JP6590257B2 - Dielectric constant evaluation method using time domain analysis - Google Patents

Dielectric constant evaluation method using time domain analysis Download PDF

Info

Publication number
JP6590257B2
JP6590257B2 JP2016120724A JP2016120724A JP6590257B2 JP 6590257 B2 JP6590257 B2 JP 6590257B2 JP 2016120724 A JP2016120724 A JP 2016120724A JP 2016120724 A JP2016120724 A JP 2016120724A JP 6590257 B2 JP6590257 B2 JP 6590257B2
Authority
JP
Japan
Prior art keywords
dielectric constant
domain waveform
time domain
parameter
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120724A
Other languages
Japanese (ja)
Other versions
JP2017223614A (en
Inventor
悠人 加藤
悠人 加藤
堀部 雅弘
雅弘 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016120724A priority Critical patent/JP6590257B2/en
Publication of JP2017223614A publication Critical patent/JP2017223614A/en
Application granted granted Critical
Publication of JP6590257B2 publication Critical patent/JP6590257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は反射伝送法における時間領域解析を用いた誘電率評価において冶具由来の雑音を含む反射波信号を補正するための技術に関する。   The present invention relates to a technique for correcting a reflected wave signal including noise derived from a jig in dielectric constant evaluation using time domain analysis in a reflection transmission method.

電磁波遮蔽材・吸収材の開発に必要な誘電率評価のための測定方法として反射伝送法が用いられている。
反射伝送法では試料に入射した電磁波の反射・伝送特性(Sパラメータ)から誘電率を導出する(非特許文献1)。
The reflection transmission method is used as a measurement method for dielectric constant evaluation necessary for the development of electromagnetic shielding materials and absorbers.
In the reflection transmission method, the dielectric constant is derived from the reflection / transmission characteristics (S parameter) of the electromagnetic wave incident on the sample (Non-Patent Document 1).

RF、マイクロ波、ミリ波、サブミリ波帯(10MHz〜300GHz超)の高損失な高周波部材の誘電率評価のために試料をその中に封入・測定する冶具(ジグ)として同軸・導波管が利用される。
この測定方法を利用すると、反射波を測定した信号に冶具に由来する不要な反射成分が含まれるので、時間領域解析におけるゲーティング(特許文献1)を用いてその影響を除去することができる。
A coaxial / waveguide is used as a jig (jig) to enclose and measure a sample in order to evaluate the dielectric constant of high-frequency components with high loss in RF, microwave, millimeter wave, and submillimeter wave bands (10 MHz to over 300 GHz). Used.
When this measurement method is used, an unnecessary reflection component derived from the jig is included in the signal obtained by measuring the reflected wave, and thus the influence can be removed by using gating in the time domain analysis (Patent Document 1).

時間領域解析におけるゲーティング手法はミリ波帯材料評価やアンテナ測定に用いられ、周波数領域の測定結果にFFT変換を行って得られた時間領域波形から、たとえば冶具の接続箇所・アンテナにおける不要な反射成分を伴わない直接波の信号のみを取得することを言い、それを逆FFT変換して得られる周波数領域波形により高精度の誘電率を評価することができる(非特許文献2)。   The gating method in time domain analysis is used for millimeter wave band material evaluation and antenna measurement. From the time domain waveform obtained by performing FFT conversion on the measurement result in the frequency domain, for example, unnecessary reflections at the connection points / antenna of the jig This refers to acquiring only a direct wave signal without a component, and a highly accurate dielectric constant can be evaluated by a frequency domain waveform obtained by inverse FFT conversion (Non-patent Document 2).

しかし、マイクロ波帯(10GHz程度)で、例えば1〜18GHzにおいて40mm長の同軸線路に封入した試料にこの時間領域解析におけるゲーティング方法を用いると、時間領域で試料の直接波と冶具の端面の反射波の間隔が狭くなり、両者を明確に分離することができない(図2)。
ゲーティングを行わないで誘電率を求めると、治具の接続における多重反射の影響により、評価する誘電率にリップルがあらわれて試料の誘電率を正しく評価できない(図1)。
直接波と反射波を明確に分離し、時間領域解析を適用するためには長い試料治具を用いることが必要だが、30cm長の同軸線路に封入した試料に従来のゲーティング方法を用いると、ゲーティングの境界でSパラメータの時間領域波形が不連続に変化するため、逆FFT変換して得られる周波数領域波形にリップルが現れ、さらに評価する誘電率にもリップルがあらわれて試料の誘電率を正しく評価できない(図4、波波形)。
However, when using the gating method in this time domain analysis on a sample sealed in a 40 mm long coaxial line at 1 to 18 GHz in the microwave band (about 10 GHz), the direct wave of the sample and the end face of the jig in the time domain The interval between the reflected waves becomes narrow, and the two cannot be clearly separated (FIG. 2).
If the dielectric constant is obtained without gating, ripples appear in the dielectric constant to be evaluated due to the influence of multiple reflection in the jig connection, and the dielectric constant of the sample cannot be evaluated correctly (FIG. 1).
In order to clearly separate the direct wave and reflected wave and apply time domain analysis, it is necessary to use a long sample jig, but if a conventional gating method is used for a sample enclosed in a 30 cm long coaxial line, Since the time domain waveform of the S parameter changes discontinuously at the gating boundary, a ripple appears in the frequency domain waveform obtained by inverse FFT transformation, and a ripple also appears in the dielectric constant to be evaluated. It cannot be evaluated correctly (Fig. 4, wave waveform).

