定の圧縮荷重F1で積層方向DCに加圧(圧接)した状態で、第1ストッパーボルト60と第2ストッパーボルト70との距離(積層方向DCにかかる距離)を一定値L1に設定すれば、通電工程において、当該通電工程を開始してから積層体181の形状変化(積層体181の軟化及び溶融による形状変化)に伴って第1積層方向DC1(図8において下方)に移動する第1電極チップ30の移動量を、一定値L1にすることができる。
Therefore, in the energization process described later, the first stopper bolt 60 moving in the first stacking direction DC1 (downward) together with the first electrode chip 30 is brought into contact with the second stopper bolt 70 and stopped. The movement of the one-electrode chip 30 in the first stacking direction DC1 (downward) can be stopped.
More specifically, in the pressurizing step described later, the laminated body 181 (the metal foil laminated portion 156d and the negative electrode current collecting terminal 132) is fixed at a constant compressive load F1 by the first electrode chip 30 and the second electrode chip 40. If the distance between the first stopper bolt 60 and the second stopper bolt 70 (distance in the stacking direction DC) is set to a constant value L1 in a state of being pressed (pressed) in the stacking direction DC, The amount of movement of the first electrode chip 30 that moves in the first stacking direction DC1 (downward in FIG. 8) in accordance with the shape change of the stacked body 181 after the start of the process (the shape change due to softening and melting of the stacked body 181). The constant value L1 can be set.

すなわち、通電工程を開始してからの一対の電極チップ間の距離(第1電極チップ30と第2電極チップ40との間の距離)の減少量を、予め設定した一定値L1にすることができる。換言すれば、通電工程において、第1電極チップ30と第2電極チップ40との間の距離の減少量が、一定値L1に達したとき、第1電極チップ30の移動を停止させて、それ以降、第1電極チップ30と第2電極チップ40との間の距離を一定にすることができる。これにより、金属箔積層部156dと負極集電端子132とを安定して溶接することができ、金属箔積層部156dと負極集電端子132の間の溶接強度のバラツキを小さくすることができる。   That is, the amount of decrease in the distance between the pair of electrode chips (distance between the first electrode chip 30 and the second electrode chip 40) after the energization process is started can be set to a predetermined constant value L1. it can. In other words, in the energization process, when the amount of decrease in the distance between the first electrode tip 30 and the second electrode tip 40 reaches a certain value L1, the movement of the first electrode tip 30 is stopped, Thereafter, the distance between the first electrode chip 30 and the second electrode chip 40 can be made constant. Thereby, the metal foil laminated part 156d and the negative electrode current collecting terminal 132 can be stably welded, and the variation in the welding strength between the metal foil laminated part 156d and the negative electrode current collecting terminal 132 can be reduced.

引き続いて、電極体150のうち負極活物質層未塗工部156bの金属箔積層部156dに、板状の負極集電端子132(金属板)を、抵抗溶接により接合する方法について説明する。図8に示すように、第1電極チップ30と第2電極チップ40との間に、金属箔積層部156dと負極集電端子132(金属板)とを積層方向DCに積層した(重ね合わせた)積層体181を配置した状態で、金属箔押さえ部50によって金属箔積層部156dを第1積層方向DC1(下方)に押圧する。これにより、金属箔押さえ部50と負極集電端子132(金属板)との間に、複数の金属箔部156b1が隙間無く積層方向DCに積層された(重ね合わされた)金属箔積層部156dが配置される。なお、このとき、負極集電端子132の下面は、第2電極チップ40に当接した状態とされている。   Subsequently, a method of joining the plate-like negative electrode current collector terminal 132 (metal plate) to the metal foil laminated portion 156d of the negative electrode active material layer uncoated portion 156b of the electrode body 150 by resistance welding will be described. As shown in FIG. 8, between the first electrode chip 30 and the second electrode chip 40, the metal foil laminated portion 156d and the negative electrode current collector terminal 132 (metal plate) were laminated in the lamination direction DC (overlapped). ) With the laminated body 181 disposed, the metal foil laminated portion 156d is pressed in the first lamination direction DC1 (downward) by the metal foil pressing portion 50. Thereby, between the metal foil holding | maintenance part 50 and the negative electrode current collection terminal 132 (metal plate), the several metal foil part 156b1 was laminated | stacked on the lamination direction DC without the gap | interval, and the metal foil laminated | stacked part 156d was laminated | stacked. Be placed. At this time, the lower surface of the negative electrode current collecting terminal 132 is in contact with the second electrode chip 40.

