JP6492529B2 - Distribution system disconnection detection system - Google Patents

Distribution system disconnection detection system Download PDF

Info

Publication number
JP6492529B2
JP6492529B2 JP2014216892A JP2014216892A JP6492529B2 JP 6492529 B2 JP6492529 B2 JP 6492529B2 JP 2014216892 A JP2014216892 A JP 2014216892A JP 2014216892 A JP2014216892 A JP 2014216892A JP 6492529 B2 JP6492529 B2 JP 6492529B2
Authority
JP
Japan
Prior art keywords
voltage
transformer
low
line
voltage line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216892A
Other languages
Japanese (ja)
Other versions
JP2016086496A (en
JP2016086496A5 (en
Inventor
善貴 宮里
善貴 宮里
鈴木 大
大 鈴木
雅人 渡辺
雅人 渡辺
山本 良太
良太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2014216892A priority Critical patent/JP6492529B2/en
Publication of JP2016086496A publication Critical patent/JP2016086496A/en
Publication of JP2016086496A5 publication Critical patent/JP2016086496A5/ja
Application granted granted Critical
Publication of JP6492529B2 publication Critical patent/JP6492529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、配電変圧器に接続された高圧線から柱上変圧器を介して低圧線に電力を供給する配電線の断線を検出する配電系統断線検出システムに関する。   The present invention relates to a distribution system disconnection detection system that detects disconnection of a distribution line that supplies power from a high-voltage line connected to a distribution transformer to a low-voltage line via a pole transformer.

配電系統で断線が発生すると配電線の電圧が低下する傾向にあり、主に需要者からの報告を受けて電力会社の巡視員が現地調査を行うことで断線箇所を発見するようにしている。また、台風や雷などの自然現象が発生した場合に配電線に断線が発生した可能性があるので、そのような場合も電力会社の巡視員が現地調査を行うこととしている。このように、配電線の断線の探索は、配電線の断線兆候がある場合に実施される。   When a disconnection occurs in the distribution system, the voltage of the distribution line tends to decrease, and a power company patrolman discovers the disconnection point by conducting a field survey mainly based on reports from customers. In addition, when natural phenomena such as typhoons and lightning occur, there is a possibility that the distribution line may be broken. In such a case, the power company patrolman will conduct a field survey. Thus, the search for the disconnection of the distribution line is performed when there is an indication of the disconnection of the distribution line.

配電線の断線を自動的に検出するものとして、各々の需要家で消費される電力或いは需要家で受電される電圧に係る情報を各々の需要家に設置された検針装置で集計し、集計した電力或いは電圧を断線箇所判定装置に送信し、断線箇所判定装置により、各々の電圧或いは電力に係る情報に基づいて断線箇所或いは断線領域を特定するようにしたものがある(例えば、特許文献1参照)。   As information that automatically detects disconnection of distribution lines, information related to the power consumed by each customer or the voltage received by the customer is tabulated and tabulated using a meter-reading device installed in each customer. There is one in which power or voltage is transmitted to a disconnection location determination device, and the disconnection location determination device identifies a disconnection location or a disconnection area based on information on each voltage or power (for example, see Patent Document 1). ).

特開2011−250580号公報JP 2011-250580 A

しかし、特許文献1のものでは、検針装置の高性能化が必要となる。断線判定するために24時間に渡って消費電力量及び電圧値を記憶し逐次読み出すことで断線判定閾値を計算し判定する必要がある。断線後の状態においても確実な通信により断線アラームを発呼する必要があるため、バッテリー搭載等の通信電力の確保策が必要である。   However, in the thing of patent document 1, the high performance of a meter-reading apparatus is needed. In order to determine disconnection, it is necessary to calculate and determine the disconnection determination threshold value by storing and sequentially reading the power consumption amount and voltage value over 24 hours. Since it is necessary to call a disconnection alarm by reliable communication even in a state after disconnection, a measure for securing communication power such as battery mounting is necessary.

また、検針装置や断線箇所判定装置には高性能通信機能が必要となる。発呼したすべての検針装置の断線アラームを断線箇所判定装置で収集し解析する必要があるため、瞬時に多くのデータを通信可能とする必要がある。   Moreover, a high-performance communication function is required for the meter reading device and the disconnection point determination device. Since it is necessary to collect and analyze the disconnection alarms of all the meter reading devices that have been called by the disconnection point determination device, it is necessary to be able to communicate a lot of data instantaneously.

さらには、検針装置の接続相の管理が必要となる。断線区間を判定するために、アラーム属性データには、断線区間判定テーブルを作成するために必要な情報、例えば検針装置と需要家と変圧器の対応データベースや、変圧器とそれが接続される高圧系統の接続相の対応データベースなどが必要となる。   Furthermore, it is necessary to manage the connection phase of the meter reading device. In order to determine the disconnection section, the alarm attribute data includes information necessary for creating the disconnection section determination table, for example, a correspondence database between the meter reading device, the customer, and the transformer, and the high voltage to which the transformer is connected. A database for the connection phase of the system is required.

本発明の目的は、各需要家に設置された計器の演算処理を軽減でき、計器と断線箇所探索部との通信処理も軽減でき、変圧器及び計器の接続相の管理も不要である配電系統断線検出システムを提供することである。   The purpose of the present invention is to reduce the calculation processing of the meter installed in each consumer, to reduce the communication processing between the meter and the disconnection point search unit, and to manage the connection phase of the transformer and the meter is unnecessary. It is to provide a disconnection detection system.

本発明の配電系統断線検出システムは、配電変圧器に接続された樹枝状の高圧線から柱上変圧器を介して分岐した複数の低圧線を有し、電力供給側を電源側とし電力受電側を負荷側とし、前記高圧線から前記低圧線に電力を供給する配電系統の前記高圧線及び前記低圧線の断線を検出する配電系統断線検出システムにおいて、前記低圧線から引込線を介して接続される各需要家の受電端に設けられ少なくとも電圧を計測し計測した電圧を送信する機能を有した計器と、前記計器で計測された電圧を受信し前記計器の電圧に基づいて前記高圧線の断線箇所を探索する高圧線断線箇所探索部と、前記計器で計測された電圧を受信し前記計器の電圧に基づいて前記低圧線の断線箇所を探索する低圧線断線箇所探索部とを備え、前記高圧線断線箇所探索部は、前記配電線の断線の検出要求があったときに起動され、前記低圧線末端の計器の電圧を判定し、前記低圧線末端の計器の電圧が異常であるときはその低圧線の柱上変圧器を電圧異常変圧器とし、前記低圧線末端の計器の電圧が正常であるときはその低圧線の柱上変圧器を電圧正常変圧器とし、隣接する最も前記負荷側の前記電圧正常変圧器と最も前記電源側の前記電圧異常変圧器との間の高圧線に断線の可能性があると判定し、前記低圧線断線箇所探索部は、前記高圧線断線箇所探索部で前記電圧異常変圧器が1以下であるときに起動され、前記低圧線に接続される計器の電圧を判定し、電圧が異常である計器を電圧異常計器とし、電圧が正常である計器を電圧正常計器とし、隣接する最も前記負荷側の前記電圧正常計器と最も前記電源側の前記電圧異常計器との間の低圧線に断線の可能性があると判定することを特徴とする。   The distribution system disconnection detection system of the present invention has a plurality of low voltage lines branched from a dendritic high voltage line connected to a distribution transformer via a pole transformer, and the power supply side is a power supply side and the power reception side In the distribution system disconnection detection system that detects the disconnection of the high-voltage line and the low-voltage line of the distribution system that supplies power from the high-voltage line to the low-voltage line, the power supply line is connected from the low-voltage line via a lead-in line. A meter provided at the power receiving end of each consumer and having a function of measuring at least the voltage and transmitting the measured voltage, and the disconnection portion of the high-voltage line based on the voltage of the meter that receives the voltage measured by the meter A high-voltage line break location search unit that receives the voltage measured by the instrument and searches for the break location of the low-voltage line based on the voltage of the meter, the high-voltage line Search for disconnection Is activated when there is a request for detection of disconnection of the distribution line, determines the voltage of the meter at the end of the low-voltage line, and when the voltage of the meter at the end of the low-voltage line is abnormal, the column of the low-voltage line When the upper transformer is a voltage abnormal transformer and the voltage of the meter at the end of the low voltage line is normal, the pole transformer of the low voltage line is a normal voltage transformer, and the voltage normal transformer on the most adjacent load side is adjacent. It is determined that there is a possibility of disconnection in the high-voltage line between the power supply and the voltage abnormal transformer on the most power source side, and the low-voltage line disconnection location searching unit is the high-voltage line disconnection location searching unit. It is activated when the instrument is 1 or less, determines the voltage of the instrument connected to the low-voltage line, the instrument with the abnormal voltage is the abnormal voltage instrument, the instrument with the normal voltage is the normal voltage instrument, and adjacent The voltage normal meter on the most load side and the most on the load side And judging that there is a possibility of breakage to a low pressure line between the voltage abnormality meter source side.

本発明によれば、断線箇所の探索を需要家側の計器ではなく、高圧線断線箇所探索部や低圧線断線箇所探索部で行うので、計器の演算処理を軽減できる。また、高圧線断線箇所探索部は配電線の断線の検出要求があったときに起動され、低圧線断線箇所探索部も高圧線断線箇所探索部により起動されるので、計器から高圧線断線箇所探索部や低圧線断線箇所探索部に送信する情報は断線箇所の探索の際のみとなり、さらには、断線箇所の探索に必要とする情報は計器の電圧のみであるので、通信処理も大幅に軽減でき、計器が接続される電圧から断線箇所を判断可能であるので、変圧器及び計器の接続相を管理する必要がない。   According to the present invention, since the search for the disconnection point is performed not by the consumer-side instrument but by the high-voltage line disconnection point search unit or the low-voltage line disconnection point search unit, the calculation processing of the instrument can be reduced. In addition, the high voltage line break location search unit is activated when a request for detection of disconnection of the distribution line is made, and the low voltage line break location search unit is also activated by the high voltage line break location search unit. The information to be sent to the power supply section and the low-voltage wire break location search section is only at the time of searching for the break location, and furthermore, the information required for searching for the break location is only the voltage of the instrument, so communication processing can be greatly reduced. Since the disconnection location can be determined from the voltage to which the meter is connected, it is not necessary to manage the connection phase between the transformer and the meter.

本発明の実施形態に係る配電系統断線検出システムの構成図。The lineblock diagram of the distribution system disconnection detection system concerning the embodiment of the present invention. 本発明の実施形態における高圧線断線箇所探索部が高圧線の断線箇所探索の際にデータ(電圧)を取り込む計器の説明図。Explanatory drawing of the meter which takes in data (voltage) in the case of the high voltage line disconnection location search part in embodiment of this invention in the case of a disconnection location search of a high voltage line. 配電線の高圧線に断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図。Explanatory drawing of the aspect of a pole transformer, a low voltage line, and a meter when a disconnection occurs in a high voltage line of a distribution line. 配電線の高圧線に断線がなく高圧線断線箇所探索部により1つの電圧異常変圧器が有りと判定された場合の柱上変圧器、低圧線及び計器の様相の説明図。Explanatory drawing of the aspect of a pole transformer, a low voltage line, and an instrument at the time of determining that there is no disconnection in the high voltage line of a distribution line, and there exists one voltage abnormal transformer by the high voltage line break location search part. 本発明の実施形態における低圧線断線箇所探索部が主に低圧線側の断線箇所探索の際にデータ(電圧)を取り込む計器の説明図。Explanatory drawing of the meter which takes in data (voltage) in the low voltage line disconnection location search part in the embodiment of this invention mainly in the case of a disconnection location search by the side of a low voltage line. 高圧線断線箇所探索部で電圧異常変圧器がないと判定されたときの低圧線断線箇所探索部の断線探索の説明図。Explanatory drawing of the disconnection search of a low voltage wire disconnection location search part when it determines with there being no voltage abnormal transformer in a high voltage wire disconnection location search part. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the disconnection search of the high voltage line disconnection location search part at the time of applying the distribution system disconnection detection system which concerns on embodiment of this invention to the distribution line whose pole transformer consists only of a power transformer. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器のみからなる配電線に適用した場合の低圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the disconnection search of the low voltage wire disconnection location search part at the time of applying the distribution system disconnection detection system which concerns on embodiment of this invention to the distribution line whose pole transformer consists only of a power transformer. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の概略説明図である。It is a schematic explanatory drawing of the disconnection search of the high voltage line disconnection location search part at the time of applying the distribution system disconnection detection system which concerns on embodiment of this invention to the distribution line whose pole transformer consists only of an electric light transformer. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the disconnection search of the high voltage line disconnection location search part at the time of applying the distribution system disconnection detection system which concerns on embodiment of this invention to the distribution line in which a pole transformer consists only of an electric light transformer. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の低圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the disconnection search of the low voltage line disconnection location search part at the time of applying the distribution system disconnection detection system which concerns on embodiment of this invention to the distribution line in which a pole transformer consists only of an electric light transformer. 本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器と電灯変圧器とが混在してなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャート。Processing content of disconnection search of high-voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line in which a pole transformer is a mixture of a power transformer and a light transformer The flowchart which shows an example. 図12における電灯変圧器の探索(a)の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the search (a) of an electric transformer in FIG. 図12における電灯変圧器の探索(b)の処理内容の一例を示すフローチャート。The flowchart which shows an example of the processing content of the search (b) of the light transformer in FIG.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る配電系統断線検出システムの構成図である。変電所の配電変圧器11は遮断器12を介して高圧線13に接続されている。高圧線13には開閉器14a、14b、14cが設けられ、開閉器14a、14bは常時閉じており、開閉器14cは常時開いている。開閉器14cは図示省略の他の配電線と電力を融通する場合に閉じられる。高圧線13からは柱上変圧器15a〜15fを介して降圧した複数の低圧線16a〜16fが接続されている。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a distribution system disconnection detection system according to an embodiment of the present invention. The distribution transformer 11 of the substation is connected to a high voltage line 13 via a circuit breaker 12. The high-voltage line 13 is provided with switches 14a, 14b, 14c. The switches 14a, 14b are always closed, and the switch 14c is always open. The switch 14c is closed when power is exchanged with other distribution lines not shown. A plurality of low voltage lines 16a to 16f that are stepped down are connected from the high voltage line 13 via pole transformers 15a to 15f.

低圧線16a〜16fには、それぞれ引込線を介して需要家の負荷が接続され、その負荷の受電端には計器Sが接続されている。図1では負荷の図示を省略し、計器Sのみを図示している。すなわち、低圧線16aには負荷に対応して計器Sa1〜Sa3が接続され、低圧線16bには負荷に対応して計器Sb1〜Sb4が接続され、低圧線16cには負荷に対応して計器Sc1〜Sc3が接続されている。以下同様に、低圧線16dには負荷に対応して計器Sd1〜Sd4が接続され、低圧線16eには負荷に対応して計器Se1〜Se4が接続され、低圧線16fには負荷に対応して計器Sf1〜Sf4が接続されている。負荷に対応して設けられたこれらの計器Sは負荷の受電端の電圧を計測し、その計測した電圧を送信する機能を有している。   Each of the low-voltage lines 16a to 16f is connected to a consumer's load via a lead-in line, and an instrument S is connected to the power receiving end of the load. In FIG. 1, the illustration of the load is omitted, and only the instrument S is illustrated. That is, the instruments Sa1 to Sa3 are connected to the low voltage line 16a corresponding to the load, the instruments Sb1 to Sb4 are connected to the low voltage line 16b corresponding to the load, and the instrument Sc1 is connected to the low voltage line 16c corresponding to the load. To Sc3 are connected. Similarly, the low-voltage line 16d is connected to the instruments Sd1 to Sd4 corresponding to the load, the low-voltage line 16e is connected to the instruments Se1 to Se4 corresponding to the load, and the low-voltage line 16f is corresponding to the load. Instruments Sf1 to Sf4 are connected. These meters S provided in correspondence with the load have a function of measuring the voltage at the power receiving end of the load and transmitting the measured voltage.

高圧線断線箇所探索部17は、配電線の断線の検出要求があったときに起動される。この配電線の断線の検出要求は、配電線の断線兆候があった場合に高圧線断線箇所探索部17に入力される。例えば、需要家からの報告があった場合や台風や雷などの自然現象が発生した場合に高圧線断線箇所探索部17に入力される。高圧線断線箇所探索部17は起動がかけられると、データ受信部18を介して計器Sで計測された電圧を受信し、計器Sの電圧に基づいて高圧線13の断線箇所を探索する。そして、探索結果を必要に応じて出力装置19に出力する。   The high-voltage wire break location searching unit 17 is activated when there is a request for detecting a break in the distribution line. The distribution line disconnection detection request is input to the high-voltage line disconnection location search unit 17 when there is an indication of a disconnection of the distribution line. For example, when there is a report from a customer or when a natural phenomenon such as a typhoon or lightning occurs, the information is input to the high voltage line break location search unit 17. When activated, the high voltage line break location searching unit 17 receives the voltage measured by the meter S via the data receiving unit 18 and searches for the break location of the high voltage line 13 based on the voltage of the meter S. And a search result is output to the output device 19 as needed.

また、低圧線断線箇所探索部20は高圧線断線箇所探索部17により起動され、起動がかけられると、計器Sで計測された電圧を受信し、計器Sの電圧に基づいて低圧線16a〜16fの断線箇所を探索する。そして、探索結果を必要に応じて出力装置19に出力する。   In addition, the low voltage line break location searching unit 20 is activated by the high voltage line break location searching unit 17 and when activated, the voltage measured by the instrument S is received, and the low voltage lines 16a to 16f are received based on the voltage of the instrument S. Search for disconnection points. And a search result is output to the output device 19 as needed.

ここで、高圧線断線箇所探索部17は、基本的には、低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定する。そして、低圧線16末端の計器Sの電圧が正常であるときはその低圧線16の柱上変圧器15を電圧正常変圧器とし、一方、低圧線16末端の計器Sの電圧が異常であるときはその低圧線16の柱上変圧器15を電圧異常変圧器とする。そして、最終的には、最も負荷側の電圧正常変圧器と最も電源側の電圧異常変圧器とが隣接するか否かを判定し、隣接するときは、その電圧正常変圧器と電圧異常変圧器との間の高圧線に断線の可能性があると判定する。これは、電圧正常変圧器より電源側の柱上変圧器15は電圧正常変圧器であると考えられ、電圧異常変圧器より負荷側の柱上変圧器15は断線により電圧異常変圧器となっていると考えられるからである。図1中の点線で囲った計器Sが高圧線断線箇所探索部17による断線箇所の探索で電圧の正常異常の判定の対象候補となる低圧線16末端の計器である。ここで、高圧線断線箇所探索部17における電源側とは高圧線の特定位置から見て電力供給側をいい、負荷側とは高圧線の特定位置から見て電力受電側をいう。また、低圧線断線箇所探索部20における電源側とは低圧線の特定位置から見て柱上変圧器側をいい、負荷側とは低圧線の特定位置から見て低圧線末端側をいう。   Here, the high voltage line break location search unit 17 basically acquires the voltage of the meter S at the end of the low voltage line 16 and determines whether the voltage is normal or abnormal. When the voltage at the terminal S of the low voltage line 16 is normal, the pole transformer 15 of the low voltage line 16 is a normal voltage transformer, while the voltage at the terminal S of the low voltage line 16 is abnormal. Uses the pole transformer 15 of the low-voltage line 16 as an abnormal voltage transformer. Finally, it is determined whether or not the most normal voltage transformer on the load side and the abnormal voltage transformer on the power supply side are adjacent to each other, and when adjacent, the normal voltage transformer and the abnormal voltage transformer are determined. It is determined that there is a possibility of disconnection in the high-voltage line between This is because the pole transformer 15 on the power supply side from the normal voltage transformer is considered to be a normal voltage transformer, and the pole transformer 15 on the load side from the abnormal voltage transformer becomes an abnormal voltage transformer due to disconnection. It is because it is thought that there is. A meter S surrounded by a dotted line in FIG. 1 is a meter at the end of the low-voltage line 16 that is a candidate for determination of normality / abnormality of voltage in the search for the disconnection location by the high-voltage disconnection location search unit 17. Here, the power supply side in the high-voltage line break location searching unit 17 refers to the power supply side when viewed from a specific position of the high-voltage line, and the load side refers to the power receiving side when viewed from a specific position of the high-voltage line. In addition, the power supply side in the low voltage line disconnection location search unit 20 refers to the pole transformer side as viewed from a specific position of the low voltage line, and the load side refers to the low voltage line end side as viewed from the specific position of the low voltage line.

