JP6596582B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP6596582B2
JP6596582B2 JP2018516271A JP2018516271A JP6596582B2 JP 6596582 B2 JP6596582 B2 JP 6596582B2 JP 2018516271 A JP2018516271 A JP 2018516271A JP 2018516271 A JP2018516271 A JP 2018516271A JP 6596582 B2 JP6596582 B2 JP 6596582B2
Authority
JP
Japan
Prior art keywords
light
light conversion
conversion member
holder
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018516271A
Other languages
Japanese (ja)
Other versions
JPWO2017195303A1 (en
Inventor
和昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2017195303A1 publication Critical patent/JPWO2017195303A1/en
Application granted granted Critical
Publication of JP6596582B2 publication Critical patent/JP6596582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/15Thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、照明装置に関する。   The present invention relates to a lighting device.

小型固体光源から出射された励起光を光ファイバで導光し、光ファイバの先端に配置される波長変換部材により励起光を波長変換して例えば所望の照射パターンまた色を有する照明光を出射する照明装置が提案されている。   The excitation light emitted from the small solid light source is guided by an optical fiber, and the wavelength of the excitation light is converted by a wavelength conversion member disposed at the tip of the optical fiber to emit illumination light having a desired irradiation pattern or color, for example. Lighting devices have been proposed.

例えば、特許文献1は、励起光を出射する光源と、光源から出射された励起光を導光する導光部材と、励起光を受光して、受光した励起光の少なくとも一部を吸収して励起光の波長とは異なる波長を有する光(波長変換光)を照明光として出射する波長変換部材とを具備する発光装置を開示している。   For example, Patent Document 1 discloses a light source that emits excitation light, a light guide member that guides excitation light emitted from the light source, and receives excitation light and absorbs at least part of the received excitation light. A light-emitting device including a wavelength conversion member that emits light having a wavelength different from the wavelength of excitation light (wavelength-converted light) as illumination light is disclosed.

特開2008−270229号公報JP 2008-270229 A

特許文献1の波長変換部材において、複数の波長変換層が互いに対して積層されており、波長変換層それぞれが励起光を波長変換して波長変換光を出射し、複数の波長変換光が照明光として利用される。したがって、良好な色(演色性)を有する照明光が実現される。   In the wavelength conversion member of Patent Document 1, a plurality of wavelength conversion layers are stacked on each other, each of the wavelength conversion layers converts the wavelength of the excitation light to emit wavelength conversion light, and the plurality of wavelength conversion lights are illumination light. Used as Therefore, illumination light having a good color (color rendering) is realized.

しかしながら、複数の波長変換層のうちの第1波長変換層が波長変換する際に、変換損失によって熱が第1波長変換層から発生する。この熱は、複数の波長変換層の積層構造によって、第1波長変換層から複数の波長変換層のうちの第2波長変換層に伝達される。したがって、波長変換部材は、波長変換層それぞれの発熱量を合算した総発熱量による温度上昇のもとで、波長変換する。   However, when the first wavelength conversion layer of the plurality of wavelength conversion layers performs wavelength conversion, heat is generated from the first wavelength conversion layer due to conversion loss. This heat is transferred from the first wavelength conversion layer to the second wavelength conversion layer among the plurality of wavelength conversion layers by the laminated structure of the plurality of wavelength conversion layers. Therefore, the wavelength conversion member performs wavelength conversion under a temperature increase due to the total calorific value obtained by adding the calorific values of the wavelength conversion layers.

波長変換部材として開示される蛍光体は、一般的に、蛍光体の温度上昇に伴い波長変換効率が低下するという温度消光特性を有する。波長変換部材は、波長変換層単体の発熱量による温度上昇分から、さらに高い温度へ上昇したもとで、発光する。したがって、温度消光特性によって波長変換効率が低下し、照明光の明るさが低下してしまう。   The phosphor disclosed as the wavelength conversion member generally has a temperature quenching characteristic that the wavelength conversion efficiency decreases as the temperature of the phosphor increases. The wavelength conversion member emits light when the temperature rises due to the amount of heat generated by the wavelength conversion layer alone and then rises to a higher temperature. Therefore, the wavelength conversion efficiency decreases due to the temperature extinction characteristic, and the brightness of the illumination light decreases.

例えば、発光装置が明るい照明光を必要とする内視鏡に搭載され、このとき波長変換部材が内視鏡挿入部の先端部に配置されるとする。波長変換層によって、挿入部では局所的に温度が高く上昇してしまう。すると、温度消光特性によって波長変換効率が低下し、照明光の明るさが低下し、内視鏡が必要とする要件を満たさなくなってしまうことが考えられる。   For example, it is assumed that the light-emitting device is mounted on an endoscope that requires bright illumination light, and at this time, the wavelength conversion member is disposed at the distal end portion of the endoscope insertion portion. Due to the wavelength conversion layer, the temperature rises locally at the insertion portion. Then, it is conceivable that the wavelength conversion efficiency is lowered due to the temperature quenching characteristic, the brightness of the illumination light is lowered, and the requirement required by the endoscope is not satisfied.

本発明は、これらの事情に鑑みてなされたものであり、熱の集中を抑制して明るい照明光を実現可能な照明装置を提供することを目的とする。   The present invention has been made in view of these circumstances, and an object thereof is to provide an illuminating device capable of realizing bright illumination light while suppressing concentration of heat.

本発明の一態様は1次光の光学特性を変換して照明光を出射する光変換ユニットを有する照明装置であり、前記光変換ユニットは、前記1次光の一部を吸収し、吸収した前記1次光の前記光学特性を変換し、前記光学特性を変換する際に熱を発生する第1光変換部材及び第2光変換部材と、前記第1光変換部材と前記第2光変換部材との少なくとも一方の熱伝導率よりも低い熱伝導率を有する熱伝達抑制部材と、前記第1光変換部材と前記第2光変換部材とを内部に保持し、前記熱伝達抑制部材の前記熱伝導率よりも高い熱伝導率を有するホルダと、を具備し、前記第1光変換部材は、前記第2光変換部材とは離れて配置され、前記熱伝達抑制部材は、前記第1光変換部材と前記第2光変換部材との間の少なくとも一部に配置された透明部材であり、前記第1光変換部材と前記第2光変換部材との一方から前記第1光変換部材と前記第2光変換部材との他方への前記熱の伝達を抑制する。前記第1光変換部材と前記第2光変換部材は、前記ホルダに熱的に接続されている。前記ホルダの前記熱伝導率は、前記第1光変換部材の前記熱伝導率と前記第2光変換部材の前記熱伝導率とよりも高い。前記第1光変換部材の発熱量は、前記第2光変換部材の発熱量よりも多い。 One embodiment of the present invention is a lighting device including a light conversion unit that converts an optical characteristic of primary light and emits illumination light, and the light conversion unit absorbs and absorbs part of the primary light. A first light conversion member and a second light conversion member that convert the optical characteristics of the primary light and generate heat when converting the optical characteristics, the first light conversion member, and the second light conversion member. A heat transfer suppression member having a thermal conductivity lower than at least one of the thermal conductivity, and the first light conversion member and the second light conversion member are held inside, and the heat of the heat transfer suppression member A holder having a thermal conductivity higher than the conductivity , wherein the first light conversion member is disposed apart from the second light conversion member, and the heat transfer suppression member is the first light conversion member. transparent member arranged at least partly between the and the member second light conversion member Yes, suppressing the transmission of the heat to the other of said second light conversion member and the first light conversion member from one of said second light conversion member and the first light conversion member. The first light conversion member and the second light conversion member are thermally connected to the holder. The thermal conductivity of the holder is higher than the thermal conductivity of the first light conversion member and the thermal conductivity of the second light conversion member. The amount of heat generated by the first light conversion member is greater than the amount of heat generated by the second light conversion member.

本発明によれば、熱の集中を抑制して明るい照明光を実現可能な照明装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the illuminating device which can suppress the concentration of heat and can implement | achieve bright illumination light can be provided.

図1は、第1の実施形態の照明装置を有する内視鏡システムの概略図である。FIG. 1 is a schematic view of an endoscope system having the illumination device according to the first embodiment. 図2は、第1の実施形態の照明装置の光変換ユニットを模式的に示す図である。FIG. 2 is a diagram schematically illustrating a light conversion unit of the lighting apparatus according to the first embodiment. 図3は、第1の実施形態の照明装置における第1,2光変換部材の励起スペクトル及び発光スペクトルを示す図である。FIG. 3 is a diagram illustrating an excitation spectrum and an emission spectrum of the first and second light conversion members in the illumination device of the first embodiment. 図4は、第1,2光変換部材における温度と発光強度維持率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the temperature and the emission intensity maintenance rate in the first and second light conversion members. 図5は、光変換ユニットにおけるホルダ内部の1次光と第1変換光と第2変換光とを模式的に示す図である。FIG. 5 is a diagram schematically showing the primary light, the first converted light, and the second converted light inside the holder in the light conversion unit. 図6は、光変換ユニットから出射される照明光(第1変換光及び第2変換光)の配光特性の一例を示す図である。FIG. 6 is a diagram illustrating an example of light distribution characteristics of illumination light (first converted light and second converted light) emitted from the light conversion unit. 図7は、ホルダ内部において伝達される熱の一例を示す図である。FIG. 7 is a diagram illustrating an example of heat transferred inside the holder. 図8は、第1の実施形態の変形例1における光変換ユニットを模式的に示す図である。FIG. 8 is a diagram schematically illustrating a light conversion unit in Modification 1 of the first embodiment. 図9は、第1の実施形態の変形例2における光変換ユニットを模式的に示す図である。FIG. 9 is a diagram schematically illustrating a light conversion unit in Modification 2 of the first embodiment. 図10は、第1の実施形態の変形例3における光変換ユニットを模式的に示す図である。FIG. 10 is a diagram schematically illustrating a light conversion unit in Modification 3 of the first embodiment. 図11は、第1の実施形態の変形例4における光変換ユニットを模式的に示す図である。FIG. 11 is a diagram schematically illustrating a light conversion unit in Modification 4 of the first embodiment. 図12は、第1の実施形態の変形例5における光変換ユニットを模式的に示す図である。FIG. 12 is a diagram schematically illustrating a light conversion unit in Modification 5 of the first embodiment. 図13は、第2の実施形態の照明装置の光変換ユニットにおけるホルダ内部の1次光と第1変換光と第2変換光とを模式的に示す図である。FIG. 13 is a diagram schematically illustrating the primary light, the first converted light, and the second converted light inside the holder in the light conversion unit of the lighting apparatus according to the second embodiment. 図14は、第2の実施形態の変形例1におけるホルダ内部の1次光と第1変換光とを模式的に示す図である。FIG. 14 is a diagram schematically illustrating the primary light and the first converted light inside the holder according to Modification 1 of the second embodiment. 図15は、第2の実施形態の変形例2における光変換ユニットを模式的に示す図である。FIG. 15 is a diagram schematically illustrating a light conversion unit in Modification 2 of the second embodiment. 図16は、第3の実施形態の照明装置の光変換ユニットを模式的に示す図である。FIG. 16 is a diagram schematically illustrating a light conversion unit of the illumination device according to the third embodiment. 図17は、第4の実施形態の照明装置を有する内視鏡システムの概略図である。FIG. 17 is a schematic view of an endoscope system having the illumination device according to the fourth embodiment.

[第1の実施形態]
図1は、第1の実施形態の照明装置10を有する内視鏡システム1の概略図である。内視鏡システム1は、被観察体Sに照明光を照射する照明装置10と、例えば照明光の照明光量を設定するユーザーインターフェースである入力部30とを有する。内視鏡システム1は、被観察体Sからの反射光により被観察体Sの画像を取得する画像取得装置50と、被観察体Sの画像を表示する画像表示部70とを有する。本実施形態の照明装置10は、内視鏡システム1に用いられる内視鏡用照明装置であるが、これに限定される必要はなく、内視鏡以外の機器に用いられる照明装置であってもよい。
[First Embodiment]
FIG. 1 is a schematic diagram of an endoscope system 1 having an illumination device 10 according to the first embodiment. The endoscope system 1 includes an illuminating device 10 that irradiates the observation object S with illumination light, and an input unit 30 that is a user interface for setting the illumination light amount of the illumination light, for example. The endoscope system 1 includes an image acquisition device 50 that acquires an image of the observed object S by reflected light from the observed object S, and an image display unit 70 that displays an image of the observed object S. Although the illuminating device 10 of this embodiment is an illuminating device for endoscopes used for the endoscope system 1, it is not necessarily limited to this, It is an illuminating device used for apparatuses other than an endoscope. Also good.

また、内視鏡システム1は、内視鏡2と、本体部40と、内視鏡2と本体部40とを着脱可能に接続する接続部60とを有する。内視鏡2は、例えばその先端が管腔に挿入される挿入部20と、挿入部20の基端部に連設される把持部21と、把持部21から延出されるユニバーサルコード23とを有する。接続部60は、ユニバーサルコード23の端部と本体部40とを着脱可能に接続する。照明装置10と画像取得装置50とは、内視鏡2から接続部60、本体部40にまたがって配置される。入力部30は、本体部40に配置される。画像表示部70は、挿入部20と本体部40と接続部60とは別体である。   The endoscope system 1 also includes an endoscope 2, a main body 40, and a connection unit 60 that removably connects the endoscope 2 and the main body 40. The endoscope 2 includes, for example, an insertion portion 20 whose distal end is inserted into a lumen, a gripping portion 21 provided continuously with a proximal end portion of the insertion portion 20, and a universal cord 23 extending from the gripping portion 21. Have. The connection part 60 connects the end part of the universal cord 23 and the main body part 40 detachably. The illumination device 10 and the image acquisition device 50 are disposed across the connection unit 60 and the main body unit 40 from the endoscope 2. The input unit 30 is disposed in the main body unit 40. The image display unit 70 is separate from the insertion unit 20, the main body unit 40, and the connection unit 60.

照明装置10は、1次光を出射する1次光源11と、1次光源11を制御する光源制御回路12と、1次光源11から出射された1次光を導光する光ファイバ13と、光ファイバ13によって導光された1次光の光学特性を変換し、変換した光を照明光として出射する光変換ユニット100とを有する。光変換ユニット100は、照明光を光変換ユニット100から前方の照射領域に放射し、照明光を被観察体Sに照射する。   The illumination device 10 includes a primary light source 11 that emits primary light, a light source control circuit 12 that controls the primary light source 11, an optical fiber 13 that guides primary light emitted from the primary light source 11, The optical conversion unit 100 converts the optical characteristics of the primary light guided by the optical fiber 13 and emits the converted light as illumination light. The light conversion unit 100 emits illumination light from the light conversion unit 100 to a front irradiation region, and irradiates the observation object S with illumination light.

入力部30は、照明装置10の電源動作(ON/OFF)、照明装置10から出射される照明光の光量を設定するユーザーインターフェースを有する。入力部30は、内視鏡システム1の制御に関する指示を各構成に入力してもよい。入力部30には、不図示のキーボード、マウスなどの入力装置からユーザによる指示が入力される。   The input unit 30 has a user interface for setting the power supply operation (ON / OFF) of the illumination device 10 and the amount of illumination light emitted from the illumination device 10. The input unit 30 may input an instruction regarding control of the endoscope system 1 to each component. An instruction from the user is input to the input unit 30 from an input device such as a keyboard and a mouse (not shown).

画像取得装置50は、撮像部51と、画像処理回路52とを有する。撮像部51は、例えばCCDイメージャである撮像素子を含み、挿入部20の内部で挿入部20の先端に配置される。撮像部51は、照明装置10から出射される照明光が被観察体Sで反射してその反射光から得られる光学像を電気信号に変換する。画像処理回路52は、撮像部51に電気的に接続されており、本体部40に配置される。画像処理回路52は、撮像部51から出力された電気信号に基づいて被観察体Sの画像信号を生成する。   The image acquisition device 50 includes an imaging unit 51 and an image processing circuit 52. The imaging unit 51 includes an imaging device that is, for example, a CCD imager, and is disposed at the distal end of the insertion unit 20 inside the insertion unit 20. The imaging unit 51 reflects the illumination light emitted from the illumination device 10 by the observation object S and converts an optical image obtained from the reflected light into an electrical signal. The image processing circuit 52 is electrically connected to the imaging unit 51 and is disposed in the main body unit 40. The image processing circuit 52 generates an image signal of the observation object S based on the electrical signal output from the imaging unit 51.

画像表示部70は、画像取得装置50の画像処理回路52に接続される。画像表示部70は、液晶ディスプレイ等の一般的な表示装置であり、画像処理回路52で生成された画像信号に基づいて被観察体Sの画像を表示する。   The image display unit 70 is connected to the image processing circuit 52 of the image acquisition device 50. The image display unit 70 is a general display device such as a liquid crystal display, and displays an image of the observation object S based on the image signal generated by the image processing circuit 52.

照明装置10の詳細な構成について説明する。
照明装置10は、上述したように、1次光源11と、光源制御回路12と、光ファイバ13と、光変換ユニット100とを有する。1次光源11と光源制御回路12とは、本体部40に配置される。光ファイバ13は、内視鏡2から接続部60を介して本体部40にまたがって配置される。光変換ユニット100は、挿入部20の内部で挿入部20の先端に配置される。
A detailed configuration of the illumination device 10 will be described.
The illumination device 10 includes the primary light source 11, the light source control circuit 12, the optical fiber 13, and the light conversion unit 100 as described above. The primary light source 11 and the light source control circuit 12 are disposed in the main body 40. The optical fiber 13 is disposed across the main body portion 40 from the endoscope 2 via the connection portion 60. The light conversion unit 100 is disposed at the tip of the insertion unit 20 inside the insertion unit 20.

1次光源11は、1次光源11から出射された1次光を光変換ユニット100に導光する光ファイバ13を介して光変換ユニット100に光学的に接続される。1次光源11は、例えば発光波長のピークが445nmである青色レーザー光を出射するレーザーダイオード(以下、青色LD14と称する)と、青色LD14を駆動するための光源駆動部15とを有する。青色LD14は、1次光である第1レーザー光を出射する第1レーザー光源である。本実施形態における1次光は、発光波長のピークが445nmである青色レーザー光と定義する。   The primary light source 11 is optically connected to the light conversion unit 100 via an optical fiber 13 that guides the primary light emitted from the primary light source 11 to the light conversion unit 100. The primary light source 11 includes, for example, a laser diode (hereinafter, referred to as a blue LD 14) that emits blue laser light having an emission wavelength peak of 445 nm, and a light source driving unit 15 for driving the blue LD 14. The blue LD 14 is a first laser light source that emits a first laser beam that is primary light. The primary light in the present embodiment is defined as blue laser light having an emission wavelength peak of 445 nm.

光源制御回路12は、1次光源11に接続される。光源制御回路12には、入力部30と画像取得装置50(画像処理回路52)とが接続される。光源制御回路12には、入力部30から出力された照明光に対する光量制御情報、または画像取得装置50から出力された調光制御情報が入力される。光源制御回路12は、これらの制御情報に基づいて、青色LD14を所定の駆動電流、駆動間隔で駆動させるための制御信号を光源駆動部15に送信する。光源駆動部15は、制御信号を基に青色LD14を駆動する。   The light source control circuit 12 is connected to the primary light source 11. The light source control circuit 12 is connected to the input unit 30 and the image acquisition device 50 (image processing circuit 52). The light source control circuit 12 receives light amount control information for illumination light output from the input unit 30 or dimming control information output from the image acquisition device 50. Based on these control information, the light source control circuit 12 transmits a control signal for driving the blue LD 14 at a predetermined drive current and drive interval to the light source drive unit 15. The light source driving unit 15 drives the blue LD 14 based on the control signal.

光ファイバ13は、1次光源11から出射される1次光を光変換ユニット100まで導光する導光部材である。光ファイバ13の入射端は、1次光源11に接続される。光ファイバ13の出射端(以下、光ファイバ出射端16と称する)は、光変換ユニット100に接続される。本実施形態における光ファイバ13は、例えば、コア径50μm、開口数FNA=0.2のマルチモード光ファイバである。光ファイバ13は、コア13a(図2参照)と、コア13aを覆うクラッド13b(図2参照)と、クラッド13bを覆うジャケット(図示せず)とを有する。ジャケットが剥かれてクラッド13bの外周面が露出している状態の光ファイバ13の光ファイバ出射端16側が後述する第1ホルダ160の中空部161に挿入される。1次光をコア13aに閉じ込めるため、コア13aの屈折率はクラッド13bの屈折率よりも高い。ジャケットは、例えば、引っ張り耐性及び曲げ耐性といった光ファイバ13の機械的な強度を向上するため、ナイロン、アクリル、ポリイミド、ETFEといった樹脂を用いる。   The optical fiber 13 is a light guide member that guides the primary light emitted from the primary light source 11 to the light conversion unit 100. The incident end of the optical fiber 13 is connected to the primary light source 11. The exit end of the optical fiber 13 (hereinafter referred to as the optical fiber exit end 16) is connected to the light conversion unit 100. The optical fiber 13 in the present embodiment is, for example, a multimode optical fiber having a core diameter of 50 μm and a numerical aperture FNA = 0.2. The optical fiber 13 includes a core 13a (see FIG. 2), a clad 13b (see FIG. 2) that covers the core 13a, and a jacket (not shown) that covers the clad 13b. The optical fiber exit end 16 side of the optical fiber 13 in a state where the jacket is peeled and the outer peripheral surface of the clad 13b is exposed is inserted into the hollow portion 161 of the first holder 160 described later. Since the primary light is confined in the core 13a, the refractive index of the core 13a is higher than the refractive index of the cladding 13b. For the jacket, for example, a resin such as nylon, acrylic, polyimide, or ETFE is used to improve the mechanical strength of the optical fiber 13 such as tensile resistance and bending resistance.

光変換ユニット100は、光ファイバ出射端16側に配置される。光変換ユニット100は、光ファイバ出射端16から出射される1次光を受光する。そして、光変換ユニット100は、受光した1次光の一部を、1次光とは異なる光学特性(例えば波長特性)を有する第1,2変換光に変換し、第1,2変換光を照明光として出射する。したがって、光変換ユニット100は、第1の光成分(第1変換光)と第2の光成分(第2変換光)との2つの光成分からなる光を照明光として出射する。光変換ユニット100から出射される第1,2変換光の配光特性は、入射する1次光の光量により変動せず、一定である。   The light conversion unit 100 is disposed on the optical fiber output end 16 side. The light conversion unit 100 receives primary light emitted from the optical fiber emitting end 16. Then, the light conversion unit 100 converts a part of the received primary light into first and second converted light having optical characteristics (for example, wavelength characteristics) different from the primary light, and converts the first and second converted lights to Output as illumination light. Therefore, the light conversion unit 100 emits light composed of two light components, that is, a first light component (first converted light) and a second light component (second converted light) as illumination light. The light distribution characteristics of the first and second converted lights emitted from the light conversion unit 100 do not vary depending on the amount of incident primary light, and are constant.