国際公開第03/019207号International Publication No. 03/019207

Y. Kato and M. Horibe, “Study of reflection effect at fixture interfaces on permittivity measurements using the transmission/reflection method,” 84th ARFTG Conf. Digest, pp. 1-4, Dec. 2014.Y. Kato and M. Horibe, “Study of reflection effect at fixture interfaces on permittivity measurements using the transmission / reflection method,” 84th ARFTG Conf. Digest, pp. 1-4, Dec. 2014. P. G. Bartley and S. B. Begley, “Improved Free-Space S-parameter Calibration,” IMTC 2005 proceedings, 372-375, 2005.P. G. Bartley and S. B. Begley, “Improved Free-Space S-parameter Calibration,” IMTC 2005 proceedings, 372-375, 2005.

さらに、時間領域解析においてゲーティング方法を用いる場合に、冶具長が冶具端面での反射波の時間領域波形に及ぼす影響について詳細に調べてみると、図2に示すように、測定する周波数帯、試料の長さや誘電率との関係で冶具長が短い場合には冶具長が長い場合に試料による直接波の前後にあらわれる冶具に由来する反射波の2つのピークが複数に拡がって明確に分離できずゲーティング自体が難しいことがわかった。
従ってゲーティング手法を用いて試料の直接波と冶具の端面の反射波を区別して直接波のみ利用できるようにする、あるいは、不連続点における冶具による反射波の影響を抑え、または除去し、直接波のみに基づいて逆FFTを行って得られる周波数領域の波形に基づいて精度よく誘電率を評価することが課題となる。
Further, when the gating method is used in the time domain analysis, when the influence of the jig length on the time domain waveform of the reflected wave at the jig end face is examined in detail, as shown in FIG. When the jig length is short due to the sample length and dielectric constant, the two peaks of the reflected wave originating from the jig appearing before and after the direct wave by the sample can be clearly separated when the jig length is long. It turned out that gating itself was difficult.
Therefore, the direct wave of the sample and the reflected wave of the end face of the jig can be distinguished by using the gating method so that only the direct wave can be used, or the influence of the reflected wave by the jig at the discontinuous point is suppressed or eliminated, and directly It becomes a problem to accurately evaluate the dielectric constant based on the waveform in the frequency domain obtained by performing the inverse FFT based only on the wave.

本発明は上記の課題を解決するために、所定の十分な長さに持った冶具、同軸線路または導波管に試料を封入して測定したSパラメータを従前の時間領域解析におけるゲーティング方法の手法により評価して得られた誘電率(振動している値)を基にその中央値を当該試料の誘電率の初期推定値として得られる時間領域波形に基づいて当該ゲーティング領域を、所定の計算によりゲーティング領域の外側まで時間領域波形がほぼ連続的に変化するように補正し延長する。   In order to solve the above-mentioned problems, the present invention provides a Gating method in a conventional time-domain analysis using an S parameter measured by enclosing a sample in a jig, coaxial line or waveguide having a predetermined sufficient length. Based on the time domain waveform obtained by using the median as the initial estimated value of the dielectric constant of the sample based on the dielectric constant (vibrating value) obtained by evaluation by the technique, the gating region is The time domain waveform is corrected and extended so as to change substantially continuously outside the gating area by calculation.

こうして補正されたSパラメータの時間領域波形を逆FFTにより周波数領域に戻したのちに誘電率を評価すると他の測定法で得られるようななだらかな曲線からなる誘電率特性が得られた。
この解析により誘電率測定の主に低周波領域における高精度化が達成できる。
以下に開発した時間領域解析法を、図3に示した処理フローチャートを参照しながら説明する。
When the dielectric constant was evaluated after returning the time domain waveform of the S parameter thus corrected to the frequency domain by inverse FFT, a dielectric constant characteristic consisting of a smooth curve as obtained by other measurement methods was obtained.
This analysis can achieve high accuracy in permittivity measurement mainly in the low frequency region.
The time domain analysis method developed below will be described with reference to the processing flowchart shown in FIG.

試料を封入した治具のSパラメータを測定する(ステップS1)。
長さ2Lの同軸線路治具の中央に長さdの被測定試料が封入されている(図13(B))場合、伝送線路理論からSパラメータは次式で表される。

Figure 0006590257
Figure 0006590257
Figure 0006590257
ここで、z=exp(−γd)、γ:試料領域の伝搬定数、γ0:空気領域の伝搬定数、Γ:は、試料面における反射係数である。
Γはγとγ0の関数であり、γ0は試料に依らない定数であり、γは試料の誘電率の関数なので、測定されたSパラメータを式(1)から(3)に代入し、誘電率について解くことで、試料の誘電率を求めることができる。 The S parameter of the jig enclosing the sample is measured (step S1).
When a sample to be measured having a length d is sealed in the center of a 2 L long coaxial line jig (FIG. 13B), the S parameter is expressed by the following equation from the transmission line theory.
Figure 0006590257
Figure 0006590257
Figure 0006590257
Here, z = exp (−γd), γ: propagation constant of the sample region, γ 0 : propagation constant of the air region, and Γ: a reflection coefficient on the sample surface.
Since Γ is a function of γ and γ 0 , γ 0 is a constant that does not depend on the sample, and γ is a function of the dielectric constant of the sample, the measured S parameter is substituted into equations (1) to (3), By solving for the dielectric constant, the dielectric constant of the sample can be determined.