変電所の配電変圧器11には、三相変圧器が用いられる。配電変圧器2次側の高圧線には、柱上変圧器として動力変圧器や電灯変圧器が接続されている。一般に、柱上動力変圧器は三相変圧器、柱上電灯変圧器は単相変圧器である。また、柱上動力変圧器の低圧側は三相3線式、柱上電灯変圧器の低圧側は単相3線式となる。   A three-phase transformer is used as the distribution transformer 11 of the substation. A power transformer or a light transformer is connected as a pole transformer to the high voltage line on the secondary side of the distribution transformer. In general, the pole-mounted power transformer is a three-phase transformer, and the pole-mounted light transformer is a single-phase transformer. The low-voltage side of the pole-mounted power transformer is a three-phase three-wire system, and the low-voltage side of the pole-mounted light transformer is a single-phase three-wire system.

そこで、柱上変圧器が動力変圧器である場合には、高圧線の3相から低圧側に3つの線間(3線間)電圧を取り出し、低圧側の低圧線には3線間から電力が供給される。すなわち、高圧線の3相から3つの2相間の線間電圧を取り出す。これにより、動力の低圧線には柱上変圧器である動力変圧器から3線間にて電力が供給される。   Therefore, when the pole transformer is a power transformer, the voltage between the three lines (between the three lines) is taken from the three phases of the high voltage line to the low voltage side, and the power from the three lines to the low voltage line. Is supplied. That is, the line voltage between three two phases is taken out from the three phases of the high voltage line. As a result, power is supplied to the low-voltage power line between the three lines from the power transformer, which is a pole transformer.

一方、柱上変圧器が電灯変圧器である場合には、動力変圧器の場合と異なり、電灯変圧器は高圧線の3相から1つの線間(1線間)電圧を取り出し、1線間から取り出した電力を低圧線に供給する。すなわち、電灯の低圧線には柱上変圧器である電灯変圧器から高圧線の1線間にて電力が供給される。   On the other hand, when the pole transformer is an electric transformer, unlike a power transformer, the electric transformer takes out one line (one line) voltage from three phases of the high voltage line. The electric power taken out from is supplied to the low-voltage line. That is, electric power is supplied to the low voltage line of the electric lamp from one electric line transformer to the high voltage line.

実際の配電線は、動力変圧器と電灯変圧器とが混在してなる配電線がほとんどである、以下の説明では、説明の便宜上、柱上変圧器として動力変圧器のみが接続された配電線の場合、柱上変圧器として電灯変圧器のみが接続された配電線の場合、動力変圧器と電灯変圧器とが混在してなる配電線の場合について順次説明する。   The actual distribution lines are mostly distribution lines in which a power transformer and a light transformer are mixed. In the following description, for the sake of convenience of explanation, only a power transformer is connected as a pole transformer. In the case of a distribution line in which only a light transformer is connected as a pole transformer, the case of a distribution line in which a power transformer and a light transformer are mixed will be sequentially described.

その際に、柱上変圧器として動力変圧器のみが接続された配電線の場合には、柱上変圧器を動力変圧器、動力の低圧線の計器を動力計器ということにする。同様に、柱上変圧器として電灯変圧器のみが接続された配電線の場合には、柱上変圧器を電灯変圧器、電灯の低圧線の計器を電灯計器ということにする。   At that time, in the case of a distribution line to which only a power transformer is connected as a pole transformer, the pole transformer is referred to as a power transformer, and the power low-voltage line gauge is referred to as a power gauge. Similarly, in the case of a distribution line in which only a light transformer is connected as a pole transformer, the pole transformer is referred to as a light transformer, and the low voltage line meter of the light is referred to as a light meter.

図2は、高圧線断線箇所探索部17が高圧線13の断線箇所探索の際にデータ(電圧)を取り込む計器Sの一例の説明図であり、図2(a)は高圧線の分岐が多岐である場合の配電系統図、図2(b)は高圧線を単純化した場合の配電系統図である。   FIG. 2 is an explanatory diagram of an example of an instrument S that takes in data (voltage) when the high-voltage line break location search unit 17 searches for a break location of the high-voltage line 13. FIG. 2 (a) shows various branches of the high-voltage line. FIG. 2B is a distribution system diagram when the high voltage line is simplified.

図2では、柱上変圧器15が動力変圧器である場合の一例を示している。前述したように、高圧線断線箇所探索部17は、基本的には、低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定する。図2(a)、図2(b)中の点線で囲った計器Sが高圧線断線箇所探索部17による断線箇所の探索で電圧の正常異常の判定の対象候補となる計器である。そして、低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定するにあたり、低圧線16末端の計器Sは低圧線の数だけあるので、断線探索を効率よく行うために、まず、高圧線幹線の負荷側末端の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定し、順次高圧線分岐線の負荷側の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定する。電圧の異常があった場合は、その計器に接続される低圧線の柱上変圧器を電圧異常変圧器とし、その電圧異常変圧器より電源側の高圧線に接続される低圧線末端の計器Sの電圧を取得し電圧の正常異常を判定する。   FIG. 2 shows an example in which the pole transformer 15 is a power transformer. As described above, the high voltage line break location searching unit 17 basically acquires the voltage of the meter S at the end of the low voltage line 16 and determines whether the voltage is normal or abnormal. A meter S surrounded by a dotted line in FIGS. 2 (a) and 2 (b) is a meter that is a candidate for determination of normality / abnormality of the voltage in the search for the disconnection location by the high-voltage disconnection location search unit 17. And in acquiring the voltage of the meter S at the terminal of the low voltage line 16 and determining whether the voltage is normal or abnormal, there are as many instruments S at the terminal of the low voltage line 16 as the number of low voltage lines. Obtain the voltage of the meter S at the end of the low-voltage line 16 at the load end of the high-voltage main line, determine the normality of the voltage, and sequentially obtain the voltage of the meter S at the end of the low-voltage line 16 at the load side of the high-voltage branch line Determine normal or abnormal. When there is a voltage abnormality, the pole transformer on the low voltage line connected to the meter is a voltage abnormality transformer, and the meter S at the end of the low voltage line connected to the high voltage line on the power supply side from the voltage abnormality transformer The voltage is acquired to determine whether the voltage is normal or abnormal.

例えば、図2(a)の配電系統では、高圧線幹線の負荷側末端の低圧線16は、低圧線16fである。高圧線分岐線の負荷側末端の低圧線16は、16g、16eである。   For example, in the power distribution system of FIG. 2A, the low voltage line 16 at the load side end of the high voltage main line is the low voltage line 16f. The low voltage line 16 at the load side end of the high voltage line branch line is 16g, 16e.

まず、高圧線幹線の負荷側末端の低圧線16f末端の計器Sf4の電圧を取得する。そして、低圧線16f末端の計器Sf4の電圧が正常であれば、低圧線16fの柱上変圧器15fは電圧正常動力変圧器とし、異常であれば低圧線16fの柱上変圧器15fは電圧異常動力変圧器とする。以下同様に、高圧線分岐線の負荷側末端の低圧線16g、16e末端の計器Sg3、Se4の電圧を取得し電圧の正常異常を判定する。   First, the voltage of the instrument Sf4 at the end of the low-voltage line 16f at the load side end of the high-voltage main line is acquired. If the voltage of the instrument Sf4 at the end of the low voltage line 16f is normal, the pole transformer 15f of the low voltage line 16f is a normal voltage power transformer, and if abnormal, the pole transformer 15f of the low voltage line 16f is abnormal in voltage. A power transformer. Similarly, the voltages of the low-voltage lines 16g and 16e at the end of the load side of the high-voltage line branch line are acquired to determine whether the voltage is normal or abnormal.

いま、低圧線16f末端の計器Sf4の電圧が異常であり、高圧線分岐線の負荷側末端の低圧線16e末端の計器Se4の電圧が異常であるとすると、低圧線16eより電源側の高圧線13の断線と考えられる。   If the voltage of the meter Sf4 at the end of the low-voltage line 16f is abnormal and the voltage of the meter Se4 at the end of the low-voltage line 16e at the load-side end of the high-voltage line branch line is abnormal, the high-voltage line on the power supply side from the low-voltage line 16e This is considered to be 13 disconnection.

そこで、最も電源側の低圧線16aと低圧線16eとが繋がる高圧線13で、最も電源側の低圧線16aと低圧線16eとの中間の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。これは、断線探索を効率よく行うためである。最も電源側の低圧線16aと低圧線16eとの中間の低圧線16は低圧線16b、16cであり、それらの末端の計器Sは、計器Sb4、Sc3である。   Therefore, the voltage of the meter S at the end of the low-voltage line 16 intermediate between the low-voltage line 16a and the low-voltage line 16e, which is the most connected to the low-voltage line 16e and the low-voltage line 16e on the most power supply side, is obtained. Determine whether normal or abnormal and narrow the disconnection. This is to efficiently perform the disconnection search. The low voltage line 16 in the middle between the low voltage line 16a and the low voltage line 16e on the most power source side is the low voltage lines 16b and 16c, and the measuring instruments S at their ends are the measuring instruments Sb4 and Sc3.

いま、最も電源側の低圧線16aと低圧線16eとの中間の低圧線16として低圧線16cを選択し低圧線16c末端の計器Sc4の電圧を取得したとする。計器Sc4の電圧が正常であれば、低圧線16cの柱上変圧器15cを電圧正常動力変圧器とする。そして、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。   Now, it is assumed that the low voltage line 16c is selected as the intermediate low voltage line 16 between the low voltage line 16a and the low voltage line 16e on the most power supply side, and the voltage of the instrument Sc4 at the end of the low voltage line 16c is acquired. If the voltage of the meter Sc4 is normal, the pole transformer 15c of the low voltage line 16c is set as a voltage normal power transformer. Then, it is determined whether or not the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other.

この場合、最も負荷側の電圧正常動力変圧器は低圧線16cの柱上変圧器15cであり、最も電源側の電圧異常動力変圧器は柱上変圧器15eである。柱上変圧器15cと柱上変圧器15eとは、高圧線13上で隣接していない。   In this case, the voltage normal power transformer on the most load side is the pole transformer 15c of the low voltage line 16c, and the voltage abnormal power transformer on the most power supply side is the pole transformer 15e. The pole transformer 15 c and the pole transformer 15 e are not adjacent to each other on the high voltage line 13.

低圧線16cの柱上変圧器15cは正常であることから、断線箇所は低圧線16cの柱上変圧器15cより負荷側であると考えられるので、前回確認した低圧線16cと低圧線16eとの中間の低圧線16d末端の計器Sd4の電圧を取得し、その電圧が正常であれば、低圧線16dの柱上変圧器15dを電圧正常動力変圧器とし、柱上変圧器15dを最も負荷側の電圧正常動力変圧器とする。柱上変圧器15dと柱上変圧器15eとは隣接しているので、低圧線16dと低圧線16eとの間の高圧線13に断線の可能性があると判定する。   Since the pole transformer 15c of the low voltage line 16c is normal, the disconnection point is considered to be on the load side from the pole transformer 15c of the low voltage line 16c, so the low voltage line 16c and the low voltage line 16e confirmed last time If the voltage of the meter Sd4 at the end of the intermediate low voltage line 16d is obtained and the voltage is normal, the pole transformer 15d of the low voltage line 16d is a normal voltage power transformer, and the pole transformer 15d is the most load side transformer. A normal voltage power transformer. Since the pole transformer 15d and the pole transformer 15e are adjacent to each other, it is determined that the high voltage line 13 between the low voltage line 16d and the low voltage line 16e may be disconnected.

図2(a)の配電系統では、高圧線の分岐が多岐であり複数の高圧線分岐線の負荷側末端の低圧線16がある場合について説明したが、以下の説明では、説明を簡単にするため、図2(b)に示すように、1つの負荷側末端の低圧線16を有した単純化した配電系統を例に取り説明する。図2(b)において、まず、負荷側末端の低圧線16f末端の計器Sf4の電圧を取得し電圧の正常異常を判定する。低圧線16f末端の計器Sf4の電圧が異常であるとすると、負荷側末端の低圧線16fより電源側の高圧線13の断線と考えられる。そこで、最も電源側の低圧線16aと最も負荷側の低圧線16fとが直線的に繋がる高圧線13で、最も電源側の低圧線16aと最も負荷側の低圧線16fとの中間の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。そして、最終的には、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定し、隣接するときは、その電圧正常動力変圧器と電圧異常動力変圧器との間の高圧線に断線の可能性があると判定する。   In the distribution system of FIG. 2 (a), the case where the branches of the high-voltage lines are diversified and the low-voltage line 16 at the load side end of the plurality of high-voltage line branch lines is described, but in the following description, the description will be simplified. Therefore, as shown in FIG. 2B, a simplified distribution system having one load-side end low voltage line 16 will be described as an example. In FIG. 2B, first, the voltage of the instrument Sf4 at the terminal of the low voltage line 16f at the load side terminal is acquired to determine whether the voltage is normal or abnormal. If the voltage of the meter Sf4 at the end of the low-voltage line 16f is abnormal, it is considered that the high-voltage line 13 on the power supply side is disconnected from the low-voltage line 16f at the end of the load side. Therefore, the high-voltage line 13 in which the most power-side low-voltage line 16a and the most-load-side low-voltage line 16f are linearly connected, and the intermediate low-voltage line 16 between the most power-side low-voltage line 16a and the most load-side low-voltage line 16f. The voltage of the terminal instrument S is acquired, the normality / abnormality of the voltage is determined, and the disconnection portion is narrowed. Finally, it is determined whether the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other. It is determined that there is a possibility of disconnection in the high voltage line between the abnormal power transformer.

図3は、高圧線13に断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図であり、図3(a)は高圧線13の低圧線16bの分岐点と低圧線16cの分岐点との間の箇所Faで断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図、図3(b)は高圧線13の低圧線16cの分岐点と低圧線16dの分岐点との間の箇所Fbで断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図、図3(c)は高圧線13の低圧線16eの分岐点と低圧線16fの分岐点との間の箇所Fcで断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図である。図3(a)、図3(b)、図3(c)中の点線で囲った計器Sが高圧線断線箇所探索部17による断線箇所の探索で電圧の正常異常の判定の対象となる低圧線末端の計器である。   FIG. 3 is an explanatory diagram of aspects of the pole transformer, the low voltage line, and the meter when the high voltage line 13 is disconnected. FIG. 3A is a branch point of the low voltage line 16b of the high voltage line 13 and the low voltage line. FIG. 3B is an explanatory diagram of the aspect of the pole transformer, the low voltage line, and the meter when a disconnection occurs at a point Fa between the branch point of 16c. FIG. FIG. 3C is an explanatory view of the aspect of the pole transformer, the low voltage line, and the meter when the disconnection occurs at the position Fb between the branch point of the line 16d and FIG. 3C is a branch point of the low voltage line 16e of the high voltage line 13. It is explanatory drawing of the aspect of a pole transformer, a low voltage line, and a meter when a disconnection generate | occur | produces in the location Fc between the branch points of the low voltage line 16f. 3A, FIG. 3B, and FIG. 3C is a low voltage that is subject to determination of normality / abnormality of voltage when the instrument S surrounded by the dotted line is searched for a broken point by the high voltage line broken point search unit 17. Line end instrument.

図3(a)に示すように、高圧線13における低圧線16bの分岐点と低圧線16cの分岐点との間の箇所Faで断線が発生したとすると、断線箇所Faより負荷側の高圧線13に接続される低圧線16c〜16fの柱上変圧器15c〜15fは電圧異常動力変圧器となる。この場合の高圧線断線箇所探索部17による断線箇所の探索は、以下のように行われる。   As shown in FIG. 3A, if a break occurs at a location Fa between the branch point of the low-voltage line 16b and the branch point of the low-voltage line 16c in the high-voltage line 13, the high-voltage line on the load side from the break location Fa. The pole transformers 15c to 15f of the low-voltage lines 16c to 16f connected to 13 are voltage abnormal power transformers. In this case, the search for the broken line by the high-voltage line broken line searching unit 17 is performed as follows.

まず、高圧線断線箇所探索部17は負荷側末端の低圧線16f末端の計器Sf4の電圧の正常異常を判定し、低圧線16f末端の計器Sf4の電圧が異常であることから、低圧線16fの柱上変圧器15fを電圧異常動力変圧器とする。この段階では、柱上変圧器15fが最も電源側の電圧異常動力変圧器である。負荷側末端の低圧線16fの柱上変圧器15fが電圧異常動力変圧器であることから、これより電源側の箇所で断線が発生していると考えられる。   First, the high-voltage line break location searching unit 17 determines whether the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f at the load side is normal or abnormal, and the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f is abnormal. The pole transformer 15f is a voltage abnormal power transformer. At this stage, the pole transformer 15f is the most abnormal power transformer on the power supply side. Since the pole transformer 15f of the low-voltage line 16f at the load end is a voltage abnormal power transformer, it is considered that a disconnection has occurred at a location on the power source side.

そこで、最も電源側の低圧線16aと低圧線16fとの中間の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。いま、最も電源側の低圧線16aと低圧線16fとの中間の低圧線16として低圧線16cを選択し低圧線16c末端の計器Sc3の電圧を取得し電圧の正常異常を判定したとする。そして、低圧線16c末端の計器Sc3の電圧は異常であることから、低圧線16cの柱上変圧器15cを電圧異常動力変圧器とするとともに、最も電源側の電圧異常動力変圧器を柱上変圧器15cに更新する。低圧線16cの柱上変圧器15cが電圧異常動力変圧器であることから、これより電源側の箇所で断線が発生していると考えられる。   Therefore, the voltage of the meter S at the end of the low-voltage line 16 between the low-voltage line 16a and the low-voltage line 16f on the most power source side is acquired, the normality / abnormality of the voltage is determined, and the disconnection portion is narrowed. Suppose now that the low voltage line 16c is selected as the intermediate low voltage line 16 between the low voltage line 16a and the low voltage line 16f on the most power source side, the voltage of the instrument Sc3 at the end of the low voltage line 16c is acquired, and the normality of the voltage is determined. Since the voltage of the meter Sc3 at the end of the low voltage line 16c is abnormal, the pole transformer 15c of the low voltage line 16c is used as a voltage abnormal power transformer, and the voltage abnormal power transformer on the most power source side is used as the pole transformer. Update to the device 15c. Since the pole transformer 15c of the low voltage line 16c is a voltage abnormal power transformer, it is considered that a disconnection has occurred at a location on the power source side.