図2は、光変換ユニット100を模式的に示す図である。光変換ユニット100は、第1光変換部材110と、第2光変換部材120と、第1熱伝達抑制部材130と、第1透明部材140と、第2透明部材150と、第1ホルダ160と、反射部材170とを有する。   FIG. 2 is a diagram schematically showing the light conversion unit 100. The light conversion unit 100 includes a first light conversion member 110, a second light conversion member 120, a first heat transfer suppression member 130, a first transparent member 140, a second transparent member 150, and a first holder 160. And a reflection member 170.

ここで、光ファイバ出射端16から出射される1次光の中心軸を光軸Cと称する。第1光変換部材110と、第2光変換部材120と、第1熱伝達抑制部材130と、第1透明部材140と、第2透明部材150と、第1ホルダ160と、反射部材170とは、光軸Cを中心に、回転対称に配置される。   Here, the central axis of the primary light emitted from the optical fiber emitting end 16 is referred to as an optical axis C. The first light conversion member 110, the second light conversion member 120, the first heat transfer suppression member 130, the first transparent member 140, the second transparent member 150, the first holder 160, and the reflection member 170 are The optical axis C is arranged in a rotationally symmetric manner.

第1,2光変換部材110,120は、1次光の一部を吸収し、吸収した1次光の光学特性を変換する。そして、第1,2光変換部材110,120は、1次光の光学特性とは異なる光学特性を有する第1,2変換光を出射する。例えば、第1光変換部材110は、1次光の一部を吸収し、1次光を1次光とは異なる波長域を有する第1変換光に変換する。第2光変換部材120は、1次光の他の一部を吸収し、1次光を1次光とは異なる波長域を有する第2変換光に変換する。したがって、第1,2光変換部材110,120は、1次光を1次光とは異なる波長域を有する第1,2変換光である第1,2波長変換光に波長変換する波長変換部材である。なお詳細については後述するが、第1変換光の波長域は、第2変換光の波長域とは異なる。本実施形態では、第1,2変換光が、光変換ユニット100から前方の照射領域に放射され、被観察体Sに照射される照明光として利用される。詳細については後述するが、第1,2光変換部材110,120は、光学特性を変換する際に、変換損失に応じて所定の熱を発生する。   The first and second light conversion members 110 and 120 absorb a part of the primary light and convert the optical characteristics of the absorbed primary light. The first and second light conversion members 110 and 120 emit first and second converted light having optical characteristics different from the optical characteristics of the primary light. For example, the first light conversion member 110 absorbs a part of the primary light and converts the primary light into first converted light having a wavelength range different from that of the primary light. The second light conversion member 120 absorbs the other part of the primary light and converts the primary light into second converted light having a wavelength range different from that of the primary light. Accordingly, the first and second light conversion members 110 and 120 are wavelength conversion members that convert the wavelength of the primary light into first and second wavelength converted light that is first and second converted light having a wavelength range different from that of the primary light. It is. Although details will be described later, the wavelength range of the first converted light is different from the wavelength range of the second converted light. In the present embodiment, the first and second converted lights are emitted from the light conversion unit 100 to the front irradiation area and used as illumination light irradiated to the object S to be observed. Although details will be described later, the first and second light conversion members 110 and 120 generate predetermined heat according to the conversion loss when converting the optical characteristics.

第1,2光変換部材110,120は、以下に示す光学的性質と熱的性質とを有する。
図3に示すように、本実施形態における第1光変換部材110は、1次光源11(青色LD14)から出射された1次光(青色レーザー光)の一部を吸収して、吸収した1次光を第1変換光(第1波長変換光,黄色蛍光)に波長変換する。第1波長変換光は、1次光よりも長波長側(黄色域)の550nmに発光波長のピークを有する蛍光であり、半値幅130nmの広帯域スペクトル特性を有する。具体的には、第1光変換部材110は、YAl12:Ce(以下、YAGと称する)の組成で示される図示しない蛍光体を有する。第1光変換部材110は、多結晶化されたYAGセラミックスである。YAGセラミックスは、透過する励起光をほとんど拡散させない性質を有し、また、約12W/mKという高い熱伝導率を有する。なお、第1光変換部材110には、YAGセラミックス以外にもYAG単結晶、LAG:Ce、TAG:Ce等のセラミックスといった蛍光体が用いられてもよい。
The first and second light conversion members 110 and 120 have the following optical properties and thermal properties.
As shown in FIG. 3, the first light conversion member 110 in the present embodiment absorbs and absorbs a part of the primary light (blue laser light) emitted from the primary light source 11 (blue LD 14). The wavelength of the next light is converted into first converted light (first wavelength converted light, yellow fluorescence). The first wavelength converted light is fluorescence having a light emission wavelength peak at 550 nm on the longer wavelength side (yellow region) than the primary light, and has a broadband spectral characteristic with a half-value width of 130 nm. Specifically, the first light conversion member 110 has a phosphor (not shown) represented by a composition of Y 3 Al 5 O 12 : Ce (hereinafter referred to as YAG). The first light conversion member 110 is a polycrystallized YAG ceramic. YAG ceramics has a property of hardly diffusing transmitted excitation light and has a high thermal conductivity of about 12 W / mK. In addition to the YAG ceramics, the first light conversion member 110 may be made of a phosphor such as YAG single crystal, ceramics such as LAG: Ce and TAG: Ce.

図3に示すように、本実施形態における第2光変換部材120は、1次光源11(青色LD14)から出射された1次光(青色レーザー光)の他の一部を吸収して、吸収した1次光を第2変換光(第2波長変換光,緑色蛍光)に波長変換する。第2波長変換光は、1次光よりも長波長側(緑色域)の540nmに発光波長のピークを有する蛍光であり、半値幅65nmの広帯域スペクトル特性を有する。第2光変換部材120は、図示しない粉末蛍光体と、粉末蛍光体を封止する封止部材を含む図示しないガラス封止緑色蛍光体とを有する。具体的には、粉末蛍光体は、Eu賦活の酸窒化物系蛍光体を用いる。封止部材は、例えばガラスなどの無機材料である透明樹脂等である。第2光変換部材120は、第1変換光の少なくとも一部を透過させる光学的な特性を有する。   As shown in FIG. 3, the second light conversion member 120 in the present embodiment absorbs and absorbs another part of the primary light (blue laser light) emitted from the primary light source 11 (blue LD 14). The converted primary light is converted into a second converted light (second wavelength converted light, green fluorescence). The second wavelength-converted light is fluorescence having a light emission wavelength peak at 540 nm on the longer wavelength side (green region) than the primary light, and has a broadband spectral characteristic with a half-value width of 65 nm. The second light conversion member 120 has a powder phosphor (not shown) and a glass-sealed green phosphor (not shown) including a sealing member that seals the powder phosphor. Specifically, Eu-activated oxynitride phosphor is used as the powder phosphor. The sealing member is, for example, a transparent resin that is an inorganic material such as glass. The second light conversion member 120 has an optical characteristic that transmits at least part of the first converted light.

第1,2光変換部材110,120は、吸収した1次光の光量を第1,2波長変換光の光量へ変換する内部量子効率(変換効率)として、所定の効率特性を有する。具体的には、第1光変換部材110(YAG)と第2光変換部材120(Eu賦活の酸窒化物系蛍光体)とは、略80%の内部量子効率を有する。したがって、第1,2光変換部材110,120が波長変換する際、第1,2光変換部材110,120が吸収した1次光の光量に対して、略80%分の光量が波長変換され、略20%分の光量が損失となる。この損失となる光量は熱に変換されてしまい、第1,2光変換部材110,120は発熱してしまう。このように、第1,2光変換部材110,120が波長変換する際に、内部量子効率に応じた変換損失が発生し、変換損失に応じた熱が第1,2光変換部材110,120から発生してしまう。   The first and second light conversion members 110 and 120 have predetermined efficiency characteristics as internal quantum efficiency (conversion efficiency) for converting the amount of absorbed primary light into the amount of first and second wavelength converted light. Specifically, the first light conversion member 110 (YAG) and the second light conversion member 120 (Eu-activated oxynitride phosphor) have an internal quantum efficiency of approximately 80%. Therefore, when the first and second light conversion members 110 and 120 perform wavelength conversion, the light amount corresponding to approximately 80% is wavelength-converted with respect to the light amount of the primary light absorbed by the first and second light conversion members 110 and 120. The amount of light corresponding to approximately 20% is lost. The amount of light that is lost is converted into heat, and the first and second light conversion members 110 and 120 generate heat. Thus, when the first and second light conversion members 110 and 120 perform wavelength conversion, a conversion loss corresponding to the internal quantum efficiency occurs, and heat corresponding to the conversion loss is generated by the first and second light conversion members 110 and 120. Will occur.

波長変換部材である第1,2光変換部材110,120は、後述する発光点p1,p2の発熱に伴う温度上昇によって内部量子効率(変換効率(発光強度維持率))が低下する温度消光特性を有する。具体的には、図4に示すように、室温25℃という状況下に配置された第1,2光変換部材110,120の発光点p1,p2の発光強度維持率を100%と定義する。発光点p1が150℃のときでは発光強度維持率は略80%となり、発光点p1が300℃のときでは発光強度維持率は略50%となる。また、発光点p2が150℃のときでは発光強度維持率は略90%となり、発光点p2が300℃のときでは発光強度維持率は略75%となる。   The first and second light conversion members 110 and 120, which are wavelength conversion members, have a temperature quenching characteristic in which the internal quantum efficiency (conversion efficiency (emission intensity maintenance rate)) decreases due to a temperature increase caused by heat generation at light emission points p1 and p2 described later. Have Specifically, as shown in FIG. 4, the emission intensity maintenance rate of the emission points p1 and p2 of the first and second light conversion members 110 and 120 arranged under the condition of room temperature 25 ° C. is defined as 100%. When the emission point p1 is 150 ° C., the emission intensity maintenance rate is about 80%, and when the emission point p1 is 300 ° C., the emission intensity maintenance rate is about 50%. When the emission point p2 is 150 ° C., the emission intensity maintenance rate is approximately 90%, and when the emission point p2 is 300 ° C., the emission intensity maintenance rate is approximately 75%.

したがって、第1,2光変換部材110,120は、高い内部量子効率を有し且つ変換損失によって発生する熱量が少ない部材、または発熱による温度上昇に伴い内部量子効率の低下が起こりにくい(温度消光が少ない)部材であることが好ましい。   Therefore, the first and second light conversion members 110 and 120 have a high internal quantum efficiency and have a small amount of heat generated due to conversion loss, or the internal quantum efficiency does not easily decrease as the temperature rises due to heat generation (temperature quenching). It is preferable that it is a member.

本実施形態の内部量子効率において、内部量子効率の割合が変換損失の割合よりも50%以上高いことが好ましい。この場合、例えば、第1,2光変換部材110,120は、YAG(黄色蛍光)とEu賦活の酸窒化物系蛍光体(緑色蛍光)と以外にも、TAG(黄色蛍光)、シリケート(緑色〜オレンジ色)、α‐サイアロン(黄色蛍光)、β‐サイアロン(緑色蛍光)、LuAG(緑色蛍光)、CASN(赤色蛍光)等の無機蛍光材料を利用できる。   In the internal quantum efficiency of the present embodiment, the ratio of the internal quantum efficiency is preferably 50% or more higher than the ratio of conversion loss. In this case, for example, the first and second light conversion members 110 and 120 include TAG (yellow fluorescence), silicate (green) in addition to YAG (yellow fluorescence) and Eu-activated oxynitride phosphor (green fluorescence). -Orange), α-sialon (yellow fluorescence), β-sialon (green fluorescence), LuAG (green fluorescence), CASN (red fluorescence), and other inorganic fluorescent materials can be used.

なお後述する第1,2光変換部材110,120と第1ホルダ160との接触領域を増やす方法によって、第1,2光変換部材110,120から発生する熱は、効率よく第1ホルダ160に伝達される。したがって、20%程度の内部量子効率を有する第1,2光変換部材110,120が用いられてもよい。   The heat generated from the first and second light conversion members 110 and 120 is efficiently transferred to the first holder 160 by increasing the contact area between the first and second light conversion members 110 and 120 and the first holder 160 described later. Communicated. Accordingly, the first and second light conversion members 110 and 120 having an internal quantum efficiency of about 20% may be used.

本実施形態の温度消光特性において、例えば、第1,2光変換部材110,120は、発光点p1,p2が150℃付近且つ発光強度維持率が略50%以上の部材であることが好ましい。この場合、第1,2光変換部材110,120は、α‐サイアロン(黄色蛍光)、β‐サイアロン(緑色蛍光)、CASN(赤色蛍光)等の酸窒化物系、窒化物系の蛍光体、YAG等の酸化物系の蛍光体を利用できる。   In the temperature quenching characteristics of the present embodiment, for example, the first and second light conversion members 110 and 120 are preferably members having light emission points p1 and p2 of around 150 ° C. and a light emission intensity maintenance rate of approximately 50% or more. In this case, the first and second light conversion members 110 and 120 are oxynitride-based, nitride-based phosphors such as α-sialon (yellow fluorescence), β-sialon (green fluorescence), CASN (red fluorescence), An oxide phosphor such as YAG can be used.

また本実施形態では、黄色蛍光を出射する第1光変換部材110と緑色蛍光を出射する第2光変換部材120との組み合わせに限定される必要はない。例えば被観察体Sを観察する用途に応じて、例えば、緑色蛍光と赤色蛍光といった他の色の蛍光を出射する第1,2光変換部材110,120が互いに組み合わせられてもよい。また例えば、第1光変換部材110が緑色といった第1蛍光を出射し、第2光変換部材120が第1蛍光を吸収して赤色といった第2蛍光を出射する、2次吸収構造が配置されてもよい。   In this embodiment, it is not necessary to be limited to the combination of the first light conversion member 110 that emits yellow fluorescence and the second light conversion member 120 that emits green fluorescence. For example, the first and second light conversion members 110 and 120 that emit fluorescence of other colors such as green fluorescence and red fluorescence may be combined with each other according to the application for observing the object S to be observed. Further, for example, a secondary absorption structure is arranged in which the first light conversion member 110 emits first fluorescence such as green, and the second light conversion member 120 absorbs the first fluorescence and emits second fluorescence such as red. Also good.

第1光変換部材110(YAG)の熱伝導率は例えば12W/m・Kであり、第2光変換部材120(ガラス封止緑色蛍光体)の熱伝導率は例えば1W/m・Kであり、このように第1光変換部材の熱伝導率は第2光変換部材の熱伝導率よりも高くなっている。また第1,2光変換部材110,120の熱伝導率は、第1熱伝達抑制部材130の熱伝導率よりも高い。   The thermal conductivity of the first light conversion member 110 (YAG) is, for example, 12 W / m · K, and the thermal conductivity of the second light conversion member 120 (glass-sealed green phosphor) is, for example, 1 W / m · K. Thus, the thermal conductivity of the first light conversion member is higher than the thermal conductivity of the second light conversion member. The thermal conductivity of the first and second light conversion members 110 and 120 is higher than the thermal conductivity of the first heat transfer suppressing member 130.

第1,2光変換部材110,120は、第1,2光変換部材110,120自体の発熱量に対して劣化しない特性を有する材料であることが好ましい。例えば、第1,2光変換部材110,120は、YAGとガラス封止緑色蛍光体とに加えて、単結晶蛍光体、セラミック封止蛍光体といった、高い耐熱性を有する無機材料を利用することが好ましい。   The first and second light conversion members 110 and 120 are preferably materials having characteristics that do not deteriorate with respect to the heat generation amount of the first and second light conversion members 110 and 120 themselves. For example, the first and second light conversion members 110 and 120 use, in addition to YAG and glass-sealed green phosphor, an inorganic material having high heat resistance such as single crystal phosphor and ceramic-sealed phosphor. Is preferred.

例えば、蛍光体自身の耐熱性と第1ホルダ160への放熱性とを重視して、緑色蛍光体である第2光変換部材120は、例えばLuAG単結晶であってもよい。LuAG単結晶の熱伝導率は、例えば、12W/m・Kである。   For example, considering the heat resistance of the phosphor itself and the heat dissipation to the first holder 160, the second light conversion member 120, which is a green phosphor, may be, for example, a LuAG single crystal. The thermal conductivity of the LuAG single crystal is, for example, 12 W / m · K.

本実施形態では、第1,2光変換部材110,120の1次光の吸収率と内部量子効率とを考慮して、第1光変換部材110が第2光変換部材120よりも1次光を多く吸収し、第1光変換部材110が第2光変換部材120よりも多くの光量を波長変換するように、第1,2光変換部材110,120の厚さと第2光変換部材120における封止部材に対する粉末蛍光体の濃度とが調整される。したがって、光変換によって生じる第1光変換部材110の発熱量は、光変換によって生じる第2光変換部材120の発熱量よりも多い。   In the present embodiment, the first light conversion member 110 is more primary light than the second light conversion member 120 in consideration of the primary light absorption rate and the internal quantum efficiency of the first and second light conversion members 110 and 120. And the thickness of the first and second light conversion members 110 and 120 and the second light conversion member 120 so that the first light conversion member 110 wavelength-converts more light than the second light conversion member 120. The concentration of the powder phosphor with respect to the sealing member is adjusted. Therefore, the heat generation amount of the first light conversion member 110 generated by light conversion is larger than the heat generation amount of the second light conversion member 120 generated by light conversion.

第1,2光変換部材110,120は、柱形状、例えば円柱形状を有する。第2光変換部材120の直径は第1光変換部材110の直径よりも大きい。   The first and second light conversion members 110 and 120 have a columnar shape, for example, a columnar shape. The diameter of the second light conversion member 120 is larger than the diameter of the first light conversion member 110.

例えば、第1光変換部材110の直径は1.0mmであり、第1光変換部材110の厚さは0.25mmである。図2に示すように、第1光変換部材110は、光ファイバ出射端16から出射される1次光が入射する円形の入射面111と、入射面111と対向する円形の出射面112と、入射面111と出射面112との間の外周面である側面113とを有する。入射面111における1次光の照射領域は、入射面111よりも小さい。   For example, the diameter of the first light conversion member 110 is 1.0 mm, and the thickness of the first light conversion member 110 is 0.25 mm. As shown in FIG. 2, the first light conversion member 110 includes a circular incident surface 111 on which primary light emitted from the optical fiber emitting end 16 is incident, a circular emission surface 112 facing the incident surface 111, And a side surface 113 that is an outer peripheral surface between the incident surface 111 and the output surface 112. The primary light irradiation area on the incident surface 111 is smaller than the incident surface 111.

例えば、第2光変換部材120の直径は1.5mmであり、第2光変換部材120の厚さは0.25mmである。図2に示すように、第2光変換部材120は、第1光変換部材110の出射面112から離れて配置されている円形の入射面121と、入射面121と対向する円形の出射面122と、入射面121と出射面122との間の外周面である側面123とを有する。   For example, the diameter of the second light conversion member 120 is 1.5 mm, and the thickness of the second light conversion member 120 is 0.25 mm. As shown in FIG. 2, the second light conversion member 120 includes a circular incident surface 121 disposed away from the emission surface 112 of the first light conversion member 110, and a circular emission surface 122 facing the incident surface 121. And a side surface 123 that is an outer peripheral surface between the incident surface 121 and the output surface 122.

光軸C方向において、第1光変換部材110は、第2光変換部材120とは離れて配置される。第1光変換部材110の中心軸は、第2光変換部材120の中心軸と同一直線上に配置される。   In the direction of the optical axis C, the first light conversion member 110 is disposed away from the second light conversion member 120. The central axis of the first light conversion member 110 is arranged on the same straight line as the central axis of the second light conversion member 120.

図2に示すように、第1熱伝達抑制部材130は、第1光変換部材110と第2光変換部材120との間の少なくとも一部に配置される。例えば、第1熱伝達抑制部材130は、光軸C方向において、入射面111が配置される平面上と、入射面121が配置される平面上との間に配置される。なお第1熱伝達抑制部材130は、光軸C方向において、出射面112が配置される平面上と、入射面121が配置される平面上との間に配置されればよい。このように第1熱伝達抑制部材130は、光軸C方向において、第1光変換部材110と第2光変換部材120との間に介在し、第1光変換部材110の一部(出射面112)と第2光変換部材120の一部(入射面121)とに接触している。そして、第1熱伝達抑制部材130は、第1光変換部材110(出射面112と側面113)と第2光変換部材120(入射面121)とに熱的に接続される。第1熱伝達抑制部材130は、第1光変換部材110の側面113の側方にも配置され、側面113に接触している。
第1熱伝達抑制部材130は、第1光変換部材110と第2光変換部材120との一方から第1光変換部材110と第2光変換部材120との他方への熱の伝達を抑制する。第1熱伝達抑制部材130が第1,2光変換部材110,120間の断熱作用を高めることを重視して、第1熱伝達抑制部材130は、第1,2光変換部材110,120との少なくとも一方の熱伝導率よりも低い熱伝導率を有する。例えば、第1熱伝達抑制部材130の熱伝導率は、第1,2光変換部材110,120の熱伝導率(12W/m・K,1W/m・K)よりも低いとする。この場合、例えば、第1熱伝達抑制部材130は、熱伝導率が0.2W/m・Kである透明のシリコーン樹脂を有する。
As shown in FIG. 2, the first heat transfer suppression member 130 is disposed at least at a part between the first light conversion member 110 and the second light conversion member 120. For example, the first heat transfer suppression member 130 is disposed between the plane on which the incident surface 111 is disposed and the plane on which the incident surface 121 is disposed in the optical axis C direction. In addition, the 1st heat transfer suppression member 130 should just be arrange | positioned in the optical axis C direction between the plane where the output surface 112 is arrange | positioned, and the plane where the entrance plane 121 is arrange | positioned. Thus, the first heat transfer suppression member 130 is interposed between the first light conversion member 110 and the second light conversion member 120 in the direction of the optical axis C, and a part of the first light conversion member 110 (exit surface). 112) and a part of the second light conversion member 120 (incident surface 121). The first heat transfer suppression member 130 is thermally connected to the first light conversion member 110 (the emission surface 112 and the side surface 113) and the second light conversion member 120 (the incident surface 121). The first heat transfer suppression member 130 is also disposed on the side of the side surface 113 of the first light conversion member 110 and is in contact with the side surface 113.
The first heat transfer suppression member 130 suppresses heat transfer from one of the first light conversion member 110 and the second light conversion member 120 to the other of the first light conversion member 110 and the second light conversion member 120. . Emphasizing that the first heat transfer suppression member 130 enhances the heat insulating action between the first and second light conversion members 110 and 120, the first heat transfer suppression member 130 includes the first and second light conversion members 110 and 120. The thermal conductivity is lower than the thermal conductivity of at least one of the above. For example, it is assumed that the thermal conductivity of the first heat transfer suppression member 130 is lower than the thermal conductivity (12 W / m · K, 1 W / m · K) of the first and second light conversion members 110 and 120. In this case, for example, the first heat transfer suppressing member 130 includes a transparent silicone resin having a thermal conductivity of 0.2 W / m · K.