実際のSパラメータの測定においては、治具の接続部における多重反射の影響が表れる。
しかし、式(1)から(3)の導出では反射がゼロと仮定されているため、多重反射はSパラメータから誘電率を解析する際の誤差となり、その結果として誘電率の周波数特性にリップルが表れる。
多重反射の影響を除去するために、既存の時間領域解析法(ゲーティング法)では以下のように解析する。
例えば測定される反射量をFFTで時間領域波形にすると図8のRaw dataとなり、試料面における反射に起因するピーク(図8のまる2、以下同じ)のほかに、その両端に治具の接続部における反射に起因するピークが表れる(まる1、まる3)。
ゲーティング法では、ピーク(まる2)のまわりの有限の幅の時間領域波形だけ残し、その外側をゼロとすることで、治具の接続部における反射の影響を除去する(ステップS2)。
In the actual measurement of the S parameter, the influence of multiple reflection at the connection portion of the jig appears.
However, since the reflection is assumed to be zero in the derivation of Equations (1) to (3), multiple reflection becomes an error when analyzing the dielectric constant from the S parameter, and as a result, ripples appear in the frequency characteristics of the dielectric constant. appear.
In order to remove the influence of multiple reflection, the existing time domain analysis method (gating method) analyzes as follows.
For example, if the reflected amount to be measured is converted to a time domain waveform by FFT, the raw data shown in FIG. 8 is obtained. In addition to the peaks caused by reflection on the sample surface (circle 2 in FIG. A peak due to reflection at the part appears (full 1, full 3).
In the gating method, only the time-domain waveform having a finite width around the peak (round 2) is left, and the outside thereof is set to zero, thereby removing the influence of reflection at the connecting portion of the jig (step S2).

ゲーティング法で得られた時間領域波形を逆FFTで周波数領域波形に戻し、そのSパラメータから式(1)から(3)に従って誘電率を求めると図4の波波形を得る(ステップS3)。
多重反射の影響は除去されたものの、ゲーティングを行うことで時間領域波形に不連続な変化が生じることに由来するリップルが誘電率の周波数特性に表れている。
When the time domain waveform obtained by the gating method is returned to the frequency domain waveform by inverse FFT and the dielectric constant is obtained from the S parameter according to the equations (1) to (3), the waveform shown in FIG. 4 is obtained (step S3).
Although the influence of multiple reflections has been eliminated, ripples resulting from discontinuous changes in the time domain waveform due to gating appear in the frequency characteristics of the dielectric constant.

本発明方法では時間領域波形をゲーティング領域の外側に延伸し、不連続な変化をなくすことで、誘電率の周波数特性においてこのリップルが生じない誘電率測定・解析を実現する。
まず、ゲーティング法で得られた振動する誘電率の中央値を誘電率の初期推定値とする(図4)(ステップS4)。
誘電率の初期推定値を式(1)から(3)に代入すると、治具の接続部で反射がゼロである理想的な同軸線路治具(長さ2L)の中央に長さdの被測定試料が封入された場合のSパラメータが計算される。
In the method of the present invention, the time domain waveform is extended to the outside of the gating area to eliminate the discontinuous change, thereby realizing the dielectric constant measurement / analysis in which the ripple does not occur in the frequency characteristics of the dielectric constant.
First, the median value of the oscillating dielectric constant obtained by the gating method is set as the initial estimated value of the dielectric constant (FIG. 4) (step S4).
Substituting the initial estimate of the dielectric constant into equations (1) to (3), the length of the covered d is the center of an ideal coaxial line jig (length 2L) with zero reflection at the jig connection. The S parameter when the measurement sample is sealed is calculated.

この周波数領域におけるSパラメータをFFTし、得られた時間領域波形のうち、ゲーティング領域の外側の領域のデータを用いて、ゲーティングされた時間領域波形の両外側への延伸を行う(図6)(ステップS5)。
すなわち、Sパラメータの時間領域波形として、ゲーティング領域では測定値のFFTとして得られるデータを用い、ゲーティング領域の外側では誘電率の初期推定値に基づく計算の結果として得られるデータを用いる。
両者を連結することで、ゲーティングされた時間領域波形の連続的な延伸を行うことができる。
The S parameter in the frequency domain is subjected to FFT, and among the obtained time domain waveforms, the data of the area outside the gating area is used to extend the gated time domain waveform to both outer sides (FIG. 6). (Step S5).
That is, as the time domain waveform of the S parameter, data obtained as the FFT of the measured value is used in the gating region, and data obtained as a result of calculation based on the initial estimated value of the dielectric constant is used outside the gating region.
By connecting both, continuous stretching of the gated time domain waveform can be performed.

ステップS5で得られた時間領域波形を逆FFTして得られた周波数領域波形から式(1)から(3)に従って誘電率を求めると、リップルがなくなだらかな誘電率曲線を得ることができる(ステップS6)。   When the dielectric constant is obtained according to the equations (1) to (3) from the frequency domain waveform obtained by performing inverse FFT on the time domain waveform obtained in step S5, a gentle dielectric constant curve without ripples can be obtained ( Step S6).