そこで、さらに、最も電源側の低圧線16aと低圧線16cとの中間の低圧線16b末端の計器Sb4の電圧を取得し電圧の正常異常を判定する。計器Sb4の電圧は正常であることから、柱上変圧器15bを電圧正常動力変圧器とするとともに最も負荷側の電圧正常動力変圧器とする。   Therefore, the voltage of the meter Sb4 at the end of the low-voltage line 16b that is intermediate between the low-voltage line 16a and the low-voltage line 16c on the most power supply side is further acquired to determine whether the voltage is normal or abnormal. Since the voltage of the meter Sb4 is normal, the pole transformer 15b is a normal voltage power transformer and the voltage normal power transformer on the most load side.

そして、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15bであり、最も電源側の電圧異常動力変圧器は柱上変圧器15cであり、柱上変圧器15bと柱上変圧器15cとは隣接しているので、その間の高圧線13に断線の可能性があると判定する。   Then, it is determined whether or not the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15b, the most abnormal voltage transformer on the power supply side is the pole transformer 15c, and the pole transformer 15b and the pole transformer 15c are adjacent to each other. Therefore, it is determined that there is a possibility of disconnection in the high-voltage line 13 between them.

次に、図3(b)に示すように、高圧線13における低圧線16cの分岐点と低圧線16dの分岐点との間の箇所Fbで断線が発生したとすると、断線箇所Fbより負荷側の高圧線13に接続される低圧線16d〜16fの柱上変圧器15d〜15fは電圧異常動力変圧器となる。この場合の高圧線断線箇所探索部17による断線箇所の探索は、以下のように行われる。   Next, as shown in FIG. 3B, if a disconnection occurs at a point Fb between the branch point of the low-voltage line 16c and the branch point of the low-voltage line 16d in the high-voltage line 13, the load side from the disconnection point Fb. The pole transformers 15d to 15f of the low voltage lines 16d to 16f connected to the high voltage line 13 are voltage abnormal power transformers. In this case, the search for the broken line by the high-voltage line broken line searching unit 17 is performed as follows.

まず、高圧線断線箇所探索部17は負荷側末端の低圧線16f末端の計器Sf4の電圧の正常異常を判定し、低圧線16f末端の計器Sf4の電圧が異常であることから、低圧線16fの柱上変圧器15fを電圧異常動力変圧器とする。この段階では、柱上変圧器15fが最も電源側の電圧異常動力変圧器である。負荷側末端の低圧線16fの柱上変圧器15fが電圧異常動力変圧器であることから、これより電源側の箇所で断線が発生していると考えられる。   First, the high-voltage line break location searching unit 17 determines whether the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f at the load side is normal or abnormal, and the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f is abnormal. The pole transformer 15f is a voltage abnormal power transformer. At this stage, the pole transformer 15f is the most abnormal power transformer on the power supply side. Since the pole transformer 15f of the low-voltage line 16f at the load end is a voltage abnormal power transformer, it is considered that a disconnection has occurred at a location on the power source side.

そこで、最も電源側の低圧線16aと低圧線16fとの中間の低圧線16の末端の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。いま、最も電源側の低圧線16aと低圧線16fとの中間の低圧線16として低圧線16cを選択し低圧線16c末端の計器Sc3の電圧を取得し電圧の正常異常を判定したとする。そして、低圧線16c末端の計器Sc3の電圧は正常であることから、低圧線16cの柱上変圧器15cを電圧正常動力変圧器とするとともに、最も負荷側の電圧正常動力変圧器を柱上変圧器15cとする。低圧線16cの柱上変圧器15cが電圧正常動力変圧器であることから、これより負荷側の箇所で断線が発生していると考えられる。   Therefore, the voltage of the meter S at the end of the low-voltage line 16 between the low-voltage line 16a and the low-voltage line 16f on the most power source side is acquired, the normality / abnormality of the voltage is determined, and the disconnection portion is narrowed. Suppose now that the low voltage line 16c is selected as the intermediate low voltage line 16 between the low voltage line 16a and the low voltage line 16f on the most power source side, the voltage of the instrument Sc3 at the end of the low voltage line 16c is acquired, and the normality of the voltage is determined. Since the voltage of the instrument Sc3 at the end of the low voltage line 16c is normal, the pole transformer 15c of the low voltage line 16c is a normal voltage power transformer, and the voltage normal power transformer on the most load side is the pole voltage transformer. The container 15c is used. Since the pole transformer 15c of the low-voltage line 16c is a normal voltage power transformer, it is considered that a disconnection has occurred at the load side.

次に、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15cであり、最も電源側の電圧異常動力変圧器は柱上変圧器15fであることから、柱上変圧器15cと柱上変圧器15fとは隣接していない。   Next, it is determined whether the most normal voltage power transformer on the load side and the abnormal voltage power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15c, and the most abnormal power transformer on the power supply side is the pole transformer 15f. Therefore, the pole transformer 15c and the pole transformer 15f are Are not adjacent.

前回確認した低圧線16cの柱上変圧器15cは電圧正常動力変圧器であり、これより負荷側の箇所で断線が発生していると考えられることから、前回確認した低圧線16cと負荷側末端の低圧線16fとの中間の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定する。例えば、中間の低圧線16d末端の計器Sd4の電圧を取得し電圧の正常異常を判定する。低圧線16d末端の計器Sd4の電圧は異常であるので、低圧線16dの柱上変圧器15dを電圧異常動力変圧器とし、柱上変圧器15dを最も電源側の電圧異常動力変圧器に更新する。   The pole transformer 15c of the low-voltage line 16c confirmed last time is a normal voltage power transformer, and it is considered that a disconnection has occurred at a location on the load side from this. The voltage of the meter S at the end of the low voltage line 16 in the middle of the low voltage line 16f is acquired to determine whether the voltage is normal or abnormal. For example, the voltage of the meter Sd4 at the end of the intermediate low-voltage line 16d is acquired to determine whether the voltage is normal or abnormal. Since the voltage of the instrument Sd4 at the end of the low-voltage line 16d is abnormal, the pole transformer 15d of the low-voltage line 16d is replaced with a voltage abnormal power transformer, and the pole transformer 15d is updated to the most abnormal voltage transformer on the power supply side. .

そして、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15cであり、最も電源側の電圧異常動力変圧器は柱上変圧器15dであり、柱上変圧器15cと柱上変圧器15dとは隣接しているので、その間の高圧線13に断線の可能性があると判定する。   Then, it is determined whether or not the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15c, the most abnormal voltage transformer on the power supply side is the pole transformer 15d, and the pole transformer 15c and the pole transformer 15d are adjacent to each other. Therefore, it is determined that there is a possibility of disconnection in the high-voltage line 13 between them.

次に、図3(c)に示すように、高圧線13における低圧線16eの分岐点と低圧線16fの分岐点との間の箇所Fcで断線が発生したとすると、断線箇所Fcより負荷側の高圧線13に接続される低圧線16fの柱上変圧器15fが電圧異常動力変圧器となる。この場合の高圧線断線箇所探索部17による断線箇所の探索は、以下のように行われる。   Next, as shown in FIG. 3 (c), if a disconnection occurs at a location Fc between the branch point of the low-voltage line 16e and the branch point of the low-voltage line 16f in the high-voltage line 13, the load side from the disconnection location Fc The pole transformer 15f of the low voltage line 16f connected to the high voltage line 13 is a voltage abnormal power transformer. In this case, the search for the broken line by the high-voltage line broken line searching unit 17 is performed as follows.

まず、高圧線断線箇所探索部17は負荷側末端の低圧線16f末端の計器Sf4の電圧の正常異常を判定し、低圧線16f末端の計器Sf4の電圧が異常であることから、低圧線16fの柱上変圧器15fを電圧異常動力変圧器とする。この段階では、柱上変圧器15fが最も電源側の電圧異常動力変圧器である。負荷側末端の低圧線16fの柱上変圧器15fが電圧異常動力変圧器であることから、これより電源側の箇所で断線が発生していると考えられる。   First, the high-voltage line break location searching unit 17 determines whether the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f at the load side is normal or abnormal, and the voltage of the instrument Sf4 at the terminal of the low-voltage line 16f is abnormal. The pole transformer 15f is a voltage abnormal power transformer. At this stage, the pole transformer 15f is the most abnormal power transformer on the power supply side. Since the pole transformer 15f of the low-voltage line 16f at the load end is a voltage abnormal power transformer, it is considered that a disconnection has occurred at a location on the power source side.

そこで、最も電源側の低圧線16aと低圧線16fとの中間の低圧線16の末端の計器Sの電圧を取得し電圧の正常異常を判定する。例えば、中間の低圧線16c末端の計器Sc3の電圧を取得し電圧の正常異常を判定する。低圧線16c末端の計器Sc3の電圧が正常であることから、低圧線16cの柱上変圧器15cを電圧正常動力変圧器とするとともに、最も負荷側の電圧正常動力変圧器を柱上変圧器15cとする。低圧線16cの柱上変圧器15cが電圧正常動力変圧器であることから、これより負荷側の箇所で断線が発生していると考えられる。   Therefore, the voltage of the measuring instrument S at the end of the low-voltage line 16 that is intermediate between the low-voltage line 16a and the low-voltage line 16f on the most power source side is acquired to determine whether the voltage is normal or abnormal. For example, the voltage of the meter Sc3 at the end of the intermediate low voltage line 16c is acquired to determine whether the voltage is normal or abnormal. Since the voltage of the meter Sc3 at the end of the low voltage line 16c is normal, the pole transformer 15c of the low voltage line 16c is a normal voltage power transformer, and the voltage normal power transformer on the most load side is the pole transformer 15c. And Since the pole transformer 15c of the low-voltage line 16c is a normal voltage power transformer, it is considered that a disconnection has occurred at the load side.

次に、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15cであり、最も電源側の電圧異常動力変圧器は柱上変圧器15fであることから、柱上変圧器15cと柱上変圧器15fとは隣接していない。   Next, it is determined whether the most normal voltage power transformer on the load side and the abnormal voltage power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15c, and the most abnormal power transformer on the power supply side is the pole transformer 15f. Therefore, the pole transformer 15c and the pole transformer 15f are Are not adjacent.

前回確認した低圧線16cの柱上変圧器15cは電圧正常動力変圧器であり、これより負荷側の箇所で断線が発生していると考えられることから、前回確認した低圧線16cと負荷側末端の低圧線16fとの中間の低圧線16末端の計器Sの電圧を取得し電圧の正常異常を判定する。例えば、中間の低圧線16d末端の計器Sd4の電圧を取得し電圧の正常異常を判定する。低圧線16d末端の計器Sd4の電圧は正常であるので、低圧線16dの柱上変圧器15dを電圧正常動力変圧器とし、柱上変圧器15dを最も負荷側の電圧正常動力変圧器に更新する。   The pole transformer 15c of the low-voltage line 16c confirmed last time is a normal voltage power transformer, and it is considered that a disconnection has occurred at a location on the load side from this. The voltage of the meter S at the end of the low voltage line 16 in the middle of the low voltage line 16f is acquired to determine whether the voltage is normal or abnormal. For example, the voltage of the meter Sd4 at the end of the intermediate low-voltage line 16d is acquired to determine whether the voltage is normal or abnormal. Since the voltage of the instrument Sd4 at the end of the low voltage line 16d is normal, the pole transformer 15d of the low voltage line 16d is used as a voltage normal power transformer, and the pole transformer 15d is updated to the voltage normal power transformer on the most load side. .

そして、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15dであり、最も電源側の電圧異常動力変圧器は柱上変圧器15fであることから、柱上変圧器15dと柱上変圧器15fとは隣接していない。   Then, it is determined whether or not the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15d and the most abnormal power transformer on the power supply side is the pole transformer 15f. Therefore, the pole transformer 15d and the pole transformer 15f Are not adjacent.

柱上変圧器15dと柱上変圧器15fとは隣接していないので、さらに、前回確認した低圧線16dの柱上変圧器15dの電圧異常動力変圧器より負荷側の箇所で断線が発生していると考えられることから、前回確認した低圧線16dと負荷側末端の低圧線16fとの中間の低圧線16e末端の計器Se4の電圧を取得し電圧の正常異常を判定する。低圧線16e末端の計器Se4の電圧は正常であるので、低圧線16eの柱上変圧器15eを電圧正常動力変圧器とし、柱上変圧器15eを最も負荷側の電圧正常動力変圧器に更新する。   Since the pole transformer 15d and the pole transformer 15f are not adjacent to each other, a disconnection occurs at the load side of the voltage abnormal power transformer of the pole transformer 15d of the low voltage line 16d previously confirmed. Therefore, the voltage of the meter Se4 at the end of the low-voltage line 16e, which is intermediate between the low-voltage line 16d and the low-voltage line 16f at the end of the load side, which have been confirmed last time is acquired to determine whether the voltage is normal or abnormal. Since the voltage of the meter Se4 at the end of the low voltage line 16e is normal, the pole transformer 15e of the low voltage line 16e is used as a voltage normal power transformer, and the pole transformer 15e is updated to the voltage normal power transformer on the most load side. .

そして、最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器とが隣接するか否かを判定する。最も負荷側の電圧正常動力変圧器は柱上変圧器15eであり、最も電源側の電圧異常動力変圧器は柱上変圧器15fであり、柱上変圧器15eと柱上変圧器15fとは隣接しているので、その間の高圧線13に断線の可能性があると判定する。このように、高圧線断線箇所探索部17は、隣接する最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器との間の高圧線に断線の可能性があると判定する。   Then, it is determined whether or not the voltage normal power transformer on the most load side and the voltage abnormal power transformer on the most power source side are adjacent to each other. The most normal voltage transformer on the load side is the pole transformer 15e, the abnormal voltage power transformer on the most power supply side is the pole transformer 15f, and the pole transformer 15e and the pole transformer 15f are adjacent to each other. Therefore, it is determined that there is a possibility of disconnection in the high-voltage line 13 between them. As described above, the high-voltage line break location searching unit 17 determines that there is a possibility that the high-voltage line between the adjacent most load-side voltage normal power transformer and the most power-side voltage abnormal power transformer is broken. .

ところで、高圧線断線箇所探索部17で判定した電圧異常動力変圧器が1つのみの場合には、高圧線13に断線があると判定できない。高圧線13に断線がなく低圧線側に断線がある場合には、高圧線断線箇所探索部17により1つの電圧異常動力変圧器が有りと判定される。   By the way, when there is only one voltage abnormal power transformer determined by the high voltage line break location searching unit 17, it cannot be determined that the high voltage line 13 is broken. When there is no disconnection in the high-voltage line 13 and there is a disconnection on the low-voltage line side, the high-voltage line disconnection location search unit 17 determines that there is one voltage abnormal power transformer.

図4は、高圧線13に断線がなく高圧線断線箇所探索部17により1つの電圧異常動力変圧器が有りと判定された場合の柱上変圧器、低圧線及び計器の様相の説明図であり、図4(a)は負荷側末端の低圧線16fの計器Sf1と計器Sf2との間の箇所Fdで断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図、図4(b)は負荷側末端の低圧線16fの計器Sf4の引込線の箇所Feで断線が発生した場合の柱上変圧器、低圧線及び計器の様相の説明図である。   FIG. 4 is an explanatory diagram of the aspect of the pole transformer, the low voltage line, and the meter when it is determined that there is no disconnection in the high voltage line 13 and there is one voltage abnormal power transformer by the high voltage line disconnection location search unit 17. FIG. 4 (a) is an explanatory diagram of the appearance of the pole transformer, the low-voltage line, and the state of the instrument when a disconnection occurs at the point Fd between the instrument Sf1 and the instrument Sf2 of the low-voltage line 16f at the load end. (B) is explanatory drawing of the aspect of a pole transformer, a low voltage line, and a meter at the time of a disconnection having generate | occur | produced in the place Fe of the drawing-in line of the meter Sf4 of the low voltage line 16f of the load side terminal.

図4(a)に示すように、負荷側末端の低圧線16fの計器Sf1と計器Sf2との間の箇所Fdで断線が発生したとすると、高圧線断線箇所探索部17は負荷側末端の低圧線16f末端の計器Sf4の電圧を取得し電圧の正常異常を判定することから、高圧線13に断線がなくても、計器Sf4が接続される低圧線16fの柱上変圧器15fを電圧異常動力変圧器と判定する。また、図4(b)に示すように、負荷側末端の低圧線16f末端の計器Sf4の引込線の箇所Feで断線が発生したとすると、その場合も同様に、高圧線断線箇所探索部17は負荷側末端の低圧線16f末端の計器Sf4の電圧を取得し電圧の正常異常を判定することから、高圧線13に断線がなくても、計器Sf4が接続される低圧線16fの柱上変圧器15fを電圧異常動力変圧器と判定する。   As shown in FIG. 4A, if a disconnection occurs at a point Fd between the instrument Sf1 and the instrument Sf2 of the low voltage line 16f at the load side end, the high voltage line disconnection point search unit 17 Since the voltage of the instrument Sf4 at the end of the line 16f is acquired and the normality / abnormality of the voltage is determined, even if the high-voltage line 13 is not disconnected, the pole transformer 15f of the low-voltage line 16f to which the instrument Sf4 is connected is Judge as a transformer. Further, as shown in FIG. 4B, if a break occurs at the lead-in point Fe of the meter Sf4 at the end of the low-voltage line 16f at the load side end, the high-voltage line break point searching unit 17 is similarly Since the voltage of the instrument Sf4 at the end of the load side low voltage line 16f is acquired and the normality of the voltage is judged, the pole transformer of the low voltage line 16f to which the instrument Sf4 is connected even if the high voltage line 13 is not disconnected 15f is determined as an abnormal voltage power transformer.

そこで、高圧線断線箇所探索部17で1つの電圧異常動力変圧器が有ると判定されたときは低圧線断線箇所探索部20にて、高圧線13の断線か柱上変圧器15または低圧線16の断線かを判断するようにする。また、高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときは引込線の断線または柱上ヒューズ切れが発生していると考えられるので、低圧線断線箇所探索部20は、高圧線断線箇所探索部17で電圧異常動力変圧器が1以下であると判定されたときに起動される。   Therefore, when the high voltage line break location search unit 17 determines that there is one voltage abnormal power transformer, the low voltage line break location search unit 20 disconnects the high voltage line 13 or the pole transformer 15 or the low voltage line 16. Judgment is made on the disconnection. In addition, when it is determined that there is no abnormal voltage power transformer in the high voltage line break location search unit 17, it is considered that the disconnection of the lead-in wire or the fuse on the pole has occurred, so the low voltage line break location search unit 20 Activated when the high voltage line break location search unit 17 determines that the voltage abnormal power transformer is 1 or less.

図5は、低圧線断線箇所探索部20が主に低圧線側の断線箇所探索の際にデータ(電圧)を取り込む計器Sの説明図であり、図5(a)は高圧線13の箇所Fcで断線が発生した場合の断線箇所の判定の説明図、図5(b)は高圧線における負荷側末端の低圧線16fの計器Sf1と計器Sf2との間の箇所Fdで断線が発生した場合の断線箇所の判定の説明図、図5(c)は高圧線における負荷側末端の低圧線16fの計器Sf4の引込線の箇所Feで断線が発生した場合の断線箇所の判定の説明図である。図5(a)、図5(b)、図5(c)中の点線で囲った計器Sが低圧線断線箇所探索部20による断線箇所の探索で電圧の正常異常の判定の対象となる計器である。   FIG. 5 is an explanatory diagram of the instrument S in which the low-voltage line break location searching unit 20 mainly takes in data (voltage) when searching for a disconnect location on the low-voltage line side. FIG. FIG. 5B is an explanatory diagram of determination of a disconnection location when a disconnection occurs in FIG. 5, and FIG. 5B is a diagram in the case where a disconnection occurs at a location Fd between the instrument Sf1 and the instrument Sf2 of the low voltage line 16f at the load side end in the high voltage line. FIG. 5C is an explanatory diagram of the determination of the disconnection location when a disconnection occurs at the location Fe of the lead-in wire of the instrument Sf4 of the low voltage line 16f at the load side end of the high voltage line. Meter S surrounded by a dotted line in FIGS. 5 (a), 5 (b), and 5 (c) is a target of determination of normality / abnormality of voltage by searching for a broken point by low voltage line broken point searching unit 20 It is.