次いで、ステップS3(加圧工程)に進み、第1電極チップ30と第2電極チップ40(一対の電極チップ)により、積層体181を積層方向DCに挟み、第1電極チップ30と第2電極チップ40を通じて積層体181に対し積層方向DCに一定(規定値)の圧縮荷重F1をかけた加圧状態とする。具体的には、図9に示すように、第1電極チップ30を第1積層方向DC1(下方)に移動させ、金属箔押さえ部50の貫通孔51内を挿通させる。そして、第1電極チップ30によって、金属箔積層部156dに対し、第1積層方向DC1(図9において下方)に一定の圧縮荷重F1をかける。これにより、第1電極チップ30と第2電極チップ40とにより、積層体181(金属箔積層部156dと負極集電端子132)を一定の圧縮荷重F1で積層方向DCに加圧(圧接)した状態とする。   Next, the process proceeds to step S3 (pressurizing step), and the first electrode chip 30 and the second electrode are sandwiched between the first electrode chip 30 and the second electrode chip 40 (a pair of electrode chips) in the stacking direction DC. A pressure state in which a constant (specified value) compressive load F1 is applied to the stacked body 181 in the stacking direction DC through the chip 40 is set. Specifically, as shown in FIG. 9, the first electrode chip 30 is moved in the first stacking direction DC <b> 1 (downward) and is inserted through the through hole 51 of the metal foil pressing portion 50. Then, the first electrode chip 30 applies a constant compressive load F1 to the metal foil laminated portion 156d in the first lamination direction DC1 (downward in FIG. 9). Thereby, the laminated body 181 (the metal foil laminated portion 156d and the negative electrode current collecting terminal 132) was pressed (pressed) in the laminating direction DC with a constant compression load F1 by the first electrode chip 30 and the second electrode chip 40. State.

この状態で、第1ストッパーボルト60と第2ストッパーボルト70との間の積層方向DCにかかる距離が、一定値L1であるか否かを確認する。一定値L1でない場合は、図示しないサーボモータの駆動により、第1ストッパーボルト60を積層方向DCに移動させて、第1ストッパーボルト60と第2ストッパーボルト70との間の積層方向DCにかかる離間距離を、一定値L1に調整する。なお、本実施形態では、一定値L1=0.5mmとしている。   In this state, it is confirmed whether or not the distance in the stacking direction DC between the first stopper bolt 60 and the second stopper bolt 70 is a constant value L1. If it is not the constant value L1, the first stopper bolt 60 is moved in the stacking direction DC by driving a servo motor (not shown), and the separation between the first stopper bolt 60 and the second stopper bolt 70 in the stacking direction DC is performed. The distance is adjusted to a constant value L1. In the present embodiment, the constant value L1 = 0.5 mm.

次いで、ステップS4(通電工程)に進み、第1電極チップ30と第2電極チップ40とにより、積層体181を圧縮荷重F1で積層方向DCに加圧した状態で、第1電極チップ30と第2電極チップ40との間に、一定時間(例えば、20ms)、一定の大きさの電流を流して、金属箔積層部156dと負極集電端子132(積層体181)を抵抗溶接する(図10参照)。   Next, the process proceeds to step S4 (energization step), and the first electrode chip 30 and the second electrode chip 40 are pressed with the first electrode chip 30 and the second electrode chip 40 in the stacking direction DC with the compression load F1. A certain amount of current is passed between the two-electrode chip 40 for a certain time (for example, 20 ms), and the metal foil laminated portion 156d and the negative electrode current collector terminal 132 (laminated body 181) are resistance-welded (FIG. 10). reference).

ところで、通電工程では、当該通電工程を開始する(積層体181への通電を開始する)と、通電により発生する抵抗熱(ジュール熱)により、積層体181(金属箔積層部156dと負極集電端子132)が変形(軟化及び溶融)してゆく。この積層体181の変形に伴って、第1電極チップ30が第1積層方向DC1(下方)に移動してゆき、第1電極チップ30と第2電極チップ40との間の距離(積層方向DCの距離)は減少してゆく。   By the way, in the energization process, when the energization process is started (the energization to the laminated body 181 is started), the laminated body 181 (the metal foil laminated portion 156d and the negative electrode current collector) is generated by resistance heat (Joule heat) generated by the energization. The terminal 132) is deformed (softened and melted). With the deformation of the stacked body 181, the first electrode chip 30 moves in the first stacking direction DC1 (downward), and the distance between the first electrode chip 30 and the second electrode chip 40 (stacking direction DC ) Will decrease.