本発明ではゲーティング法で得られた誘電率を基にその中央値を初期推定値としたが、その他の初期推定値を選んだ場合に最終的に得られる誘電率がどのように変化するか調べてみると、図5(A)に示すように、ゲーティング法で得られる誘電率の中央値(図5のまる1、以下同じ)、最小値(まる2)、最大値(まる3)を初期設定値とした場合に、それぞれの初期推定値を基にSパラメータの時間領域波形の延伸を行って最終的に得られる誘電率として図5(B)を得た。
図5(B)をみるとどの初期推定値を用いた場合でも、高精度に誘電率を決定できることがわかり、本発明の解析が初期推定値の選び方に敏感でないことを確認した。
したがって、たとえ初期推定値の決定精度が悪くても、最終的な結果としては高精度な誘電率の推定が可能である。
In the present invention, the median value is set as the initial estimated value based on the dielectric constant obtained by the gating method, but how the dielectric constant finally obtained changes when other initial estimated values are selected. As shown in FIG. 5A, as shown in FIG. 5A, the median dielectric constant obtained by the gating method (round 1 in FIG. 5, the same applies hereinafter), minimum value (round 2), maximum value (round 3). 5B is obtained as the dielectric constant finally obtained by extending the time domain waveform of the S parameter based on the initial estimated values.
FIG. 5B shows that the dielectric constant can be determined with high accuracy regardless of which initial estimated value is used, and it was confirmed that the analysis of the present invention is not sensitive to how to select the initial estimated value.
Therefore, even if the accuracy of determining the initial estimated value is poor, the dielectric constant can be estimated with high accuracy as the final result.

従来適用が困難であったマイクロ波帯(10GHz程度)にゲーティング法を拡張して実測値に近いなだらかな誘電率曲線(特性)を得ることができ測定精度を上げることができた。
また、ミリ波帯においても、従来のゲーティング法の測定精度を上まわることが確認できた。
これにより、ゲーティング法が広い帯域で測定精度よく活用できるようになった。
By extending the gating method to the microwave band (about 10 GHz), which was difficult to apply in the past, a gentle dielectric constant curve (characteristic) close to the actual measurement value was obtained, and the measurement accuracy was improved.
In the millimeter wave band, it was confirmed that the measurement accuracy of the conventional gating method was exceeded.
As a result, the gating method can be utilized with high measurement accuracy in a wide band.

40mmの同軸線路に封入した試料を測定した周波数領域での誘電率をあらわすグラフである。点線は最小二乗法により求めた誘電率推定線を表している。It is a graph showing the dielectric constant in the frequency domain which measured the sample enclosed in the 40-mm coaxial line. The dotted line represents a dielectric constant estimation line obtained by the least square method. 治具の長さが5cm, 10cm, 30cmの場合の反射波の時間領域波形を表す図。The figure showing the time domain waveform of a reflected wave when the length of a jig is 5cm, 10cm, and 30cm. 本発明で開発した時間領域解析法をあらわす処理フローチャートである。It is a process flowchart showing the time domain analysis method developed by this invention. 本発明方法で誘電率の初期推定値を求める方法を示した図である。It is the figure which showed the method of calculating | requiring the initial estimated value of a dielectric constant with the method of this invention. 本発明方法で求まる誘電率の初期推定値依存性を表す図である。It is a figure showing the initial stage value dependency of the dielectric constant calculated | required by the method of this invention. 本発明方法で補正した反射波の時間領域波形を表す図である。It is a figure showing the time domain waveform of the reflected wave correct | amended with the method of this invention. フリースペース法測定システムの概念図(左)と写真(右)である。A conceptual diagram (left) and a photograph (right) of the free space method measurement system. 反射波の時間領域波形を表す図である。It is a figure showing the time domain waveform of a reflected wave. 誘電率の推定結果(A)と設定値からの偏差(B)を表す図である。It is a figure showing the estimation result (A) of a dielectric constant, and the deviation (B) from a setting value. 長さ30cmの同軸線路治具の画像である。It is an image of a coaxial line jig with a length of 30 cm. PTFEの誘電率測定結果を表す図である。Replacingが本解析方法、Gatingが既存の時間領域解析方法(ゲーティング)、Raw Dataが時間領域解析を用いない場合に対応する。It is a figure showing the dielectric constant measurement result of PTFE. Replacing corresponds to this analysis method, Gating corresponds to the existing time domain analysis method (gating), and Raw Data does not use time domain analysis. 測定方法間の比較を表した図である。It is a figure showing the comparison between measurement methods. (A)は一般的ゲーティング法を表す図、(B)はその中央に長さdの被測定試料が封入した長さ2Lの同軸線路治具の模式図を表す図である。(A) is a diagram showing a general gating method, and (B) is a diagram showing a schematic diagram of a coaxial line jig having a length of 2 L in which a sample to be measured having a length d is sealed in the center.

以下に実施例を示すが、本発明の実施はこの例に制限されるものではなく、該当する場合には他の例にも適用可能である。   Although an Example is shown below, implementation of this invention is not restrict | limited to this example, When applicable, it is applicable also to another example.

本発明に従い、図10に示す長さ30cmの同軸線路治具にPTFE試料を封入し、誘電率を測定した。
測定周波数は1〜18GHzであり、試料長は約5mmである。
According to the present invention, a PTFE sample was sealed in a coaxial line jig having a length of 30 cm shown in FIG. 10, and the dielectric constant was measured.
The measurement frequency is 1 to 18 GHz, and the sample length is about 5 mm.

図11に誘電率の測定結果を示す。
図中Replacingが本解析方法、Gatingが既存の時間領域解析方法(ゲーティング)、Raw dataが時間領域解析を用いない場合に対応している。
FIG. 11 shows the measurement result of the dielectric constant.
In the figure, Replacing corresponds to this analysis method, Gating corresponds to the existing time domain analysis method (gating), and Raw data corresponds to the case where time domain analysis is not used.