低圧線断線箇所探索部20は、高圧線断線箇所探索部17と同様に、基本的には、低圧線16の最も電源側の計器Sと負荷側の計器Sとの中間の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。その際に、計器Sの電圧が正常であるときはその計器Sを電圧正常計器とし、一方、計器Sの電圧が異常であるときはその計器Sを電圧異常計器とする。そして、隣接する最も負荷側の電圧正常計器と最も電源側の電圧異常計器との間の低圧線に断線の可能性があると判定する。   As with the high voltage line break location search unit 17, the low voltage line break location search unit 20 basically calculates the voltage of the instrument S intermediate between the power source meter S and the load side meter S of the low voltage line 16. Obtain and determine whether the voltage is normal or abnormal, and narrow the disconnection. At that time, when the voltage of the meter S is normal, the meter S is a normal voltage meter, and when the voltage of the meter S is abnormal, the meter S is a voltage abnormality meter. Then, it is determined that there is a possibility of disconnection in the low voltage line between the adjacent most normal voltage measuring instrument on the load side and the most abnormal voltage measuring instrument on the power supply side.

また、低圧線断線箇所探索部20は、低圧線16のすべての計器Sが電圧異常計器であるときは最も負荷側の電圧正常動力変圧器と最も電源側の電圧異常動力変圧器との間の高圧線13の断線もしくは、柱上変圧器15、または柱上変圧器15と最も電源側の電圧異常計器の間の低圧線16の断線と判定する。さらに、電圧異常計器が1つのみであるときは隣接する最も負荷側の電圧正常計器と最も電源側の電圧異常計器との間の低圧線の断線か、引込線の断線または柱上ヒューズ切れと判定する。   Further, the low voltage line disconnection location search unit 20 is provided between the most load side normal voltage power transformer and the most power side voltage abnormal power transformer when all the meters S of the low voltage line 16 are voltage abnormal meters. It is determined that the high-voltage line 13 is broken or the pole transformer 15 or the low-voltage line 16 between the pole transformer 15 and the voltage abnormality meter closest to the power source is broken. Furthermore, when there is only one voltage abnormality meter, it is determined that the low voltage line between the adjacent voltage normal meter on the most load side and the voltage abnormality meter on the most power source side is broken, the lead wire is broken, or the pole fuse is blown. To do.

図5(a)において、高圧線13の箇所Fcで断線が発生した場合には高圧線断線箇所探索部17で1つの電圧異常動力変圧器が有ると判定され、既に高圧線断線箇所探索部17により、その低圧線16f末端の計器Sf4の電圧は異常であると判定されている。従って、低圧線断線箇所探索部20は、最も電源側の計器Sf1と計器Sf4との中間の計器Sf2の電圧を取得し電圧の正常異常を判定する。高圧線13の箇所Fcに断線が発生していることから、計器Sf2の電圧は異常であるので、計器Sf2を電圧異常計器とする。   In FIG. 5A, when a disconnection occurs at a location Fc of the high voltage line 13, the high voltage disconnection location search unit 17 determines that there is one voltage abnormal power transformer, and the high voltage disconnection location search unit 17 has already been established. Therefore, it is determined that the voltage of the instrument Sf4 at the end of the low voltage line 16f is abnormal. Therefore, the low-voltage wire break location searching unit 20 acquires the voltage of the meter Sf2 that is intermediate between the meter Sf1 and the meter Sf4 on the most power supply side, and determines whether the voltage is normal or abnormal. Since the disconnection has occurred at the location Fc of the high-voltage line 13, the voltage of the meter Sf2 is abnormal, so that the meter Sf2 is a voltage abnormality meter.

計器Sf2が電圧異常計器であることから、計器Sf2より電源側に断線があると考えられるので、前回確認した計器Sf2より電源側の最も電源側の計器Sf1の電圧を取得し電圧の正常異常を判定する。高圧線13の箇所Fcに断線が発生していることから、計器Sf1の電圧は異常であるので、計器Sf1を電圧異常計器とする。計器Sf3の電圧の確認は行っていないが、計器Sf3は電圧異常計器Sf2の負荷側であることから計器Sf3は電圧異常計器であると判定できる。この結果、低圧線16fのすべての計器Sf1〜Sf4が電圧異常計器であるので、低圧線断線箇所探索部20は計器Sf1より電源側の低圧線16fか、柱上変圧器15、または高圧線13の断線と判定する。   Since the meter Sf2 is a voltage abnormality meter, it is considered that there is a disconnection on the power source side from the meter Sf2. Therefore, the voltage of the most power source meter Sf1 on the power source side is obtained from the previously confirmed meter Sf2, and the normal voltage abnormality is detected. judge. Since the disconnection has occurred at the location Fc of the high-voltage line 13, the voltage of the meter Sf1 is abnormal, so that the meter Sf1 is a voltage abnormality meter. Although the voltage of the meter Sf3 is not checked, since the meter Sf3 is on the load side of the voltage abnormality meter Sf2, it can be determined that the meter Sf3 is a voltage abnormality meter. As a result, since all the meters Sf1 to Sf4 of the low voltage line 16f are voltage abnormality meters, the low voltage line disconnection location searching unit 20 is connected to the low voltage line 16f on the power source side from the meter Sf1, the pole transformer 15, or the high voltage line 13. It is determined that the wire is disconnected.

図5(b)において、高圧線における負荷側末端の低圧線16fの計器Sf1と計器Sf2との間の箇所Fdで断線が発生した場合には、高圧線断線箇所探索部17で1つの電圧異常動力変圧器が有ると判定され、既に高圧線断線箇所探索部17により、その低圧線16f末端の計器Sf4の電圧は異常であると判定されている。低圧線断線箇所探索部20は、図5(a)の場合と同様に、最も電源側の計器Sf1と計器Sf4との中間の計器Sf2の電圧を取得し電圧の正常異常を判定する。計器Sf1と計器Sf2との間で断線が発生していることから、計器Sf2の電圧は異常であるので、計器Sf2を電圧異常計器とするとともに、計器Sf2を最も電源側の電圧異常計器に更新する。   In FIG. 5B, when a disconnection occurs at a point Fd between the instrument Sf1 and the instrument Sf2 of the low voltage line 16f at the load side end of the high voltage line, one voltage abnormality is detected by the high voltage line disconnection part search unit 17. It is determined that there is a power transformer, and the voltage of the instrument Sf4 at the end of the low voltage line 16f is already determined to be abnormal by the high voltage line disconnection location search unit 17. Similarly to the case of FIG. 5A, the low-voltage wire break location searching unit 20 acquires the voltage of the instrument Sf2 that is intermediate between the instrument Sf1 and the instrument Sf4 on the most power supply side, and determines whether the voltage is normal or abnormal. Since the disconnection has occurred between the meter Sf1 and the meter Sf2, the voltage of the meter Sf2 is abnormal. Therefore, the meter Sf2 is changed to a voltage abnormal meter, and the meter Sf2 is updated to the voltage abnormality meter on the most power supply side. To do.

計器Sf2が電圧異常計器であることから、計器Sf2より電源側に断線があると考えられるので、前回確認した計器Sf2より電源側の最も電源側の計器Sf1の電圧を取得し電圧の正常異常を判定する。計器Sf1と計器Sf2との間の箇所Fdで断線が発生していることから、計器Sf1の電圧は正常であるので、計器Sf1を電圧正常計器とする。   Since the meter Sf2 is a voltage abnormality meter, it is considered that there is a disconnection on the power source side from the meter Sf2. Therefore, the voltage of the most power source meter Sf1 on the power source side is obtained from the previously confirmed meter Sf2, and the normal voltage abnormality is detected. judge. Since the disconnection has occurred at the point Fd between the meter Sf1 and the meter Sf2, the voltage of the meter Sf1 is normal, so that the meter Sf1 is a voltage normal meter.

そして、最も負荷側の電圧正常計器と最も電源側の電圧異常計器とが隣接するか否かを判定する。最も負荷側の電圧正常計器は計器Sf1であり、最も電源側の電圧異常計器は計器Sf2であり、計器Sf1と計器Sf2とは隣接しているので、その間の低圧線16fに断線があると判定する。   Then, it is determined whether the most load side voltage normal meter and the most power source side voltage abnormality meter are adjacent to each other. The most normal voltage meter on the load side is the meter Sf1, the most abnormal voltage meter on the power supply side is the meter Sf2, and since the meter Sf1 and the meter Sf2 are adjacent to each other, it is determined that the low voltage line 16f between them is broken. To do.

図5(c)において、高圧線における負荷側末端の低圧線16fの計器Sf4の引込線で断線が発生した場合には、高圧線断線箇所探索部17で1つの電圧異常動力変圧器が有ると判定され、既に高圧線断線箇所探索部17により、その低圧線16fの末端の計器Sf4の電圧は異常であると判定されている。低圧線断線箇所探索部20は、図5(a)の場合と同様に、最も電源側の計器Sf1と計器Sf4との中間の計器Sf2の電圧を取得し電圧の正常異常を判定する。計器Sf4の引込線で断線が発生していることから、計器Sf2の電圧は正常であるので、計器Sf2を電圧正常計器とする。   In FIG. 5C, when a disconnection occurs in the lead-in wire of the instrument Sf4 of the low-voltage line 16f at the load side end in the high-voltage line, the high-voltage line disconnection location search unit 17 determines that there is one voltage abnormal power transformer. The voltage of the instrument Sf4 at the end of the low voltage line 16f has already been determined to be abnormal by the high voltage line disconnection location searching unit 17. Similarly to the case of FIG. 5A, the low-voltage wire break location searching unit 20 acquires the voltage of the instrument Sf2 that is intermediate between the instrument Sf1 and the instrument Sf4 on the most power supply side, and determines whether the voltage is normal or abnormal. Since the disconnection has occurred in the lead-in wire of the meter Sf4, the voltage of the meter Sf2 is normal, so that the meter Sf2 is a voltage normal meter.

そして、最も負荷側の電圧正常計器と最も電源側の電圧異常計器とが隣接するか否かを判定する。最も負荷側の電圧正常計器は計器Sf2であり、最も電源側の電圧異常計器は計器Sf4であり、計器Sf2と計器Sf4とは隣接していない。そこで、さらに、前回確認した計器Sf2の電圧正常計器より負荷側の箇所で断線が発生していると考えられることから、前回確認した計器Sf2と最も負荷側の電圧正常計器である計器Sf4との中間の計器Sf3の電圧を取得し電圧の正常異常を判定する。計器Sf4の引込線の箇所Feで断線が発生していることから、計器Sf3の電圧は正常であるので、計器Sf3を電圧正常計器とするとともに、計器Sf3を最も負荷側の電圧正常計器に更新する。   Then, it is determined whether the most load side voltage normal meter and the most power source side voltage abnormality meter are adjacent to each other. The voltage normal meter on the most load side is the meter Sf2, the voltage abnormality meter on the most power supply side is the meter Sf4, and the meter Sf2 and the meter Sf4 are not adjacent to each other. Therefore, since it is considered that a disconnection has occurred at the load side of the voltage normal meter of the meter Sf2 confirmed last time, the meter Sf2 confirmed last time and the meter Sf4 which is the voltage normal meter on the most load side. The voltage of the intermediate instrument Sf3 is acquired to determine whether the voltage is normal or abnormal. Since the disconnection has occurred at the lead-in point Fe of the meter Sf4, the voltage of the meter Sf3 is normal, so that the meter Sf3 is a normal voltage meter and the meter Sf3 is updated to the most normal voltage meter on the load side. .

そして、最も負荷側の電圧正常計器と最も電源側の電圧異常計器とが隣接するか否かを判定する。最も負荷側の電圧正常計器は計器Sf3であり、最も電源側の電圧異常計器は計器Sf4であり、計器Sf3と計器Sf4とは隣接しているので、その間の低圧線16fに断線があると判定する。この場合、その間の低圧線16fは計器Sf4に接続される引込線も含まれる。つまり、電圧異常計器は計器Sf4のみであり電圧異常計器が単数であるので、計器Sf3と計器Sf4の間の低圧線16fか、計器Sf4の引込線の断線または柱上ヒューズ切れと判定する。   Then, it is determined whether the most load side voltage normal meter and the most power source side voltage abnormality meter are adjacent to each other. The voltage normal meter on the most load side is the meter Sf3, the voltage abnormality meter on the most power supply side is the meter Sf4, and since the meter Sf3 and the meter Sf4 are adjacent to each other, it is determined that the low voltage line 16f between them is broken. To do. In this case, the low-voltage line 16f in between includes a lead-in line connected to the instrument Sf4. That is, since the voltage abnormality meter is only the meter Sf4 and there is a single voltage abnormality meter, it is determined that the low voltage line 16f between the meters Sf3 and Sf4, the lead-in wire of the meter Sf4, or the fuse on the column is blown.

次に、高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときの低圧線断線箇所探索部20の断線探索を説明する。図6は高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときの低圧線断線箇所探索部20の断線探索の説明図であり、図6(a)は低圧線16eの計器Se1と計器Se2との間の箇所Ffで断線があった場合の断線箇所の判定の説明図、図6(b)は低圧線16eの計器Se2の引込線の箇所Fgで断線があった場合の断線箇所の判定の説明図である。   Next, the disconnection search of the low voltage line disconnection location search unit 20 when it is determined by the high voltage line disconnection location search unit 17 that there is no abnormal voltage power transformer will be described. FIG. 6 is an explanatory diagram of the disconnection search of the low voltage line disconnection location search unit 20 when it is determined by the high voltage line disconnection location search unit 17 that there is no abnormal voltage power transformer, and FIG. FIG. 6B is an explanatory diagram for determining the disconnection location when there is a disconnection at the location Ff between the meter Se1 and the meter Se2. FIG. 6B is a diagram when the disconnection location Fg of the instrument Se2 of the low voltage line 16e is disconnected. It is explanatory drawing of determination of a disconnection location.

高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときは、高圧線13には断線がない。そのため、高圧線断線箇所探索部17で判定していない柱上変圧器15、低圧線16の断線、引込線の断線または柱上ヒューズ切れと考えられる。低圧線断線箇所探索部20は、基本的には、低圧線16の最も電源側の計器Sと負荷側の計器Sとの中間の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。そして、隣接する最も負荷側の電圧正常計器と最も電源側の電圧異常計器との間の低圧線に断線の可能性があると判定する。しかし、高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときは電圧異常計器がないため、高圧線断線箇所探索部17で判定していないすべての低圧線16末端の計器Sの電圧を確認する。そこで、低圧線16末端に電圧異常の計器Sが有るときは、柱上変圧器15、低圧線16の断線と考えられるため、低圧線16の最も電源側の計器Sと負荷側の計器Sとの中間の計器Sの電圧を取得し電圧の正常異常を判定して断線箇所を狭めていく。また、低圧線16末端に電圧異常の計器Sがないときは、引込線の断線または柱上ヒューズ切れと考えられるため、未確認の低圧線16の計器Sの電圧を確認する。なお、高圧線における負荷側末端の低圧線16末端から順番に未確認の計器Sの電圧を確認していく。図6(a)、図6(b)中の点線で囲った計器Sが低圧線断線箇所探索部20による断線箇所の探索で電圧の正常異常の判定の対象となる計器である。   When the high voltage line break location search unit 17 determines that there is no abnormal voltage power transformer, the high voltage line 13 is not broken. Therefore, it is considered that the pole transformer 15 and the low voltage line 16 that have not been determined by the high voltage line break location search unit 17 are broken, the lead wire is broken, or the pole fuse is blown. The low-voltage wire disconnection location searching unit 20 basically acquires the voltage of the intermediate instrument S between the power-supply-side instrument S and the load-side instrument S of the low-voltage line 16 and determines whether the voltage is normal or abnormal. Narrow the point. Then, it is determined that there is a possibility of disconnection in the low voltage line between the adjacent most normal voltage measuring instrument on the load side and the most abnormal voltage measuring instrument on the power supply side. However, when it is determined that there is no abnormal voltage power transformer in the high voltage line break location search unit 17, there is no voltage abnormality meter. Therefore, all the low voltage line 16 terminals that are not determined by the high voltage line break location search unit 17. Check the voltage of S. Therefore, when there is a voltage abnormality meter S at the terminal of the low voltage line 16, it is considered that the pole transformer 15 and the low voltage line 16 are disconnected. The voltage of the intermediate instrument S is acquired, the normality / abnormality of the voltage is determined, and the disconnection portion is narrowed. Moreover, when there is no voltage abnormality meter S at the terminal of the low voltage line 16, it is considered that the lead wire is disconnected or the pole fuse is blown, so the voltage of the meter S of the unconfirmed low voltage line 16 is confirmed. In addition, the voltage of the unconfirmed meter S is confirmed in order from the end of the low voltage line 16 at the load side end in the high voltage line. A meter S surrounded by a dotted line in FIG. 6A and FIG. 6B is a meter that is a target of determination of normality / abnormality of the voltage in the search for the disconnection point by the low-voltage line disconnection point search unit 20.

図6(a)において、高圧線における負荷側末端の低圧線16f末端の計器Sf4は高圧線断線箇所探索部17により既に正常であると判定されているので、低圧線断線箇所探索部20は、すべての低圧線16末端の計器Sの電圧を確認する。図6(a)では低圧線16eの計器Se1と計器Se2との間の箇所Ffで断線しているので計器Se4の電圧は異常となる。計器Se4が電圧異常計器であることから、計器Se4より電源側の柱上変圧器、低圧線の断線と考えられるので、前回確認した計器Se4より電源側の最も電源側の計器Se1と計器Se4との中間の計器Se2の電圧を取得し電圧の正常異常を判定する。計器Se1と計器Se2との間で断線が発生していることから、計器Se2の電圧は異常であるので、計器Se2を電圧異常計器とするとともに、計器Se2を最も電源側の電圧異常計器に更新する。   In FIG. 6A, since the high-voltage line disconnection point search unit 17 has already determined that the instrument Sf4 at the load-side low voltage line 16f end in the high-voltage line is normal, the low-voltage line disconnection point search unit 20 Check the voltage of meter S at the end of all low voltage lines 16. In FIG. 6 (a), the voltage of the meter Se4 becomes abnormal because it is disconnected at the point Ff between the meter Se1 and the meter Se2 of the low voltage line 16e. Since the meter Se4 is a voltage abnormality meter, it is considered to be a pole transformer on the power source side and a disconnection of the low voltage line from the meter Se4. Therefore, the meter Se1 and the meter Se4 on the most power source side closer to the power source side than the previously confirmed meter Se4 The voltage of the middle instrument Se2 is acquired and the normality / abnormality of the voltage is determined. Since the disconnection has occurred between the meter Se1 and the meter Se2, the voltage of the meter Se2 is abnormal, so the meter Se2 is changed to a voltage abnormality meter, and the meter Se2 is updated to the voltage abnormality meter on the most power supply side. To do.