ところが、多数の溶接構造体(端子付き電極体)を順次製造してゆく(すなわち、通電工程を順次行ってゆく)と、第1電極チップ30及び第2電極チップ40の表面の状態(例えば、酸化状態、表面の形状)が変化してゆく。また、金属箔積層部156d及び負極集電端子132の電気抵抗値も、一定とは限らない。このため、多数の溶接構造体(端子付き電極体)を順次製造してゆく(すなわち、通電工程を順次行ってゆく)と、通電工程において発生する抵抗熱(ジュール熱)が変動し、これに伴う積層体181の形状変化が、複数の積層体181の間で大きく異なることがあった。   However, when a large number of welded structures (electrode bodies with terminals) are sequentially manufactured (that is, the energization process is sequentially performed), the surface states of the first electrode tip 30 and the second electrode tip 40 (for example, Oxidation state, surface shape) changes. Further, the electric resistance values of the metal foil laminated portion 156d and the negative electrode current collecting terminal 132 are not always constant. For this reason, when a large number of welded structures (electrode bodies with terminals) are sequentially manufactured (that is, the energization process is performed sequentially), the resistance heat (Joule heat) generated in the energization process fluctuates. The accompanying change in the shape of the stacked body 181 may be greatly different among the multiple stacked bodies 181.

このため、従来(例えば、特許文献1)の製造方法では、通電工程を順次行ってゆくと、通電工程における積層体の形状変化に伴って減少する第1電極チップと第2電極チップとの間の距離の減少量が、大きく変動することがあった。換言すれば、複数の通電工程の間で、通電工程における積層体の形状変化に伴って減少する一対の電極チップ間の距離の減少量が大きく異なることがあった。これにより、金属箔積層部と金属板との溶接強度に大きなバラツキが生じることがあった。   For this reason, in the conventional manufacturing method (for example, patent document 1), if an energization process is performed sequentially, it will be between the 1st electrode chip and 2nd electrode chip which reduce with the shape change of the laminated body in an energization process. The amount of decrease in the distance sometimes fluctuated greatly. In other words, the amount of reduction in the distance between the pair of electrode chips that decreases with the change in the shape of the stacked body in the energization process may vary greatly between the plurality of energization processes. Thereby, a big variation may arise in the welding strength of a metal foil laminated part and a metal plate.

これに対し、本実施形態では、図10に示すように、第1電極チップ30と共に第1積層方向DC1(下方)に移動する第1ストッパーボルト60を、第2ストッパーボルト70に当接させることで、第1電極チップ30の第1積層方向DC1(下方)への移動を制止している。より具体的には、先の加圧工程(ステップS3)において、第1電極チップ30と第2電極チップ40とにより、積層体181を圧縮荷重F1で積層方向DCに加圧した状態で、第1ストッパーボルト60と第2ストッパーボルト70との距離(積層方向DCにかかる距離)を一定値L1に設定している。   In contrast, in the present embodiment, as shown in FIG. 10, the first stopper bolt 60 that moves together with the first electrode chip 30 in the first stacking direction DC1 (downward) is brought into contact with the second stopper bolt 70. Thus, the movement of the first electrode chip 30 in the first stacking direction DC1 (downward) is stopped. More specifically, in the previous pressurizing step (step S3), the first electrode chip 30 and the second electrode chip 40 are used to press the stacked body 181 in the stacking direction DC with the compressive load F1. The distance between the 1 stopper bolt 60 and the second stopper bolt 70 (distance in the stacking direction DC) is set to a constant value L1.

これにより、通電工程を開始してから積層体181の形状変化(積層体181の軟化及び溶融)に伴って第1積層方向DC1(図8〜図10において下方)に移動する第1電極チップ30の移動量を、一定値L1にすることができる。なお、図10では、先の加圧工程(ステップS3)において、第1電極チップ30と第2電極チップ40とにより積層体181を圧縮荷重F1で積層方向DCに加圧した状態における、第1電極チップ30と第1ストッパーボルト60を、二点鎖線で示している。   Thus, the first electrode chip 30 that moves in the first stacking direction DC1 (downward in FIGS. 8 to 10) with the shape change of the stacked body 181 (softening and melting of the stacked body 181) after starting the energization process. Can be set to a constant value L1. In FIG. 10, in the previous pressurizing step (step S <b> 3), the first electrode chip 30 and the second electrode chip 40 in the state where the stacked body 181 is pressed in the stacking direction DC with the compression load F <b> 1. The electrode tip 30 and the first stopper bolt 60 are indicated by a two-dot chain line.

換言すれば、通電工程において、第1電極チップ30と第2電極チップ40との間の距離の減少量が、一定値L1に達したとき、第1電極チップ30の移動を停止させて、それ以降、第1電極チップ30と第2電極チップ40との間の距離を一定にすることができる。このときの状態を、図10に示している。これにより、複数の積層体181を順次溶接していく(通電工程を順次繰り返し行う)場合でも、金属箔積層部156dと負極集電端子132とを安定して溶接することができ、金属箔積層部156dと負極集電端子132の間の溶接強度のバラツキを小さくすることができる。このことは、後述する溶接試験の結果より明らかである。   In other words, in the energization process, when the amount of decrease in the distance between the first electrode tip 30 and the second electrode tip 40 reaches a certain value L1, the movement of the first electrode tip 30 is stopped, Thereafter, the distance between the first electrode chip 30 and the second electrode chip 40 can be made constant. The state at this time is shown in FIG. As a result, even when the plurality of laminated bodies 181 are sequentially welded (the energization process is sequentially repeated), the metal foil laminated portion 156d and the negative electrode current collecting terminal 132 can be stably welded, and the metal foil laminated Variation in welding strength between the portion 156d and the negative electrode current collecting terminal 132 can be reduced. This is clear from the result of the welding test described later.