これを見ると、Raw dataでは治具端部の接続部における多重反射に起因したリップルが見られる(特に10GHzを超えた周波数域で顕著)。   Looking at this, the raw data shows ripples due to multiple reflections at the joint end of the jig (particularly in the frequency range above 10 GHz).

一方で、Gatingでもリップルが見られるが、これはゲーティング操作の結果として時間領域波形に不連続な変化ができたことに起因する。
Replacingはリップルのない単調な変化を示し、試料の誘電率特性を最も正確に反映していると考えられる。
On the other hand, a ripple is also seen in Gating, but this is due to a discontinuous change in the time domain waveform as a result of the gating operation.
Replacing shows a monotonous change with no ripple, and is considered to reflect the dielectric constant characteristics of the sample most accurately.

図12にほかの測定方法との比較結果を示す。   FIG. 12 shows the results of comparison with other measurement methods.

図12中Coax(30cm)が長さ30cmの同軸線路治具を用いて測定し、本解析方法で誘電率を算出した結果であり、WaveguideがX帯導波管反射伝送法を用いた結果であり、Coax(4cm)が長さ4cmの同軸線路治具を用いて測定し、時間領域解析を用いずに誘電率を算出した結果である。   In FIG. 12, Coax (30 cm) is measured using a coaxial line jig with a length of 30 cm, and the dielectric constant is calculated by this analysis method. Waveguide is the result of using the X-band waveguide reflection transmission method. In other words, Coax (4 cm) was measured using a coaxial line jig having a length of 4 cm, and the dielectric constant was calculated without using time domain analysis.

WaveguideのX帯導波管反射伝送法を用いた測定では、治具接続部の反射が同軸線路治具と比べて抑えられ、測定の精度は最も高いと考えられる。   In the measurement using the Waveguide X-band waveguide reflection transmission method, reflection at the jig connecting portion is suppressed as compared with the coaxial line jig, and the measurement accuracy is considered to be the highest.

一方で、単一の治具では狭帯域の測定しか行えない。
X帯導波管の周波数帯域が8〜13GHzであることに合わせて、図12もその周波数範囲で比較している。
On the other hand, only a narrow band can be measured with a single jig.
In addition to the fact that the frequency band of the X-band waveguide is 8 to 13 GHz, FIG. 12 also compares in that frequency range.

Coax(4cm)では同軸線路治具の接続部における多重反射の影響を除去していないので、細かい振動が測定結果にみられる。   Since Coax (4cm) does not remove the influence of multiple reflections at the connection part of the coaxial line jig, fine vibrations can be seen in the measurement results.

一方で、Coax(30cm)では多重反射の影響は除去されているため、振動は見られず、Waveguideと同様に単調な変化をしている。   On the other hand, in Coax (30 cm), since the influence of multiple reflection is removed, no vibration is observed, and the change is monotonous like Waveguide.

また、Coax(30cm)とWaveguideの測定結果はよく一致しており、本方法がほかの測定方法と整合した結果を与えることが確認できた。   Moreover, the measurement results of Coax (30 cm) and Waveguide are in good agreement, and it was confirmed that this method gave results consistent with other measurement methods.

次にミリ波帯の材料計測法として利用されるフリースペース法において有効な通常のゲーティング操作に代えて、本発明を適用した場合の実施例を説明する。   Next, an embodiment in which the present invention is applied in place of a normal gating operation effective in the free space method used as a material measurement method in the millimeter wave band will be described.

この方法では図7のようにアンテナを2つ対向し、その間に試料を置いて電磁波を入射させる。
測定したSパラメータから試料の誘電率を算出する時にアンテナ間のレンズアンテナによる多重反射を除去するのに時間領域解析が利用できる。
In this method, two antennas are opposed to each other as shown in FIG.
Time domain analysis can be used to remove multiple reflections due to the lens antenna between the antennas when calculating the dielectric constant of the sample from the measured S-parameters.

Wバンド帯(75〜110GHz)で誘電率が2の試料を測定することを考え、測定されるSパラメータデータから誘電率を推定する。   Considering measurement of a sample having a dielectric constant of 2 in the W band (75 to 110 GHz), the dielectric constant is estimated from the measured S-parameter data.

伝送線路理論から測定されるべきSパラメータを計算し、反射波の時間領域波形を計算すると図8のRaw dataを得る。
ここで、ピーク1(図8ではまる1、以下同じ)と3がアンテナにおける反射を示し、ピーク2が試料における反射を示す。
When the S parameter to be measured from the transmission line theory is calculated and the time domain waveform of the reflected wave is calculated, Raw data in FIG. 8 is obtained.
Here, peaks 1 (1 in FIG. 8; the same applies hereinafter) and 3 indicate reflection at the antenna, and peak 2 indicates reflection at the sample.

本発明方法を用いてピーク2のみを選択的に残すと図8のReplaceを得る。   When only the peak 2 is selectively left using the method of the present invention, the Replace shown in FIG. 8 is obtained.

Sパラメータから誘電率を算出した結果を図9(A)に示す。
Replaceが本解析方法、Gateが通常の時間領域解析法(ゲーティング)、Rawが時間領域解析を用いない場合にそれぞれ対応している。
The result of calculating the dielectric constant from the S parameter is shown in FIG.
Replace corresponds to this analysis method, Gate corresponds to normal time domain analysis (gating), and Raw does not use time domain analysis.

図9(B)に本解析方法と通常の時間領域解析法(ゲーティング)を用いた場合の設定値と推定値の偏差を示している。
本解析方法を用いた場合の推定結果が最も精度が高いことが確認できる。
FIG. 9B shows a deviation between a set value and an estimated value when the present analysis method and a normal time domain analysis method (gating) are used.
It can be confirmed that the estimation result using this analysis method has the highest accuracy.