計器Se2が電圧異常計器であることから、計器Se2より電源側に断線があると考えられるので、前回確認した計器Se2より電源側の最も電源側の計器Se1の電圧を取得し電圧の正常異常を判定する。計器Se1と計器Se2との間の箇所Ffで断線が発生していることから、計器Se1の電圧は正常であるので、計器Se1を電圧正常計器とする。   Since the meter Se2 is a voltage abnormality meter, it is considered that there is a disconnection on the power source side from the meter Se2. Therefore, the voltage of the most power source meter Se1 on the power source side is obtained from the previously confirmed meter Se2, and the normality of the voltage is judge. Since the disconnection has occurred at the point Ff between the meter Se1 and the meter Se2, the voltage of the meter Se1 is normal, so that the meter Se1 is a voltage normal meter.

そして、最も負荷側の電圧正常計器と最も電源側の電圧異常計器とが隣接するか否かを判定する。最も負荷側の電圧正常計器は計器Se1であり、最も電源側の電圧異常計器は計器Se2であり、計器Se1と計器Se2とは隣接しているので、その間の低圧線16eに断線があると判定する。 Then, it is determined whether the most load side voltage normal meter and the most power source side voltage abnormality meter are adjacent to each other. The voltage normal meter on the most load side is the meter Se1, the voltage abnormality meter on the most power supply side is the meter Se2, and since the meter Se1 and the meter Se2 are adjacent to each other, it is determined that the low voltage line 16e between them is broken. To do.

図6(b)において、高圧線における負荷側末端の低圧線16f末端の計器Sf4は高圧線断線箇所探索部17により既に正常であると判定されているので、低圧線断線箇所探索部20は、すべての低圧線末端の計器Sの電圧を確認する。図6(b)では計器Se2の引込線で断線しているので、すべての低圧線16末端の計器Sの電圧は正常である。すべての低圧線16末端の計器Sの電圧は正常であることから、引込線の断線または柱上ヒューズ切れと考えられるため、未確認の低圧線16の計器Sの電圧を確認する。ここでは、計器Sf4より1つ電源側の計器Sf3の電圧を取得し電圧の正常異常を判定する。計器Sf3の引込線で断線していないので計器Sf3の電圧は正常である。以下、同様に低圧線16f末端の計器Sf3より電源側の計器Sf2、計器Sf1の電圧を取得し電圧の正常異常を判定する。計器Sf2、Sf1の引込線で断線していないので計器Sf2、Sf1の電圧は正常である。低圧線16fの計器Sf1〜Sf4がすべて正常であるので、高圧線における次の電源側の低圧線16eの計器Sの電圧を取得し電圧の正常異常を判定する。低圧線16e末端の計器Se4は既に正常であると判定されているので、計器Se4より1つ電源側の計器Se3の電圧を取得し電圧の正常異常を判定する。計器Se3の引込線で断線していないので計器Se3の電圧は正常である。以下、同様に低圧線16eの計器Se3より電源側の計器Se2の電圧を取得し電圧の正常異常を判定する。ここで、計器Se2は引込線の箇所Fgで断線しているので、計器Se2の電圧は異常となる。従って、低圧線断線箇所探索部20は計器Se2の引込線または柱上ヒューズの断線であると判定する。 In FIG. 6 (b), since the high-voltage line disconnection point search unit 17 has already determined that the instrument Sf4 at the load-side low-voltage line 16f end of the high-voltage line is normal, the low-voltage line disconnection point search unit 20 Check the voltage of the instrument S at the end of all low voltage lines. In FIG. 6 (b), since the disconnection is caused by the lead-in wire of the meter Se2, the voltages of the meters S at all terminals of the low-voltage line 16 are normal. Since the voltages of the meters S at the terminals of all the low-voltage lines 16 are normal, it is considered that the lead-in wire is broken or the pole fuse is blown, so the voltage of the meter S of the unidentified low-voltage line 16 is confirmed. Here, the voltage of one power-supply-side instrument Sf3 is acquired from the instrument Sf4 to determine whether the voltage is normal or abnormal. The voltage of the meter Sf3 is normal because it is not disconnected by the lead-in wire of the meter Sf3. In the same manner, the voltage of the power supply side instrument Sf2 and the instrument Sf1 is obtained from the instrument Sf3 at the end of the low voltage line 16f to determine whether the voltage is normal or abnormal. Since the wires of the instruments Sf2 and Sf1 are not disconnected, the voltages of the instruments Sf2 and Sf1 are normal . Since all of the instruments Sf1 to Sf4 of the low voltage line 16f are normal, the voltage of the instrument S of the next low voltage line 16e on the power supply side in the high voltage line is acquired to determine whether the voltage is normal or abnormal. Since the meter Se4 at the end of the low-voltage line 16e has already been determined to be normal, the voltage of the one meter Se3 on the power supply side is acquired from the meter Se4 to determine whether the voltage is normal or abnormal. Since it is not disconnected by the lead-in wire of the meter Se3, the voltage of the meter Se3 is normal. Hereinafter, similarly, the voltage of the power source side meter Se2 is obtained from the meter Se3 of the low voltage line 16e to determine whether the voltage is normal or abnormal. Here, since the instrument Se2 is disconnected at the lead-in point Fg, the voltage of the instrument Se2 becomes abnormal. Therefore, the low-voltage wire break location searching unit 20 determines that it is a lead-in wire of the instrument Se2 or a break of the pole fuse.

このように、低圧線断線箇所探索部20は、高圧線断線箇所探索部17で電圧異常動力変圧器がないと判定されたときは、すべての低圧線末端の計器Sの電圧を確認し、電圧異常となる計器Sを探索する。そして、電圧異常となる計器Sが複数の場合には、柱上変圧器15、または低圧線16の断線であると判定して断線箇所を狭めていき、電圧異常となる計器Sが1つのみの場合には、その計器Sの引込線または柱上ヒューズの断線であると判定する。また、電圧異常となる計器がない場合には、断線なしと判定する。   As described above, the low voltage line break location searching unit 20 confirms the voltages of the meters S at all the low voltage line ends when the high voltage line break location searching unit 17 determines that there is no abnormal voltage power transformer. Search for an abnormal instrument S. And when there are a plurality of measuring instruments S that are abnormal in voltage, it is determined that the pole transformer 15 or the low voltage line 16 is disconnected, and the disconnection portion is narrowed. Only one measuring instrument S that becomes abnormal in voltage is present. In this case, it is determined that the lead-in wire of the instrument S or the fuse on the pole is broken. Moreover, when there is no instrument that causes voltage abnormality, it is determined that there is no disconnection.

図7は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャートである。   FIG. 7 shows an example of processing contents of disconnection search of the high-voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line whose pole transformer is composed only of a power transformer. It is a flowchart to show.

図7において、高圧線断線箇所探索部は起動がかけられると、まず、最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器の位置情報を初期化する(S1)。これは、高圧線断線箇所探索部は、隣接する最も電源側の電圧異常動力変圧器と最も負荷側の電圧正常動力変圧器との間に断線の可能性があると判定するので、断線箇所の探索に先立ち、これらのデータを初期化するためである。   In FIG. 7, when the high-voltage line break location searching unit is activated, first, the positional information of the most abnormal power transformer on the power supply side and the normal voltage power transformer on the most load side is initialized (S1). This is because the high voltage line disconnection location search unit determines that there is a possibility of disconnection between the adjacent most abnormal power transformer on the power supply side and the most normal voltage power transformer on the load side. This is because these data are initialized prior to the search.

次に、高圧線断線箇所探索部は、図3に基づき説明した手順で高圧線の断線探索を行う。高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧を確認する(S2)。前述したように、断線探索を効率よく行うために、負荷側末端の低圧線末端の動力計器の電圧を取得し電圧の正常異常を判定し、順次低圧線末端の動力計器の電圧を取得し電圧の正常異常を判定することになる。   Next, the high voltage line break location search unit performs a high voltage line break search in the procedure described based on FIG. The voltage of the dynamometer at the end of the low-voltage line at the load-side end of the high-voltage main line and branch line is confirmed (S2). As described above, in order to efficiently perform the disconnection search, the voltage of the dynamometer at the end of the low voltage line at the load side is acquired to determine whether the voltage is normal or abnormal, and the voltage of the dynamometer at the end of the low voltage line is sequentially acquired to obtain the voltage. The normality / abnormality is determined.

すなわち、高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧は正常か否かを判定し(S3)、高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧が正常である場合には、高圧線幹線、分岐線の負荷側末端に未確認の低圧線末端の動力計器はあるか否かを判定し(S4)、負荷側末端に未確認の低圧線末端の動力計器がある場合にはステップS2に戻る。ステップS4の判定で、高圧線幹線、分岐線の負荷側末端に未確認の低圧線末端の動力計器がない場合には、すべての高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧は正常であるので、主に低圧線側での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(S5)。   That is, it is determined whether or not the voltage of the dynamometer at the low-voltage line at the load-side end of the high-voltage main line and branch line is normal (S3). Is normal, it is determined whether or not there is an unidentified low-voltage line power meter at the load-side end of the high-voltage main line or branch line (S4), and an unidentified low-voltage line end at the load-side end. If there is a dynamometer, the process returns to step S2. If it is determined in step S4 that there is no unidentified low-voltage line terminal dynamometer at the load-side end of the high-voltage main line or branch line, the power-meter at the low-voltage line end of the load-side end of all high-voltage line main lines or branch lines Since the voltage is normal, the process proceeds to a low-voltage line search process in a low-voltage line disconnection location search unit that mainly searches for a disconnection location on the low-voltage line side (S5).

ステップS3の判定で、負荷側末端の低圧線末端の動力計器の電圧が異常である場合には、最も電源側の電圧異常動力変圧器または最も負荷側の電圧正常動力変圧器の位置情報を更新する(S6)。ステップS6では、最初に低圧線末端の動力計器の電圧が異常であると判定された段階では、電圧正常動力変圧器の情報はないので、最も負荷側の電圧正常動力変圧器の位置情報の更新は行われない。一方、最初に低圧線末端の動力計器の電圧が異常であると判定された段階では、低圧線末端の動力計器が接続された負荷側末端の低圧線の動力変圧器が電圧異常動力変圧器であるので、低圧線末端の動力計器が接続された負荷側末端の低圧線の動力変圧器を最も電源側の電圧異常動力変圧器として位置情報を更新する。   If it is determined in step S3 that the voltage of the dynamometer at the end of the low voltage line at the load side is abnormal, the position information of the most abnormal power transformer on the power supply side or the normal voltage power transformer on the load side is updated. (S6). In step S6, at the stage when it is first determined that the voltage of the power meter at the end of the low-voltage line is abnormal, there is no information on the normal voltage power transformer, so the position information of the voltage normal power transformer on the most load side is updated. Is not done. On the other hand, when it is first determined that the voltage of the dynamometer at the end of the low voltage line is abnormal, the power transformer of the low voltage line at the end of the load side to which the dynamometer at the end of the low voltage line is connected is an abnormal voltage power transformer. Therefore, the position information is updated with the load-side low-voltage line power transformer connected to the low-voltage line terminal power meter as the most abnormal voltage transformer on the power supply side.

そして、最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器は隣接位置であるか否かを判定する(S7)。最初に低圧線末端の動力計器の電圧が異常であると判定された段階では、電圧正常動力変圧器の情報はないので、ステップS8に進む。   Then, it is determined whether the most abnormal voltage power transformer on the power supply side and the normal voltage power transformer on the most load side are adjacent positions (S7). At the stage when it is first determined that the voltage of the dynamometer at the end of the low-voltage line is abnormal, there is no information on the normal voltage power transformer, so the process proceeds to step S8.

ステップS8では、前回確認位置の低圧線末端の動力計器の電圧は正常か否かを判定する(S8)。最初に低圧線末端の動力計器の電圧が異常であると判定された段階では、前回確認位置の低圧線末端の動力計器の電圧は異常であるので、ステップS9に進む。ステップS9では、最も電源側位置と前回確認位置との中間の低圧線末端の動力計器の電圧を確認する(S9)。そして、ステップS6に戻り、ステップS6以下の処理を行う。   In step S8, it is determined whether or not the voltage of the dynamometer at the end of the low-voltage line at the previous confirmation position is normal (S8). When the voltage of the dynamometer at the end of the low-voltage line is first determined to be abnormal, the voltage of the dynamometer at the end of the low-voltage line at the previous confirmation position is abnormal, so the process proceeds to step S9. In step S9, the voltage of the dynamometer at the end of the low-voltage line that is intermediate between the most power supply side position and the previous confirmation position is confirmed (S9). And it returns to step S6 and performs the process after step S6.

ステップS9の電圧の確認処理で、最も電源側位置と前回確認位置との中間の低圧線末端の動力計器の電圧が正常であるときは、その動力計器が接続された低圧線の動力変圧器を最も負荷側の電圧正常動力変圧器として位置情報を更新する(S6)。そして、最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器は隣接位置であるか否かを判定し(S7)、隣接位置でないときは前回確認位置の低圧線末端の動力計器の電圧は正常か否かを判定する(S8)。前回確認位置の低圧線末端の動力計器の電圧は正常であるので、ステップS10に進み、負荷側末端位置と前回確認位置との中間の低圧線末端の動力計器の電圧を確認する(S10)。そして、ステップS6に戻り、ステップS6以下の処理を行う。   When the voltage of the dynamometer at the end of the low voltage line between the power supply side position and the previous confirmed position is normal in the voltage confirmation processing in step S9, the power transformer of the low voltage line to which the dynamometer is connected is The position information is updated as the voltage normal power transformer on the most load side (S6). Then, it is determined whether or not the most abnormal power transformer on the power source side and the normal voltage power transformer on the most load side are adjacent positions (S7). It is determined whether the voltage of the instrument is normal (S8). Since the voltage of the dynamometer at the end of the low-voltage line at the previous confirmation position is normal, the process proceeds to step S10, and the voltage of the dynamometer at the end of the low-voltage line between the load-side end position and the previous confirmation position is confirmed (S10). And it returns to step S6 and performs the process after step S6.

ステップS7の判定で、最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器が隣接位置であると判定されたときは、電圧異常動力変圧器は複数であるか否かを判定し(S11)、電圧異常動力変圧器が複数であるときは、隣接する最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器との間での高圧線の断線であると判定する(S12)。一方、ステップS11の判定で電圧異常動力変圧器が複数でないと判定されたときは、主に低圧線側での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(S5)。   If it is determined in step S7 that the most abnormal voltage power transformer on the power supply side and the normal voltage power transformer on the most load side are adjacent positions, it is determined whether there are a plurality of abnormal voltage power transformers. If it is determined (S11) and there are a plurality of abnormal voltage power transformers, it is a disconnection of the high voltage line between the adjacent most abnormal power transformer on the power supply side and the normal voltage power transformer on the most load side. (S12). On the other hand, when it is determined in step S11 that there are not a plurality of voltage abnormal power transformers, the process proceeds to low-voltage line search processing in the low-voltage line disconnection location search unit that mainly searches for a disconnection location on the low-voltage line side. (S5).

ステップS11の判定で、電圧異常動力変圧器が複数でないときは、低圧線探索の処理に移行するのは、前述したように、電圧異常動力変圧器が1つのみの場合には、柱上変圧器、または低圧線の断線かの可能性があり、高圧線に断線があると判定できない場合があるからである。   If it is determined in step S11 that there are not a plurality of abnormal voltage power transformers, the low voltage line search process is performed as described above when there is only one abnormal voltage power transformer. This is because it may not be determined that there is a disconnection in the high voltage line.

図8は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器のみからなる配電線に適用した場合の低圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャートである。低圧線断線箇所探索部では、まず、高圧線断線箇所探索部で確認済みの低圧線末端の動力計器の電圧を取り込む(T1)。そして、低圧線断線箇所探索部は、図5及び図6に基づき説明した手順で低圧線の断線探索を行う。   FIG. 8 shows an example of processing contents of disconnection search of the low voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line whose pole transformer is composed only of a power transformer. It is a flowchart to show. In the low-voltage line break location searching unit, first, the voltage of the dynamometer at the low-voltage line end confirmed by the high-voltage line break location searching unit is taken in (T1). Then, the low-voltage line break location searching unit performs a low-voltage line break search according to the procedure described with reference to FIGS. 5 and 6.

まず、高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧はすべて正常か否かを判定する(T2)。高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧がすべて正常であるときは、未確認の低圧線末端の動力計器を確認し(T3)、すべての低圧線末端の動力計器の電圧が正常か否かを判定し(T4)、すべての低圧線末端の動力計器の電圧が正常であるときは、未確認の低圧線の動力計器を確認する(T5)。低圧線のすべての動力計器の電圧が正常か否かを判定し(T6)、低圧線のすべての動力計器の電圧が正常な場合は、断線なしと判定する(T7)。低圧線の動力計器の電圧が異常な場合は、その電圧異常動力計器が接続された引込線の断線または柱上ヒューズ切れと判定する(T8)。これは、図6(b)の場合であり、すべての低圧線16末端の計器Sの電圧は正常であることから、引込線の断線または柱上ヒューズ切れと考えられるため、未確認の低圧線16の計器Sの電圧を確認する場合に相当する。   First, it is determined whether or not the voltages of the dynamometers at the end of the low-voltage line at the load side end of the high-voltage main line and branch line are all normal (T2). When the voltage of the dynamometer at the end of the low-voltage line at the load side end of the high-voltage main line and branch line is all normal, check the unidentified dynamometer at the end of the low-voltage line (T3). Is normal (T4), and when the voltages of all the low-voltage line dynamometers are normal, the unidentified low-voltage line dynamometer is checked (T5). It is determined whether or not the voltages of all dynamometers on the low-voltage line are normal (T6). If the voltages on all dynamometers on the low-voltage line are normal, it is determined that there is no disconnection (T7). If the voltage of the dynamometer of the low-voltage line is abnormal, it is determined that the lead-in wire to which the abnormal voltage dynamometer is connected or the pole fuse is blown (T8). This is the case of FIG. 6B, and since the voltages of the meters S at the terminals of all the low-voltage lines 16 are normal, it is considered that the lead-in wire is broken or the pole fuse is blown. This corresponds to checking the voltage of the meter S.

ステップT2及びステップT4の判定で低圧線末端の動力計器の電圧が異常である場合は、最も電源側の電圧異常動力計器または最も負荷側の電圧正常動力計器の位置情報を更新する(T9)。ステップT9では、最初に動力計器の電圧が異常であると判定された段階では、電圧正常動力計器の情報はないので、最も負荷側の電圧正常動力計器の位置情報の更新は行われない。一方、最初に動力計器の電圧が異常であると判定された段階では、その動力計器が最も電源側の電圧異常動力計器として位置情報を更新する(T9)。   If the voltage of the dynamometer at the end of the low-voltage line is abnormal in the determinations of step T2 and step T4, the position information of the most abnormal voltage dynamometer on the power supply side or the normal dynamometer on the load side is updated (T9). In step T9, when it is first determined that the voltage of the dynamometer is abnormal, there is no information on the normal voltage dynamometer, so the position information of the voltage normal dynamometer on the most load side is not updated. On the other hand, when it is first determined that the voltage of the dynamometer is abnormal, the dynamometer updates the position information as the voltage abnormal dynamometer on the most power supply side (T9).