なお、通電工程では、第1電極チップ30と第2電極チップ40との間に流す電流値の大きさ、及び、通電時間を、「仮に、第1ストッパーボルト60と第2ストッパーボルト70とにより第1電極チップ30の移動を制限しないとしたならば、通電による第1電極チップ30と第2電極チップ40との間の距離の減少量が一定値L1以上となる」値に設定している。   In the energization process, the magnitude of the current value passed between the first electrode tip 30 and the second electrode tip 40 and the energization time are determined by “assuming that the first stopper bolt 60 and the second stopper bolt 70 are used. If the movement of the first electrode tip 30 is not limited, the amount of decrease in the distance between the first electrode tip 30 and the second electrode tip 40 due to energization is set to a value that is equal to or greater than a certain value L1. .

また、通電工程において、第1電極チップ30と第2電極チップ40との間の距離の減少量が、一定値L1に達したとき、第1電極チップ30の移動を停止させて、それ以降、第1電極チップ30と第2電極チップ40との間の距離を一定にすることで、第1電極チップ30及び第2電極チップ40に過度な荷重がかかるのを抑制することができる。これにより、第1電極チップ30及び第2電極チップ40の劣化の進行を遅らせることができ、第1電極チップ30及び第2電極チップ40の寿命を長くすることができる。   Further, in the energization process, when the amount of decrease in the distance between the first electrode tip 30 and the second electrode tip 40 reaches a certain value L1, the movement of the first electrode tip 30 is stopped, and thereafter By making the distance between the first electrode chip 30 and the second electrode chip 40 constant, it is possible to suppress an excessive load from being applied to the first electrode chip 30 and the second electrode chip 40. Thereby, progress of deterioration of the 1st electrode tip 30 and the 2nd electrode tip 40 can be delayed, and the life of the 1st electrode tip 30 and the 2nd electrode tip 40 can be lengthened.

次に、電極体150の正極活物質層未塗工部155bの金属箔積層部155dに、端子付き蓋部材160に含まれる板状の正極集電端子122を、超音波溶接により接合する。具体的には、図示しない超音波アンビルと超音波ホーンとにより、金属箔積層部155dと正極集電端子122を挟んで圧接する。この状態で、超音波ホーンを超音波振動させて、正極集電端子122を金属箔積層部155dに接合する。   Next, the plate-like positive electrode current collecting terminal 122 included in the terminal-attached lid member 160 is joined to the metal foil laminated portion 155d of the positive electrode active material layer uncoated portion 155b of the electrode body 150 by ultrasonic welding. Specifically, the metal foil laminated portion 155d and the positive electrode current collector terminal 122 are sandwiched and pressed by an ultrasonic anvil and an ultrasonic horn (not shown). In this state, the ultrasonic horn is vibrated ultrasonically to join the positive electrode current collecting terminal 122 to the metal foil laminated portion 155d.

これにより、図11に示すように、正極端子部材120と正極155とが電気的に接続され、且つ、負極端子部材130と負極156とが電気的に接続されると共に、端子付き蓋部材160と電極体150とが一体にされた端子付き電極体170(溶接構造体)が完成する。この端子付き電極体170は、端子付き蓋部材160と電極体150とが溶接された溶接構造体であって、電極体150の金属箔積層部156dと端子付き蓋部材160の負極集電端子132(金属板)とが抵抗溶接により接合された溶接構造体である。   Accordingly, as shown in FIG. 11, the positive electrode terminal member 120 and the positive electrode 155 are electrically connected, the negative electrode terminal member 130 and the negative electrode 156 are electrically connected, and the lid member 160 with a terminal A terminal-attached electrode body 170 (welded structure) integrated with the electrode body 150 is completed. The terminal-attached electrode body 170 is a welded structure in which the terminal-attached lid member 160 and the electrode body 150 are welded, and the metal foil laminated portion 156d of the electrode body 150 and the negative electrode current collecting terminal 132 of the terminal-attached lid member 160. (Metal plate) is a welded structure joined by resistance welding.