また第1熱伝達抑制部材130は、1次光(青色レーザ光)と第1,2変換光との少なくとも一部を透過させる光学的な特性を有する。   The first heat transfer suppressing member 130 has an optical characteristic that transmits at least part of the primary light (blue laser light) and the first and second converted lights.

第1熱伝達抑制部材130の熱伝導率が第1光変換部材110の熱伝導率(12W/m・K)のみよりも低い場合、第1熱伝達抑制部材130は、第1熱伝達抑制部材130自身の耐熱性を向上させるために、シリコーン樹脂の代わりに、透過率が高いガラスを有してもよい。このガラスの熱伝導率は、例えば、1W/m・Kである。   When the thermal conductivity of the first heat transfer suppression member 130 is lower than only the thermal conductivity (12 W / m · K) of the first light conversion member 110, the first heat transfer suppression member 130 is the first heat transfer suppression member 130. In order to improve the heat resistance of 130 itself, a glass having a high transmittance may be used instead of the silicone resin. The thermal conductivity of this glass is, for example, 1 W / m · K.

第1熱伝達抑制部材130は、1次光と第1,2波長変換光とが通過する空気が充填され、第1,2光変換部材110,120の間に形成される間隙部を有してもよい。この空気によって形成される第1熱伝達抑制部材130の熱伝導率は、例えば、0.03W/m・Kである。   The first heat transfer suppressing member 130 is filled with air through which the primary light and the first and second wavelength converted light pass, and has a gap formed between the first and second light converting members 110 and 120. May be. The thermal conductivity of the first heat transfer suppression member 130 formed by this air is, for example, 0.03 W / m · K.

光軸C上における第1熱伝達抑制部材130の厚さは、光軸C上における第1,2光変換部材110,120それぞれの厚さ(0.25mm,0.25mm)よりも薄い。言い換えると出射面112が配置される平面上と入射面121が配置される平面上との間における第1熱伝達抑制部材130の厚さは、第1,2光変換部材110,120それぞれの厚さよりも薄い。光軸C上において、第1熱伝達抑制部材130の厚さは、例えば0.1mmである。   The thickness of the first heat transfer suppression member 130 on the optical axis C is thinner than the thickness (0.25 mm, 0.25 mm) of each of the first and second light conversion members 110 and 120 on the optical axis C. In other words, the thickness of the first heat transfer suppression member 130 between the plane on which the exit surface 112 is disposed and the plane on which the entrance surface 121 is disposed is the thickness of each of the first and second light conversion members 110 and 120. Thinner than that. On the optical axis C, the thickness of the first heat transfer suppressing member 130 is, for example, 0.1 mm.

ここで、本実施形態における第1,2光変換部材110,120と第1熱伝達抑制部材130との熱特性である熱抵抗値について、以下に説明する。   Here, the thermal resistance value which is the thermal characteristic of the 1st, 2nd light conversion members 110 and 120 and the 1st heat transfer suppression member 130 in this embodiment is demonstrated below.

熱抵抗値とは部材における熱の伝わり難さを表す数値であり、熱抵抗値の数値が大きいほど熱が伝わり難いことを示す。   The thermal resistance value is a numerical value representing the difficulty of heat transmission in the member, and the larger the numerical value of the thermal resistance value, the more difficult the heat is transmitted.

ここで、熱抵抗値をHR、光軸C上における部材の厚さをT、熱伝導率をCとしたとき、以下の式(1)が成り立つ。   Here, when the thermal resistance value is HR, the thickness of the member on the optical axis C is T, and the thermal conductivity is C, the following equation (1) is established.

HR=T/C・・・式(1)
HR:[(m・K)/W)]、T:[m]、C:[W/(m・K)]である。
HR = T / C (1)
HR: [(m 2 · K) / W)], T: [m], C: [W / (m · K)].

本実施形態における光軸C上の第1,2光変換部材110,120及び第1熱伝達抑制部材130それぞれの熱抵抗値HR1,HR2,HR3は、以下のとおりである。   The thermal resistance values HR1, HR2, and HR3 of the first and second light conversion members 110 and 120 and the first heat transfer suppression member 130 on the optical axis C in the present embodiment are as follows.

HR1=0.25×10−3[m]/12[W/(m・K)]=2.1×10−5[(m・K)/W)]
HR2=0.25×10−3[m]/1[W/(m・K)]=2.5×10−4[(m・K)/W)]
HR3=0.1×10−3[m]/0.2[W/(m・K)]=5.0×10−4[(m・K)/W)]
光軸C上における第1熱伝達抑制部材130の厚さT3は第1,2光変換部材110,120の厚さT1,T2よりも薄いが、光軸C上における第1熱伝達抑制部材130の熱伝導率C3は第1,2光変換部材110,120の熱伝導率C1,C2に対して差がある。このため、光軸C上における熱抵抗値HR3は、光軸C上における熱抵抗値HR1,HR2よりも大きい。
HR1 = 0.25 × 10 −3 [m] / 12 [W / (m · K)] = 2.1 × 10 −5 [(m 2 · K) / W)]
HR2 = 0.25 × 10 −3 [m] / 1 [W / (m · K)] = 2.5 × 10 −4 [(m 2 · K) / W)]
HR3 = 0.1 × 10 −3 [m] /0.2 [W / (m · K)] = 5.0 × 10 −4 [(m 2 · K) / W)]
The thickness T3 of the first heat transfer suppression member 130 on the optical axis C is thinner than the thicknesses T1 and T2 of the first and second light conversion members 110 and 120, but the first heat transfer suppression member 130 on the optical axis C. The thermal conductivity C3 is different from the thermal conductivities C1 and C2 of the first and second light conversion members 110 and 120. For this reason, the thermal resistance value HR3 on the optical axis C is larger than the thermal resistance values HR1 and HR2 on the optical axis C.

熱抵抗値HR3が熱抵抗値HR1,HR2よりも大きくなるように、熱抵抗値HR3は、熱伝導率C3と厚さT3との組み合わせを考慮して設定される。熱抵抗値HR3は、熱抵抗値HR1,HR2それぞれよりも2倍以上であることが好ましい。これにより、第1,2光変換部材110,120の一方から発生した熱が第1,2光変換部材110,120の他方に伝達されることを、第1熱伝達抑制部材130は効果的に抑制することができる。   The thermal resistance value HR3 is set in consideration of the combination of the thermal conductivity C3 and the thickness T3 so that the thermal resistance value HR3 is larger than the thermal resistance values HR1 and HR2. The thermal resistance value HR3 is preferably twice or more than the thermal resistance values HR1 and HR2. Accordingly, the first heat transfer suppressing member 130 effectively transmits heat generated from one of the first and second light conversion members 110 and 120 to the other of the first and second light conversion members 110 and 120. Can be suppressed.

例えば、第1,2透明部材140,150は、高い透過率を有するガラスまたはシリコーン樹脂(熱伝導率:0.2W/m・K)等を有する。第1,2透明部材140,150は、1次光(青色レーザ光)と第1,2変換光との少なくとも一部を透過させる性質を有する。第1,2透明部材140,150の代わりに、間隙部等の透明領域が配置されてもよい。   For example, the first and second transparent members 140 and 150 include glass or silicone resin (thermal conductivity: 0.2 W / m · K) having high transmittance. The first and second transparent members 140 and 150 have a property of transmitting at least part of the primary light (blue laser light) and the first and second converted lights. Instead of the first and second transparent members 140 and 150, a transparent region such as a gap may be disposed.

図2に示すように、第1透明部材140は、円錐台形状を有する。第1透明部材140は、光ファイバ出射端16から出射される1次光が入射する小さい円形の入射面141と、入射面141と対向する大きい円形の出射面142と、入射面141と出射面142との間の外周面である側面143とを有する。入射面141は、光ファイバ出射端16と同一の大きさであるか、光ファイバ出射端16よりも大きい。入射面141は、光ファイバ出射端16に光学的に接続される。出射面142は、入射面111と接触している。側面143全体は、第1ホルダ160の内周面であるテーパー面165に接触している。   As shown in FIG. 2, the first transparent member 140 has a truncated cone shape. The first transparent member 140 includes a small circular incident surface 141 on which primary light emitted from the optical fiber output end 16 is incident, a large circular output surface 142 facing the incident surface 141, and the incident surface 141 and the output surface. 142 and a side surface 143 which is an outer peripheral surface between the first and second surfaces. The incident surface 141 is the same size as the optical fiber output end 16 or is larger than the optical fiber output end 16. The incident surface 141 is optically connected to the optical fiber output end 16. The exit surface 142 is in contact with the entrance surface 111. The entire side surface 143 is in contact with the tapered surface 165 that is the inner peripheral surface of the first holder 160.

図2に示すように、第2透明部材150は、略円錐台形状を有する。第2透明部材150は、第2光変換部材120が配置される凹状の接触面151と、接触面151と対向する大きい円形の出射面152と、接触面151と出射面152との間の外周面である側面153とを有する。接触面151において、第2透明部材150は第2光変換部材の出射面122と側面123とに接触している。側面153全体は、第1ホルダ160の内周面であるテーパー面165に接触している。   As shown in FIG. 2, the second transparent member 150 has a substantially truncated cone shape. The second transparent member 150 includes a concave contact surface 151 on which the second light conversion member 120 is disposed, a large circular emission surface 152 facing the contact surface 151, and an outer periphery between the contact surface 151 and the emission surface 152. And a side surface 153 which is a surface. On the contact surface 151, the second transparent member 150 is in contact with the emission surface 122 and the side surface 123 of the second light conversion member. The entire side surface 153 is in contact with the tapered surface 165 that is the inner peripheral surface of the first holder 160.

例えば、第1ホルダ160は、第1,2光変換部材110,120の熱伝導率よりも高い熱伝導率を有する金属製の真鍮を有する。このような第1ホルダ160の熱伝導率は、120W/m・Kであり、例えば第1光変換部材110(YAG)の熱伝導率(12W/m・K)と第2光変換部材120(ガラス封止緑色蛍光体)の熱伝導率(1W/m・K)とよりも高い。第1ホルダ160には透過率といった光学的な制約がないため、第1ホルダ160の選定に対する自由度は高い。例えば、第1ホルダ160は、アルミまたは銅などの金属、窒化アルミといった金属化合物といった、高い熱伝導率を有する部材であればよい。なお第1ホルダ160は、第1熱伝達抑制部材130の熱伝導率よりも高い熱伝導率を有していればよい。第1ホルダ160の体積は第1,2光変換部材110,120それぞれの体積よりも大きく、第1ホルダ160の表面積は第1,2光変換部材110,120それぞれの表面積よりも広い。   For example, the first holder 160 includes metal brass having a thermal conductivity higher than that of the first and second light conversion members 110 and 120. The thermal conductivity of the first holder 160 is 120 W / m · K. For example, the thermal conductivity (12 W / m · K) of the first light conversion member 110 (YAG) and the second light conversion member 120 ( It is higher than the thermal conductivity (1 W / m · K) of the glass-sealed green phosphor. Since the first holder 160 has no optical restriction such as transmittance, the degree of freedom in selecting the first holder 160 is high. For example, the first holder 160 may be a member having a high thermal conductivity such as a metal such as aluminum or copper or a metal compound such as aluminum nitride. In addition, the 1st holder 160 should just have thermal conductivity higher than the thermal conductivity of the 1st heat-transfer suppression member 130. FIG. The volume of the first holder 160 is larger than the volume of each of the first and second light conversion members 110 and 120, and the surface area of the first holder 160 is larger than the surface area of each of the first and second light conversion members 110 and 120.

第1ホルダ160は、光ファイバ出射端16と、第1光変換部材110と、第2光変換部材120と、第1熱伝達抑制部材130と、第1透明部材140と、第2透明部材150とを内部に保持する。第1ホルダ160は、例えば円柱形状を有する。また、第1ホルダ160は、光ファイバ出射端16が配置される円柱形状の中空部161と、光ファイバ出射端16から1次光の出射方向(軸方向)に沿って拡径している円錐台形状の中空部162とを有する。中空部161、162は、光軸Cを中心として軸方向に連続して延びており、第1ホルダ160の内部を貫通している。   The first holder 160 includes an optical fiber emitting end 16, a first light conversion member 110, a second light conversion member 120, a first heat transfer suppressing member 130, a first transparent member 140, and a second transparent member 150. And keep it inside. The first holder 160 has, for example, a cylindrical shape. The first holder 160 includes a cylindrical hollow portion 161 in which the optical fiber output end 16 is disposed, and a cone whose diameter is expanded from the optical fiber output end 16 in the primary light output direction (axial direction). And a trapezoidal hollow portion 162. The hollow portions 161 and 162 continuously extend in the axial direction around the optical axis C, and penetrate the inside of the first holder 160.

中空部162は、第1透明部材140の入射面141側が配置される開口部であり、1次光が入射するホルダ入射部163と、第2透明部材150の出射面152側が配置される開口部であり、照明光を出射するホルダ出射部164とを含む。中空部162は、ホルダ入射部163からホルダ出射部164まで貫通している貫通孔部であり、ホルダ入射部163からホルダ出射部164にかけて拡径しているテーパー形状を有する。言い換えれば、中空部162を形成している内周面がテーパー面165をなしている。ホルダ入射部163には、光ファイバ出射端16から1次光が入射する。ホルダ出射部164は、第1,2変換光を照明光として出射する。   The hollow portion 162 is an opening portion on which the incident surface 141 side of the first transparent member 140 is disposed, and a holder incident portion 163 where primary light is incident and an opening portion on which the emission surface 152 side of the second transparent member 150 is disposed. And a holder emitting part 164 for emitting illumination light. The hollow portion 162 is a through-hole portion penetrating from the holder incident portion 163 to the holder emitting portion 164, and has a tapered shape that increases in diameter from the holder incident portion 163 to the holder emitting portion 164. In other words, the inner peripheral surface forming the hollow portion 162 forms a tapered surface 165. The primary light enters the holder incident portion 163 from the optical fiber exit end 16. The holder emitting unit 164 emits the first and second converted light as illumination light.

中空部162内には、光軸C上において、光ファイバ出射端16側から順に、第1透明部材140、第1光変換部材110、第1熱伝達抑制部材130、第2光変換部材120、第2透明部材150が配置され、保持されている。第2透明部材150の出射面152とホルダ出射部164の端面とは、略同一平面上に配置される。第2光変換部材120の出射面122は、ホルダ出射部164の端面よりも内側に存在する。   In the hollow portion 162, the first transparent member 140, the first light conversion member 110, the first heat transfer suppression member 130, the second light conversion member 120, in order from the optical fiber exit end 16 side on the optical axis C, The second transparent member 150 is disposed and held. The emission surface 152 of the second transparent member 150 and the end surface of the holder emission part 164 are disposed on substantially the same plane. The exit surface 122 of the second light conversion member 120 is present inside the end surface of the holder exit portion 164.

第1光変換部材110と第2光変換部材120との少なくとも一部は、ホルダ入射部163に入射する1次光の中心軸である光軸C上に配置される。第1光変換部材110は、ホルダ入射部163と第2光変換部材120との間に配置される。第1熱伝達抑制部材130の少なくとも一部は、第1光変換部材110と第2光変換部材120との間且つ光軸Cを含む領域に配置される。第1熱伝達抑制部材130の側面133全体は、テーパー面165と接触して、テーパー面165に熱的に接続される。第1熱伝達抑制部材130は、テーパー面165に対して、入射面111の縁部から入射面121の縁部にかけて接触する。   At least a part of the first light conversion member 110 and the second light conversion member 120 is disposed on the optical axis C that is the central axis of the primary light incident on the holder incident portion 163. The first light conversion member 110 is disposed between the holder incident portion 163 and the second light conversion member 120. At least a part of the first heat transfer suppression member 130 is disposed between the first light conversion member 110 and the second light conversion member 120 and in a region including the optical axis C. The entire side surface 133 of the first heat transfer suppression member 130 contacts the tapered surface 165 and is thermally connected to the tapered surface 165. The first heat transfer suppressing member 130 contacts the tapered surface 165 from the edge of the incident surface 111 to the edge of the incident surface 121.

第1ホルダ160の中心軸は、光ファイバ出射端16から出射される1次光の光軸Cと同軸である。第1光変換部材110と第2光変換部材120と第1熱伝達抑制部材130と第1透明部材140と第2透明部材150とは、中空部162において、第1ホルダ160の中心軸に対して対称(回転対称)となるように配置される。本実施形態では、入射面111の縁部及び入射面121の縁部のみが全周にわたってテーパー面165と反射部材170とに接触しており、第1光変換部材110の側面113と第2光変換部材120の側面123とはテーパー面165とは離れて配置される。このように、第1,2光変換部材110,120の一部は、第1ホルダ160と反射部材170とに熱的に接続される。   The central axis of the first holder 160 is coaxial with the optical axis C of the primary light emitted from the optical fiber emitting end 16. The first light conversion member 110, the second light conversion member 120, the first heat transfer suppression member 130, the first transparent member 140, and the second transparent member 150 are in the hollow portion 162 with respect to the central axis of the first holder 160. Arranged symmetrically (rotationally symmetric). In the present embodiment, only the edge of the incident surface 111 and the edge of the incident surface 121 are in contact with the tapered surface 165 and the reflecting member 170 over the entire circumference, and the side surface 113 of the first light conversion member 110 and the second light. The side surface 123 of the conversion member 120 is disposed away from the tapered surface 165. As described above, some of the first and second light conversion members 110 and 120 are thermally connected to the first holder 160 and the reflection member 170.

第1ホルダ160のテーパー角は、円錐台の内周面であるテーパー面165と第1ホルダ160の中心軸とで形成される傾斜角度で定義する。無指向性の第1,2変換光を光変換ユニット100から効率良く取り出すために、テーパー角は10°〜60°付近にあることが好ましい。具体的には、本実施形態における光変換ユニット100(第1ホルダ160)は、テーパー角25°、入射径0.4mm、出射径2.6mmである。   The taper angle of the first holder 160 is defined by an inclination angle formed by the taper surface 165 that is the inner peripheral surface of the truncated cone and the central axis of the first holder 160. In order to efficiently extract the omnidirectional first and second converted lights from the light conversion unit 100, the taper angle is preferably in the vicinity of 10 ° to 60 °. Specifically, the light conversion unit 100 (first holder 160) in the present embodiment has a taper angle of 25 °, an incident diameter of 0.4 mm, and an output diameter of 2.6 mm.

第1ホルダ160のテーパー面165には、反射部材170が形成される。反射部材170は、高い反射率と高い熱伝導率とを有することが好ましい。本実施形態における反射部材170は、テーパー面165に銀またはアルミニウムなどの金属を薄くめっきした金属反射膜(反射ミラー)である。例えば、銀の熱伝導率は420W/m・Kであり、アルミニウムの熱伝導率は240W/m・Kである。反射部材170は、1次光と第1変換光と第2変換光とが反射部材170に入射したときに、これらを正反射又は拡散反射する。反射部材170は、ホルダ出射部164から出射される第1,2変換光それぞれの配光角が互いに対して等しくなるように、反射によって第1,2変換光それぞれの配光を変化させる。   A reflective member 170 is formed on the tapered surface 165 of the first holder 160. The reflecting member 170 preferably has a high reflectance and a high thermal conductivity. The reflecting member 170 in the present embodiment is a metal reflecting film (reflecting mirror) in which a tapered surface 165 is thinly plated with a metal such as silver or aluminum. For example, the thermal conductivity of silver is 420 W / m · K, and the thermal conductivity of aluminum is 240 W / m · K. When the primary light, the first converted light, and the second converted light are incident on the reflective member 170, the reflective member 170 reflects them regularly or diffusely. The reflection member 170 changes the light distribution of each of the first and second converted lights by reflection so that the light distribution angles of the first and second converted lights emitted from the holder emitting portion 164 are equal to each other.

光ファイバ出射端16から出射される1次光は、光軸C上で最も強く照射される。第1光変換部材110に1次光が最も強く照射される位置は、1次光が照射される第1光変換部材110の入射面111と光軸Cとの交点の位置であり、これは1次光の一部が吸収されて波長変換された第1変換光の強度が最も強くなる位置でもある。この交点が第1光変換部材110の実質的な発光点p1と定義される。同様に、第2光変換部材120に1次光が最も強く照射される位置は、1次光が照射される第2光変換部材120の入射面121と光軸Cとの交点の位置であり、第2変換光の強度が最も強くなる位置でもある。したがって、この交点が第2光変換部材120の実質的な発光点p2と定義される。   The primary light emitted from the optical fiber emitting end 16 is irradiated most strongly on the optical axis C. The position at which the primary light is most strongly irradiated on the first light conversion member 110 is the position of the intersection between the incident surface 111 of the first light conversion member 110 and the optical axis C where the primary light is irradiated. It is also a position where the intensity of the first converted light that has been partially wavelength-converted by absorbing a part of the primary light is the strongest. This intersection point is defined as a substantial light emission point p1 of the first light conversion member 110. Similarly, the position where the primary light is most strongly irradiated on the second light conversion member 120 is the position of the intersection between the incident surface 121 of the second light conversion member 120 and the optical axis C where the primary light is irradiated. It is also a position where the intensity of the second converted light is the strongest. Therefore, this intersection is defined as a substantial light emitting point p2 of the second light conversion member 120.

(1次光入射時の照明光の動作)
図5,6を参照して、光変換ユニット100で照明光が生成される動作について説明する。1次光は、光ファイバ13により導光され、光ファイバ出射端16から光変換ユニット100に出射される。光ファイバ出射端16から出射される1次光の配光は狭く、配光半値角は約15°である。なお1次光の強度は、光軸C上において最も高い。
(Operation of illumination light when primary light is incident)
With reference to FIGS. 5 and 6, the operation of generating illumination light in the light conversion unit 100 will be described. The primary light is guided by the optical fiber 13 and emitted from the optical fiber emitting end 16 to the light conversion unit 100. The light distribution of the primary light emitted from the optical fiber output end 16 is narrow, and the light distribution half-value angle is about 15 °. The intensity of the primary light is highest on the optical axis C.