そして、最も電源側の電圧異常計器及び最も負荷側の電圧正常動力計器は隣接位置であるか否かを判定する(T10)。隣接位置ではない場合は、ステップT11に進む。   Then, it is determined whether or not the voltage abnormality meter on the most power source side and the voltage normal power meter on the most load side are adjacent positions (T10). If it is not an adjacent position, the process proceeds to step T11.

ステップT11では、前回確認位置の動力計器は電圧正常か否かを判定する。最初に動力計器の電圧が異常であると判定された段階では、電圧正常動力計器の情報はないので、ステップT12に進む。ステップT12では、最も電源側位置と前回確認位置との中間の動力計器の電圧を確認する。そして、その低圧線のすべての動力計器の電圧は異常か否かを判定し(T13)、低圧線のすべての動力計器の電圧が異常でないときはステップT9に戻り、ステップT9以下の処理を行う。   In step T11, it is determined whether or not the dynamometer at the previous confirmation position is normal in voltage. At the stage when it is first determined that the voltage of the dynamometer is abnormal, there is no information on the normal voltage dynamometer, so the process proceeds to step T12. In Step T12, the voltage of the dynamometer intermediate between the power supply side position and the previous confirmation position is confirmed. Then, it is determined whether or not the voltages of all the dynamometers on the low-voltage line are abnormal (T13). If the voltages on all the dynamometers on the low-voltage line are not abnormal, the process returns to step T9, and the processes after step T9 are performed. .

ここで、ステップT12の電圧の確認処理で、最も電源側位置と前回確認位置との中間の動力計器の電圧が正常であると判定されたときは、低圧線のすべての動力計器の電圧は異常ではないので、ステップT13の判定によりステップT9に戻るが、ステップT9では、その中間の動力計器を最も負荷側の電圧正常動力計器として位置情報を更新する(T9)。   Here, when it is determined in the voltage confirmation process in step T12 that the voltage of the dynamometer between the most power supply side position and the previous confirmation position is normal, the voltages of all dynamometers on the low-voltage line are abnormal. Therefore, the process returns to step T9 by the determination in step T13, but in step T9, the position information is updated with the intermediate power meter as the voltage normal power meter on the most load side (T9).

そして、ステップT9により、最も負荷側の電圧正常動力計器の位置情報が更新されると、最も電源側の電圧異常動力計器及び最も負荷側の電圧正常動力計器は隣接位置であるか否かを判定し(T10)、隣接位置でないときは前回確認位置の動力計器は電圧正常か否かを判定する(T11)。   Then, when the position information of the voltage normal dynamometer on the most load side is updated in step T9, it is determined whether or not the voltage abnormal dynamometer on the power supply side and the voltage normal dynamometer on the most load side are adjacent positions. If it is not the adjacent position (T10), it is determined whether or not the dynamometer at the previous confirmation position has a normal voltage (T11).

次に、ステップT11の判定で、前回確認位置の動力計器の電圧は正常と判定されると、ステップT14に進み、負荷側末端位置と前回確認位置との中間の動力計器の電圧を確認する(T14)。そして、ステップT9に戻り、ステップT9以下の処理を行う。   Next, if it is determined in step T11 that the voltage of the dynamometer at the previous confirmation position is normal, the process proceeds to step T14 to confirm the voltage of the dynamometer intermediate between the load-side end position and the previous confirmation position ( T14). And it returns to step T9 and performs the process after step T9.

そして、ステップT10の判定で、最も電源側の電圧異常動力計器及び最も負荷側の電圧正常動力計器が隣接位置であると判定されたときは、電圧異常動力計器は複数であるか否かを判定し(T15)、電圧異常動力計器が複数であるときは、低圧線の断線であると判定する(T16)。すなわち、隣接する最も電源側の電圧異常動力計器及び最も負荷側の電圧正常動力計器との間の低圧線での断線であると判定する。これは、図5(b)、図6(a)の場合である。一方、ステップT15の判定で電圧異常動力計器が複数でないと判定されたときは、最も電源側の電圧異常動力計器及び最も負荷側の電圧正常動力計器との間の低圧線か、その電圧異常動力計器が接続された引込線の断線または柱上ヒューズ切れと判定する(T8)。これは、図5(c)の場合である。   If it is determined in step T10 that the most abnormal voltage dynamometer on the power supply side and the normal dynamometer on the most load side are adjacent positions, it is determined whether there are a plurality of abnormal voltage dynamometers. If there are a plurality of abnormal voltage dynamometers, it is determined that the low voltage line is disconnected (T16). That is, it is determined that this is a disconnection in the low-voltage line between the adjacent most abnormal voltage dynamometer on the power supply side and normal dynamometer on the most load side. This is the case of FIGS. 5B and 6A. On the other hand, when it is determined in step T15 that there are not a plurality of abnormal voltage dynamometers, either the low voltage line between the most abnormal voltage motive power instrument on the power supply side and the normal dynamometer on the most load side or the abnormal voltage motive power thereof. It is determined that the lead-in wire to which the instrument is connected is broken or the fuse on the column is blown (T8). This is the case of FIG.

また、ステップT13の判定で、低圧線のすべての動力計器の電圧が異常であるときは、最も電源側の動力計器より電源側の低圧線、柱上変圧器または高圧線の断線であると判定する(T17)。これは図5(a)に示す場合であり、図5(a)では高圧線の断線である場合を示している。   If the voltage of all dynamometers on the low-voltage line is abnormal in the determination of step T13, it is determined that the power-side low-voltage line, pole transformer, or high-voltage line is disconnected from the most power-side dynamometer. (T17). This is the case shown in FIG. 5A, and FIG. 5A shows the case where the high-voltage line is disconnected.

次に、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合について説明する。前述したように、柱上変圧器が電灯変圧器の場合には、動力変圧器の場合と異なり、電灯変圧器は高圧線の3相から低圧側に1線間を取り出し、低圧側の低圧線には1線間で電力が供給される。   Next, the case where the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line in which the pole transformer includes only the light transformer will be described. As described above, when the pole transformer is a light transformer, unlike the power transformer, the light transformer takes one line from the three phases of the high voltage line to the low voltage side, and the low voltage line on the low voltage side. Is supplied with power between one line.

図9は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の概略説明図であり、図9(a)は高圧線13の3相RSTのうちのT相の箇所F1で断線が発生した場合の説明図、図9(b)は高圧線13の3相RSTのうちのR相の箇所F2で断線が発生した場合の説明図、図9(c)は高圧線13の3相RSTのうちのS相の箇所F3で断線が発生した場合の説明図である。なお、図9では配電変圧器、遮断器、開閉器、高圧線分岐線、低圧線の図示を省略している。また、図9では、柱上変圧器15a、15dは高圧線13の3相RSTから1線間RSを取り出し、柱上変圧器15b、15eは高圧線13の3相RSTから1線間RTを取り出し、柱上変圧器15c、15fは高圧線13の3相RSTから1線間STを取り出した場合を示している。   FIG. 9 is a schematic explanatory diagram of the disconnection search of the high-voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line in which the pole transformer includes only the light transformer. FIG. 9A is an explanatory diagram when a disconnection occurs at the T-phase location F1 of the three-phase RST of the high-voltage line 13, and FIG. 9B is an R-phase of the three-phase RST of the high-voltage line 13. FIG. 9C is an explanatory diagram when a disconnection occurs in the S-phase portion F3 of the three-phase RST of the high-voltage line 13. FIG. In addition, in FIG. 9, illustration of a distribution transformer, a circuit breaker, a switch, a high voltage line branch line, and a low voltage line is omitted. In FIG. 9, pole transformers 15 a and 15 d take out one-line RS from the three-phase RST of the high-voltage line 13, and pole transformers 15 b and 15 e take the one-line RT from the three-phase RST of the high-voltage line 13. The take-out and pole transformers 15c and 15f show the case where the one-line ST is taken out from the three-phase RST of the high-voltage line 13.

図9(a)に示すように、T相の箇所F1で断線が発生した場合には、断線箇所F1より負荷側の柱上変圧器15e、15fは電圧異常電灯変圧器となる。これは、柱上変圧器15e、15fは断線が発生したT相に接続されているからである。一方、断線箇所F1より電源側の柱上変圧器15a〜15dは電圧正常電灯変圧器となる。これは、柱上変圧器15a〜15dは断線が発生した箇所F1より電源側に位置するからである。図9(a)の場合、隣接する最も負荷側の電圧正常電灯変圧器15dと最も電源側の電圧異常電灯変圧器15eとが存在するので、その間に断線が発生している可能性があると判定できる。   As shown in FIG. 9A, when a disconnection occurs at the T-phase location F1, the pole transformers 15e and 15f on the load side from the disconnection location F1 become voltage abnormal lamp transformers. This is because the pole transformers 15e and 15f are connected to the T phase where the disconnection has occurred. On the other hand, the pole transformers 15a to 15d on the power supply side from the disconnection point F1 are voltage normal lamp transformers. This is because the pole transformers 15a to 15d are located on the power supply side from the portion F1 where the disconnection occurs. In the case of FIG. 9 (a), there is a possibility that a disconnection may have occurred between the adjacent most normal voltage transformer 15d on the load side and the most abnormal voltage transformer 15e on the power supply side. Can be judged.

図9(b)に示すように、R相の箇所F2で断線が発生した場合には、断線箇所F2より負荷側の柱上変圧器15d、15eは電圧異常電灯変圧器となるが、柱上変圧器15fは電圧異常電灯変圧器とならない。これは、柱上変圧器15d、15eは断線が発生したR相に接続されているが、柱上変圧器15fは断線が発生したR相に接続されていないからである。このように、柱上変圧器15が電灯変圧器である場合には、負荷側末端の低圧線の電灯計器が正常であり負荷側末端の柱上変圧器15fが電圧正常電灯変圧器であっても、その電源側の柱上変圧器15e、15dが電圧異常電灯変圧器となることがある。これは、電灯変圧器は高圧線の3相から低圧側に1線間を取り出し、低圧側の低圧線には1線間で電力が供給されることから、断線が発生した相に接続されていない電灯負荷の場合には、断線発生箇所より負荷側の柱上変圧器であっても電圧正常電灯変圧器となるからである。 As shown in FIG. 9B, when disconnection occurs at the R-phase location F2, the pole transformers 15d and 15e on the load side from the disconnection location F2 become voltage abnormal lamp transformers. The transformer 15f does not become a voltage abnormal light transformer. This is because the pole transformers 15d and 15e are connected to the R phase where the disconnection has occurred, but the pole transformer 15f is not connected to the R phase where the disconnection has occurred. Thus, when the pole transformer 15 is a light transformer, the low-voltage line light meter at the load end is normal, and the pole transformer 15f at the load end is a normal voltage light transformer. However, the pole transformers 15e and 15d on the power supply side may be abnormal voltage lamp transformers. This is because the light transformer takes out one line from the three phases of the high voltage line to the low voltage side, and power is supplied to the low voltage line on the low voltage side from one line, so it is connected to the phase where the disconnection occurred. This is because, in the case of no electric load, even a pole transformer on the load side from the disconnection occurrence point becomes a normal voltage electric light transformer.

図9(b)の場合、隣接する最も負荷側の電圧正常電灯変圧器15cと最も電源側の電圧異常電灯変圧器15dとが存在するので、その間に断線が発生している可能性があると判定できる。なお、負荷側末端の柱上変圧器15fが電圧正常電灯変圧器であってもその電源側に断線箇所が発生している可能性があるので、電灯変圧器が接続された配電線においては、負荷側末端の柱上変圧器15fが電圧正常電灯変圧器であっても、その電源側に電圧異常電灯変圧器が存在するか否かを判定する探索ロジックとすることが必要となる。   In the case of FIG. 9B, since there is an adjacent most normal voltage transformer 15c on the load side and an abnormal voltage transformer 15d on the most power supply side, there may be a disconnection between them. Can be judged. Even if the pole transformer 15f at the end of the load side is a normal voltage light transformer, there is a possibility that a disconnection point has occurred on the power source side, so in the distribution line to which the light transformer is connected, Even if the pole transformer 15f at the load side end is a normal voltage light transformer, it is necessary to use search logic for determining whether or not an abnormal voltage light transformer exists on the power source side.

次に、図9(c)に示すように、S相の箇所F3で断線が発生した場合には、断線箇所F3より負荷側の柱上変圧器15c、15d、15fは電圧異常電灯変圧器となるが、柱上変圧器、15eは電圧異常電灯変圧器とならない。これは、柱上変圧器15c、15d、15fは断線が発生したS相に接続されているが、柱上変圧器15eは断線が発生したS相に接続されていないからである。   Next, as shown in FIG. 9 (c), when a disconnection occurs at the S-phase point F3, the pole transformers 15c, 15d, 15f on the load side from the disconnection point F3 are the abnormal voltage lamp transformers. However, the pole transformer 15e is not a voltage abnormal light transformer. This is because the pole transformers 15c, 15d and 15f are connected to the S phase where the disconnection has occurred, but the pole transformer 15e is not connected to the S phase where the disconnection has occurred.

図9(c)の場合、先に、隣接する最も負荷側の電圧正常電灯変圧器15eと最も電源側の電圧異常電灯変圧器15fが検出されたとしても、その電源側に、隣接する最も負荷側の電圧正常電灯変圧器15bと最も電源側の電圧異常電灯変圧器15cが存在するので、その電源側に電圧異常電灯変圧器が存在するか否かを判定する探索ロジックとすることが必要となる。 In the case of FIG. 9C, even if the most adjacent load-side voltage normal light transformer 15e and the most power-side voltage abnormal light transformer 15f are detected first, the most load adjacent to the power supply side is detected. Since there is a normal voltage transformer 15b on the side and an abnormal voltage transformer 15c on the most power source side, it is necessary to use search logic for determining whether or not there is an abnormal voltage transformer on the power source side. Become.

そこで、柱上変圧器として電灯変圧器のみが接続された配電線である場合には、負荷側末端の柱上変圧器15fが電圧正常電灯変圧器であっても、その電源側に電圧異常電灯変圧器が存在するか否かを判定するために、負荷側末端から順番に低圧線末端の電灯計器の電圧を確認していくようにする。また、隣接する最も負荷側の電圧正常電灯変圧器15bと最も電源側の電圧異常電灯変圧器15cが検出された場合であっても、その電源側に電圧異常電灯変圧器が存在するか否かを判定するために、電圧正常電灯変圧器より電源側の低圧線末端の電灯計器の電圧を確認するようにする。   Therefore, in the case of a distribution line to which only a light transformer is connected as a pole transformer, even if the pole transformer 15f at the load side end is a normal voltage lamp transformer, a voltage abnormal lamp is provided on the power source side. In order to determine whether or not a transformer exists, the voltage of the electric light meter at the end of the low voltage line is checked in order from the load side end. Further, even when the adjacent most normal voltage transformer 15b on the load side and the most abnormal voltage transformer 15c on the power supply side are detected, whether or not there is an abnormal voltage transformer on the power supply side. Therefore, the voltage of the electric light meter at the end of the low voltage line on the power supply side from the normal voltage electric light transformer is checked.

図10は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の高圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャートである。図7に示した柱上変圧器が動力変圧器のみからなる配電線の断線探索の処理内容のステップS1〜S12に対し、対応するステップをステップU1〜U12とし、動力変圧器を電灯変圧器、動力計器を電灯計器としている。高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧を確認していくステップS2〜S4に代えて、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧を負荷側から順番に確認していくステップU2A〜U4Aとし、高圧線の断線であると判定するステップS12に対応するステップU12の後段に、電圧正常電灯変圧器より電源側の低圧線末端の電灯計器の電圧を確認するステップU13A〜U15Aを追加して設けている。   FIG. 10 shows an example of processing contents of disconnection search of the high-voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line in which the pole transformer is composed only of the light transformer. It is a flowchart to show. In contrast to steps S1 to S12 of the process of searching for a disconnection of a distribution line in which the pole transformer shown in FIG. 7 is composed only of a power transformer, the corresponding steps are set to steps U1 to U12, and the power transformer is a light transformer, The power meter is an electric light meter. Instead of steps S2 to S4 for checking the voltage of the low-voltage line dynamometer at the load-side end of the high-voltage main line and branch line, the voltage of the electric light meter at the low-voltage line end of the high-voltage main line and branch line is changed to the load side. Steps U2A to U4A to be checked in order, and after the step U12 corresponding to step S12 that determines that the high-voltage line is disconnected, the voltage of the electric light meter at the end of the low-voltage line on the power supply side from the normal voltage light transformer Steps U13A to U15A for confirming the above are additionally provided.

図10において、高圧線断線箇所探索部は起動がかけられると、まず、最も電源側の電圧異常電灯変圧器及び最も負荷側の電圧正常電灯変圧器の位置情報を初期化する(U1)。これは、高圧線断線箇所探索部は、隣接する最も電源側の電圧異常電灯変圧器と最も負荷側の電圧正常電灯変圧器との間に断線の可能性があると判定するので、断線箇所の探索に先立ち、これらのデータを初期化するためである。   In FIG. 10, when the high voltage line disconnection location search unit is activated, first, the position information of the most abnormal voltage transformer on the power supply side and the normal voltage transformer on the most load side is initialized (U1). This is because the high voltage line disconnection location search unit determines that there is a possibility of disconnection between the adjacent most abnormal voltage transformer on the power supply side and the most normal voltage transformer on the load side. This is because these data are initialized prior to the search.

次に、高圧線断線箇所探索部は、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧を負荷側から順番に確認する(U2A)。これは、前述したように、柱上変圧器として電灯変圧器のみが接続された配電線である場合には、負荷側末端の柱上変圧器15fが電圧正常電灯変圧器であっても、その電源側に電圧異常電灯変圧器が存在する場合があるので、それを探索するためである。   Next, the high-voltage line break location search unit checks the voltage of the electric light meter at the end of the high-voltage main line and the low-voltage line of the branch line in order from the load side (U2A). As described above, in the case of a distribution line in which only a light transformer is connected as a pole transformer, even if the pole transformer 15f at the load side end is a normal voltage light transformer, This is for searching for an abnormal voltage lamp transformer on the power supply side.

すなわち、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧は正常か否かを判定し(U3A)、電灯計器の電圧が正常である場合には、高圧線幹線、分岐線に未確認の低圧線末端の電灯計器はあるか否かを判定し(U4A)、未確認の電灯計器がある場合にはステップU2Aに戻る。ステップU4Aの判定で、未確認の電灯計器がない場合には、高圧線幹線、分岐線のすべての低圧線末端の電灯計器の電圧は正常であるので、低圧線での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(U5)。   That is, it is determined whether the voltage of the electric light meter at the end of the high voltage main line and the low voltage line of the branch line is normal (U3A). If the voltage of the electric light meter is normal, the high voltage main line and the branch line are not confirmed. It is determined whether or not there is a light meter at the end of the low-voltage line (U4A). If there is an unconfirmed light meter, the process returns to step U2A. If it is determined in step U4A that there is no unidentified electric light meter, the voltages of the electric light meters at the ends of all the low-voltage lines of the high-voltage main line and branch line are normal. The process proceeds to a low-voltage line search process in the broken line location search unit (U5).