1 送信アンテナ
2 試料
3 受信アンテナ
4 レンズアンテナ
5 冶具

DESCRIPTION OF SYMBOLS 1 Transmission antenna 2 Sample 3 Reception antenna 4 Lens antenna 5 Jig

Claims (12)

マイクロ波帯電磁波を用いて所定の長さと接続部両端を有する同軸線路または導波管冶具に試料を封入しゲーティング法を利用した反射伝送法により誘電率特性を評価する誘電率測定装置であって、
所定の電磁波を前記同軸線路または導波管冶具に放出する手段と、
該放出された電磁波の反射波・透過波を測定しSパラメータを取得する手段と、
前記Sパラメータに基づいて当該試料の誘電率特性を評価する手段を有し、
前記取得したSパラメータの時間領域波形から前記ゲーティング法を適用して前記同軸線路または導波管治具の接続部の多重反射を除去した時間領域波形から逆FFTして得られた周波数領域波形から得られた当該試料の誘電率特性に基づいて当該試料の誘電率特性の初期推定値を設定し、
前記ゲーティング法が適用されたSパラメータの時間領域波形を前記誘電率特性の初期推定値に対応する時間領域波形により当該ゲートの両側に延伸して得た時間領域波形から逆FFTして得られた周波数領域波形に基づいて当該試料の誘電率特性を評価することを特徴とする反射伝送法誘電率測定装置。
This is a dielectric constant measurement device that uses a microwave band electromagnetic wave to encapsulate a sample in a coaxial line or waveguide jig having a predetermined length and both ends of a connecting portion, and evaluate the dielectric constant characteristics by a reflection transmission method using the gating method. And
Means for emitting a predetermined electromagnetic wave to the coaxial line or waveguide jig;
Means for measuring reflected and transmitted waves of the emitted electromagnetic wave and obtaining an S parameter;
Means for evaluating a dielectric constant characteristic of the sample based on the S parameter;
A frequency domain waveform obtained by inverse FFT from a time domain waveform obtained by applying the gating method from the acquired S parameter time domain waveform to remove multiple reflections at the connection portion of the coaxial line or waveguide jig. Based on the dielectric constant characteristics of the sample obtained from the above, set an initial estimate of the dielectric constant characteristics of the sample,
It is obtained by inverse FFT from the time domain waveform obtained by extending the time domain waveform of the S parameter to which the gating method is applied to both sides of the gate by the time domain waveform corresponding to the initial estimated value of the dielectric constant characteristic. A reflection transmission method dielectric constant measuring apparatus characterized by evaluating a dielectric constant characteristic of the sample based on a measured frequency domain waveform.
前記初期推定値は前記ゲーティング法を適用して得た当該試料の誘電率曲線の中央値(中央軸)とすることを特徴とする請求項1に記載の反射伝送法誘電率測定装置。   2. The reflection transmission method dielectric constant measuring apparatus according to claim 1, wherein the initial estimated value is a median value (central axis) of a dielectric constant curve of the sample obtained by applying the gating method. 前記マイクロ波帯は1〜18GHzであることを特徴とする請求項2に記載の反射伝送法誘電率測定装置。   The reflection transmission method dielectric constant measuring apparatus according to claim 2, wherein the microwave band is 1 to 18 GHz. 前記所定の長さは略30cmであることを特徴とする請求項3記載の反射伝送法誘電率測定装置。   4. The reflection transmission method dielectric constant measuring apparatus according to claim 3, wherein the predetermined length is approximately 30 cm. ミリ波帯電磁波を用いて2つのレンズアンテナ間の中央に試料を置いてゲーティング法を利用したフリースペース法により誘電率特性を評価する誘電率測定装置であって、
所定の電磁波を前レンズアンテナに放出する手段と、
該放出された電磁波の反射波・透過波を測定しSパラメータを取得する手段と、
前記Sパラメータに基づいて当該試料の誘電率特性を評価する手段を有し、
前記取得したSパラメータの時間領域波形から前記ゲーティング法を適用して前記2つのレンズアンテナ間の多重反射を除去して逆FFTして得られた周波数領域波形から得られた当該試料の誘電率特性に基づいて当該試料の誘電率特性の初期推定値を設定し、
前記ゲーティング法が適用されたSパラメータの時間領域波形を前記誘電率特性の初期推定値に対応する時間領域波形により当該ゲートの両側に延伸して得た時間領域波形から逆FFTして得られた周波数領域波形に基づいて当該試料の誘電率特性を評価することを特徴とする反射伝送法誘電率測定装置。
A dielectric constant measuring apparatus for evaluating dielectric constant characteristics by a free space method using a gating method by placing a sample in the center between two lens antennas using millimeter wave electromagnetic waves,
Means for emitting a predetermined electromagnetic wave to the front lens antenna;
Means for measuring reflected and transmitted waves of the emitted electromagnetic wave and obtaining an S parameter;
Means for evaluating a dielectric constant characteristic of the sample based on the S parameter;
The dielectric constant of the sample obtained from the frequency domain waveform obtained by applying the gating method from the acquired S-parameter time domain waveform to remove multiple reflections between the two lens antennas and performing inverse FFT Set an initial estimate of the dielectric constant characteristics of the sample based on the characteristics,
It is obtained by inverse FFT from the time domain waveform obtained by extending the time domain waveform of the S parameter to which the gating method is applied to both sides of the gate by the time domain waveform corresponding to the initial estimated value of the dielectric constant characteristic. A reflection transmission method dielectric constant measuring apparatus characterized by evaluating a dielectric constant characteristic of the sample based on a measured frequency domain waveform.
前記初期推定値は前記ゲーティング法を適用して得た当該試料の誘電率曲線の中央値(中央軸)とすることを特徴とする請求項5に記載の反射伝送法誘電率測定装置。   6. The reflection transmission method dielectric constant measuring apparatus according to claim 5, wherein the initial estimated value is a median value (central axis) of a dielectric constant curve of the sample obtained by applying the gating method. マイクロ波帯電磁波を用いて所定の長さと接続部両端を有する同軸線路または導波管冶具に試料を封入しゲーティング法を利用した反射伝送法により誘電率特性を評価する誘電率測定方法であって、
所定の電磁波を前記同軸線路または導波管冶具に放出するステップと、
該放出された電磁波の反射波・透過波を測定しSパラメータを取得するステップと、
前記Sパラメータに基づいて当該試料の誘電率特性を評価するステップと、
前記取得したSパラメータの時間領域波形から前記ゲーティング法を適用して前記同軸線路治具の接続部の多重反射を除去した時間領域波形から逆FFTして得られた周波数領域波形から当該試料の誘電率特性を得るステップを有し、
さらに前記ゲーティング法を適用して得られた当該試料の誘電率特性に基づいて当該試料の誘電率特性の初期推定値を設定するステップと、