図5に示すように、光変換ユニット100に出射された1次光は、第1透明部材140を透過して第1光変換部材110(YAG)の入射面111に入射する。入射した1次光の一部は第1光変換部材110に吸収され、他の一部は第1光変換部材110を透過する。吸収された1次光は、第1変換光(黄色蛍光)に波長変換されて、第1光変換部材110の実質的な発光点p1を含む領域から発生して等方的に出射される。   As shown in FIG. 5, the primary light emitted to the light conversion unit 100 passes through the first transparent member 140 and enters the incident surface 111 of the first light conversion member 110 (YAG). A part of the incident primary light is absorbed by the first light conversion member 110 and the other part is transmitted through the first light conversion member 110. The absorbed primary light is wavelength-converted to first converted light (yellow fluorescent light), is generated from an area including the substantial light emitting point p1 of the first light converting member 110, and isotropically emitted.

図5に示すように、第1光変換部材110から側方と前方との少なくとも1つに出射された第1変換光の一部は、第1熱伝達抑制部材130と第2光変換部材120と第2透明部材150とを透過し、第1ホルダ160のテーパー面165を照射する。この第1変換光はテーパー面165の反射部材170によって反射され、第1変換光の進行方向は変わる。そして、この第1変換光は、第1光変換部材110に再入射することなく、第2透明部材150の出射面152(ホルダ出射部164)から前方に出射される。図示はしないが、前方に出射された第1変換光の一部は、反射部材170に進行せず、直接出射面152(ホルダ出射部164)から前方に出射される。つまり、第1変換光の進行方向が反射部材170によって変わることなく、第1変換光の一部は出射される。また、第1光変換部材110の実質的な発光点p1から後方(光ファイバ出射端16側)へ出射された第1変換光の一部は、テーパー面165の反射部材170に進行する。図示はしないが、この第1変換光は反射部材170によって反射されて、第1変換光の進行方向は前方に変わる。そして、この第1変換光は、第1光変換部材110と第1熱伝達抑制部材130と第2光変換部材120と第2透明部材150とを透過し、出射面152(ホルダ出射部164)から前方に出射される。   As shown in FIG. 5, a part of the first converted light emitted from the first light conversion member 110 to at least one of the side and the front is a first heat transfer suppressing member 130 and a second light conversion member 120. And the second transparent member 150, and the tapered surface 165 of the first holder 160 is irradiated. The first converted light is reflected by the reflecting member 170 on the tapered surface 165, and the traveling direction of the first converted light changes. Then, the first converted light is emitted forward from the emission surface 152 (holder emission part 164) of the second transparent member 150 without re-entering the first light conversion member 110. Although not shown, a part of the first converted light emitted forward does not proceed to the reflecting member 170 but is directly emitted forward from the emission surface 152 (holder emission part 164). That is, a part of the first converted light is emitted without the traveling direction of the first converted light being changed by the reflecting member 170. Further, a part of the first converted light emitted from the substantial light emitting point p1 of the first light converting member 110 to the rear (on the optical fiber emitting end 16 side) proceeds to the reflecting member 170 on the tapered surface 165. Although not shown, the first converted light is reflected by the reflecting member 170, and the traveling direction of the first converted light changes forward. And this 1st conversion light permeate | transmits the 1st light conversion member 110, the 1st heat transfer suppression member 130, the 2nd light conversion member 120, and the 2nd transparent member 150, and the output surface 152 (holder output part 164) Is emitted forward.

なお、第1変換光は、反射部材170により配光変換され、周囲よりも前方へ進行する成分が増す。これにより、図6に示すように、等方的な配光よりも狭角化された配光が実現する。このとき、第1変換光の配光半値角は、100°以下、例えば、72°である。   The first converted light is light-distributed and converted by the reflecting member 170, and the component traveling forward from the surroundings increases. Thereby, as shown in FIG. 6, the light distribution with a narrower angle than the isotropic light distribution is realized. At this time, the light distribution half-value angle of the first converted light is 100 ° or less, for example, 72 °.

一方、第1光変換部材110で吸収されなかった1次光は、図5に示すように、第1光変換部材110と第1熱伝達抑制部材130とを透過して第2光変換部材120の入射面121に照射される。照射された1次光は、第2光変換部材120に含まれる緑色の粉末蛍光体に吸収される。吸収された第1次光は、第2変換光(緑色蛍光)に波長変換されて、第2光変換部材120の実質的な発光点p2を含む領域から発生して等方的に出射される。   On the other hand, the primary light that has not been absorbed by the first light conversion member 110 passes through the first light conversion member 110 and the first heat transfer suppression member 130 as shown in FIG. The incident surface 121 is irradiated. The irradiated primary light is absorbed by the green powder phosphor included in the second light conversion member 120. The absorbed primary light is wavelength-converted to second converted light (green fluorescence), is generated from an area including the substantial light emitting point p2 of the second light conversion member 120, and isotropically emitted. .

図5に示すように、第2光変換部材120から側方と前方との少なくとも1つに出射された第2変換光の一部は、第2透明部材150を透過し、第1ホルダ160のテーパー面165を照射する。第2変換光はテーパー面165の反射部材170によって反射され、第2変換光の進行方向は変わる。そして、この第2変換光は、第1,2光変換部材110,120に再入射することなく、出射面152(ホルダ出射部164)から前方に出射される。前方に出射された第2変換光の一部は、反射部材170に進行せず、直接出射面152(ホルダ出射部164)から前方に出射される。つまり、第2変換光の進行方向が反射部材170によって変わることなく、第2変換光の一部は出射される。また、図示はしないが、第2変換光の一部は、第2光変換部材120の実質的な発光点p2から後方(光ファイバ出射端16側)へ出射され、テーパー面165の反射部材170に進行する。この第2変換光は反射部材170によって反射されて、第2変換光の進行方向は前方に変わる。そして、この第2変換光は、第1光変換部材110と第1熱伝達抑制部材130と第2光変換部材120と第2透明部材150とを透過し、出射面152(ホルダ出射部164)から前方に出射される。   As shown in FIG. 5, a part of the second converted light emitted from the second light conversion member 120 to at least one of the side and the front is transmitted through the second transparent member 150, The taper surface 165 is irradiated. The second converted light is reflected by the reflecting member 170 on the tapered surface 165, and the traveling direction of the second converted light changes. And this 2nd conversion light is radiate | emitted ahead from the output surface 152 (holder radiation | emission part 164), without re-entering into the 1st, 2nd light conversion members 110 and 120. FIG. A portion of the second converted light emitted forward does not travel to the reflecting member 170 but is emitted forward from the direct emission surface 152 (holder emission portion 164). That is, a part of the second converted light is emitted without the traveling direction of the second converted light being changed by the reflecting member 170. Although not shown, a part of the second converted light is emitted backward (from the optical fiber emitting end 16 side) from the substantial light emitting point p2 of the second light converting member 120, and the reflecting member 170 on the tapered surface 165. Proceed to. The second converted light is reflected by the reflecting member 170, and the traveling direction of the second converted light changes forward. And this 2nd conversion light permeate | transmits the 1st light conversion member 110, the 1st heat transfer suppression member 130, the 2nd light conversion member 120, and the 2nd transparent member 150, and the output surface 152 (holder output part 164) Is emitted forward.

発光点p2は、発光点p1に比べて、入射面111と入射面121との間の距離だけ、言い換えると、第1光変換部材110の厚さと、光軸C上における第1熱伝達抑制部材130の厚さとの和だけ、出射面152(ホルダ出射部164)側に配置されている。しかしながら発光点p1,p2は、入射面141(ホルダ入射部163)から第1ホルダ160の長さの2/3以下の位置に配置される。したがって、第2変換光は第1変換光と同様に反射部材170によって配光変換され、等方的な配光よりも狭角化された配光が実現され、第2変換光の配光角は第1変換光の配光角と略同一となる。このとき、第1,2変換光それぞれの配光半値角が100°以下の状態で、第1,2変換光それぞれは出射される。   The light emitting point p2 is compared with the light emitting point p1 by the distance between the incident surface 111 and the incident surface 121, in other words, the thickness of the first light conversion member 110 and the first heat transfer suppressing member on the optical axis C. Only the sum of the thickness of 130 is arranged on the emission surface 152 (holder emission part 164) side. However, the light emitting points p <b> 1 and p <b> 2 are arranged at a position that is 2/3 or less of the length of the first holder 160 from the incident surface 141 (holder incident portion 163). Therefore, the second converted light is light-distributed and converted by the reflecting member 170 in the same manner as the first converted light, and a light distribution that is narrower than the isotropic light distribution is realized, and the light distribution angle of the second converted light is realized. Is substantially the same as the light distribution angle of the first converted light. At this time, each of the first and second converted lights is emitted in a state where the light distribution half-value angle of each of the first and second converted lights is 100 ° or less.

光軸C上において、第1熱伝達抑制部材130は、第1,2光変換部材110,120よりも薄い。したがって発光点p2は発光点p1に近くに配置されることが可能となり、第2変換光の配光特性は第1変換光の配光特性に近づくことが可能となる。このとき、図6に示すように、第2変換光の配光半値角は、100°以下、例えば、76°である。そして配光が狭い第1,2変換光が照明光としてホルダ出射部164から出射される。   On the optical axis C, the first heat transfer suppression member 130 is thinner than the first and second light conversion members 110 and 120. Therefore, the light emitting point p2 can be disposed close to the light emitting point p1, and the light distribution characteristic of the second converted light can approach the light distribution characteristic of the first converted light. At this time, as shown in FIG. 6, the light distribution half-value angle of the second converted light is 100 ° or less, for example, 76 °. Then, the first and second converted lights having a narrow light distribution are emitted from the holder emitting portion 164 as illumination light.

次に、図7を参照して光変換ユニット100から発生する熱と、熱の伝達とを説明する。ここでは、熱の発生が最も多い個所である発光点p1,p2に着目し、発光点p1,p2から発生する熱の伝達を説明する。   Next, heat generated from the light conversion unit 100 and heat transfer will be described with reference to FIG. Here, focusing on the light emitting points p1 and p2, which are the places where the heat is most generated, the transfer of heat generated from the light emitting points p1 and p2 will be described.

第1,2光変換部材110,120が吸収した1次光を第1,2変換光に変換する際、変換の損失によって、第1,2光変換部材110,120は熱を発生する。発熱量は、第1,2光変換部材110,120に入射する1次光の光量に比例する。   When the primary light absorbed by the first and second light conversion members 110 and 120 is converted into first and second converted light, the first and second light conversion members 110 and 120 generate heat due to the conversion loss. The amount of heat generated is proportional to the amount of primary light incident on the first and second light conversion members 110 and 120.

ここで、第1,2光変換部材110,120から発生した熱の経路と、各経路における熱の伝達量とについて説明する。なお各経路において伝達される熱量は、第1,2光変換部材110,120周辺に配置される部材の熱伝導率に依存する。   Here, the path of heat generated from the first and second light conversion members 110 and 120 and the amount of heat transferred in each path will be described. The amount of heat transferred in each path depends on the thermal conductivity of members arranged around the first and second light conversion members 110 and 120.

第1光変換部材110周辺に配置される部材は、例えば、第1光変換部材110に熱的に接続される第1熱伝達抑制部材130と第1透明部材140と第1ホルダ160と反射部材170とを示す。第1熱伝達抑制部材130と第1透明部材140とは、低い熱伝導率(0.2W/m・K)を有するシリコーン樹脂を有する。第1ホルダ160は高い熱伝導率(120W/m・K)を有する真鍮を有し、反射部材170は高い熱伝導率(420W/m・K)を有する銀を有する。   The members disposed around the first light conversion member 110 are, for example, the first heat transfer suppression member 130, the first transparent member 140, the first holder 160, and the reflection member that are thermally connected to the first light conversion member 110. 170. The first heat transfer suppressing member 130 and the first transparent member 140 include a silicone resin having a low thermal conductivity (0.2 W / m · K). The first holder 160 includes brass having a high thermal conductivity (120 W / m · K), and the reflecting member 170 includes silver having a high thermal conductivity (420 W / m · K).

ここで、第1光変換部材110から発生した熱は、主に3つ経路を通り伝達される。これら経路を第1,2,3経路R1,R2,R3と称する。
第1経路R1では、熱は、第1光変換部材110から第1熱伝達抑制部材130を介して第2光変換部材120に伝達される。
第2経路R2では、熱は、第1光変換部材110から反射部材170を介して第1ホルダ160に伝達され、第1ホルダ160から外部に放出される。
第3経路R3では、熱は、第1光変換部材110から第1透明部材140を介して光ファイバ13に伝達され、光ファイバ13から外部に放出される。
例えば、各経路における熱の伝達量は、第1光変換部材110周辺に配置される部材それぞれの熱伝導率を考慮すると、第2経路R2、第1経路R1、第3経路R3の順で、低くなる。つまり第1経路R1における熱の第1伝達量は、第2経路R2における熱の第2伝達量よりも少ない。
Here, the heat generated from the first light conversion member 110 is transmitted mainly through three paths. These routes are referred to as first, second, and third routes R1, R2, and R3.
In the first path R <b> 1, heat is transferred from the first light conversion member 110 to the second light conversion member 120 via the first heat transfer suppression member 130.
In the second path R <b> 2, heat is transmitted from the first light conversion member 110 to the first holder 160 via the reflection member 170, and is released to the outside from the first holder 160.
In the third path R <b> 3, heat is transmitted from the first light conversion member 110 to the optical fiber 13 through the first transparent member 140 and is released to the outside from the optical fiber 13.
For example, the amount of heat transferred in each path is determined in the order of the second path R2, the first path R1, and the third path R3 in consideration of the thermal conductivity of each member disposed around the first light conversion member 110. Lower. That is, the first heat transfer amount in the first path R1 is smaller than the second heat transfer amount in the second path R2.

このため第1光変換部材110から発生した熱は、第1経路R1と第3経路R3とよりも優先して第2経路R2に伝達され熱拡散する。したがって、第2経路R2を伝達する熱量は、第1,3経路を伝達する熱量よりも多くなる。なお例えば第1熱伝達抑制部材130の熱伝導率は、第1透明部材140の熱伝導率と同じであるとする。また、光軸C上における第1熱伝達抑制部材130の厚さ(0.1mm)は、光軸C上における第1透明部材140の厚さよりも薄い。したがって、第1経路R1を伝達する熱量は、第3経路R3を伝達する熱量よりも多くなる。   For this reason, the heat generated from the first light conversion member 110 is transmitted to the second path R2 in preference to the first path R1 and the third path R3, and is diffused. Accordingly, the amount of heat transmitted through the second path R2 is greater than the amount of heat transmitted through the first and third paths. For example, it is assumed that the thermal conductivity of the first heat transfer suppressing member 130 is the same as the thermal conductivity of the first transparent member 140. In addition, the thickness (0.1 mm) of the first heat transfer suppressing member 130 on the optical axis C is thinner than the thickness of the first transparent member 140 on the optical axis C. Accordingly, the amount of heat transmitted through the first path R1 is greater than the amount of heat transmitted through the third path R3.

また、第2光変換部材120周辺に配置される部材は、例えば、第2光変換部材120に熱的に接続される第1熱伝達抑制部材130と第2透明部材150と第1ホルダ160と反射部材170と示す。第1熱伝達抑制部材130と第2透明部材150とは、低い熱伝導率(0.2W/m・K)を有するシリコーン樹脂を有する。第1ホルダ160は高い熱伝導率(120W/m・K)を有する真鍮を有し、反射部材170は高い熱伝導率(420W/m・K)を有する銀を有する。   Further, the members disposed around the second light conversion member 120 are, for example, the first heat transfer suppressing member 130, the second transparent member 150, and the first holder 160 that are thermally connected to the second light conversion member 120. A reflection member 170 is shown. The first heat transfer suppressing member 130 and the second transparent member 150 include a silicone resin having a low thermal conductivity (0.2 W / m · K). The first holder 160 includes brass having a high thermal conductivity (120 W / m · K), and the reflecting member 170 includes silver having a high thermal conductivity (420 W / m · K).

ここで、第2光変換部材120から発生した熱は、主に3つ経路を通り伝達される。これら経路を第4,5,6経路R4,R5,R6と称する。
第4経路R4では、熱は、第2光変換部材120から第1熱伝達抑制部材130を介して第1光変換部材110に伝達される。
第5経路R5では、熱は、第2光変換部材120から反射部材170を介して第1ホルダ160に伝達され、第1ホルダ160から外部に放出される。
第6経路R6では、熱は、第2光変換部材120から第2透明部材150に伝達され、第2透明部材150から外部に放出される。
例えば、各経路における熱の伝達量は、第1光変換部材110周辺に配置される部材それぞれの熱伝導率を考慮すると、第5経路R5、第4経路R4、第6経路R6の順で、低くなる。
Here, the heat generated from the second light conversion member 120 is transmitted mainly through three paths. These routes are referred to as fourth, fifth, and sixth routes R4, R5, and R6.
In the fourth path R4, heat is transferred from the second light conversion member 120 to the first light conversion member 110 via the first heat transfer suppression member 130.
In the fifth path R <b> 5, heat is transmitted from the second light conversion member 120 to the first holder 160 via the reflecting member 170, and is released to the outside from the first holder 160.
In the sixth path R6, heat is transmitted from the second light conversion member 120 to the second transparent member 150 and is released from the second transparent member 150 to the outside.
For example, the amount of heat transferred in each path is in the order of the fifth path R5, the fourth path R4, and the sixth path R6 in consideration of the thermal conductivity of each member disposed around the first light conversion member 110. Lower.

このため第2光変換部材120から発生した熱は、第4経路R4と第6経路R6とよりも優先して第5経路R5に伝達され熱拡散する。したがって、第5経路R5を伝達する熱量は、第4,6経路を伝達する熱量よりも多くなる。なお例えば第1熱伝達抑制部材130の熱伝導率は、第2透明部材150の熱伝導率と同じであるとする。また、光軸C上における第1熱伝達抑制部材130の厚さ(0.1mm)は、光軸C上における第2透明部材150の厚さよりも薄い。したがって、第4経路R4を伝達する熱量は、第6経路R6を伝達する熱量よりも多くなる。   For this reason, the heat generated from the second light conversion member 120 is transmitted to the fifth path R5 in preference to the fourth path R4 and the sixth path R6 and is diffused. Therefore, the amount of heat transmitted through the fifth path R5 is greater than the amount of heat transmitted through the fourth and sixth paths. For example, it is assumed that the thermal conductivity of the first heat transfer suppressing member 130 is the same as the thermal conductivity of the second transparent member 150. Further, the thickness (0.1 mm) of the first heat transfer suppressing member 130 on the optical axis C is thinner than the thickness of the second transparent member 150 on the optical axis C. Accordingly, the amount of heat transmitted through the fourth path R4 is greater than the amount of heat transmitted through the sixth path R6.

第1ホルダ160は真鍮であり、第1ホルダ160の体積と表面積とは、第1,2光変換部材110,120のそれよりも大きい。したがって、熱が第1,2光変換部材110,120から連続して発生した際、熱は、第1,2光変換部材110,120から第1ホルダ160に速やかに伝達され、結果として第1,2光変換部材110,120に留まりにくい。そして熱は、第1ホルダ160から迅速に外部に放出される。   The first holder 160 is brass, and the volume and surface area of the first holder 160 are larger than those of the first and second light conversion members 110 and 120. Therefore, when heat is continuously generated from the first and second light conversion members 110 and 120, the heat is quickly transferred from the first and second light conversion members 110 and 120 to the first holder 160, and as a result, the first , 2 It is difficult to stay on the light conversion members 110 and 120. The heat is quickly released from the first holder 160 to the outside.

本実施形態では、第1熱伝達抑制部材130が光軸C方向において第1光変換部材110と第2光変換部材120との間に配置され、第1熱伝達抑制部材130の熱伝導率は第1,2光変換部材110,120の熱伝導率それぞれよりも低い。したがって光変換時に第1,2光変換部材110,120から発生する熱が第1,2光変換部材110,120に集中することを抑制でき、第1,2光変換部材110,120の温度上昇に伴う変換効率の低下を抑制でき、明るい照明光を実現できる。   In the present embodiment, the first heat transfer suppression member 130 is disposed between the first light conversion member 110 and the second light conversion member 120 in the optical axis C direction, and the thermal conductivity of the first heat transfer suppression member 130 is The thermal conductivity of each of the first and second light conversion members 110 and 120 is lower. Therefore, the heat generated from the first and second light conversion members 110 and 120 during light conversion can be suppressed from being concentrated on the first and second light conversion members 110 and 120, and the temperature of the first and second light conversion members 110 and 120 increases. Therefore, it is possible to suppress a decrease in conversion efficiency due to the light and to realize bright illumination light.

第1,2光変換部材110,120の一部は第1ホルダ160と反射部材170とに熱的に接続されており、第1ホルダ160と反射部材170との熱伝導率それぞれは第1,2光変換部材110,120の熱伝導率それぞれよりも高い。したがって光変換時に第1,2光変換部材110,120から発生する熱を、第1,2光変換部材110,120から第1ホルダ160と反射部材170とに効率的且つ優先的に伝達できる。つまり第1,2光変換部材110,120から発生する熱を分散できる。そして、多くの1次光が第1,2光変換部材110,120に入射しても、熱の大部分が第1,2光変換部材110,120から放出されるため、第1,2光変換部材110,120は多くの熱を発生せず、明るい照明光を提供できる。   A part of the first and second light conversion members 110 and 120 is thermally connected to the first holder 160 and the reflecting member 170, and the thermal conductivities of the first holder 160 and the reflecting member 170 are the first and second, respectively. It is higher than the thermal conductivity of each of the two light conversion members 110 and 120. Accordingly, heat generated from the first and second light conversion members 110 and 120 during light conversion can be efficiently and preferentially transmitted from the first and second light conversion members 110 and 120 to the first holder 160 and the reflection member 170. That is, the heat generated from the first and second light conversion members 110 and 120 can be dispersed. Even if a large amount of primary light is incident on the first and second light conversion members 110 and 120, most of the heat is emitted from the first and second light conversion members 110 and 120. The conversion members 110 and 120 do not generate much heat and can provide bright illumination light.