その後、ステップS5に進み、端子付き電極体170(溶接構造体)の電極体150を、角形収容部111内に収容すると共に、蓋部112で角形収容部111の開口を閉塞する。次いで、蓋部112と角形収容部111とを溶接する。なお、蓋部112の中央には、蓋部112を貫通する注液孔112bが形成されている(図1参照)。   Thereafter, the process proceeds to step S5, in which the electrode body 150 of the electrode body with terminal 170 (welded structure) is housed in the square housing portion 111 and the opening of the square housing portion 111 is closed by the lid portion 112. Next, the lid portion 112 and the square housing portion 111 are welded. A liquid injection hole 112b penetrating the lid 112 is formed in the center of the lid 112 (see FIG. 1).

次に、ステップS6に進み、電池ケース110の注液孔112bを通じて、非水電解液140を電池ケース110内に注入して、非水電解液140を電極体150内に含浸させる。その後、注液孔112bを注液蓋114で封止することで、本実施形態の二次電池100が完成する(図1参照)。   Next, the process proceeds to step S <b> 6, the nonaqueous electrolyte solution 140 is injected into the battery case 110 through the liquid injection hole 112 b of the battery case 110, and the electrode body 150 is impregnated with the nonaqueous electrolyte solution 140. Thereafter, the injection hole 112b is sealed with the injection lid 114, whereby the secondary battery 100 of the present embodiment is completed (see FIG. 1).

(溶接試験)
次に、電極体150と負極端子部材130を、それぞれ複数個(具体的には、3000個)ずつ用意し、前述の抵抗溶接機10を用いて、順次、ステップS3(加圧工程)及びステップS4(通電工程)を行い、電極体150の金属箔積層部156dと負極端子部材130の負極集電端子132(積層体181)を抵抗溶接した(図8〜図10参照)。但し、本試験では、第1電極チップ30及び第2電極チップ40の交換は行うことなく、3000個のサンプルの溶接を同一の第1電極チップ30及び第2電極チップ40で行っている。
(Welding test)
Next, a plurality (specifically, 3000) of electrode bodies 150 and negative electrode terminal members 130 are prepared, and step S3 (pressure process) and step are sequentially performed using the above-described resistance welding machine 10. S4 (energization process) was performed, and resistance welding of the metal foil lamination | stacking part 156d of the electrode body 150 and the negative electrode current collection terminal 132 (lamination body 181) of the negative electrode terminal member 130 was carried out (refer FIGS. 8-10). However, in this test, 3000 samples are welded with the same first electrode tip 30 and second electrode tip 40 without exchanging the first electrode tip 30 and the second electrode tip 40.

また、本試験では、いずれの抵抗溶接においても、一定値L1=0.5mmとしている。すなわち、3000回の加圧工程において、第1電極チップ30と第2電極チップ40とにより、積層体181(金属箔積層部156dと負極集電端子132)を一定の圧縮荷重F1で積層方向DCに加圧(圧接)した状態で、第1ストッパーボルト60と第2ストッパーボルト70との間の積層方向DCにかかる離間距離を、一定値L1=0.5mmに統一している。これにより、3000回の通電工程において、積層体181の形状変化(軟化及び溶融)に伴って第1積層方向DC1(図8〜図10において下方)に移動する第1電極チップ30の移動量を、一定値L1=0.5mmに統一した。   In this test, the constant value L1 is set to 0.5 mm in any resistance welding. That is, in the pressurizing process of 3000 times, the first electrode chip 30 and the second electrode chip 40 are used to cause the laminate 181 (the metal foil laminate 156d and the negative electrode current collector terminal 132) to be laminated in the stacking direction DC with a constant compressive load F1. In the state where the pressure is pressed (pressure contact), the separation distance in the stacking direction DC between the first stopper bolt 60 and the second stopper bolt 70 is unified to a constant value L1 = 0.5 mm. Thereby, in the energization process 3000 times, the movement amount of the first electrode chip 30 that moves in the first stacking direction DC1 (downward in FIGS. 8 to 10) with the shape change (softening and melting) of the stacked body 181 is reduced. The constant value L1 = 0.5 mm.

その後、上述のようにして、電極体150の金属箔積層部156dに負極端子部材130の負極集電端子132を抵抗溶接した3000個のサンプルについて、金属箔積層部156dと負極集電端子132との溶接強度を把握するため、引張強度試験を行った。具体的には、各々のサンプルを、公知の引張強度試験機にセットし、負極集電端子132を金属箔積層部156d(負極活物質層未塗工部156b)から引き離す方向(第1積層方向DC1)に引っ張り、負極集電端子132が金属箔積層部156d(負極活物質層未塗工部156b)から剥がれるまでの間の引張応力の最大値(N)を測定した。この試験結果を、図12に示す。なお、図12では、引張応力の最大値を、引張強度(N)として記載している。   Thereafter, as described above, for the 3000 samples in which the negative electrode current collector terminal 132 of the negative electrode terminal member 130 was resistance-welded to the metal foil laminate portion 156d of the electrode body 150, the metal foil laminate portion 156d, the negative electrode current collector terminal 132, In order to grasp the welding strength, a tensile strength test was conducted. Specifically, each sample is set in a known tensile strength tester, and the negative electrode current collector terminal 132 is separated from the metal foil laminated portion 156d (negative electrode active material layer uncoated portion 156b) (first lamination direction) DC1) and the maximum value (N) of the tensile stress until the negative electrode current collector terminal 132 was peeled off from the metal foil laminated portion 156d (negative electrode active material layer uncoated portion 156b) was measured. The test results are shown in FIG. In FIG. 12, the maximum value of tensile stress is shown as tensile strength (N).