ステップU3Aの判定で、高圧線幹線、分岐線の電灯計器の電圧が異常である場合には、最も電源側の電圧異常電灯変圧器または最も負荷側の電圧正常電灯変圧器の位置情報を更新する(U6)。ステップU6では、最初に電灯計器の電圧が異常であると判定された段階では、電圧正常電灯変圧器の情報はないので、最も負荷側の電圧正常電灯変圧器の位置情報の更新は行われない。そして、最も電源側の電圧異常電灯変圧器及び最も負荷側の電圧正常電灯変圧器は隣接位置であるか否かを判定する(U7)。最初に電灯計器の電圧が異常であると判定された段階では、電圧正常電灯変圧器の情報はないので、ステップU8に進む。 If it is determined in step U3A that the voltage of the high-voltage main line and branch line lamp meters is abnormal, the position information of the most abnormal voltage transformer on the power supply side or the normal voltage transformer on the most load side is updated. (U6). In step U6, at the stage when it is first determined that the voltage of the electric light meter is abnormal, there is no information on the voltage normal light transformer, so the position information of the voltage normal light transformer on the most load side is not updated. . Then, it is determined whether the most abnormal voltage transformer on the power supply side and the normal voltage transformer on the most load side are adjacent positions (U7). When it is first determined that the voltage of the electric light meter is abnormal, there is no information on the normal voltage electric light transformer, so the process proceeds to Step U8.

ステップU8では、前回確認位置の低圧線末端の電灯計器は電圧正常か否かを判定する(U8)。最初に低圧線末端の電灯計器の電圧が異常であると判定された段階では、前回確認位置の低圧線末端の電灯計器は電圧異常であるので、ステップU9に進む。ステップU9では、最も電源側位置と前回確認位置との中間の低圧線末端の電灯計器の電圧を確認する(U9)。そして、ステップU6に戻り、ステップU6以下の処理を行う。   In step U8, it is determined whether or not the voltage meter at the end of the low-voltage line at the previous confirmation position is normal (U8). At the stage when it is first determined that the voltage of the electric light meter at the low-voltage line terminal is abnormal, the electric light meter at the low-voltage line terminal at the previous confirmation position is abnormal in voltage, so the process proceeds to step U9. In step U9, the voltage of the electric light meter at the end of the low-voltage line that is intermediate between the most power supply side position and the previous confirmation position is confirmed (U9). And it returns to step U6 and performs the process below step U6.

ステップU9の電圧の確認処理で、最も電源側位置と前回確認位置との中間の低圧線末端の電灯計器の電圧が正常であるときは、その電灯変圧器を最も負荷側の電圧正常電灯変圧器として位置情報を更新する(U6)。そして、最も電源側の電圧異常電灯変圧器及び最も負荷側の電圧正常電灯変圧器は隣接位置であるか否かを判定し(U7)、隣接位置でないときは前回確認位置の低圧線末端の電灯計器は電圧正常か否かを判定する(U8)。前回確認位置の低圧線末端の電灯計器は電圧正常であるので、ステップU10に進み、負荷側末端位置と前回確認位置との中間の低圧線末端の電灯計器の電圧を確認する(U10)。そして、ステップU6に戻り、ステップU6以下の処理を行う。   When the voltage of the electric light meter at the end of the low voltage line between the most power supply side position and the previous confirmation position is normal in the voltage confirmation processing at step U9, the electric light transformer is the most normal voltage transformer on the load side. Then, the position information is updated (U6). Then, it is determined whether the most abnormal voltage transformer on the power supply side and the normal lamp transformer on the most load side are adjacent positions (U7). If not, the lamp at the end of the low voltage line at the previous confirmation position is determined. The instrument determines whether the voltage is normal (U8). Since the voltage at the end of the low-voltage line at the previous confirmation position is normal, the process proceeds to step U10, where the voltage at the end of the low-voltage line between the load-side end position and the previous confirmation position is confirmed (U10). And it returns to step U6 and performs the process below step U6.

ステップU7の判定で、最も電源側の電圧異常電灯変圧器及び最も負荷側の電圧正常電灯変圧器が隣接位置であると判定されたときは、電圧異常電灯変圧器は複数であるか否かを判定し(U11)、電圧異常電灯変圧器が複数であるときは、隣接する最も電源側の電圧異常電灯変圧器及び最も負荷側の電圧正常電灯変圧器との間での高圧線の断線であると判定する(U12)。一方、ステップU11の判定で電圧異常電灯変圧器が複数でないと判定されたときは、低圧線での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(U5)。   If it is determined in step U7 that the most abnormal voltage transformer on the power source side and the normal voltage transformer on the most load side are adjacent positions, it is determined whether there are a plurality of abnormal voltage lamp transformers. Judgment (U11), when there are a plurality of abnormal voltage lamp transformers, it is a disconnection of the high voltage line between the adjacent abnormal voltage lamp transformer on the most power supply side and the most normal voltage transformer on the load side (U12). On the other hand, when it is determined in step U11 that there are not a plurality of abnormal voltage lamp transformers, the process proceeds to a low-voltage line search process in the low-voltage line disconnection location search unit that searches for a disconnection location in the low-voltage line (U5). ).

ステップU11の判定で、電圧異常電灯変圧器が複数でないときは、低圧線探索の処理に移行するのは、前述したように、電圧異常電灯変圧器が1つのみの場合には、主に低圧線側の柱上変圧器、または低圧線の断線の可能性があり、高圧線に断線があると判定できない場合があるからである。   If it is determined in step U11 that there are not a plurality of abnormal voltage lamp transformers, the low voltage line search process is mainly performed when the number of abnormal voltage lamp transformers is one as described above. This is because there is a possibility of disconnection of the pole transformer on the line side or the low voltage line, and it may not be determined that the high voltage line is disconnected.

次に、電圧正常電灯変圧器より電源側の低圧線末端の電灯計器の電圧を確認する(U13A)。すなわち、電圧正常電灯変圧器より電源側の低圧線末端の電灯計器の電圧は異常か否かを判定し(U14A)、異常であるときはステップU9に戻り、電圧正常電灯変圧器より電源側に存在する別の隣接する最も負荷側の電圧正常電灯変圧器と最も電源側の電圧異常電灯変圧器を探索する。ステップU14Aの判定で、電圧正常電灯変圧器より電源側の低圧線末端の電灯計器の電圧が正常であるときは、最後に探索された隣接する最も負荷側の電圧正常電灯変圧器と最も電源側の電圧異常電灯変圧器との間に断線が発生しているとして高圧断線区間を確定する(U15A)。   Next, the voltage of the electric light meter at the end of the low-voltage line on the power supply side from the normal voltage electric light transformer is confirmed (U13A). That is, it is determined whether or not the voltage of the electric light meter at the end of the low-voltage line on the power supply side from the normal voltage light transformer is abnormal (U14A), and if abnormal, the process returns to step U9 to move from the normal voltage light transformer to the power supply side. Search for another adjacent most load normal voltage transformer and most power abnormal voltage transformer that are present. If it is determined in step U14A that the voltage of the lamp instrument at the end of the low-voltage line on the power supply side from the normal voltage light transformer is normal, the voltage normal light transformer on the most load side and the power supply side that are most recently searched for. A high-voltage disconnection section is determined assuming that a disconnection has occurred between the voltage abnormal electric light transformer (U15A).

図11は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が電灯変圧器のみからなる配電線に適用した場合の低圧線断線箇所探索部の断線探索の処理内容の一例を示すフローチャートである。図8に示した柱上変圧器が動力変圧器のみからなる配電線の断線探索の処理内容のステップT1〜T17に対し、対応するステップをステップV1〜V17とし、動力計器を電灯計器としている。図8に示したステップT1〜T17の処理内容と図11に示したステップV1〜V17の処理内容は実質的に同じである。   FIG. 11 shows an example of processing content of disconnection search of the low voltage line disconnection location search unit when the distribution system disconnection detection system according to the embodiment of the present invention is applied to a distribution line in which the pole transformer is composed only of the light transformer. It is a flowchart to show. The steps corresponding to steps T1 to T17 of the distribution line disconnection search process in which the pole transformer shown in FIG. 8 is composed only of the power transformer are set as steps V1 to V17, and the power meter is an electric light meter. The processing contents of steps T1 to T17 shown in FIG. 8 and the processing contents of steps V1 to V17 shown in FIG. 11 are substantially the same.

図11において、低圧線断線箇所探索部では、まず、高圧線断線箇所探索部で確認済みの低圧線末端の電灯計器の電圧を取り込む(V1)。そして、低圧線断線箇所探索部は、図5及び図6に基づき説明した手順で低圧線の断線探索を行う。   In FIG. 11, the low voltage line break location searching unit first takes in the voltage of the electric light meter at the end of the low voltage line confirmed by the high voltage line break location searching unit (V <b> 1). Then, the low-voltage line break location searching unit performs a low-voltage line break search according to the procedure described with reference to FIGS. 5 and 6.

まず、高圧線幹線、分岐線の負荷側末端の低圧線末端の電灯計器の電圧はすべて正常か否かを判定する(V2)。高圧線幹線、分岐線の負荷側末端の低圧線末端の電灯計器の電圧がすべて正常であるときは、未確認の低圧線末端の電灯計器を確認し(V3)、すべての低圧線末端の電灯計器の電圧が正常か否かを判定し(V4)、すべての低圧線末端の電灯計器の電圧が正常であるときは、未確認の低圧線の電灯計器を確認する(V5)。低圧線のすべての電灯計器の電圧が正常か否かを判定し(V6)、低圧線のすべての電灯計器の電圧が正常な場合は、断線なしと判定する(V7)。低圧線の電灯計器の電圧が異常な場合は、その電圧異常電灯計器が接続された引込線の断線または柱上ヒューズ切れと判定する(V8)。これは、図6(b)の場合であり、すべての低圧線16末端の計器Sの電圧は正常であることから、引込線の断線または柱上ヒューズ切れと考えられるため、未確認の低圧線16の計器Sの電圧を確認する場合に相当する。   First, it is determined whether or not all the voltages of the electric light meters at the low-voltage line terminals at the load-side terminals of the high-voltage main line and branch line are normal (V2). When the voltage of the electric light meter at the end of the low-voltage line at the load side end of the high-voltage main line and branch line is normal, check the unidentified electric light meter at the end of the low-voltage line (V3). Is determined to be normal (V4), and when the voltage of all the low-voltage line lighting instruments is normal, the unidentified low-voltage line lighting instrument is confirmed (V5). It is determined whether or not the voltages of all the electric light meters on the low voltage line are normal (V6). If the voltages of all the electric light meters on the low voltage line are normal, it is determined that there is no disconnection (V7). When the voltage of the low-voltage line electric light meter is abnormal, it is determined that the lead-in wire to which the voltage abnormal electric light meter is connected is broken or the pole fuse is blown (V8). This is the case of FIG. 6B, and since the voltages of the meters S at the terminals of all the low-voltage lines 16 are normal, it is considered that the lead-in wire is broken or the pole fuse is blown. This corresponds to checking the voltage of the meter S.

ステップV2及びステップV4の判定で低圧線末端の電灯計器の電圧が異常である場合は、最も電源側の電圧異常電灯計器または最も負荷側の電圧正常電灯計器の位置情報を更新する(V9)。ステップV9では、最初に電灯計器の電圧が異常であると判定された段階では、電圧正常電灯計器の情報はないので、最も負荷側の電圧正常電灯計器の位置情報の更新は行われない。一方、最初に電灯計器の電圧が異常であると判定された段階では、その電灯計器が最も電源側の電圧異常電灯計器として位置情報を更新する(V9)。   If the voltage of the low-voltage line end lamp instrument is abnormal in the determinations at step V2 and step V4, the position information of the most abnormal voltage lamp instrument on the power supply side or the normal voltage lamp instrument on the load side is updated (V9). In step V9, at the stage when it is first determined that the voltage of the electric lamp instrument is abnormal, there is no information on the normal voltage electric lamp instrument, so the position information of the voltage normal electric lamp instrument on the most load side is not updated. On the other hand, when it is first determined that the voltage of the electric light meter is abnormal, the electric light meter updates the position information as the voltage abnormal electric light meter on the power supply side (V9).

そして、最も電源側の電圧異常計器及び最も負荷側の電圧正常電灯計器は隣接位置であるか否かを判定する(V10)。隣接位置ではない場合は、ステップV11に進む。   Then, it is determined whether or not the most abnormal voltage instrument on the power supply side and the normal lamp instrument on the most load side are adjacent positions (V10). If it is not an adjacent position, the process proceeds to step V11.

ステップV11では、前回確認位置の電灯計器は電圧正常か否かを判定する。最初に電灯計器の電圧が異常であると判定された段階では、電圧正常電灯計器の情報はないので、ステップV12に進む。ステップV12では、最も電源側位置と前回確認位置との中間の電灯計器の電圧を確認する。そして、その低圧線のすべての電灯計器の電圧は異常か否かを判定し(V13)、低圧線のすべての電灯計器の電圧が異常でないときはステップV9に戻り、ステップV9以下の処理を行う。   In Step V11, it is determined whether or not the electric light meter at the previous confirmation position is normal. At the stage when it is first determined that the voltage of the electric light meter is abnormal, there is no information on the normal voltage electric light meter, so the process proceeds to Step V12. In Step V12, the voltage of the electric light meter intermediate between the most power supply side position and the previous confirmation position is confirmed. Then, it is determined whether or not the voltages of all the electric light meters on the low-voltage line are abnormal (V13). If the voltages of all the electric light meters on the low-voltage line are not abnormal, the process returns to step V9, and the processing after step V9 is performed. .

ここで、ステップV12の電圧の確認処理で、最も電源側位置と前回確認位置との中間の電灯計器の電圧が正常であると判定されたときは、低圧線のすべての電灯計器の電圧は異常ではないので、ステップV13の判定によりステップV9に戻るが、ステップV9では、その中間の電灯計器を最も負荷側の電圧正常電灯計器として位置情報を更新する(V9)。   Here, in the voltage confirmation process in step V12, when it is determined that the voltage of the lighting instrument intermediate between the most power supply side position and the previous confirmation position is normal, the voltages of all the lighting instruments on the low voltage line are abnormal. Therefore, the process returns to step V9 by the determination in step V13, but in step V9, the position information is updated with the intermediate lamp instrument as the voltage normal lamp instrument on the most load side (V9).

そして、ステップV9により、最も負荷側の電圧正常電灯計器の位置情報が更新されると、最も電源側の電圧異常電灯計器及び最も負荷側の電圧正常電灯計器は隣接位置であるか否かを判定し(V10)、隣接位置でないときは前回確認位置の電灯計器は電圧正常か否かを判定する(V11)。   In step V9, when the position information of the most normal voltage lighting instrument on the load side is updated, it is determined whether or not the abnormal voltage lighting instrument on the power supply side and the normal voltage lighting instrument on the most load side are adjacent positions. If it is not an adjacent position (V10), it is determined whether or not the voltage meter at the previous confirmation position is normal (V11).

次に、ステップV11の判定で、前回確認位置の電灯計器の電圧は正常と判定されると、ステップV14に進み、負荷側末端位置と前回確認位置との中間の電灯計器の電圧を確認する(V14)。そして、ステップV9に戻り、ステップV9以下の処理を行う。   Next, if it is determined in step V11 that the voltage of the electric light instrument at the previous confirmation position is normal, the process proceeds to step V14, and the voltage of the electric light instrument intermediate between the load-side end position and the previous confirmation position is confirmed ( V14). Then, the process returns to Step V9, and the processes after Step V9 are performed.

そして、ステップV10の判定で、最も電源側の電圧異常電灯計器及び最も負荷側の電圧正常電灯計器が隣接位置であると判定されたときは、電圧異常電灯計器は複数であるか否かを判定し(V15)、電圧異常電灯計器が複数であるときは、低圧線の断線であると判定する(V16)。すなわち、隣接する最も電源側の電圧異常電灯計器及び最も負荷側の電圧正常電灯計器との間の低圧線での断線であると判定する。これは、図5(b)、図6(a)の場合である。一方、ステップV15の判定で電圧異常電灯計器が複数でないと判定されたときは、最も電源側の電圧異常電灯計器及び最も負荷側の電圧正常電灯計器との間の低圧線か、その電圧異常電灯計器が接続された引込線の断線または柱上ヒューズ切れと判定する(V8)。これは、図5(c)の場合である。   When it is determined in step V10 that the most abnormal power lamp instrument on the power supply side and the normal lamp instrument on the most load side are adjacent positions, it is determined whether there are a plurality of abnormal voltage lamp instruments. If there are a plurality of abnormal voltage lamps (V15), it is determined that the low voltage line is disconnected (V16). That is, it is determined that this is a disconnection in the low-voltage line between the adjacent most abnormal voltage lamp on the power supply side and the most normal voltage lamp on the load side. This is the case of FIGS. 5B and 6A. On the other hand, if it is determined in step V15 that there are not a plurality of abnormal voltage lamps, the low voltage line between the most abnormal voltage lamp on the power source side and the normal voltage lamp on the most load side, or the abnormal voltage lamp It is determined that the lead-in wire to which the instrument is connected is broken or the fuse on the column is blown (V8). This is the case of FIG.

また、ステップV13の判定で、低圧線のすべての電灯計器の電圧が異常であるときは、最も電源側の電灯計器より電源側の低圧線、柱上変圧器または高圧線の断線であると判定する(V17)。これは図5(a)に示す場合であり、図5(a)では高圧線の断線である場合を示している。   Further, if the voltage of all the electric light meters on the low-voltage line is abnormal in the determination at step V13, it is determined that the low-voltage line, pole transformer, or high-voltage line on the power source side is disconnected from the most power-side electric light meter. (V17). This is the case shown in FIG. 5A, and FIG. 5A shows the case where the high-voltage line is disconnected.

次に、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器と電灯変圧器とが混在してなる配電線の場合について説明する。柱上変圧器が動力変圧器と電灯変圧器とが混在してなる配電線の場合には、動力変圧器間での断線探索を行い、その後に電灯変圧器間での断線探索を行う。   Next, the distribution system disconnection detection system according to the embodiment of the present invention will be described in the case where the pole transformer is a distribution line in which a power transformer and a light transformer are mixed. When the pole transformer is a distribution line in which a power transformer and a light transformer are mixed, a disconnection search is performed between the power transformers, and then a disconnection search is performed between the light transformers.

図12は、本発明の実施形態に係る配電系統断線検出システムを柱上変圧器が動力変圧器と電灯変圧器とが混在してなる配電線に適用した場合の高圧線断線箇所探索部による動力変圧器間での断線探索の処理内容の一例を示すフローチャートである。図7に示した柱上変圧器が動力変圧器のみからなる配電線の断線探索の処理内容のステップS1〜S12に対し、ステップS4の後段に、負荷側末端の動力変圧器より負荷側に電灯変圧器があるか否かを判定するステップS13A及び負荷側末端の動力変圧器より負荷側に電灯変圧器がある場合には電灯変圧器の探索(a)の処理を行うステップS14Aを追加して設けるとともに、ステップS7〜ステップS11間に、動力変圧器の隣接区間内に電灯変圧器があるか否かを判定するステップS15A及び動力変圧器の隣接区間内に電灯変圧器がある場合には電灯変圧器の探索(b)の処理を行うステップS16Aを追加して設けたものである。図7と同一処理内容には同一符号を付し重複する説明は省略する。   FIG. 12 shows power by the high-voltage line break location search unit when the distribution line break detection system according to the embodiment of the present invention is applied to a distribution line in which a pole transformer is a mixture of a power transformer and a light transformer. It is a flowchart which shows an example of the processing content of the disconnection search between transformers. In contrast to steps S1 to S12 in the process of searching for disconnection of a distribution line in which the pole transformer shown in FIG. 7 is composed only of a power transformer, an electric lamp is connected to the load side from the power transformer at the end of the load side after step S4. Step S14A for determining whether or not there is a transformer and Step S14A for performing the process of searching for a light transformer (a) when there is a light transformer on the load side from the power transformer at the end of the load side are added. Step S15A for determining whether or not there is a light transformer in the adjacent section of the power transformer between Step S7 and Step S11 and if there is a light transformer in the adjacent section of the power transformer Step S16A for performing the process of transformer search (b) is additionally provided. The same processing contents as those in FIG. 7 are denoted by the same reference numerals, and redundant description is omitted.