1次光が最初に入射する第1光変換部材110の発熱量は第2光変換部材120の発熱量よりも多いが、第1光変換部材110の熱伝導率は第2光変換部材120の熱伝導率よりも高い。したがって、光変換ユニット100にて発生する局所的な熱は第1光変換部材110から優先的に放出され、熱による第1光変換部材110の変換効率の低下を抑制できる。また第1光変換部材110と第2光変換部材120との温度差を少なくでき、熱に対して明るさが安定した照明光を提供できる。   The amount of heat generated by the first light conversion member 110 to which primary light first enters is greater than the amount of heat generated by the second light conversion member 120, but the thermal conductivity of the first light conversion member 110 is that of the second light conversion member 120. Higher than thermal conductivity. Therefore, local heat generated in the light conversion unit 100 is preferentially released from the first light conversion member 110, and a decrease in conversion efficiency of the first light conversion member 110 due to heat can be suppressed. Further, the temperature difference between the first light conversion member 110 and the second light conversion member 120 can be reduced, and illumination light having a stable brightness against heat can be provided.

例えば、第1,2光変換部材110,120の内部量子効率は50%以上であり、第1,2光変換部材110,120の発光点p1,p2が150℃のときでは発光強度維持率は略50%以上となる。したがって光変換ユニット100により多くの1次光を入射でき、明るい照明光を提供できる。   For example, the internal quantum efficiencies of the first and second light conversion members 110 and 120 are 50% or more, and when the emission points p1 and p2 of the first and second light conversion members 110 and 120 are 150 ° C., the emission intensity maintenance ratio is It becomes about 50% or more. Therefore, a large amount of primary light can be incident on the light conversion unit 100, and bright illumination light can be provided.

例えば、第1,2光変換部材110,120は、樹脂の熱伝導率よりも高い熱伝導率を有し、且つ高い耐熱性を有する無機材料を用いる。これにより、多くの1次光が高温下の光変換ユニット100に入射しても、熱が高い熱伝導率によって外部に放出されるため、明るさが安定した照明光を提供できる。   For example, the first and second light conversion members 110 and 120 are made of an inorganic material having a thermal conductivity higher than that of the resin and having a high heat resistance. As a result, even if a large amount of primary light is incident on the light conversion unit 100 at a high temperature, heat is emitted to the outside due to high thermal conductivity, so that illumination light with stable brightness can be provided.

1次光が透過する第1熱伝達抑制部材130は第1,2光変換部材110,120の間に配置されるが、光軸C上において第1熱伝達抑制部材130は第1,2光変換部材110,120よりも薄い。したがって、発光点p2は発光点p1に近づくことができ、第2変換光の配光角を第1変換光の配光角と略同一にできる。   The first heat transfer suppression member 130 through which the primary light is transmitted is disposed between the first and second light conversion members 110 and 120. On the optical axis C, the first heat transfer suppression member 130 is the first and second light beams. It is thinner than the conversion members 110 and 120. Therefore, the light emitting point p2 can approach the light emitting point p1, and the light distribution angle of the second converted light can be made substantially the same as the light distribution angle of the first converted light.

第1,2光変換部材110,120は、ホルダ入射部163からホルダ出射部164にかけて拡径しているテーパー形状を有する第1ホルダ160の内部に配置される。したがって、照明光としての第1,2変換光の配光を狭角にでき、光軸C方向においてホルダ出射部164から離れている被観察体Sに対して明るい照明光を照射できる。   The first and second light conversion members 110 and 120 are disposed inside a first holder 160 having a tapered shape whose diameter increases from the holder incident portion 163 to the holder emitting portion 164. Therefore, the light distribution of the first and second converted light as the illumination light can be narrowed, and the bright illumination light can be irradiated to the observed object S that is away from the holder emitting portion 164 in the optical axis C direction.

なお本実施形態では、黄色蛍光を出射する第1光変換部材110と緑色蛍光を出射する第2光変換部材120とを有する構造の他に、第1光変換部材110が緑色といった第1蛍光を出射し、第2光変換部材120が第1蛍光を吸収して赤色といった第2蛍光を出射する、2次吸収構造を有する構造を用いてもよい。2次吸収構造は、第1光変換部材110が第2光変換部材120から離れて配置される非接触構造でもある。ここで、第1光変換部材110が第2光変換部材120に接触している構造を、接触構造と称する。非接触構造では、接触構造に比べて、第2光変換部材120は第1光変換部材110から離れて配置される。したがって第2光変換部材120が吸収する緑色の第1蛍光の吸収量を少なくでき、多くの緑色の第1蛍光を照明光として利用できる。   In this embodiment, in addition to the structure including the first light conversion member 110 that emits yellow fluorescence and the second light conversion member 120 that emits green fluorescence, the first light conversion member 110 emits first fluorescence such as green. A structure having a secondary absorption structure that emits and emits second fluorescence such as red light when the second light conversion member 120 absorbs the first fluorescence may be used. The secondary absorption structure is also a non-contact structure in which the first light conversion member 110 is disposed away from the second light conversion member 120. Here, the structure in which the first light conversion member 110 is in contact with the second light conversion member 120 is referred to as a contact structure. In the non-contact structure, the second light conversion member 120 is arranged away from the first light conversion member 110 as compared to the contact structure. Therefore, the amount of green first fluorescence absorbed by the second light conversion member 120 can be reduced, and much green first fluorescence can be used as illumination light.

なお1次光源11は、青色LD14に限らず、LEDを用いてもよい。これにより、1次光源11を安価に作製できる。   The primary light source 11 is not limited to the blue LD 14 and may be an LED. Thereby, the primary light source 11 can be produced at low cost.

第1ホルダ160の中空部162は、テーパー形状ではなく、円柱形状または放物形状を有してもよい。これにより、中空部162を容易に加工でき、安価に第1ホルダ160を作製できる。   The hollow portion 162 of the first holder 160 may have a columnar shape or a parabolic shape instead of a tapered shape. Thereby, the hollow part 162 can be processed easily and the 1st holder 160 can be produced cheaply.

第1,2光変換部材110,120は、円柱形状ではなく、角柱形状を有してもよい。この場合、角柱に配置される入射面111,121の角部のみが第1ホルダ160の内周面であるテーパー面165に接触していればよい。第1,2光変換部材110,120の材質によっては、ダイシング等により、円柱よりも角柱を容易に加工できる。   The first and second light conversion members 110 and 120 may have a prismatic shape instead of a cylindrical shape. In this case, only the corners of the incident surfaces 111 and 121 arranged in the prism need only be in contact with the tapered surface 165 that is the inner peripheral surface of the first holder 160. Depending on the material of the first and second light conversion members 110 and 120, the prism can be more easily processed than the cylinder by dicing or the like.

図示はしないが、光ファイバ13が省略され、1次光源11の出射端部が光変換ユニット100の入射面141に直接光学的に接続されてもよいし、複数のレンズを有する空間光学系が1次光源11の出射端部と光変換ユニット100の入射面141との間に配置されてもよい。   Although not shown, the optical fiber 13 may be omitted, and the emission end of the primary light source 11 may be directly optically connected to the incident surface 141 of the light conversion unit 100, or a spatial optical system having a plurality of lenses may be used. You may arrange | position between the output edge part of the primary light source 11, and the entrance plane 141 of the light conversion unit 100. FIG.

第1,2光変換部材110,120それぞれは第1ホルダ160と物理的に接触していることが好ましいが、これに限定されない。第1光変換部材110から第1ホルダ160へ熱が伝達されれば、第1光変換部材110は、第1ホルダ160と物理的に接触していなくても、第1ホルダ160に近接していてもよい。この場合、第1光変換部材110と第1ホルダ160との間に、例えば反射部材170、図示しない接着層、図示しない空気層などが介在する。第1光変換部材110から発生した熱は、第1光変換部材110から反射部材170、接着層、空気層等を介して第1ホルダ160に伝達可能である。第1光変換部材110と第1ホルダ160とについて説明したが、第2光変換部材120と第1ホルダ160とについても、同様である。   Each of the first and second light conversion members 110 and 120 is preferably in physical contact with the first holder 160, but is not limited thereto. If heat is transferred from the first light conversion member 110 to the first holder 160, the first light conversion member 110 is close to the first holder 160 even if it is not in physical contact with the first holder 160. May be. In this case, for example, a reflecting member 170, an adhesive layer (not shown), an air layer (not shown), and the like are interposed between the first light conversion member 110 and the first holder 160. The heat generated from the first light conversion member 110 can be transferred from the first light conversion member 110 to the first holder 160 through the reflection member 170, the adhesive layer, the air layer, and the like. Although the first light conversion member 110 and the first holder 160 have been described, the same applies to the second light conversion member 120 and the first holder 160.

本実施形態では、第1光変換部材110における入射面111の縁部は第1ホルダ160のテーパー面165と接触し、熱が第1光変換部材110から第1ホルダ160に伝達される。熱が伝達されれば、縁部はテーパー面165から離れてもよい。このとき、縁部とテーパー面165との間の距離は、第1光変換部材110(出射面112)と第2光変換部材120(入射面121)との間の距離よりも短いことが好ましい。これにより、第1光変換部材110から第1ホルダ160に伝達される熱量を、第1光変換部材110から第2光変換部材120に伝達される熱量よりも多くできる。第1光変換部材110と第1ホルダ160とについて説明したが、第2光変換部材120と第1ホルダ160とについても、同様である。   In the present embodiment, the edge of the incident surface 111 of the first light conversion member 110 is in contact with the tapered surface 165 of the first holder 160, and heat is transferred from the first light conversion member 110 to the first holder 160. The edge may be away from the tapered surface 165 if heat is transferred. At this time, the distance between the edge portion and the tapered surface 165 is preferably shorter than the distance between the first light conversion member 110 (exit surface 112) and the second light conversion member 120 (incident surface 121). . Thereby, the amount of heat transferred from the first light conversion member 110 to the first holder 160 can be made larger than the amount of heat transferred from the first light conversion member 110 to the second light conversion member 120. Although the first light conversion member 110 and the first holder 160 have been described, the same applies to the second light conversion member 120 and the first holder 160.

第1ホルダ160は、第1ホルダ160の外周面に配置され、熱を外部に放出する図示しないフィン部を有してもよい。これにより第1ホルダ160は、放熱効率を向上できる。   The first holder 160 may be disposed on the outer peripheral surface of the first holder 160 and may have a fin portion (not shown) that releases heat to the outside. Thereby, the 1st holder 160 can improve heat dissipation efficiency.

なお、熱伝達抑制部材の熱伝導率は、12W/m・K未満であればよい。第1ホルダ160の熱伝導率は、15W/m・K以上であればよい。   The thermal conductivity of the heat transfer suppressing member may be less than 12 W / m · K. The thermal conductivity of the first holder 160 may be 15 W / m · K or more.

[変形例]
以下に、本実施形態の変形例1乃至5を説明する。各変形例では、主に、本実施形態と異なることのみ記載する。
[Modification]
Hereinafter, modifications 1 to 5 of the present embodiment will be described. In each modification, only differences from the present embodiment are mainly described.

図8に示す変形例1において、第1光変換部材110は例えば円錐台形状を有し、第1光変換部材110の側面113全体が第1ホルダ160の内周面であるテーパー面165に熱的に接続される。したがって、第1光変換部材110が第1ホルダ160に熱的に接続される第1領域は、第2光変換部材120が第1ホルダ160に熱的に接続される第2領域よりも広くなる。第1領域は第1光変換部材110の側面113全体であり、第2領域は第2光変換部材120における入射面121の縁部全周である。本変形例では、第1光変換部材110の発熱量は、第2光変換部材120の発熱量よりも多い。   In the first modification shown in FIG. 8, the first light conversion member 110 has, for example, a truncated cone shape, and the entire side surface 113 of the first light conversion member 110 is heated to the tapered surface 165 that is the inner peripheral surface of the first holder 160. Connected. Therefore, the first region where the first light conversion member 110 is thermally connected to the first holder 160 is wider than the second region where the second light conversion member 120 is thermally connected to the first holder 160. . The first region is the entire side surface 113 of the first light conversion member 110, and the second region is the entire periphery of the edge of the incident surface 121 of the second light conversion member 120. In the present modification, the heat generation amount of the first light conversion member 110 is larger than the heat generation amount of the second light conversion member 120.

第1光変換部材110から発生した熱の一部は、第1光変換部材110の側面113全体から第1ホルダ160に伝達される。   Part of the heat generated from the first light conversion member 110 is transmitted to the first holder 160 from the entire side surface 113 of the first light conversion member 110.

本変形例において、第1光変換部材110と第1ホルダ160との接触面積が第1実施形態よりも増える。したがって、第1光変換部材110から第1ホルダ160に伝達される熱量を増やすことができ、発熱量が多い第1光変換部材110の放熱性を向上できる。   In this modification, the contact area between the first light conversion member 110 and the first holder 160 is larger than that in the first embodiment. Therefore, the amount of heat transferred from the first light conversion member 110 to the first holder 160 can be increased, and the heat dissipation of the first light conversion member 110 that generates a large amount of heat can be improved.

また本変形例では、第1熱伝達抑制部材130は円錐台形状を有し、第1熱伝達抑制部材130の側面133全体は第1ホルダ160の内周面であるテーパー面165に熱的に接続される。第1光変換部材110の出射面112は第1熱伝達抑制部材130の第1面131に積層し、第1熱伝達抑制部材130の第2面132は入射面121に積層する。第1面131は、第2面132よりも小さい。第1面131,第2面132は、例えば円形である。第1面131には例えば1次光と第1変換光とが入射し、第2面132は例えば1次光と第1変換光とを出射する。第1面131は第2変換光を出射し、第2面132には第2変換光が入射してもよい。   Further, in this modification, the first heat transfer suppression member 130 has a truncated cone shape, and the entire side surface 133 of the first heat transfer suppression member 130 is thermally applied to the tapered surface 165 that is the inner peripheral surface of the first holder 160. Connected. The emission surface 112 of the first light conversion member 110 is stacked on the first surface 131 of the first heat transfer suppression member 130, and the second surface 132 of the first heat transfer suppression member 130 is stacked on the incident surface 121. The first surface 131 is smaller than the second surface 132. The first surface 131 and the second surface 132 are, for example, circular. For example, primary light and first converted light are incident on the first surface 131, and the second surface 132 emits, for example, primary light and first converted light. The first surface 131 may emit the second converted light, and the second converted light may enter the second surface 132.

なお、本変形例では、第2光変換部材120も例えば円錐台形状を有し、第2光変換部材120の側面123全体が第1ホルダ160の内周面であるテーパー面165に熱的に接続されてもよい。この場合、第2光変換部材120から第1ホルダ160に伝達される熱量を増やすことができ、第2光変換部材120の放熱性も向上できる。   In this modification, the second light conversion member 120 also has a truncated cone shape, for example, and the entire side surface 123 of the second light conversion member 120 is thermally applied to the tapered surface 165 that is the inner peripheral surface of the first holder 160. It may be connected. In this case, the amount of heat transferred from the second light conversion member 120 to the first holder 160 can be increased, and the heat dissipation of the second light conversion member 120 can also be improved.

図9に示す変形例2において、光変換ユニット100は、光軸C方向において第1光変換部材110と第2光変換部材120との間に配置され、光軸Cを中心に回転対称に配置される第3透明部材180をさらに有する。光軸C上において、光ファイバ出射端16側から順に、第1透明部材140、第1光変換部材110、第3透明部材180、第1熱伝達抑制部材130、第2光変換部材120、第2透明部材150が配置される。第1熱伝達抑制部材130と第3透明部材180とは円錐台形状を有し、第1熱伝達抑制部材130の側面133全体と第3透明部材180の側面183全体とは第1ホルダ160の内周面であるテーパー面165に熱的に接続される。第1光変換部材110の出射面112は第3透明部材180の第1面181に積層し、第3透明部材180の第2面182は第1熱伝達抑制部材130の第1面131に積層し、第1熱伝達抑制部材130の第2面132は入射面121に積層する。第3透明部材180は、例えば、ガラスを有する。第3透明部材180の熱伝導率は、1W/m・Kである。第3透明部材180は、1次光と第1,2変換光とを透過させる透過部材である。ここで、光軸C上において、第1熱伝達抑制部材130の厚さは、0.05mmである。第1面181は、第2面182よりも小さい。第1面181,第2面182は、例えば円形である。第1面181には例えば1次光と第1変換光とが入射し、第2面182は例えば1次光と第1変換光とを出射する。第1面181は第2変換光を出射し、第2面182には第2変換光が入射してもよい。   9, the light conversion unit 100 is disposed between the first light conversion member 110 and the second light conversion member 120 in the optical axis C direction, and is rotationally symmetrical about the optical axis C. The third transparent member 180 is further included. On the optical axis C, the first transparent member 140, the first light conversion member 110, the third transparent member 180, the first heat transfer suppression member 130, the second light conversion member 120, Two transparent members 150 are arranged. The first heat transfer suppressing member 130 and the third transparent member 180 have a truncated cone shape, and the entire side surface 133 of the first heat transfer suppressing member 130 and the entire side surface 183 of the third transparent member 180 are the first holder 160. It is thermally connected to a tapered surface 165 that is an inner peripheral surface. The emission surface 112 of the first light conversion member 110 is laminated on the first surface 181 of the third transparent member 180, and the second surface 182 of the third transparent member 180 is laminated on the first surface 131 of the first heat transfer suppressing member 130. The second surface 132 of the first heat transfer suppressing member 130 is laminated on the incident surface 121. The third transparent member 180 has glass, for example. The thermal conductivity of the third transparent member 180 is 1 W / m · K. The third transparent member 180 is a transmission member that transmits the primary light and the first and second converted lights. Here, on the optical axis C, the thickness of the first heat transfer suppressing member 130 is 0.05 mm. The first surface 181 is smaller than the second surface 182. The first surface 181 and the second surface 182 are, for example, circular. For example, primary light and first converted light are incident on the first surface 181, and the second surface 182 emits, for example, primary light and first converted light. The first surface 181 may emit the second converted light, and the second converted light may enter the second surface 182.

本変形例における光軸C上の熱抵抗値HR1,HR2,HR3は、以下のとおりである。   The thermal resistance values HR1, HR2, and HR3 on the optical axis C in the present modification are as follows.

HR1=0.25×10−3[m]/12[W/(m・K)]=2.1×10−5[(m・K)/W)]
HR2=0.25×10−3[m]/1[W/(m・K)]=2.5×10−4[(m・K)/W)]
HR3=0.05×10−3[m]/0.2[W/(m・K)]=2.5×10−4[(m・K)/W)]
このように、光軸C上における熱抵抗値HR3は、光軸C上における熱抵抗値HR1よりも大きく、光軸C上における熱抵抗値HR2と同じである。
HR1 = 0.25 × 10 −3 [m] / 12 [W / (m · K)] = 2.1 × 10 −5 [(m 2 · K) / W)]
HR2 = 0.25 × 10 −3 [m] / 1 [W / (m · K)] = 2.5 × 10 −4 [(m 2 · K) / W)]
HR3 = 0.05 × 10 −3 [m] /0.2 [W / (m · K)] = 2.5 × 10 −4 [(m 2 · K) / W)]
Thus, the thermal resistance value HR3 on the optical axis C is larger than the thermal resistance value HR1 on the optical axis C and is the same as the thermal resistance value HR2 on the optical axis C.

本変形例では、一方の第2光変換部材120側のみに、第1光変換部材110と第2光変換部材120との少なくとも一方の熱抵抗値HR1,HR2よりも大きい熱抵抗値HR3を有する第1熱伝達抑制部材130が配置されればよい。これにより、例えば、第1熱伝達抑制部材130によって、第1光変換部材110から第2光変換部材120への熱の伝達を抑制できる。   In the present modification, only one of the second light conversion members 120 has a heat resistance value HR3 that is larger than at least one of the first light conversion member 110 and the second light conversion member 120. The 1st heat transfer suppression member 130 should just be arrange | positioned. Thereby, for example, the first heat transfer suppression member 130 can suppress heat transfer from the first light conversion member 110 to the second light conversion member 120.

図10に示す変形例3において、光軸C方向における第1光変換部材110と第2光変換部材120との間において、第1熱伝達抑制部材130と第3透明部材180とが配置される。第1熱伝達抑制部材130は、発光点p1と発光点p2と結ぶ光軸C上に配置され、第3透明部材180は第1熱伝達抑制部材130の周囲に配置される。第3透明部材180は、第1熱伝達抑制部材130が配置される例えば円柱形状の中空部を有する円錐台形状を有する。第1熱伝達抑制部材130は、例えば円柱形状を有する。第1熱伝達抑制部材130は柱形状を有していればよい。中空部の形状は、第1熱伝達抑制部材130が配置されれば、特に限定されない。第1熱伝達抑制部材130の外周の側面133は、第3透明部材180の内周面に熱的に接続される。第3透明部材180の側面183全体が第1ホルダ160の内周面であるテーパー面165に接触される。本変形例の第1熱伝達抑制部材130の直径は、第1実施形態の第1熱伝達抑制部材130の最小直径よりも小さい。光軸Cに直交する光変換ユニット100の幅方向において、第3透明部材180が第1熱伝達抑制部材130と第1ホルダ160との間に配置されるため、第1熱伝達抑制部材130は第1ホルダ160と物理的に接触していない。   In Modification 3 shown in FIG. 10, the first heat transfer suppressing member 130 and the third transparent member 180 are arranged between the first light conversion member 110 and the second light conversion member 120 in the optical axis C direction. . The first heat transfer suppressing member 130 is disposed on the optical axis C connecting the light emitting point p1 and the light emitting point p2, and the third transparent member 180 is disposed around the first heat transfer suppressing member 130. The third transparent member 180 has a truncated cone shape having, for example, a cylindrical hollow portion in which the first heat transfer suppressing member 130 is disposed. The first heat transfer suppression member 130 has, for example, a cylindrical shape. The first heat transfer suppressing member 130 only needs to have a column shape. The shape of the hollow portion is not particularly limited as long as the first heat transfer suppressing member 130 is disposed. The outer peripheral side surface 133 of the first heat transfer suppressing member 130 is thermally connected to the inner peripheral surface of the third transparent member 180. The entire side surface 183 of the third transparent member 180 is in contact with the tapered surface 165 that is the inner peripheral surface of the first holder 160. The diameter of the first heat transfer suppression member 130 of the present modification is smaller than the minimum diameter of the first heat transfer suppression member 130 of the first embodiment. Since the third transparent member 180 is disposed between the first heat transfer suppressing member 130 and the first holder 160 in the width direction of the light conversion unit 100 orthogonal to the optical axis C, the first heat transfer suppressing member 130 is There is no physical contact with the first holder 160.

第1熱伝達抑制部材130は、例えば、熱伝導率が0.2W/m・Kである透明の樹脂を有する。第3透明部材180は、例えば、熱伝導率が1W/m・Kであるガラスを有する。   The first heat transfer suppressing member 130 includes, for example, a transparent resin having a thermal conductivity of 0.2 W / m · K. The third transparent member 180 includes, for example, glass having a thermal conductivity of 1 W / m · K.