図12に示すように、3000個のサンプルでは、いずれも引張強度が220〜240Nの範囲内の値となった。この結果より、本実施形態の製造方法によれば、金属箔積層部156dと負極集電端子132(金属板)とを安定して溶接することができ、金属箔積層部156dと負極集電端子132の間の溶接強度のバラツキを小さくすることができるといえる。すなわち、通電工程において、積層体181の形状変化(軟化及び溶融)に伴って第1積層方向DC1(図8〜図10において下方)に移動する第1電極チップ30の移動量を、一定値L1にすることで、金属箔積層部156dと負極集電端子132(金属板)の間の溶接強度のバラツキを小さくすることができるといえる。   As shown in FIG. 12, all of the 3000 samples had a tensile strength in the range of 220 to 240N. As a result, according to the manufacturing method of the present embodiment, the metal foil laminated portion 156d and the negative electrode current collector terminal 132 (metal plate) can be stably welded, and the metal foil laminated portion 156d and the negative electrode current collector terminal can be welded. It can be said that the variation in the welding strength between 132 can be reduced. That is, in the energization process, the amount of movement of the first electrode tip 30 that moves in the first stacking direction DC1 (downward in FIGS. 8 to 10) with the shape change (softening and melting) of the stacked body 181 is a constant value L1. By doing so, it can be said that the variation in the welding strength between the metal foil laminated portion 156d and the negative electrode current collecting terminal 132 (metal plate) can be reduced.

(一定値L1の好ましい範囲)
次に、一定値L1の好ましい範囲を調査した。具体的には、複数のサンプルを用意し、一定値L1の値を0.2mm〜1.2mmの範囲内で異ならせて、実施形態と同様にして、各々のサンプルについて金属箔積層部156dと負極集電端子132とを抵抗溶接した。その後、これらのサンプルについて、前述の溶接試験と同様に、金属箔積層部156dと負極集電端子132との溶接強度を把握するため、引張強度試験を行った。この結果を図13に示す。
(Preferable range of constant value L1)
Next, a preferable range of the constant value L1 was investigated. Specifically, a plurality of samples are prepared, and the value of the constant value L1 is varied within the range of 0.2 mm to 1.2 mm, and in the same manner as in the embodiment, for each sample, the metal foil laminated portion 156d and The negative electrode current collector terminal 132 was resistance welded. Then, in order to grasp | ascertain the welding strength of the metal foil laminated part 156d and the negative electrode current collection terminal 132 about these samples similarly to the above-mentioned welding test, the tensile strength test was done. The result is shown in FIG.

図13に示すように、一定値L1の値を0.4mm以上として溶接することで、金属箔積層部156dと負極集電端子132との溶接強度を高めることができた。しかしながら、一定値L1の値を0.7mmよりも大きくして溶接した場合には、負極集電端子132(金属板)の変形が大きくなった。溶接強度(引張強度)は高いほうが好ましく、負極集電端子132(金属板)の変形は小さいほうが好ましい。従って、一定値L1の値は、0.4mm以上0.7mm以下とするのが好ましいといえる。   As shown in FIG. 13, the welding strength between the metal foil laminated portion 156d and the negative electrode current collector terminal 132 could be increased by welding with the constant value L1 being 0.4 mm or more. However, when welding was performed with the constant value L1 greater than 0.7 mm, the deformation of the negative electrode current collector terminal 132 (metal plate) increased. It is preferable that the welding strength (tensile strength) is high, and the deformation of the negative electrode current collector terminal 132 (metal plate) is preferably small. Therefore, it can be said that the value of the constant value L1 is preferably 0.4 mm or more and 0.7 mm or less.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