前記ゲーティング法が適用されたSパラメータの時間領域波形を前記誘電率特性の初期推定値に対応する時間領域波形により当該ゲートの両側に延伸して得た時間領域波形から逆FFTして得られた周波数領域波形に基づいて当該試料の誘電率特性を評価するステップを有することを特徴とする反射伝送法誘電率測定方法。
This is a dielectric constant measurement method that uses a microwave band electromagnetic wave to enclose a sample in a coaxial line or waveguide jig having a predetermined length and both ends of a connecting portion, and evaluates the dielectric constant characteristics by the reflection transmission method using the gating method. And
Emitting a predetermined electromagnetic wave to the coaxial line or waveguide jig;
Measuring the reflected wave / transmitted wave of the emitted electromagnetic wave to obtain an S parameter;
Evaluating a dielectric constant characteristic of the sample based on the S parameter;
From the frequency domain waveform obtained by inverse FFT from the time domain waveform obtained by applying the gating method from the acquired S parameter time domain waveform to remove the multiple reflection of the connection part of the coaxial line jig. Obtaining a dielectric constant characteristic;
Further setting an initial estimate of the dielectric constant characteristic of the sample based on the dielectric constant characteristic of the sample obtained by applying the gating method;
It is obtained by inverse FFT from the time domain waveform obtained by extending the time domain waveform of the S parameter to which the gating method is applied to both sides of the gate by the time domain waveform corresponding to the initial estimated value of the dielectric constant characteristic. A reflection transmission method dielectric constant measurement method, comprising: evaluating a dielectric constant characteristic of the sample based on the measured frequency domain waveform.
前記初期推定値は前記ゲーティング法を適用して得た当該試料の誘電率曲線の中央値(中央軸)とすることを特徴とする請求項7に記載の反射伝送法誘電率測定方法。   8. The reflection transmission method dielectric constant measurement method according to claim 7, wherein the initial estimated value is a median value (central axis) of a dielectric constant curve of the sample obtained by applying the gating method. 前記マイクロ波帯は1〜18GHzであることを特徴とする請求項8に記載の反射伝送法誘電率測定方法。   9. The reflection transmission method dielectric constant measurement method according to claim 8, wherein the microwave band is 1 to 18 GHz. ミリ波帯電磁波を用いて2つのレンズアンテナ間の中央に試料を置いてゲーティング法を利用したフリースペース法により誘電率特性を評価する誘電率測定方法であって、
所定の電磁波を前レンズアンテナに放出するステップと、
該放出された電磁波の反射波・透過波を測定しSパラメータを取得するステップと、
前記Sパラメータに基づいて当該試料の誘電率特性を評価するステップと
前記取得したSパラメータの時間領域波形から前記ゲーティング法を適用して前記2つのレンズアンテナ間の多重反射を除去した逆FFTして得られた周波数領域波形から得られた当該試料の誘電率特性を得るステップを有し、
さらに前記ゲーティング法を適用して得られた当該試料の誘電率特性の初期推定値を設定し、
前記ゲーティング法が適用されたSパラメータの時間領域波形を前記誘電率特性の初期推定値に対応する時間領域波形により当該ゲートの両側に延伸して得た時間領域波形から逆FFTして得られた周波数領域波形に基づいて当該試料の誘電率特性を評価することを特徴とする反射伝送法誘電率測定方法。
A dielectric constant measurement method for evaluating dielectric constant characteristics by a free space method using a gating method by placing a sample in the center between two lens antennas using millimeter wave electromagnetic waves,
Emitting a predetermined electromagnetic wave to the front lens antenna;
Measuring the reflected wave / transmitted wave of the emitted electromagnetic wave to obtain an S parameter;
A step of evaluating a dielectric constant characteristic of the sample based on the S parameter, and an inverse FFT that removes multiple reflections between the two lens antennas by applying the gating method from the time domain waveform of the acquired S parameter. Obtaining a dielectric constant characteristic of the sample obtained from the frequency domain waveform obtained by
Furthermore, an initial estimated value of the dielectric constant characteristic of the sample obtained by applying the gating method is set,
It is obtained by inverse FFT from the time domain waveform obtained by extending the time domain waveform of the S parameter to which the gating method is applied to both sides of the gate by the time domain waveform corresponding to the initial estimated value of the dielectric constant characteristic. A reflection transmission method dielectric constant measurement method, comprising: evaluating a dielectric constant characteristic of the sample based on a measured frequency domain waveform.
前記初期推定値は前記ゲーティング法を適用して得た当該試料の誘電率曲線の中央値(中央軸)とすることを特徴とする請求項10に記載の反射伝送法誘電率測定方法。   The reflection transmission method dielectric constant measurement method according to claim 10, wherein the initial estimated value is a median value (central axis) of a dielectric constant curve of the sample obtained by applying the gating method. 請求項7乃至請求項11のいずれか1項に記載された反射伝送法誘電率測定方法の各ステップにおいて該放出された電磁波の反射波・透過波を測定して取得されたSパラメータの演算処理を実行する事を特徴とするプログラムおよびプログラムを記録した記憶媒体。   The calculation process of the S parameter acquired by measuring the reflected wave and the transmitted wave of the emitted electromagnetic wave in each step of the reflection transmission method dielectric constant measurement method according to any one of claims 7 to 11. And a storage medium on which the program is recorded.
JP2016120724A 2016-06-17 2016-06-17 Dielectric constant evaluation method using time domain analysis Active JP6590257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120724A JP6590257B2 (en) 2016-06-17 2016-06-17 Dielectric constant evaluation method using time domain analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120724A JP6590257B2 (en) 2016-06-17 2016-06-17 Dielectric constant evaluation method using time domain analysis