本変形例では、第1熱伝達抑制部材130は、発光点p1と発光点p2と結ぶ光軸C上に配置される。したがって、テーパー面165側において伝達される熱よりも光軸C上において第1光変換部材110と第2光変換部材120との間にて伝達される熱を優先して抑制できる。   In the present modification, the first heat transfer suppressing member 130 is disposed on the optical axis C connecting the light emitting point p1 and the light emitting point p2. Therefore, heat transmitted between the first light conversion member 110 and the second light conversion member 120 on the optical axis C can be preferentially suppressed over heat transmitted on the tapered surface 165 side.

図11に示す変形例4において、光変換ユニット100は、光軸Cを中心に回転対称に配置される熱伝達部材190をさらに有する。例えば、熱伝達部材190は、光軸C方向において第1光変換部材110と第2光変換部材120との間に配置される。また熱伝達部材190は、発熱量が多い第1光変換部材110に熱的に接続され、発熱量が少ない第2光変換部材120から離れて配置され、第1ホルダ160の内周面であるテーパー面165に熱的に接続される。熱伝達部材190の側面193はテーパー面であり、側面193全体がテーパー面165に熱的に接続される。なお熱伝達部材190は、円柱形状の第1光変換部材110の側面113と第1ホルダ160の内周面であるテーパー面165との間に配置されてもよい。熱伝達部材190が第1光変換部材110と第1ホルダ160とに熱的に接続されていれば、熱伝達部材190の形状は特に限定されない。   In Modification 4 shown in FIG. 11, the light conversion unit 100 further includes a heat transfer member 190 that is rotationally symmetrical about the optical axis C. For example, the heat transfer member 190 is disposed between the first light conversion member 110 and the second light conversion member 120 in the optical axis C direction. The heat transfer member 190 is thermally connected to the first light conversion member 110 that generates a large amount of heat, is disposed away from the second light conversion member 120 that generates a small amount of heat, and is an inner peripheral surface of the first holder 160. Thermally connected to the tapered surface 165. The side surface 193 of the heat transfer member 190 is a tapered surface, and the entire side surface 193 is thermally connected to the tapered surface 165. The heat transfer member 190 may be disposed between the side surface 113 of the cylindrical first light conversion member 110 and the tapered surface 165 that is the inner peripheral surface of the first holder 160. The shape of the heat transfer member 190 is not particularly limited as long as the heat transfer member 190 is thermally connected to the first light conversion member 110 and the first holder 160.

熱伝達部材190は、第1光変換部材110の熱伝導率よりも高い熱伝導率を有する。このような高熱伝導部材は、例えば、グラファイトシート、または酸化亜鉛を有する。グラファイトシートにおいて、面方向の熱伝導率は、厚さ方向の熱伝導率よりも高い。このため、第1光変換部材110から熱伝達部材190に伝達された熱は、厚さ方向よりも平面方向に伝達される、つまり熱伝達部材190から第1ホルダ160に伝達される。面方向の熱伝導率は、例えば、700W/m・Kである。酸化亜鉛は、透明電極として用いられる。酸化亜鉛の熱伝導率は、例えば、25W/m・Kである。   The heat transfer member 190 has a thermal conductivity higher than that of the first light conversion member 110. Such a high thermal conductive member includes, for example, a graphite sheet or zinc oxide. In the graphite sheet, the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction. Therefore, the heat transmitted from the first light conversion member 110 to the heat transfer member 190 is transmitted in the plane direction rather than the thickness direction, that is, transmitted from the heat transfer member 190 to the first holder 160. The thermal conductivity in the plane direction is, for example, 700 W / m · K. Zinc oxide is used as a transparent electrode. The thermal conductivity of zinc oxide is, for example, 25 W / m · K.

グラファイトシートのように、熱伝達部材190が着色されている場合、例えば、熱伝達部材190は、第1ホルダ160に入射する1次光の中心軸である光軸Cを除いた領域に配置される。このため熱伝達部材190は、例えば、ドーナッツ形状を有する。透明電極として用いられる酸化亜鉛のように、熱伝達部材190が透明である場合、熱伝達部材190は、光軸C上にも配置されてよい。   When the heat transfer member 190 is colored like a graphite sheet, for example, the heat transfer member 190 is disposed in a region excluding the optical axis C that is the central axis of the primary light incident on the first holder 160. The For this reason, the heat transfer member 190 has, for example, a donut shape. When the heat transfer member 190 is transparent like zinc oxide used as a transparent electrode, the heat transfer member 190 may also be disposed on the optical axis C.

熱伝達部材190が側面113とテーパー面165との間に配置される場合、熱伝達部材190は、着色されて非透明であってもよいし、透明でもよい。   When the heat transfer member 190 is disposed between the side surface 113 and the tapered surface 165, the heat transfer member 190 may be colored and non-transparent, or may be transparent.

第1光変換部材110から発生した熱は、第2経路R2に加えて、熱伝達部材190を介して第1ホルダ160に伝達され、第1ホルダ160から外部に放出される。   The heat generated from the first light conversion member 110 is transmitted to the first holder 160 via the heat transfer member 190 in addition to the second path R2, and is released to the outside from the first holder 160.

本変形例は、熱伝達部材190によって第1光変換部材110から第1ホルダ160に伝達される熱量を増やすことができ、発熱量が多い第1光変換部材110の放熱性を向上できる。   In the present modification, the amount of heat transferred from the first light conversion member 110 to the first holder 160 by the heat transfer member 190 can be increased, and the heat dissipation of the first light conversion member 110 having a large amount of heat generation can be improved.

図12に示す変形例5において、第2透明部材150の代わりに、熱伝達部材190が配置される。熱伝達部材190は、略円錐台形状を有する。熱伝達部材190は、1次光が照射される第2光変換部材120の入射面121側よりも光変換ユニット100の出射部側であるホルダ出射部164側に配置される。熱伝達部材190は、第2光変換部材120が配置される凹状の接触面191と、接触面191と対向する大きい円形の出射面192と、接触面191と出射面192との間の外周面である側面193とを有する。熱伝達部材190の接触面191は、第2光変換部材の出射面122と側面123とに熱的に接続される。側面193全体は、第1ホルダ160の内周面であるテーパー面165に熱的に接続される。   In Modification 5 shown in FIG. 12, a heat transfer member 190 is disposed instead of the second transparent member 150. The heat transfer member 190 has a substantially truncated cone shape. The heat transfer member 190 is disposed closer to the holder emitting portion 164 that is the emitting portion side of the light conversion unit 100 than the incident surface 121 side of the second light converting member 120 irradiated with the primary light. The heat transfer member 190 includes a concave contact surface 191 on which the second light conversion member 120 is disposed, a large circular emission surface 192 that faces the contact surface 191, and an outer peripheral surface between the contact surface 191 and the emission surface 192. And a side surface 193. The contact surface 191 of the heat transfer member 190 is thermally connected to the emission surface 122 and the side surface 123 of the second light conversion member. The entire side surface 193 is thermally connected to a tapered surface 165 that is an inner peripheral surface of the first holder 160.

本変形例の熱伝達部材190は、1次光と第1,2変換光とを透過させる透過部材である。熱伝達部材190は、第2光変換部材120のガラス封止緑色蛍光体の熱伝導率(1W/m・K)よりも高い熱伝導率(12W/m・K)を有する透明なセラミックスである。このセラミックスは、例えば、CeがドープされていないYAGセラミックスである。   The heat transfer member 190 of this modification is a transmission member that transmits the primary light and the first and second converted lights. The heat transfer member 190 is a transparent ceramic having a thermal conductivity (12 W / m · K) higher than the thermal conductivity (1 W / m · K) of the glass-sealed green phosphor of the second light conversion member 120. . This ceramic is, for example, a YAG ceramic not doped with Ce.

第2光変換部材120が樹脂封止緑色蛍光体(熱伝導率:0.2W/m・K)である場合、熱伝達部材190は透明ガラス(熱伝導率:1W/m・K)を使用することができる。なお本変形例では、第1光変換部材110の熱伝導率は、第2光変換部材120の熱伝導率よりも高い。   When the second light conversion member 120 is a resin-encapsulated green phosphor (thermal conductivity: 0.2 W / m · K), the heat transfer member 190 uses transparent glass (thermal conductivity: 1 W / m · K). can do. In this modification, the thermal conductivity of the first light conversion member 110 is higher than the thermal conductivity of the second light conversion member 120.

熱伝達部材190は、第2光変換部材120に対して第1光変換部材110とは反対側及び第2光変換部材120の側方に配置され、第1ホルダ160に熱的に接続される。したがって第2光変換部材120から発生した熱は、第5経路R5である第2光変換部材120から反射部材170を介して第1ホルダ160に伝達されるだけではなく、第2光変換部材120から熱伝達部材190を介しても第1ホルダ160に伝達され、第1ホルダ160から外部に放出される。
本変形例では、熱伝達部材190の配置位置によって、熱を第2光変換部材120から逃げやすくできる。また熱伝達部材190によって、熱を第2光変換部材120から第1ホルダ160に容易に伝達でき、第2光変換部材120の放熱性を向上できる。また本変形例では、熱伝達部材190によって、第2光変換部材120から第1光変換部材110に伝達される熱量を低減できる。
The heat transfer member 190 is disposed on the opposite side of the second light conversion member 120 from the first light conversion member 110 and on the side of the second light conversion member 120, and is thermally connected to the first holder 160. . Accordingly, the heat generated from the second light conversion member 120 is not only transmitted from the second light conversion member 120, which is the fifth path R5, to the first holder 160 via the reflection member 170, but also the second light conversion member 120. The heat is transmitted to the first holder 160 via the heat transfer member 190 and is released to the outside from the first holder 160.
In this modification, heat can be easily escaped from the second light conversion member 120 depending on the arrangement position of the heat transfer member 190. Further, heat can be easily transferred from the second light conversion member 120 to the first holder 160 by the heat transfer member 190, and the heat dissipation of the second light conversion member 120 can be improved. In this modification, the heat transfer member 190 can reduce the amount of heat transferred from the second light conversion member 120 to the first light conversion member 110.

[第2実施形態]
図13を参照して、第2実施形態について説明する。本実施形態の第1光変換部材110は、第1実施形態と同様に、波長変換部材である。したがって、第1変換光は、黄色蛍光といった第1波長変換光である。本実施形態の第2光変換部材120は、受光した1次光の波長を変換せず、1次光とは異なる配光角の光を出射する配光角変換部材である。例えば、第2光変換部材120は、例えば、1次光を、1次光の広がり角度を広げた1次拡散光に変換する拡散部材である。第2光変換部材120が1次光の配光角を変換する際、変換損失が発生し、第2光変換部材120は、1次光の一部を吸収し、熱を発生する。
[Second Embodiment]
The second embodiment will be described with reference to FIG. The 1st light conversion member 110 of this embodiment is a wavelength conversion member similarly to 1st Embodiment. Therefore, the first converted light is first wavelength converted light such as yellow fluorescence. The second light conversion member 120 of this embodiment is a light distribution angle conversion member that does not convert the wavelength of the received primary light and emits light having a light distribution angle different from that of the primary light. For example, the second light conversion member 120 is, for example, a diffusion member that converts primary light into primary diffused light in which the spread angle of the primary light is widened. When the second light conversion member 120 converts the light distribution angle of the primary light, a conversion loss occurs, and the second light conversion member 120 absorbs a part of the primary light and generates heat.

第2光変換部材120は、図示しない封止部材と、封止部材の内部に分散された状態で封止部材に封止され、封止部材の屈折率よりも低い屈折率を有する図示しない拡散粒子とを有する。封止部材は、例えば屈折率が1.4のシリコーン樹脂を有する。拡散粒子は、例えば、屈折率が1.76、消衰係数が0.1未満のアルミナを有する。拡散粒子は、1次光を吸収する物質を有する。拡散粒子は、特定の屈折率nと消衰係数kとをあわせた複素屈折率Nといった光学的な性質を有する。   The second light conversion member 120 includes a sealing member (not shown) and a diffusion member (not shown) that is sealed by the sealing member in a state of being dispersed inside the sealing member and has a refractive index lower than the refractive index of the sealing member. Particles. The sealing member has, for example, a silicone resin having a refractive index of 1.4. The diffusion particles include, for example, alumina having a refractive index of 1.76 and an extinction coefficient of less than 0.1. The diffusion particles have a material that absorbs primary light. The diffusing particles have optical properties such as a complex refractive index N that is a combination of a specific refractive index n and an extinction coefficient k.

拡散粒子の屈折率は、1.41以上であることが好ましい。また拡散粒子の屈折率と封止部材の屈折率との差が0.2以上で、且つ拡散粒子の屈折率が1.61以上であることがより好ましく、これにより多くの1次光が拡散される。消衰係数が小さいほど、拡散粒子に吸収される1次光量は少なくなる。したがって、拡散粒子は、消衰係数が0.1以下の材料であることが好ましい。   The refractive index of the diffusing particles is preferably 1.41 or more. Further, it is more preferable that the difference between the refractive index of the diffusing particles and the refractive index of the sealing member is 0.2 or more, and the refractive index of the diffusing particles is 1.61 or more, thereby diffusing a lot of primary light. Is done. The smaller the extinction coefficient, the smaller the primary light quantity absorbed by the diffusing particles. Therefore, the diffusing particles are preferably made of a material having an extinction coefficient of 0.1 or less.

拡散粒子の材料は、例えば、金属または無機酸化物といった無機材料である。金属は、例えばアルミニウム、チタン、亜鉛などである。無機材料は、例えば、酸化チタン、酸化タンタル、酸化アルミニウムといった、反射型拡散粒子または透過型拡散粒子などである。拡散粒子は、1種類のみの材料によって構成される必要はなく、複数種類の材料によって構成されでもよい。   The material of the diffusion particles is, for example, an inorganic material such as a metal or an inorganic oxide. Examples of the metal include aluminum, titanium, and zinc. Examples of the inorganic material include reflective diffusion particles or transmission diffusion particles such as titanium oxide, tantalum oxide, and aluminum oxide. The diffusion particles need not be composed of only one type of material, and may be composed of a plurality of types of materials.

第2光変換部材120に入射した1次光の広がり角度の増加角度は、主に、拡散粒子の粒径と、封止部材に対する拡散粒子の濃度と、拡散粒子と封止部材との屈折率と、第2光変換部材120の厚さとを基に決定される。   The increasing angle of the spreading angle of the primary light incident on the second light conversion member 120 is mainly the particle size of the diffusion particles, the concentration of the diffusion particles with respect to the sealing member, and the refractive index of the diffusion particles and the sealing member. And the thickness of the second light conversion member 120.

1次拡散光の配光角がホルダ出射部164から出射される第1変換光の配光角度と略等しくなるように、上記した粒径、濃度、屈折率、厚さなどが設定される。   The above-described particle size, concentration, refractive index, thickness, and the like are set so that the light distribution angle of the first-order diffused light is approximately equal to the light distribution angle of the first converted light emitted from the holder emitting portion 164.

第2光変換部材120は、第1変換光に対しても配光角を変換(拡散)する。   The second light conversion member 120 converts (diffuses) the light distribution angle with respect to the first converted light.

本実施形態では、第1変換光は、第2光変換部材120を透過して、照明光としてホルダ出射部164から出射される。なお第1変換光が第2光変換部材120を透過する際、第1変換光の配光角は、第2光変換部材120によって広がるが、第2光変換部材120よりも前方に配置される反射部材170によって狭角となる。したがって、第1変換光の配光特性は、図6に示される配光特性に近づく。   In the present embodiment, the first converted light passes through the second light conversion member 120 and is emitted from the holder emitting portion 164 as illumination light. When the first converted light passes through the second light conversion member 120, the light distribution angle of the first converted light is spread by the second light conversion member 120, but is disposed in front of the second light conversion member 120. The reflection member 170 makes a narrow angle. Therefore, the light distribution characteristic of the first converted light approaches the light distribution characteristic shown in FIG.

第2光変換部材120は、第1光変換部材110によって吸収されず第1光変換部材110を透過した1次光を照射される。1次光は、第2光変換部材120によって1次拡散光に変換される。図示しないが、1次拡散光の一部は、第2光変換部材120の入射面121から第1熱伝達抑制部材130を透過して第1光変換部材110に向かって進行する。この1次拡散光は、第1光変換部材110によって波長変換され、第1変換光(照明光)としてホルダ出射部164から出射される。1次拡散光の他の一部は、第2光変換部材120の出射面122と側面123との少なくとも1つから出射される。この1次拡散光の一部は、反射部材170に進行せず、第2透明部材150を透過して直接出射面152(ホルダ出射部164)から前方に出射される。また、1次拡散光の他の一部は反射部材170によって反射され、1次拡散光の進行方向は変わる。そして、1次拡散光は、第1,2光変換部材110,120に再入射することなく、第2透明部材150を透過してホルダ出射部164から前方に出射される。1次拡散光の配光角は、上記した粒径、濃度、屈折率、厚さなどによって、狭角となる。したがって1次拡散光の配光特性は、図6に示す第1変換光の配光特性に近づく。   The second light conversion member 120 is irradiated with primary light that is not absorbed by the first light conversion member 110 and passes through the first light conversion member 110. The primary light is converted into primary diffused light by the second light conversion member 120. Although not shown, a part of the primary diffused light passes through the first heat transfer suppression member 130 from the incident surface 121 of the second light conversion member 120 and travels toward the first light conversion member 110. The primary diffused light is wavelength-converted by the first light conversion member 110 and emitted from the holder emitting portion 164 as first converted light (illumination light). Another part of the primary diffused light is emitted from at least one of the emission surface 122 and the side surface 123 of the second light conversion member 120. A portion of the primary diffused light does not travel to the reflecting member 170 but passes through the second transparent member 150 and is directly emitted forward from the emitting surface 152 (holder emitting portion 164). The other part of the primary diffused light is reflected by the reflecting member 170, and the traveling direction of the primary diffused light changes. The primary diffused light passes through the second transparent member 150 and is emitted forward from the holder emitting portion 164 without entering the first and second light conversion members 110 and 120 again. The light distribution angle of the primary diffused light becomes a narrow angle depending on the particle diameter, concentration, refractive index, thickness, and the like. Therefore, the light distribution characteristic of the first-order diffused light approaches the light distribution characteristic of the first converted light shown in FIG.

第2光変換部材120が1次光の配光角を変換する際、変換損失が発生し、第2光変換部材120は、1次光の一部を吸収し、熱を発生する。この熱の伝達は、第1実施形態と同様であるため、ここでは説明を省略する。   When the second light conversion member 120 converts the light distribution angle of the primary light, a conversion loss occurs, and the second light conversion member 120 absorbs a part of the primary light and generates heat. Since this heat transfer is the same as in the first embodiment, a description thereof is omitted here.

本実施形態では、互いに異なる光変換特性を有する第1,2光変換部材110,120が配置されても、第1熱伝達抑制部材130によって、光変換時に第1,2光変換部材110,120から発生する熱が第1,2光変換部材110,120に集中することを抑制できる。また、第1,2光変換部材110,120の温度上昇に伴う変換効率の低下を抑制でき、1次拡散光の配光が第1変換光の配光に揃った明るい照明光を実現できる。   In the present embodiment, even if the first and second light conversion members 110 and 120 having different light conversion characteristics are arranged, the first and second light conversion members 110 and 120 are converted by the first heat transfer suppression member 130 during light conversion. It can suppress that the heat | fever generated from concentrates on the 1st, 2nd light conversion members 110,120. Moreover, the fall of the conversion efficiency accompanying the temperature rise of the 1st, 2nd light conversion members 110 and 120 can be suppressed, and the bright illumination light in which the light distribution of the primary diffused light aligned with the light distribution of the 1st converted light is realizable.

第2光変換部材120は、ホルダ入射部163からホルダ出射部164にかけて拡径しているテーパー形状を有する第1ホルダ160の内部に配置される。したがって、1次拡散光の配光を狭角にでき、第2光変換部材120による配光角変換量を所定以内に抑制でき、言い換えると、拡散粒子の濃度を低減でき、第2光変換部材120の変換損失による発熱を低減できる。   The second light conversion member 120 is disposed inside the first holder 160 having a tapered shape whose diameter increases from the holder incident portion 163 to the holder emitting portion 164. Therefore, the light distribution of the primary diffused light can be narrowed, the light distribution angle conversion amount by the second light conversion member 120 can be suppressed within a predetermined range, in other words, the concentration of the diffused particles can be reduced, and the second light conversion member Heat generation due to 120 conversion loss can be reduced.

[変形例]
以下に、本実施形態の変形例1乃至2を説明する。各変形例では、主に、本実施形態と異なることのみ記載する。なお図14では、図示の明瞭化のために、第2光変換部材120によって波長変換された第2変換光(第2波長変換光)の図示を省略する。
[Modification]
Hereinafter, modified examples 1 and 2 of the present embodiment will be described. In each modification, only differences from the present embodiment are mainly described. In FIG. 14, the second converted light (second wavelength converted light) that has been wavelength-converted by the second light conversion member 120 is omitted for clarity of illustration.

図14に示す変形例1では、第1光変換部材110は第2実施形態の第2光変換部材120と同様に配光角変換部材(拡散部材)であり、第2光変換部材120は第1実施形態と同様に波長変換部材である。   In the first modification shown in FIG. 14, the first light conversion member 110 is a light distribution angle conversion member (diffusion member) similarly to the second light conversion member 120 of the second embodiment, and the second light conversion member 120 is the first light conversion member 120. It is a wavelength conversion member like 1 embodiment.

したがって第1光変換部材110は、例えば、1次光を、1次光の広がり角度を広げた1次拡散光に変換する拡散部材である。第1光変換部材110が1次光の配光特性を変換する際、変換損失が発生し、第1光変換部材110は、1次光の一部を吸収し、熱を発生する。図示しない封止部材と拡散粒子といった第1光変換部材110の構成は、第2実施形態の第2光変換部材120の構成と略同様であるため、ここでは説明を省略する。   Therefore, the 1st light conversion member 110 is a diffusion member which converts primary light into primary diffused light which extended the spreading angle of primary light, for example. When the first light conversion member 110 converts the light distribution characteristic of the primary light, a conversion loss occurs, and the first light conversion member 110 absorbs a part of the primary light and generates heat. The configuration of the first light conversion member 110 such as a sealing member and diffusing particles (not shown) is substantially the same as the configuration of the second light conversion member 120 of the second embodiment, and thus description thereof is omitted here.