例えば、実施形態では、金属箔積層部として、扁平捲回型の電極体150を構成する負極集電箔の端部(負極活物質層未塗工部156b)のうち、積層方向DCに並ぶ矩形状の部位(これが金属箔部に相当する)が、複数、積層方向DCに積層されたものを例示した。しかしながら、金属箔積層部は、これに限定されるものではない。例えば、金属箔積層部は、積層型電極体を構成する電極の集電箔(正極集電箔または負極集電箔)の端部(金属箔のみからなる活物質層未塗工部、これが金属箔部に相当する)が、複数、積層方向に積層されたものであっても良い。   For example, in the embodiment, among the end portions of the negative electrode current collector foil (the negative electrode active material layer uncoated portion 156b) constituting the flat wound electrode body 150 as the metal foil laminated portion, rectangular shapes aligned in the lamination direction DC are arranged. The shape part (this is corresponded to a metal foil part) illustrated what was laminated | stacked by two or more in the lamination direction DC. However, the metal foil laminate is not limited to this. For example, the metal foil laminated part is an end part of the current collector foil (positive electrode current collector foil or negative electrode current collector foil) of the electrode constituting the laminated electrode body (the active material layer non-coated part consisting only of the metal foil, which is a metal (Corresponding to a foil portion) may be laminated in the laminating direction.

また、金属箔積層部は、電極体の一部に限定されるものではなく、「金属箔からなる複数の金属箔部が積層方向に積層されたもの」であれば、いずれのものであっても良い。
また、実施形態では、金属板として、集電端子(負極集電端子132)を例示したが、金属板はこれに限定されるものではない。金属板は、板状の金属部材であれば、いずれのものであっても良い。
In addition, the metal foil laminated portion is not limited to a part of the electrode body, and may be any one as long as “a plurality of metal foil portions made of metal foil are laminated in the laminating direction”. Also good.
In the embodiment, the current collecting terminal (negative current collecting terminal 132) is exemplified as the metal plate, but the metal plate is not limited to this. The metal plate may be any plate-shaped metal member.

10 抵抗溶接機
30 第1電極チップ
40 第2電極チップ
60 第1ストッパーボルト
70 第2ストッパーボルト
100 二次電池
130 負極端子部材
132 負極集電端子(金属板)
156b 負極活物質層未塗工部
156b1 金属箔部
156c 負極活物質層塗工部
156d 金属箔積層部
158 負極集電箔(金属箔)
159 負極活物質層
110 電池ケース
112 蓋部
150 電極体
155 正極
156 負極
157 セパレータ
160 端子付き蓋部材
170 端子付き電極体(溶接構造体)
181 積層体
DB 幅方向
DC 積層方向
L1 一定値
S3 加圧工程
S4 通電工程
DESCRIPTION OF SYMBOLS 10 Resistance welding machine 30 1st electrode tip 40 2nd electrode tip 60 1st stopper bolt 70 2nd stopper bolt 100 Secondary battery 130 Negative electrode terminal member 132 Negative electrode current collection terminal (metal plate)
156b Negative electrode active material layer uncoated portion 156b1 Metal foil portion 156c Negative electrode active material layer coated portion 156d Metal foil laminated portion 158 Negative electrode current collector foil (metal foil)
159 Negative electrode active material layer 110 Battery case 112 Lid 150 Electrode body 155 Positive electrode 156 Negative electrode 157 Separator 160 Lid member with terminal 170 Electrode body with terminal (welded structure)
181 Laminated body DB Width direction DC Laminating direction L1 Constant value S3 Pressurizing step S4 Energizing step

Claims (1)