Publications (2)

Publication Number Publication Date
JP2017223614A JP2017223614A (en) 2017-12-21
JP6590257B2 true JP6590257B2 (en) 2019-10-16

Family

ID=60687074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120724A Active JP6590257B2 (en) 2016-06-17 2016-06-17 Dielectric constant evaluation method using time domain analysis

Country Status (1)

Country Link
JP (1) JP6590257B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241364A (en) * 1999-02-22 2000-09-08 Mitsubishi Heavy Ind Ltd Measuring apparatus for concentration of liquid and control device for concentration for drink filling
JP2002243659A (en) * 2001-02-19 2002-08-28 Takenaka Komuten Co Ltd Equipment for measuring performance of radio wave absorbing material
JP2005069779A (en) * 2003-08-21 2005-03-17 Kansai Tlo Kk Complex dielectric constant measuring probe
JP2006133048A (en) * 2004-11-05 2006-05-25 Fujita Corp Device for measuring complex relative dielectric constant and method thereof
JP2006220646A (en) * 2005-01-12 2006-08-24 Ntt Docomo Inc Dielectric constant measuring device and method
US7642785B2 (en) * 2005-09-30 2010-01-05 Schlumberger Technology Corporation Method and device for complex permittivity measurements as a function of frequency
WO2009031149A2 (en) * 2007-09-05 2009-03-12 Sensible Medical Innovations Ltd. Method, system and apparatus for using electromagnetic radiation for monitoring a tissue of a user
JP6266242B2 (en) * 2013-07-16 2018-01-24 東レ株式会社 Electromagnetic wave absorber and method for producing the same

Also Published As

Publication number Publication date
JP2017223614A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US10598719B2 (en) Method of characterizing a section of a transmission line, in particular section corresponding to a connector or series of connectors linking a measurement apparatus to a cable
JP5306445B2 (en) Method for transmitting a waveform having controllable attenuation and propagation velocity
US10120072B2 (en) Method for determining a distance between an FMCW ranging device and a target
KR102014582B1 (en) Apparatus for processing reflected wave
US10746765B2 (en) Data processing method and the measurement device
Houtz et al. An improved two-port transmission line permittivity and permeability determination method with shorted sample
Barowski et al. Millimeter wave material characterization using FMCW-transceivers
CN107209259B (en) Method and apparatus for ranging
JP6590257B2 (en) Dielectric constant evaluation method using time domain analysis
Chen et al. Examination of Antenna Calibration Methodologies in an Extrapolation Range
Volski et al. A dedicated technique to measure shielding effectiveness of textiles using a two‐horn antenna set‐up
JP6524490B2 (en) Method of calibrating received data in radar device and radar device
Kato et al. Improvement of transmission/reflection method for permittivity measurement using long fixtures with time-domain analysis approach
KR101494390B1 (en) Near-Field Measurement Data Compensation Method and Radar and Sensor Using thereof
JP6922429B2 (en) Noise suppression device, measurement system, noise suppression method and program
KR101328703B1 (en) Apparatus and method for MEASURING DISTANCE USING FMCW TECHNIC
Fezai et al. Traceability and calibration techniques for vector-network-analyzer
US10185020B1 (en) Method of compensating loss and dispersion of transmission line for time domain reflectometry
JP2006242799A (en) Method for correcting measurement error, and device for measuring characteristics of electronic component
JP5606294B2 (en) Anechoic chamber
JP6787834B2 (en) Permittivity measurement systems, equipment and methods
Sakharov et al. Processing of signals and analysis of errors in measurements of electromagnetic parameters of radar-absorbing materials in the time domain
Drobakhin et al. Optimization of synthetic aperture approach to radioimage processing with help of the Prony’s method
KR101493400B1 (en) Method and device for measuring inside temperature based on microwave using multiple frequency of multi-channel
CN115143875B (en) Medium thickness estimation method based on time domain analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6590257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250