本変形例では、1次光は、最初に第1光変換部材110を照射し、第1光変換部材110によって1次拡散光に変換される。1次拡散光は、第1熱伝達抑制部材130と第2光変換部材120とを透過する。そして、1次拡散光の一部は反射部材170によって反射され、1次拡散光の進行方向は変わる。そして、1次拡散光は、第1,2光変換部材110,120と第1熱伝達抑制部材130とに再入射することなく、第2透明部材を透過してホルダ出射部164から前方に出射される。また1次拡散光の別の一部は、反射部材170に進行せず、第2透明部材を透過して直接出射面152(ホルダ出射部164)から前方に出射される。つまり、1次拡散光の進行方向が反射部材170によって変わることなく、1次拡散光は出射される。また図示はしないが、第2光変換部材120を照射した1次拡散光のさらに別の一部は、第2光変換部材120によって波長変換され、第2透明部材150を透過して第2変換光(照明光)としてホルダ出射部164から出射される。   In this modification, the primary light first irradiates the first light conversion member 110 and is converted into primary diffused light by the first light conversion member 110. The primary diffused light passes through the first heat transfer suppression member 130 and the second light conversion member 120. A part of the primary diffused light is reflected by the reflecting member 170, and the traveling direction of the primary diffused light changes. The primary diffused light is transmitted through the second transparent member and emitted forward from the holder emitting portion 164 without re-entering the first and second light conversion members 110 and 120 and the first heat transfer suppressing member 130. Is done. Further, another part of the first-order diffused light does not travel to the reflecting member 170 but passes through the second transparent member and is directly emitted forward from the emitting surface 152 (holder emitting portion 164). That is, the primary diffused light is emitted without the traveling direction of the primary diffused light being changed by the reflecting member 170. Although not shown, another part of the primary diffused light irradiated on the second light conversion member 120 is wavelength-converted by the second light conversion member 120 and transmitted through the second transparent member 150 for second conversion. The light is emitted from the holder emitting portion 164 as light (illumination light).

本変形例では、1次拡散光が第2光変換部材120を照射する際、入射面121における照射領域124を拡散によって広げることができる。したがって、光変換ユニット100に入射する1次光の光量に対する第2光変換部材120における局所的な発熱を緩和でき、第2光変換部材120の変換効率の低下を抑制できる。   In this modification, when the primary diffused light irradiates the second light conversion member 120, the irradiation region 124 on the incident surface 121 can be expanded by diffusion. Therefore, local heat generation in the second light conversion member 120 with respect to the amount of primary light incident on the light conversion unit 100 can be alleviated, and a decrease in conversion efficiency of the second light conversion member 120 can be suppressed.

図15に示す変形例2では、光変換ユニット100は、第2熱伝達抑制部材220と第3光変換部材230とをさらに有する。第2熱伝達抑制部材220と第3光変換部材230とは、光軸Cを中心に回転対称に配置される。光ファイバ出射端16側から順に、第1透明部材140、第1光変換部材110、第1熱伝達抑制部材130、第2光変換部材120、第2熱伝達抑制部材220、第3光変換部材230、第2透明部材150が配置される。第2熱伝達抑制部材220は円錐台形状を有し、第3光変換部材230は円柱形状を有する。第3光変換部材230は、円錐台形状を有してもよい。第2熱伝達抑制部材220の側面223全体と第3光変換部材230の入射面231の縁部全周とは第1ホルダ160の内周面であるテーパー面165に熱的に接続される。第2光変換部材120の出射面122は第2熱伝達抑制部材220の第1面221に積層し、第2熱伝達抑制部材220の第2面222は第3光変換部材230の入射面231に積層する。凹状の接触面151には第3光変換部材230が配置されており、第3光変換部材230の出射面232と側面233とは接触面151に接触している。第1面221は、第2面222よりも小さい。第1面221,第2面222は、例えば円形である。第2面221には例えば1次光と第1,2変換光とが入射し、第2面222は例えば1次光と第1,2変換光とを出射する。第1面221は第3光変換部材230が光学特性を変換した光を出射し、第2面222には第3光変換部材230が光学特性を変換した光が入射してもよい。円形の入射面231は、円形の出射面232と同じ大きさである。入射面231には例えば1次光と第1,2変換光とが入射し、出射面232は例えば第1,2変換光と第3光変換部材230が光学特性を変換した光とを出射する。   In the second modification illustrated in FIG. 15, the light conversion unit 100 further includes a second heat transfer suppression member 220 and a third light conversion member 230. The second heat transfer suppression member 220 and the third light conversion member 230 are disposed rotationally symmetrically about the optical axis C. In order from the optical fiber emitting end 16 side, the first transparent member 140, the first light conversion member 110, the first heat transfer suppression member 130, the second light conversion member 120, the second heat transfer suppression member 220, and the third light conversion member. 230 and the second transparent member 150 are disposed. The second heat transfer suppression member 220 has a truncated cone shape, and the third light conversion member 230 has a cylindrical shape. The third light conversion member 230 may have a truncated cone shape. The entire side surface 223 of the second heat transfer suppressing member 220 and the entire periphery of the edge of the incident surface 231 of the third light conversion member 230 are thermally connected to a tapered surface 165 that is the inner peripheral surface of the first holder 160. The exit surface 122 of the second light conversion member 120 is laminated on the first surface 221 of the second heat transfer suppression member 220, and the second surface 222 of the second heat transfer suppression member 220 is the entrance surface 231 of the third light conversion member 230. Laminate to. The third light conversion member 230 is disposed on the concave contact surface 151, and the emission surface 232 and the side surface 233 of the third light conversion member 230 are in contact with the contact surface 151. The first surface 221 is smaller than the second surface 222. The first surface 221 and the second surface 222 are, for example, circular. For example, primary light and first and second converted light are incident on the second surface 221, and the second surface 222 emits, for example, primary light and first and second converted light. The first surface 221 may emit light whose optical characteristics have been converted by the third light conversion member 230, and light whose optical characteristics have been converted by the third light conversion member 230 may be incident on the second surface 222. The circular entrance surface 231 is the same size as the circular exit surface 232. For example, primary light and first and second converted light are incident on the incident surface 231, and the outgoing surface 232 emits, for example, first and second converted light and light whose optical characteristics have been converted by the third light converting member 230. .

第3光変換部材230は、例えば、波長変換部材であってもよいし、配光角変換部材であってもよい。   For example, the third light conversion member 230 may be a wavelength conversion member or a light distribution angle conversion member.

第2熱伝達抑制部材220は、熱伝導率が0.2W/m・Kである透明のシリコーン樹脂を有する。第2熱伝達抑制部材220の熱抵抗値は、第1熱伝達抑制部材130の熱抵抗値HR3と略同一である。なお第1,2,3光変換部材110,120,230それぞれの発熱量の大小関係から、第1,2熱伝達抑制部材130,220の熱伝導率は互いに異なってもよいし、第1,2熱伝達抑制部材130,220の熱抵抗値は互いに異なってもよいし、
例えば第1光変換部材110の発熱量が第2光変換部材120の発熱量よりも多く、第2光変換部材120の発熱量が第3光変換部材230の発熱量よりも多いとする。第1光変換部材110と第2光変換部材120との間に配置される第1熱伝達抑制部材130の熱抵抗値HR3が第2光変換部材120と第3光変換部材230との間に配置される第2熱伝達抑制部材220の熱抵抗値よりも大きくなるように、第1,2熱伝達抑制部材130,220それぞれの熱伝導率と厚さとが設定されてもよい。したがって、第1熱伝達抑制部材130によって、最も発熱する第1光変換部材110から第2,3光変換部材120,230への熱の伝達を抑制できる。
The second heat transfer suppressing member 220 includes a transparent silicone resin having a thermal conductivity of 0.2 W / m · K. The thermal resistance value of the second heat transfer suppression member 220 is substantially the same as the thermal resistance value HR3 of the first heat transfer suppression member 130. Note that the thermal conductivity of the first and second heat transfer suppression members 130 and 220 may be different from each other because of the magnitude relationship between the heat generation amounts of the first, second and third light conversion members 110, 120 and 230. The thermal resistance values of the two heat transfer suppression members 130 and 220 may be different from each other,
For example, it is assumed that the heat generation amount of the first light conversion member 110 is larger than the heat generation amount of the second light conversion member 120 and the heat generation amount of the second light conversion member 120 is larger than the heat generation amount of the third light conversion member 230. The thermal resistance value HR3 of the first heat transfer suppression member 130 disposed between the first light conversion member 110 and the second light conversion member 120 is between the second light conversion member 120 and the third light conversion member 230. The thermal conductivity and thickness of each of the first and second heat transfer suppression members 130 and 220 may be set so as to be larger than the thermal resistance value of the second heat transfer suppression member 220 disposed. Therefore, the heat transfer from the first light conversion member 110 that generates the most heat to the second and third light conversion members 120 and 230 can be suppressed by the first heat transfer suppression member 130.

本変形例では、第1,2熱伝達抑制部材130,220によって、第1,2,3光変換部材110,120,230それぞれから他の光変換部材に伝達される熱量を低減でき、熱を第1ホルダ160に容易に伝達できる。したがって、光変換時に第1,2,3光変換部材110,120,230から発生する熱が第1,2,3光変換部材110,120,230に集中することを抑制でき、第1,2,3光変換部材110,120,230の温度上昇に伴う変換効率の低下を抑制でき、明るい照明光を提供できる。   In this modification, the first and second heat transfer suppression members 130 and 220 can reduce the amount of heat transferred from the first, second, and third light conversion members 110, 120, and 230 to the other light conversion members, and heat can be reduced. It can be easily transmitted to the first holder 160. Therefore, it is possible to suppress the heat generated from the first, second, and third light conversion members 110, 120, and 230 from being concentrated on the first, second, and third light conversion members 110, 120, and 230 during the light conversion. , 3 The light conversion members 110, 120, and 230 can suppress a decrease in conversion efficiency due to a temperature rise, and provide bright illumination light.

なお例えば1つの熱伝達抑制部材が第1,2,3光変換部材110,120,230における3層のいずれか間に配置されていてもよい。これにより、一方の光変換部材から他の光変換部材に伝達される熱量を低減できる。   For example, one heat transfer suppressing member may be disposed between any of the three layers of the first, second, and third light conversion members 110, 120, and 230. Thereby, the amount of heat transferred from one light conversion member to the other light conversion member can be reduced.

[第3実施形態]
図16を参照して、第3実施形態について説明する。本実施形態では、光変換ユニット100は、第1ホルダ160とは別体で、第1ホルダ160を覆う筒状の第2ホルダ240を有する。第2ホルダ240は、第1ホルダ160が第2ホルダ240に挿入されることによって、第1ホルダ160を覆う。このとき、第2ホルダ240は、第1ホルダ160に熱的に接続される。第2ホルダ240は、第1ホルダ160と同様に真鍮であってもよい。なお後述する拡散部材である第2光変換部材120の発熱量は第1光変換部材110の発熱量よりも少ないため、第2ホルダ240は真鍮ほど熱伝導率が高い部材でなくてもよい。
[Third Embodiment]
A third embodiment will be described with reference to FIG. In the present embodiment, the light conversion unit 100 has a cylindrical second holder 240 that is separate from the first holder 160 and covers the first holder 160. The second holder 240 covers the first holder 160 when the first holder 160 is inserted into the second holder 240. At this time, the second holder 240 is thermally connected to the first holder 160. The second holder 240 may be brass like the first holder 160. Since the heat generation amount of the second light conversion member 120, which is a diffusion member described later, is smaller than the heat generation amount of the first light conversion member 110, the second holder 240 may not be a member having a higher thermal conductivity than brass.

角柱形状(例えば円柱形状)の第1光変換部材110は、入射面111の縁部が全周にわたってテーパー面165と接触した状態で、ホルダ出射部164近傍に配置される。例えば、出射面112はホルダ出射部164と同一平面上に配置される。したがって、第2透明部材150が省略され、第1透明部材140が中空部162に充填される。第1光変換部材110は、第1実施形態にて説明したように、例えば蛍光体といった波長変換部材である。   The first light converting member 110 having a prismatic shape (for example, a cylindrical shape) is disposed in the vicinity of the holder emitting portion 164 in a state where the edge portion of the incident surface 111 is in contact with the tapered surface 165 over the entire circumference. For example, the emission surface 112 is arranged on the same plane as the holder emission part 164. Therefore, the second transparent member 150 is omitted, and the first transparent member 140 is filled in the hollow portion 162. As described in the first embodiment, the first light conversion member 110 is a wavelength conversion member such as a phosphor.

第2光変換部材120は、第2ホルダ240の端部に配置される。第2光変換部材120は、第2実施形態にて説明したように、例えば拡散部材といった配光角変換部材である。拡散部材の拡散条件において、1次拡散光は広配光となるように、粒径、濃度、屈折率、厚さなどが設定される。   The second light conversion member 120 is disposed at the end of the second holder 240. As described in the second embodiment, the second light conversion member 120 is a light distribution angle conversion member such as a diffusion member. Under the diffusion conditions of the diffusing member, the particle size, concentration, refractive index, thickness, etc. are set so that the primary diffused light has a wide light distribution.

第2ホルダ240が第1ホルダ160を覆った状態において、第1熱伝達抑制部材130が第1光変換部材110と第2光変換部材120との間に形成される。本実施形態の第1熱伝達抑制部材130は、シリコーン樹脂の熱伝導率(0.2W/m・K)よりも低い熱伝導率を有する空気層を利用する。   In a state where the second holder 240 covers the first holder 160, the first heat transfer suppression member 130 is formed between the first light conversion member 110 and the second light conversion member 120. The first heat transfer suppressing member 130 of the present embodiment uses an air layer having a thermal conductivity lower than the thermal conductivity (0.2 W / m · K) of the silicone resin.

第1光変換部材110はホルダ出射部164近傍に配置されているため、ホルダ出射部164から出射される第1変換光の配光は広配光となる。この第1変換光は、第2光変換部材120によってさらに拡散される。   Since the 1st light conversion member 110 is arrange | positioned in the holder emission part 164 vicinity, the light distribution of the 1st conversion light radiate | emitted from the holder emission part 164 becomes a wide light distribution. The first converted light is further diffused by the second light conversion member 120.

第1光変換部材110に吸収されず第2光変換部材120を照射する1次光は、拡散部材の粒径、濃度、屈折率、厚さなどによって、広配光の1次拡散光に変換される。   The primary light that is not absorbed by the first light conversion member 110 and irradiates the second light conversion member 120 is converted into a broad-distributed primary diffused light depending on the particle size, concentration, refractive index, thickness, etc. of the diffusion member. Is done.

第1光変換部材110から発生した熱の大部分は、主に第1ホルダ160に伝達され、第1ホルダ160から第2ホルダ240を介して外部に放出される。   Most of the heat generated from the first light conversion member 110 is mainly transmitted to the first holder 160 and released to the outside from the first holder 160 through the second holder 240.

第2光変換部材120から発生した熱の大部分は、主に第2ホルダ240に伝達され、第2ホルダ240から外部に放出される。   Most of the heat generated from the second light conversion member 120 is mainly transmitted to the second holder 240 and released to the outside from the second holder 240.

第1熱伝達抑制部材130は、空気層を利用する。したがって、第1熱伝達抑制部材130によって、第1,2光変換部材110,120の間において伝達される熱量を低減できる。   The first heat transfer suppressing member 130 uses an air layer. Therefore, the amount of heat transferred between the first and second light conversion members 110 and 120 can be reduced by the first heat transfer suppressing member 130.

第1,2光変換部材110,120それぞれは、互いに別体の第1ホルダ160と第2ホルダ240とに保持される。第1,2光変換部材110,120それぞれの発熱量を基に、第1ホルダ160と第2ホルダ240との材料を適宜選択できる。これにより、材料の組み合わせによって、放熱効率を向上できる。   The first and second light conversion members 110 and 120 are held by a first holder 160 and a second holder 240 that are separate from each other. Based on the amount of heat generated by each of the first and second light conversion members 110 and 120, the materials of the first holder 160 and the second holder 240 can be selected as appropriate. Thereby, heat dissipation efficiency can be improved by the combination of materials.

第1,2光変換部材110,120がホルダ出射部164側に配置される。したがって、広配光の第1変換光と広配光の1次拡散光とを提供でき、第1変換光の配光特性と1次拡散光の配光特性と互いに対して等しくできる。   The first and second light conversion members 110 and 120 are disposed on the holder emitting portion 164 side. Therefore, the first converted light with the wide light distribution and the primary diffused light with the wide light distribution can be provided, and the light distribution characteristic of the first converted light and the light distribution characteristic of the primary diffused light can be made equal to each other.

[第4の実施形態]
図17を参照して、第4実施形態について説明する。本実施形態では、2つの1次光源が配置される。説明の便宜上、1次光源11,11aと称する。1次光源11は、第1実施形態における1次光源11と同一である。1次光源11aは、発光波長のピークが405nmである青紫色レーザー光を出射するレーザーダイオード(以下、青紫色LD14aと称する)と、青紫色LD14aを駆動するための光源駆動部15aとをさらに有する。青紫色LD14aは、1次光である第2レーザー光を出射する第2レーザー光源である。本実施形態における1次光を、発光波長のピークが445nmである青色レーザー光と発光波長のピークが405nmである青紫色レーザー光ととして定義する。
[Fourth Embodiment]
The fourth embodiment will be described with reference to FIG. In this embodiment, two primary light sources are arranged. For convenience of explanation, they are referred to as primary light sources 11 and 11a. The primary light source 11 is the same as the primary light source 11 in the first embodiment. The primary light source 11a further includes a laser diode (hereinafter referred to as blue-violet LD 14a) that emits blue-violet laser light having an emission wavelength peak of 405 nm, and a light source driving unit 15a for driving the blue-violet LD 14a. . The blue-violet LD 14a is a second laser light source that emits second laser light that is primary light. The primary light in this embodiment is defined as blue laser light having an emission wavelength peak of 445 nm and blue-violet laser light having an emission wavelength peak of 405 nm.

光源制御回路12は、青色LD14と青紫色LD14aとを所定の駆動電流、駆動間隔で駆動させるための制御信号を光源駆動部15,15aに送信する。光源制御回路12の制御によって、青色LD14と青紫色LD14aとは切り替わって駆動する、または青色LD14と青紫色LD14aとは同時に駆動する。   The light source control circuit 12 transmits a control signal for driving the blue LD 14 and the blue-violet LD 14a at a predetermined drive current and drive interval to the light source drive units 15 and 15a. Under the control of the light source control circuit 12, the blue LD 14 and the blue-violet LD 14a are switched and driven, or the blue LD 14 and the blue-violet LD 14a are driven simultaneously.

照明装置10は、青色LD14から出射された青色レーザー光と、青紫色LD14aから出射された青紫色レーザー光とを合波し、合波した光を光ファイバ13に入射させる光カプラ18をさらに有する。光カプラ18は、例えば、光分波器を有する。   The illuminating device 10 further includes an optical coupler 18 that combines the blue laser light emitted from the blue LD 14 and the blue-violet laser light emitted from the blue-violet LD 14 a and causes the combined light to enter the optical fiber 13. . The optical coupler 18 includes, for example, an optical demultiplexer.

本実施形態では、2本の光ファイバ13が配置され、光ファイバ13の入射端それぞれは光カプラ18に接続されており、光ファイバ出射端16それぞれは互いに対して独立している光変換ユニット100に接続される。光カプラ18から出射された1次光は、光ファイバ13それぞれに入射し、光ファイバ13それぞれによって光変換ユニット100それぞれに導光される。そして光変換ユニット100それぞれは、照明光を出射する。光ファイバ13同士は、互いに対して別体である。光変換ユニット100同士は、互いに対して別体である。   In the present embodiment, two optical fibers 13 are arranged, each incident end of the optical fiber 13 is connected to an optical coupler 18, and each optical fiber exit end 16 is independent from each other. Connected to. The primary light emitted from the optical coupler 18 enters each optical fiber 13 and is guided to each optical conversion unit 100 by each optical fiber 13. Each of the light conversion units 100 emits illumination light. The optical fibers 13 are separate from each other. The light conversion units 100 are separate from each other.

YAGである第1光変換部材110は、青紫色レーザー光に対してほとんど励起せず黄色の蛍光をほとんど生成しない。しかしながら、第1光変換部材110は、青紫色レーザー光の少なくとも一部を吸収して熱を発生する。   The first light conversion member 110 that is YAG is hardly excited with respect to the blue-violet laser light and hardly generates yellow fluorescence. However, the first light conversion member 110 absorbs at least a part of the blue-violet laser light and generates heat.

ガラス封止緑色蛍光体である第2光変換部材120は、青紫色レーザー光に対して青色レーザー光と同様に励起して所定の変換効率で緑色の蛍光を生成し、変換損失分だけ熱を発生する。第2光変換部材120は、緑色蛍光体と拡散粒子とが混合された状態で封止しているガラスを有してもよい。   The second light conversion member 120, which is a glass-sealed green phosphor, excites the blue-violet laser light in the same manner as the blue laser light, generates green fluorescence with a predetermined conversion efficiency, and generates heat by the conversion loss. appear. The second light conversion member 120 may include glass that is sealed in a state where the green phosphor and the diffusing particles are mixed.

本実施形態では、青色LD14のみが駆動した際における照明装置10の動作は、第1の実施形態で説明した動作と同じであるため、説明を省略する。なお上述したように第2光変換部材120がガラスを有する場合、第1,2変換光と青色レーザー拡散光である1次拡散光とのそれぞれの配光角は、互いに等しくなる。   In the present embodiment, the operation of the illumination device 10 when only the blue LD 14 is driven is the same as the operation described in the first embodiment, and thus the description thereof is omitted. In addition, when the 2nd light conversion member 120 has glass as mentioned above, each light distribution angle of the 1st, 2nd conversion light and the primary diffused light which is blue laser diffused light becomes mutually equal.

青紫色LD14aのみが駆動した際、青紫色レーザー光の大部分は、YAGである第1光変換部材に吸収されない。なお青紫色レーザー光の一部は、ガラス封止緑色蛍光体である第2光変換部材120に吸収され緑色の蛍光に波長変換される。青紫色LD14aによる第2変換光の配光特性は、青色LD14による第2変換光の配光特性と略等しい。なお上述したように第2光変換部材120がガラスを有する場合、第2変換光と青紫色レーザー拡散光である1次拡散光とのそれぞれの配光角は、互いに等しくなる。   When only the blue-violet LD 14a is driven, most of the blue-violet laser beam is not absorbed by the first light conversion member that is YAG. A part of the blue-violet laser light is absorbed by the second light conversion member 120, which is a glass-sealed green phosphor, and wavelength-converted to green fluorescence. The light distribution characteristic of the second converted light by the blue-violet LD 14a is substantially equal to the light distribution characteristic of the second converted light by the blue LD 14. As described above, when the second light conversion member 120 includes glass, the light distribution angles of the second converted light and the primary diffused light that is blue-violet laser diffused light are equal to each other.