金属箔からなる複数の金属箔部が積層方向に積層された金属箔積層部と、金属板と、が溶接された溶接構造体の製造方法であって、
前記金属箔積層部と前記金属板とを前記積層方向に積層した積層体を、抵抗溶接機の一対の電極チップにより前記積層方向に挟み、前記一対の電極チップを通じて前記積層体に対し前記積層方向に一定の圧縮荷重をかけた加圧状態とする加圧工程と、
前記加圧状態で前記一対の電極チップ間に電流を流して、前記金属箔積層部と前記金属板とを溶接する通電工程と、を備え、
前記通電工程では、当該通電工程を開始してからの前記一対の電極チップ間の距離の減少量を、予め設定した一定値にする
溶接構造体の製造方法において、
前記一対の電極チップは、前記積層方向に移動する第1電極チップと、不動の第2電極チップと、であり、
前記抵抗溶接機は、前記第1電極チップに連結されて前記第1電極チップと共に前記積層方向に移動する第1ストッパーと、前記第1ストッパーに対して前記積層方向に向かい合って配置された不動の第2ストッパーと、を備え、
前記加圧工程では、前記加圧状態で、前記第1ストッパーと前記第2ストッパーとの間の前記積層方向にかかる距離が、前記一定値であるか否かを確認し、前記一定値でない場合は、前記第1ストッパーと前記第2ストッパーとの間の前記積層方向にかかる距離を前記一定値に調整し、
前記通電工程では、前記第1電極チップと共に前記積層方向に移動してゆく前記第1ストッパーが前記第2ストッパーに当接して停止することで、前記第1電極チップの前記積層方向への移動を停止させて、これによって、当該通電工程を開始してからの前記第1電極チップと前記第2電極チップとの間の距離の減少量を、前記一定値にする
溶接構造体の製造方法
A metal foil laminated portion in which a plurality of metal foil portions made of metal foil are laminated in a laminating direction, and a method for producing a welded structure in which a metal plate is welded,
A laminated body obtained by laminating the metal foil laminated portion and the metal plate in the laminating direction is sandwiched in the laminating direction by a pair of electrode chips of a resistance welder, and the laminating direction with respect to the laminated body through the pair of electrode chips A pressurizing step for applying a certain compression load to the pressurizing state;
An electric current process in which a current is passed between the pair of electrode chips in the pressurized state to weld the metal foil laminate and the metal plate,
In the energization process, in the method for manufacturing a welded structure, the amount of decrease in the distance between the pair of electrode tips after the energization process is started is set to a predetermined constant value .
The pair of electrode tips are a first electrode tip that moves in the stacking direction and a stationary second electrode tip,
The resistance welder is connected to the first electrode tip and moves in the stacking direction together with the first electrode tip, and the stationary welder is disposed facing the first stopper in the stacking direction. A second stopper,
In the pressurizing step, in the pressurized state, it is confirmed whether the distance applied in the stacking direction between the first stopper and the second stopper is the constant value, and is not the constant value Adjusts the distance in the stacking direction between the first stopper and the second stopper to the constant value,
In the energization step, the first electrode chip moving in the laminating direction together with the first electrode chip is brought into contact with the second stopper and stopped, thereby moving the first electrode chip in the laminating direction. By stopping, the amount of decrease in the distance between the first electrode chip and the second electrode chip after starting the energization step is set to the constant value.
Method for producing a welded structure.
JP2015214198A 2015-10-30 2015-10-30 Manufacturing method of welded structure Active JP6601161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015214198A JP6601161B2 (en) 2015-10-30 2015-10-30 Manufacturing method of welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015214198A JP6601161B2 (en) 2015-10-30 2015-10-30 Manufacturing method of welded structure

Publications (2)

Publication Number Publication Date
JP2017080792A JP2017080792A (en) 2017-05-18
JP6601161B2 true JP6601161B2 (en) 2019-11-06

Family

ID=58712765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015214198A Active JP6601161B2 (en) 2015-10-30 2015-10-30 Manufacturing method of welded structure

Country Status (1)

Country Link
JP (1) JP6601161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6784232B2 (en) * 2017-06-20 2020-11-11 トヨタ自動車株式会社 Welding method of laminated metal foil
CN114024042A (en) * 2021-10-20 2022-02-08 惠州锂威新能源科技有限公司 Preparation method of multi-tab lithium battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043731Y2 (en) * 1985-07-12 1992-02-05
JPH106018A (en) * 1996-03-26 1998-01-13 Dengensha Mfg Co Ltd Resistance spot welder
JP2014018810A (en) * 2012-07-13 2014-02-03 Toyota Industries Corp Resistance welding apparatus and resistance welding method using the same
JP6186208B2 (en) * 2013-08-22 2017-08-23 日本アビオニクス株式会社 Welding equipment
JP6166052B2 (en) * 2013-02-04 2017-07-19 日本アビオニクス株式会社 Welding equipment
JP2015136701A (en) * 2014-01-20 2015-07-30 株式会社豊田自動織機 Manufacturing method of power storage device

Also Published As

Publication number Publication date
JP2017080792A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US11075374B2 (en) Method for producing electrode assembly and method for producing nonaqueous electrolyte secondary battery
JP5981809B2 (en) Prismatic secondary battery
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
CN108807854B (en) Electrode laminate and method for producing battery
US20160276704A1 (en) Energy storage device
JP5287181B2 (en) Battery and battery manufacturing method
WO2014021080A1 (en) Electronic-device production method
JP2014167881A (en) Battery and method of manufacturing battery
JPWO2018159197A1 (en) Secondary battery
WO2021020032A1 (en) Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
US9505082B2 (en) Manufacturing method of electric storage apparatus and electric storage apparatus
JP6601161B2 (en) Manufacturing method of welded structure
JP2014018810A (en) Resistance welding apparatus and resistance welding method using the same
WO2014112141A1 (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP5962280B2 (en) Electrode manufacturing method
CN111554960B (en) Method for manufacturing power storage element, bonding method, and bonded body
EP3508299B1 (en) Method for manufacturing laminated metal foil
JP2020102320A (en) Manufacturing method of secondary battery
JP5574542B2 (en) Method for joining a plurality of electrode plate components
JP6668628B2 (en) Capacitor and method of manufacturing capacitor
JP2013105671A (en) Secondary battery, vehicle, and method for manufacturing secondary battery
JP7010904B2 (en) Manufacturing method of power storage element
US11342618B2 (en) Secondary battery, method of manufacturing the same, and method of manufacturing conductive member for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6601161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151