青色LD14と青紫色LD14aとが同時に駆動した際、青色レーザー光により波長変換された第1,2変換光と、青紫色レーザー光により波長変換された第2変換光とは、青色LD14と青紫色LD14aとの駆動比率に応じた所定の割合で、照明光として出射される。第1,2光変換部材110,120に吸収されない青色レーザー光と青紫色レーザー光も照明光として出射される。   When the blue LD 14 and the blue-violet LD 14a are driven simultaneously, the first and second converted lights that have been wavelength-converted by the blue laser light and the second converted light that has been wavelength-converted by the blue-violet laser light are the blue LD 14 and the blue-violet light. It is emitted as illumination light at a predetermined ratio according to the drive ratio with the LD 14a. Blue laser light and blue-violet laser light that are not absorbed by the first and second light conversion members 110 and 120 are also emitted as illumination light.

なお青色LD14と青紫色LD14aとの駆動比率が変更された際、青色レーザー光と青紫色レーザー光との比率が変更され、照明光は色調整される。   When the drive ratio between the blue LD 14 and the blue violet LD 14a is changed, the ratio between the blue laser light and the blue violet laser light is changed, and the color of the illumination light is adjusted.

本実施形態では、青色LD14のみが駆動した際における熱の伝達は、第1の実施形態で説明した熱の伝達と同じであるため、説明を省略する。   In the present embodiment, the heat transfer when only the blue LD 14 is driven is the same as the heat transfer described in the first embodiment, and thus the description thereof is omitted.

青紫色LD14aのみが駆動した際、YAGである第1光変換部材110は、青色レーザー光の大部分を吸収せず、青色レーザー光の一部を吸収して熱を発生する。またガラス封止緑色蛍光体である第2光変換部材120は、青色レーザー光を所定の波長変換損失に応じて熱を発生する。   When only the blue-violet LD 14a is driven, the first light conversion member 110, which is YAG, does not absorb most of the blue laser light, but absorbs part of the blue laser light and generates heat. Moreover, the 2nd light conversion member 120 which is a glass sealing green fluorescent substance generate | occur | produces a heat | fever according to a predetermined wavelength conversion loss with a blue laser beam.

なお上述したように第2光変換部材120がガラスを有し、青色LD14または青紫色LD14aのみが駆動した際、第2光変換部材では、緑色蛍光体の波長変換損失とアルミナである拡散粒子による配光角変換損失とによって熱を発生する。   As described above, when the second light conversion member 120 includes glass and only the blue LD 14 or the blue-violet LD 14a is driven, the second light conversion member is caused by the wavelength conversion loss of the green phosphor and the diffusion particles that are alumina. Heat is generated by the light distribution angle conversion loss.

青紫色LD14aのみが駆動した際、第2光変換部材120の発熱量は第1光変換部材110の発熱量よりも多くなる。また第1実施形態と同様に、第1光変換部材110から第2光変換部材120への熱の伝達は第1熱伝達抑制部材130によって抑制され、熱は第1ホルダ160に優先して伝達される。このため、第1,2光変換部材110,120の一方の熱が第1,2光変換部材110,120の他方に伝達することを、第1熱伝達抑制部材130は効果的に抑制することができ、波長変換効率の低下を低減できる。   When only the blue-violet LD 14 a is driven, the heat generation amount of the second light conversion member 120 is larger than the heat generation amount of the first light conversion member 110. Similarly to the first embodiment, the heat transfer from the first light conversion member 110 to the second light conversion member 120 is suppressed by the first heat transfer suppression member 130, and the heat is transmitted with priority to the first holder 160. Is done. For this reason, the 1st heat transfer suppression member 130 suppresses effectively that one heat of the 1st and 2nd light conversion members 110 and 120 is transmitted to the other of the 1st and 2nd light conversion members 110 and 120. And reduction in wavelength conversion efficiency can be reduced.

青色LD14と青紫色LD14aとが駆動した際、2種類の1次光によって第1,2光変換部材110,120から発生した熱が第1,2光変換部材110,120の間を移動することを、第1熱伝達抑制部材130によって抑制され、第1ホルダ160に優先して伝達される。   When the blue LD 14 and the blue-violet LD 14a are driven, heat generated from the first and second light conversion members 110 and 120 by two types of primary light moves between the first and second light conversion members 110 and 120. Is suppressed by the first heat transfer suppressing member 130 and is transmitted with priority to the first holder 160.

本実施形態では、青紫色LD14aが追加されるため、2種類の1次光を切り替えて出射でき、照明光の色を切り替えることができる。これにより、被観察体Sの観察モードに応じた照明光を提供できる。   In this embodiment, since the blue-violet LD 14a is added, two types of primary light can be switched and emitted, and the color of the illumination light can be switched. Thereby, the illumination light according to the observation mode of the to-be-observed body S can be provided.

青紫色レーザー光が利用される場合であっても、第1,2光変換部材110,120から発生する熱が第1,2光変換部材110,120に集中することを抑制でき、温度上昇に対して変換効率の低下を低減でき、明るい照明光を提供できる。   Even when blue-violet laser light is used, heat generated from the first and second light conversion members 110 and 120 can be prevented from concentrating on the first and second light conversion members 110 and 120, and the temperature rises. On the other hand, a decrease in conversion efficiency can be reduced, and bright illumination light can be provided.

青色レーザー光と青紫色レーザー光とが同時に利用される場合であっても、第1,2光変換部材110,120から発生する熱が第1,2光変換部材110,120に集中することを抑制でき、温度上昇に対して変換効率の低下を低減でき、明るい照明光を提供できる。また青色レーザー光と青紫色レーザー光との比率が調整されることによって、照明光の色を調整できる照明装置10を提供できる。   Even when blue laser light and blue-violet laser light are used simultaneously, heat generated from the first and second light conversion members 110 and 120 is concentrated on the first and second light conversion members 110 and 120. It is possible to suppress the decrease in conversion efficiency with respect to the temperature rise, and bright illumination light can be provided. Moreover, the illuminating device 10 which can adjust the color of illumination light can be provided by adjusting the ratio of blue laser light and blue-violet laser light.

以上、本発明の実施形態を説明してきたが、本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内でさまざまな改良及び変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A various improvement and change are possible within the range which does not deviate from the summary of this invention.

Claims (23)

1次光の光学特性を変換して照明光を出射する光変換ユニットを有する照明装置であって、
前記光変換ユニットは、
前記1次光の一部を吸収し、吸収した前記1次光の前記光学特性を変換し、前記光学特性を変換する際に熱を発生する第1光変換部材及び第2光変換部材と、
前記第1光変換部材と前記第2光変換部材との少なくとも一方の熱伝導率よりも低い熱伝導率を有する熱伝達抑制部材と、
前記第1光変換部材と前記第2光変換部材とを内部に保持し、前記熱伝達抑制部材の前記熱伝導率よりも高い熱伝導率を有するホルダと、
を具備し、
前記第1光変換部材は、前記第2光変換部材とは離れて配置され、
前記熱伝達抑制部材は、前記第1光変換部材と前記第2光変換部材との間の少なくとも一部に配置された透明部材であり、前記第1光変換部材と前記第2光変換部材との一方から前記第1光変換部材と前記第2光変換部材との他方への前記熱の伝達を抑制し、
前記第1光変換部材と前記第2光変換部材は、前記ホルダに熱的に接続されており、
前記ホルダの前記熱伝導率は、前記第1光変換部材の前記熱伝導率と前記第2光変換部材の前記熱伝導率とよりも高く、
前記第1光変換部材の発熱量は、前記第2光変換部材の発熱量よりも多い、照明装置。
An illumination device having a light conversion unit that converts the optical characteristics of primary light and emits illumination light,
The light conversion unit is:
A first light conversion member and a second light conversion member that absorb part of the primary light, convert the optical characteristics of the absorbed primary light, and generate heat when converting the optical characteristics;
A heat transfer suppressing member having a thermal conductivity lower than the thermal conductivity of at least one of the first light conversion member and the second light conversion member;
A holder that holds the first light conversion member and the second light conversion member inside, and has a thermal conductivity higher than the thermal conductivity of the heat transfer suppression member;
Comprising
The first light conversion member is disposed away from the second light conversion member,
The heat transfer suppression member is a transparent member disposed at least partly between the first light conversion member and the second light conversion member, and the first light conversion member and the second light conversion member Suppressing the transfer of the heat from one of the other to the other of the first light conversion member and the second light conversion member ,
The first light conversion member and the second light conversion member are thermally connected to the holder,
The thermal conductivity of the holder is higher than the thermal conductivity of the first light conversion member and the thermal conductivity of the second light conversion member,
The illuminating device , wherein the heat generation amount of the first light conversion member is larger than the heat generation amount of the second light conversion member .
前記第1光変換部材から発生する前記熱の伝達において、前記第1光変換部材から前記熱伝達抑制部材を介して前記第2光変換部材に伝達される前記熱の第1伝達量は、前記第1光変換部材から前記ホルダに伝達される前記熱の第2伝達量よりも少ない請求項1に記載の照明装置。   In the transfer of heat generated from the first light conversion member, the first transfer amount of the heat transferred from the first light conversion member to the second light conversion member via the heat transfer suppression member is The lighting device according to claim 1, wherein the second amount of heat transferred from the first light conversion member to the holder is less than the second transfer amount. 前記ホルダは、
前記1次光が入射するホルダ入射部と、
前記照明光を出射するホルダ出射部と、
を有し、
前記第1光変換部材と前記第2光変換部材との少なくとも一部は、前記ホルダ入射部に入射する前記1次光の中心軸である光軸上に配置され、
前記第1光変換部材は、前記ホルダ入射部と前記第2光変換部材との間に配置され、
前記熱伝達抑制部材の少なくとも一部は、前記第1光変換部材と前記第2光変換部材との間且つ前記光軸を含む領域に配置される請求項2に記載の照明装置。
The holder is
A holder incident part on which the primary light is incident;
A holder emitting section for emitting the illumination light;
Have
At least a part of the first light conversion member and the second light conversion member is disposed on an optical axis that is a central axis of the primary light incident on the holder incident portion,
The first light conversion member is disposed between the holder incident portion and the second light conversion member,
The lighting device according to claim 2, wherein at least a part of the heat transfer suppression member is disposed in a region between the first light conversion member and the second light conversion member and including the optical axis.
前記熱伝達抑制部材は、前記第1光変換部材の側方にさらに配置される請求項3に記載の照明装置。   The lighting device according to claim 3, wherein the heat transfer suppressing member is further disposed on a side of the first light conversion member. 前記第1光変換部材は、吸収した前記1次光の前記光学特性を変換して、前記1次光の前記光学特性とは異なる光学特性を有する第1変換光を出射する請求項3に記載の照明装置。 The first light converting member converts the absorbed the optical properties of the primary light, according to claim 3 for emitting a first converted light having different optical properties and the optical properties of the primary light Lighting equipment. 前記熱伝達抑制部材の前記熱伝導率は、前記第1光変換部材の前記熱伝導率よりも低い請求項5に記載の照明装置。   The lighting device according to claim 5, wherein the thermal conductivity of the heat transfer suppressing member is lower than the thermal conductivity of the first light conversion member. 前記熱伝達抑制部材の前記熱伝導率は、12W/m・K未満である請求項6に記載の照明装置。   The lighting device according to claim 6, wherein the thermal conductivity of the heat transfer suppressing member is less than 12 W / m · K. 前記熱伝達抑制部材は、樹脂またはガラスを有する請求項7に記載の照明装置。 The heat transfer suppressing member, the lighting apparatus according to claim 7 having a resin or glass. 前記光軸上における前記熱伝達抑制部材の熱抵抗値は、前記光軸上における前記第1光変換部材と前記第2光変換部材のそれぞれの熱抵抗値よりも大きい、または前記光軸上における前記第1光変換部材の熱抵抗値よりも大きい請求項3に記載の照明装置。 The heat resistance value of the heat transfer suppression member on the optical axis is greater than the respective heat resistance values of the first light conversion member and the second light conversion member on the optical axis, or on the optical axis. The lighting device according to claim 3, wherein the lighting device is larger than a thermal resistance value of the first light conversion member. 前記第1光変換部材と前記第2光変換部材は、吸収した前記1次光の前記光学特性を変換して、前記1次光の前記光学特性とは異なる光学特性を有する第1変換光と第2変換光を出射し、
前記ホルダは、
前記ホルダ入射部から前記ホルダ出射部まで前記ホルダを貫通している貫通孔部と、
前記貫通孔部の内周面に配置され、前記第1変換光と前記第2変換光とを反射する反射部材と、
を有し、
前記反射部材は、前記ホルダ出射部から出射される前記第1変換光と前記第2変換光それぞれの配光角が互いに対して等しくなるように、反射によって前記第1変換光と前記第2変換光それぞれの配光を変化させる請求項3に記載の照明装置。
The first light conversion member and the second light conversion member convert the optical characteristics of the absorbed primary light and have first converted light having optical characteristics different from the optical characteristics of the primary light; The second converted light is emitted;
The holder is
A through-hole portion penetrating the holder from the holder entrance portion to the holder exit portion;
A reflective member that is disposed on the inner peripheral surface of the through-hole portion and reflects the first converted light and the second converted light;
Have
The reflecting member such that said holder said second converted light each light distribution angle and the first converted light emitted from the emission portion are equal to each other and the second transformation and the first converted light by reflecting the lighting device according to claim 3 for changing the light respectively light distribution.
前記光軸上における前記熱伝達抑制部材の厚さは、前記光軸上における前記第1光変換部材と前記第2光変換部材それぞれの厚さよりも薄い請求項10に記載の照明装置。 The lighting device according to claim 10, wherein a thickness of the heat transfer suppression member on the optical axis is thinner than a thickness of each of the first light conversion member and the second light conversion member on the optical axis. 前記1次光が照射される前記第1光変換部材の第1入射面と前記光軸との交点を前記第1光変換部材の実質的な第1発光点とし、前記1次光が照射される前記第2光変換部材の第2入射面と前記光軸との交点を前記第2光変換部材の実質的な第2発光点としたときに、
前記第1発光点と前記第2発光点とは、前記ホルダ入射部から前記ホルダの長さの2/3以下の位置に配置されており、
前記第1変換光と前記第2変換光それぞれの配光半値角は100°以下の状態で、前記第1変換光と前記第2変換光それぞれは出射される請求項10に記載の照明装置。
The intersection of the first incident surface of the first light conversion member to which the primary light is irradiated and the optical axis is defined as a substantial first light emission point of the first light conversion member, and the primary light is irradiated. When the intersection of the second incident surface of the second light conversion member and the optical axis is a substantial second light emission point of the second light conversion member,
The first light emission point and the second light emission point are arranged at a position that is 2/3 or less of the length of the holder from the holder incident part,
The lighting device according to claim 10, wherein each of the first converted light and the second converted light is emitted in a state in which a light distribution half-value angle of each of the first converted light and the second converted light is 100 ° or less.
前記ホルダの体積は、前記第1光変換部材と前記第2光変換部材それぞれの体積よりも大きく、
前記ホルダの表面積は、前記第1光変換部材と前記第2光変換部材それぞれの表面積よりも広い請求項に記載の照明装置。
The volume of the holder is larger than the volume of each of the first light conversion member and the second light conversion member ,
The lighting device according to claim 2 , wherein a surface area of the holder is larger than a surface area of each of the first light conversion member and the second light conversion member .
前記第1光変換部材の前記熱伝導率は、前記第2光変換部材の前記熱伝導率よりも高い請求項に記載の照明装置。 Wherein the thermal conductivity of the first light conversion member, the lighting apparatus according to a higher claim 2 than the thermal conductivity of the second light conversion member. 前記第1光変換部材が前記ホルダに熱的に接続される第1領域は、前記第2光変換部材が前記ホルダに熱的に接続される第2領域よりも広い請求項14に記載の照明装置。 The illumination according to claim 14 , wherein a first area where the first light conversion member is thermally connected to the holder is wider than a second area where the second light conversion member is thermally connected to the holder. apparatus. 前記光変換ユニットは、前記第1光変換部材の前記熱伝導率よりも高い熱伝導率を有する熱伝達部材をさらに具備し、
前記熱伝達部材は、前記第1光変換部材と前記ホルダとに熱的に接続される請求項14に記載の照明装置。
The light conversion unit further includes a heat transfer member having a thermal conductivity higher than the thermal conductivity of the first light conversion member,
The lighting device according to claim 14 , wherein the heat transfer member is thermally connected to the first light conversion member and the holder.
前記光変換ユニットは、前記第2光変換部材の前記熱伝導率よりも高い熱伝導率を有する熱伝達部材をさらに具備し、
前記熱伝達部材は、前記1次光が照射される前記第2光変換部材の第2入射面よりも前記光変換ユニットの出射部側に配置され、前記第2光変換部材と前記ホルダとに熱的に接続される請求項14に記載の照明装置。
The light conversion unit further includes a heat transfer member having a heat conductivity higher than the heat conductivity of the second light conversion member,
The heat transfer member is disposed closer to the light output unit of the light conversion unit than the second incident surface of the second light conversion member to which the primary light is irradiated, and the heat transfer member is disposed between the second light conversion member and the holder. The lighting device according to claim 14 , which is thermally connected.
前記ホルダの前記熱伝導率は、15W/m・K以上である請求項13に記載の照明装置。   The lighting device according to claim 13, wherein the thermal conductivity of the holder is 15 W / m · K or more. 前記第1光変換部材と前記第2光変換部材との少なくとも1つは、前記1次光を前記1次光とは異なる波長域を有する波長変換光に波長変換する波長変換部材であり、
前記波長変換部材は、発熱に伴う温度上昇によって、波長変換効率が低下する特性を有する請求項1に記載の照明装置。
At least one of the first light conversion member and the second light conversion member is a wavelength conversion member that converts the wavelength of the primary light into wavelength converted light having a wavelength range different from that of the primary light,
The lighting device according to claim 1, wherein the wavelength conversion member has a characteristic that the wavelength conversion efficiency decreases due to a temperature increase caused by heat generation.
前記第1光変換部材と前記第2光変換部材とのいずれか1つは、前記1次光とは異なる配光角の光を出射する配光角変換部材である請求項1に記載の照明装置。   2. The illumination according to claim 1, wherein any one of the first light conversion member and the second light conversion member is a light distribution angle conversion member that emits light having a light distribution angle different from the primary light. apparatus. 前記第1光変換部材と前記第2光変換部材とは、無機材料で形成される請求項20に記載の照明装置。 The lighting device according to claim 20 , wherein the first light conversion member and the second light conversion member are formed of an inorganic material. 前記1次光を出射する1次光源をさらに具備し、
前記1次光源は、前記1次光である第1レーザー光を出射する第1レーザー光源を有し、
前記1次光源は、前記1次光源から出射された前記1次光を前記光変換ユニットに導光する光ファイバを介して前記光変換ユニットに光学的に接続される請求項1に記載の照明装置。
A primary light source that emits the primary light;
The primary light source has a first laser light source that emits a first laser light that is the primary light,
The illumination according to claim 1, wherein the primary light source is optically connected to the light conversion unit via an optical fiber that guides the primary light emitted from the primary light source to the light conversion unit. apparatus.
前記1次光源は、前記第1レーザー光とは波長が異なる前記1次光である第2レーザー光を出射する第2レーザー光源をさらに有し、
照明装置は、前記第1レーザー光と前記第2レーザー光とを合波し、合波した光を前記光ファイバに入射させる光カプラを有する請求項22に記載の照明装置。
The primary light source further includes a second laser light source that emits a second laser light that is the primary light having a wavelength different from that of the first laser light,
The illuminating device according to claim 22 , further comprising an optical coupler that multiplexes the first laser light and the second laser light and causes the combined light to enter the optical fiber.
JP2018516271A 2016-05-11 2016-05-11 Lighting device Active JP6596582B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064045 WO2017195303A1 (en) 2016-05-11 2016-05-11 Illuminating device

Publications (2)

Publication Number Publication Date
JPWO2017195303A1 JPWO2017195303A1 (en) 2019-03-07
JP6596582B2 true JP6596582B2 (en) 2019-10-23

Family

ID=60266600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516271A Active JP6596582B2 (en) 2016-05-11 2016-05-11 Lighting device

Country Status (2)

Country Link
JP (1) JP6596582B2 (en)
WO (1) WO2017195303A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270093A (en) * 2019-08-20 2022-04-01 昕诺飞控股有限公司 High quality white laser-based light source by indirect pumping of red phosphor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060328A (en) * 2012-09-19 2014-04-03 Nichia Chem Ind Ltd Light-emitting device
JP6103966B2 (en) * 2013-02-07 2017-03-29 オリンパス株式会社 Lighting device
JP5993766B2 (en) * 2013-03-26 2016-09-14 株式会社東芝 Lighting device
JP2016027613A (en) * 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same
US10338452B2 (en) * 2014-08-08 2019-07-02 Transcend Lighting Inc. Electromagnetic wavelength conversion device

Also Published As

Publication number Publication date
WO2017195303A1 (en) 2017-11-16
JPWO2017195303A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
US9574722B2 (en) Light emitting diode illumination system
KR101723762B1 (en) Full spectrum led illuminator
US9151468B2 (en) High brightness illumination devices using wavelength conversion materials
US9228725B2 (en) Light source unit, optical conversion unit, light source apparatus and light source system for an endoscope
JP4375270B2 (en) Light emitting device
JP5631509B2 (en) Lighting device having phosphor element
JP4689579B2 (en) Light emitting device
JP4946188B2 (en) Light emitting device
CN108235720A (en) For generating the optical device of high-luminance light
CN106796973B (en) Light emitting device
US10527237B2 (en) Illumination apparatus
JP5722068B2 (en) Light source device, lighting device and vehicle headlamp
WO2013089103A1 (en) Illumination module having plurality of light-guide members
JP2005347223A (en) Light source device
JP6596582B2 (en) Lighting device
JP2015019013A (en) Light emitting device and light conversion unit
WO2013089093A1 (en) Light source system
JP2021083698A (en) Light emitting device and connection method
JP2015134230A (en) Light source device for endoscope
US10849487B2 (en) Illumination unit and endoscope system
JP2018120749A (en) Lighting device
CN114110524B (en) Light source device and car lamp
JP2020160366A (en) Wavelength conversion element and illumination device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R151 Written notification of patent or utility model registration

Ref document number: 6596582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250