図12において、ステップS3の判定で高圧線幹線、分岐線の負荷側末端の低圧線末端の動力計器の電圧が正常である場合には、高圧線幹線、分岐線の負荷側末端に未確認の低圧線末端の動力計器はあるか否かを判定し(S4)、高圧線幹線、分岐線の負荷側末端に未確認の低圧線末端の動力計器はある場合にはステップS2に戻る。一方、ステップS4の判定で、高圧線幹線、分岐線の負荷側末端に未確認の低圧線末端の動力計器がない場合には、負荷側末端の動力変圧器より負荷側に電灯変圧器があるか否かを判定(S13A)し、負荷側末端の動力変圧器より負荷側に電灯変圧器がないと判定されたときは、低圧線断線箇所探索部での低圧線探索の処理に移行する(S5)。ステップS5の低圧線探索処理は図8に示した処理内容と同一であるので説明を省略する。   In FIG. 12, when the voltage of the dynamometer at the end of the low-voltage line at the load-side end of the high-voltage main line and branch line is normal in the determination of step S3, It is determined whether or not there is a dynamometer at the end of the line (S4), and if there is an unidentified low-voltage line dynamometer at the load side end of the high-voltage main line or branch line, the process returns to step S2. On the other hand, if it is determined in step S4 that there is no unidentified low-voltage line power meter at the load-side end of the high-voltage main line or branch line, is there a light transformer on the load side from the power transformer at the load-side end? If it is determined (S13A) and it is determined that there is no light transformer on the load side from the power transformer at the end of the load side, the process proceeds to a low-voltage line search process in the low-voltage line disconnection location search unit (S5). ). The low-voltage line search process in step S5 is the same as the process shown in FIG.

ステップS13Aの判定で、負荷側末端の動力変圧器より負荷側に電灯変圧器があると判定された場合には、電灯変圧器の探索(a)の処理を行い(S14A)、負荷側末端の動力変圧器より負荷側に存在する電灯変圧器の断線探索を行う。電灯変圧器の探索(a)の処理内容については後述する。   If it is determined in step S13A that there is a light transformer on the load side from the power transformer on the load side end, the search for the light transformer (a) is performed (S14A), Search for disconnection of the light transformer existing on the load side from the power transformer. The processing content of the search for the electric transformer (a) will be described later.

一方、ステップS7の判定で、最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器は隣接位置であると判定されたときは、動力変圧器の隣接区間内に電灯変圧器があるか否かを判定し(S15A)、動力変圧器の隣接区間内に電灯変圧器がないときは、電圧異常動力変圧器は複数であるか否かを判定し(S11)、電圧異常動力変圧器が複数であるときは、隣接する最も電源側の電圧異常動力変圧器及び最も負荷側の電圧正常動力変圧器との間での高圧線の断線であると判定する(S12)。また、ステップS11の判定で電圧異常動力変圧器が複数でないと判定されたときは、低圧線での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(S5)。ステップS5の低圧線探索処理は図8に示した処理内容と同一であるので説明を省略する。   On the other hand, if it is determined in step S7 that the most abnormal power transformer on the power supply side and the normal voltage power transformer on the most load side are adjacent positions, the light transformer is located in the adjacent section of the power transformer. If there is no lamp transformer in the adjacent section of the power transformer, it is determined whether there are a plurality of abnormal voltage power transformers (S11). When there are a plurality of transformers, it is determined that the high-voltage line is disconnected between the adjacent most abnormal power transformer on the power supply side and normal voltage power transformer on the most load side (S12). If it is determined in step S11 that there are not a plurality of abnormal voltage power transformers, the process proceeds to a low-voltage line search process in the low-voltage line disconnection part search unit that searches for a disconnection part in the low-voltage line (S5). ). The low-voltage line search process in step S5 is the same as the process shown in FIG.

ステップS15Aの判定で動力変圧器の隣接区間内に電灯変圧器があると判定された場合には電灯変圧器の探索(b)の処理を行い(S16A)、動力変圧器の隣接区間内の電灯変圧器の断線探索を行う。電灯変圧器の探索(b)の処理内容については後述する。   If it is determined in step S15A that there is a light transformer in the adjacent section of the power transformer, search for the light transformer (b) is performed (S16A), and the light in the adjacent section of the power transformer is processed. Search for transformer disconnection. The processing content of the electric transformer search (b) will be described later.

図13は、図12における電灯変圧器の探索(a)の処理内容の一例を示すフローチャートである。図10に示した柱上変圧器が電灯変圧器のみからなる配電線の断線探索の処理内容のステップU1〜U15Aに対し、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧を負荷側から順番に確認するステップU2Aに代えて、高圧線幹線、分岐線の負荷側末端の動力変圧器までの電灯変圧器の低圧線末端の電灯計器の電圧を負荷側から順番に確認するステップU2Bとし、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧は正常か否かを判定するステップU3Aに代えて、負荷側末端の動力変圧器までの電灯変圧器の低圧線末端の電灯計器の電圧は正常か否かを判定するステップU3Bとしたものである。図10と同一処理内容には同一符号を付し重複する説明は省略する。   FIG. 13 is a flowchart showing an example of the processing content of the search for the electric transformer (a) in FIG. For the steps U1 to U15A of the content of the disconnection search process of the distribution line in which the pole transformer shown in FIG. 10 is composed only of the light transformer, the voltage of the light meter at the end of the high voltage main line and the low voltage line of the branch line is loaded Instead of step U2A for confirming in turn, step U2B for confirming the voltage of the light meter at the low-voltage line end of the light transformer to the power transformer at the load-side end of the high-voltage main line and branch line in order from the load side. Instead of step U3A for determining whether or not the voltage of the low-voltage line terminal of the high-voltage main line and branch line is normal, the voltage of the low-voltage line terminal of the light transformer up to the power transformer at the load end is determined. Step U3B is used to determine whether the voltage is normal. The same processing contents as those in FIG. 10 are denoted by the same reference numerals, and redundant description is omitted.

図12における電灯変圧器の探索(a)は、高圧線断線箇所探索部17により、負荷側末端の動力変圧器より負荷側に電灯変圧器が存在すると判定された場合の電灯変圧器の断線探索を行う処理であることから、負荷側から順番に負荷側末端の動力変圧器までの電灯変圧器の低圧線末端の電灯計器の電圧を確認することになる(U2B)。   The search (a) for the light transformer in FIG. 12 is a search for a break in the light transformer when the high voltage line break location search unit 17 determines that there is a light transformer on the load side from the power transformer at the end of the load side. Therefore, the voltage of the electric light meter at the end of the low voltage line of the electric light transformer from the load side to the power transformer at the end of the load side is confirmed in order (U2B).

すなわち、負荷側から順番に、負荷側末端の動力変圧器までの電灯変圧器の低圧線末端の電灯計器の電圧は正常か否かを判定し(U3B)、低圧線末端の電灯計器の電圧が正常である場合には、未確認の低圧線末端の電灯計器はあるか否かを判定し(U4A)、未確認の低圧線末端の電灯計器がある場合にはステップU2Bに戻る。ステップU4Aの判定で、未確認の低圧線末端の電灯計器がない場合には、すべての低圧線末端の電灯計器の電圧は正常であるので、低圧線での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(U5)。ステップU5の低圧線探索処理は図11に示した処理内容と同一であるので説明を省略する。   That is, in order from the load side, it is determined whether or not the voltage of the low-voltage line end of the light transformer to the power transformer at the end of the load side is normal (U3B). If it is normal, it is determined whether or not there is an unconfirmed low-voltage line end electric light meter (U4A), and if there is an unconfirmed low-pressure line end electric light meter, the process returns to step U2B. If it is determined in step U4A that there are no unidentified low-voltage line terminal lighting instruments, the voltage of all low-voltage line terminal lighting instruments is normal, so the low-voltage line disconnection point is searched for a disconnection point on the low-voltage line. The process proceeds to a low-pressure line search process in the search unit (U5). The low-voltage line search process in step U5 is the same as the process shown in FIG.

図14は、図12における電灯変圧器の探索(b)の処理内容の一例を示すフローチャートである。図10に示した柱上変圧器が電灯変圧器のみからなる配電線の断線探索の処理内容のステップU1〜U15Aに対し、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧を負荷側から順番に確認するステップU2Aに代えて、隣接した動力変圧器間の電灯変圧器の低圧線末端の電灯計器の電圧を負荷側から順番に確認するステップU2Cとし、高圧線幹線、分岐線の低圧線末端の電灯計器の電圧は正常か否かを判定するステップU3Aに代えて、隣接した動力変圧器間の電灯変圧器の低圧線末端の電灯計器の電圧は正常か否かを判定するステップU3Cとしたものである。図10と同一処理内容には同一符号を付し重複する説明は省略する。図10と同一処理内容には同一符号を付し重複する説明は省略する。   FIG. 14 is a flowchart showing an example of the processing content of the search for the electric transformer (b) in FIG. For the steps U1 to U15A of the content of the disconnection search process of the distribution line in which the pole transformer shown in FIG. 10 is composed only of the light transformer, the voltage of the light meter at the end of the high voltage main line and the low voltage line of the branch line is loaded Instead of step U2A for confirming in turn, step U2C for confirming the voltage of the light meter at the end of the low voltage line of the light transformer between adjacent power transformers in order from the load side is used. Instead of step U3A for determining whether or not the voltage at the line end electric light meter is normal, step U3C for determining whether or not the voltage at the low voltage line end of the light transformer between adjacent power transformers is normal. It is what. The same processing contents as those in FIG. The same processing contents as those in FIG.

図12における電灯変圧器の探索(b)は、高圧線断線箇所探索部17により、隣接した動力変圧器間に電灯変圧器が存在すると判定された場合の電灯変圧器の断線探索を行う処理であることから、隣接した動力変圧器間の電灯変圧器の低圧線末端の電灯計器の電圧を負荷側から順番に確認することになる(U2C)。   The search (b) for the light transformer in FIG. 12 is a process of searching for a break in the light transformer when the high voltage line break location search unit 17 determines that there is a light transformer between adjacent power transformers. Therefore, the voltage of the electric light meter at the end of the low voltage line of the electric light transformer between the adjacent power transformers is confirmed in order from the load side (U2C).

すなわち、隣接した動力変圧器間の電灯変圧器の低圧線末端の電灯計器の電圧は正常か否かを判定し(U3C)、低圧線末端の電灯計器の電圧が正常である場合には、未確認の低圧線末端の電灯計器はあるか否かを判定し(U4A)、未確認の低圧線末端の電灯計器がある場合にはステップU2Aに戻る。ステップU4Aの判定で、未確認の低圧線末端の電灯計器がない場合には、すべての低圧線末端の電灯計器の電圧は正常であるので、低圧線での断線箇所の探索を行う低圧線断線箇所探索部での低圧線探索の処理に移行する(U5)。ステップU5の低圧線探索処理は図11に示した処理内容と同一であるので説明を省略する。   That is, it is determined whether or not the voltage of the low-voltage line end of the light transformer between the adjacent power transformers is normal (U3C). It is determined whether there is an electric light meter at the end of the low-voltage line (U4A), and if there is an unidentified electric light meter at the end of the low-pressure line, the process returns to step U2A. If it is determined in step U4A that there are no unidentified low-voltage line terminal lighting instruments, the voltage of all low-voltage line terminal lighting instruments is normal, so the low-voltage line disconnection point is searched for a disconnection point on the low-voltage line. The process proceeds to a low-pressure line search process in the search unit (U5). The low-voltage line search process in step U5 is the same as the process shown in FIG.

このように、柱上変圧器が動力変圧器と電灯変圧器とが混在してなる配電線に対しては、まず、動力変圧器間での断線探索を行い、その後に電灯変圧器間での断線探索を行う。動力変圧器間での断線探索にて、負荷側末端の動力変圧器より負荷側に電灯変圧器がある場合には電灯変圧器の探索(a)の処理を行い、動力変圧器の隣接区間内に電灯変圧器があると判定された場合には電灯変圧器の探索(b)の処理を行い、断線箇所を探索する。   In this way, for distribution lines in which pole transformers are a mixture of power transformers and light transformers, first search for disconnection between power transformers, and then between power transformers. Search for disconnection. In the search for disconnection between power transformers, if there is a light transformer on the load side from the power transformer at the end of the load side, search for the light transformer (a) is performed, and within the adjacent section of the power transformer If it is determined that there is an electric light transformer, the process of searching for an electric light transformer (b) is performed to search for a disconnection point.

ここで、高圧線断線箇所探索部17及び低圧線断線箇所探索部20は、計器Sの電圧を受信できないときは、計器Sの電圧は異常であると判定することで断線探索の処理を行う。すなわち、計器Sの電圧を受信できない場合として、計器自体が応答不能となった場合が考えられるが、低圧側の配電線に断線が発生し低圧側の配電線の電圧が所定値以下になったときも計器は計測した電圧を送信できなくなる。そこで、本発明の実施形態では、計器Sの電圧を受信できないときは計器Sの電圧は異常であると判定することで断線探索の処理を行う。   Here, when the voltage of the instrument S cannot be received, the high voltage disconnection location search unit 17 and the low voltage disconnection location search unit 20 perform disconnection search processing by determining that the voltage of the instrument S is abnormal. That is, as a case where the voltage of the meter S cannot be received, a case where the meter itself becomes unable to respond is considered. However, a disconnection occurs in the low-voltage side distribution line, and the voltage of the low-voltage side distribution line becomes a predetermined value or less. Sometimes the instrument will not be able to transmit the measured voltage. Therefore, in the embodiment of the present invention, when the voltage of the meter S cannot be received, the disconnection search process is performed by determining that the voltage of the meter S is abnormal.

また、高圧線断線箇所探索部17は、配電線に断線兆候があったときに断線検出要求が入力され起動されるが、断線兆候としては、需要家からの報告があった場合や台風や雷などの自然現象が発生した場合に加え、計器Sを輪番で監視してその輪番で監視した計器Sの電圧が異常であるとき、配電用変電所の保護リレー動作したとき、開閉器14に内蔵のセンサが電圧異常を検知したときなどに、断線兆候が発生したとして高圧線断線箇所探索部17に断線検出要求を入力するようにしてもよい。   Further, the high voltage line disconnection location search unit 17 is activated when a disconnection detection request is input when there is a disconnection sign in the distribution line. The disconnection indication may be a case where there is a report from a customer or a typhoon or lightning. In addition to the occurrence of natural phenomena such as, when the instrument S is monitored by a ring number, when the voltage of the instrument S monitored by the ring number is abnormal, the protection relay of the distribution substation is activated, built in the switch 14 When the sensor detects a voltage abnormality, a disconnection detection request may be input to the high-voltage line disconnection location search unit 17 assuming that a disconnection sign has occurred.

本発明の実施形態によれば、断線箇所の探索に必要とする情報は計器Sで計測された電圧のみであり、断線探索のロジックでは電圧を用いて断線箇所を判断可能であるので、計器Sの接続相を管理する必要がない。また、計器Sで計測された電圧を高圧線断線箇所探索部17や低圧線断線箇所探索部20に送信し、高圧線断線箇所探索部17や低圧線断線箇所探索部20で断線探索の処理を行うので、計器Sは計測した電圧を送信するだけでよく、計器Sから高圧線断線箇所探索部17や低圧線断線箇所探索部20に送信するデータ量も軽減でき、計器Sの高性能化や大きな通信容量を確保する必要がない。   According to the embodiment of the present invention, the only information necessary for searching for the disconnection location is the voltage measured by the meter S, and the disconnection search logic can determine the disconnection location using the voltage. There is no need to manage the connection phase. In addition, the voltage measured by the instrument S is transmitted to the high voltage line break location search unit 17 and the low voltage line break location search unit 20, and the high voltage line break location search unit 17 and the low voltage line break location search unit 20 perform the disconnection search process. Therefore, the meter S only needs to transmit the measured voltage, the amount of data transmitted from the meter S to the high voltage line break location search unit 17 and the low voltage line break location search unit 20 can be reduced, and the performance of the meter S can be improved. There is no need to secure a large communication capacity.

しかも、高圧線断線箇所探索部17や低圧線断線箇所探索部20は、断線兆候が発生したとして高圧線断線箇所探索部17に断線検出要求が入力されたときにだけに起動するので、計器側での判断処理や発呼処理が必要なく、計器Sの高性能化や高性能通信機能を必要としない。従って、現状の一般的な計器(スマートメータ)や通信設備の仕様にて断線を検出することができ、低廉なスペックの設備にて配電系統断線検出システムを構築することが可能となる。   In addition, since the high voltage line break location search unit 17 and the low voltage line break location search unit 20 are activated only when a disconnection detection request is input to the high voltage line break location search unit 17 because a disconnection sign has occurred, the instrument side Therefore, there is no need for judgment processing and call processing in the above, and it is not necessary to improve the performance of the instrument S or to provide a high-performance communication function. Therefore, it is possible to detect disconnection with the specifications of current general instruments (smart meters) and communication equipment, and it is possible to construct a distribution system disconnection detection system with inexpensive equipment.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…配電変圧器、12…遮断器、13…高圧線、14…開閉器、15…柱上変圧器、16…低圧線、17…高圧線断線箇所探索部、18…データ受信部、19…出力装置、20…低圧線断線箇所探索部 DESCRIPTION OF SYMBOLS 11 ... Distribution transformer, 12 ... Circuit breaker, 13 ... High voltage line, 14 ... Switch, 15 ... Pillar transformer, 16 ... Low voltage line, 17 ... High voltage line disconnection part search part, 18 ... Data receiving part, 19 ... Output device, 20 ... low-voltage wire disconnection location search unit

Claims (5)

配電変圧器に接続された高圧線から柱上変圧器を介して接続された複数の低圧線を有した配電線の電力供給側を電源側とし電力受電側を負荷側とし、前記高圧線から前記低圧線に電力を供給する配電系統の前記高圧線及び前記低圧線の断線を検出する配電系統断線検出システムにおいて、
前記低圧線から引込線を介して接続される各需要家の受電端に設けられ少なくとも電圧値を計測し計測した電圧値を送信する機能を有した計器と、
前記計器で計測された電圧値を受信し前記計器の電圧値に基づいて前記高圧線の断線箇所を探索する高圧線断線箇所探索部と、
前記計器で計測された電圧値を受信し前記計器の電圧値に基づいて前記低圧線の断線箇所を探索する低圧線断線箇所探索部とを備え、
前記高圧線断線箇所探索部は、前記配電線の断線の検出要求があったときに起動され、前記低圧線の末端計器の電圧値を判定し、前記低圧線の末端計器の電圧値が異常であるときはその低圧線の柱上変圧器を電圧異常変圧器とし、前記低圧線の末端計器の電圧値が正常であるときはその低圧線の柱上変圧器を電圧正常変圧器とし、隣接する最も前記負荷側の前記電圧正常変圧器と最も前記電源側の前記電圧異常変圧器との間の高圧線に断線の可能性があると判定し、
前記低圧線断線箇所探索部は、前記高圧線断線箇所探索部で前記電圧異常変圧器が1以下であるときに起動され、前記低圧線に接続される計器の電圧値を判定し、電圧値が異常である計器を電圧異常計器とし、電圧値が正常である計器を電圧正常計器とし、隣接する最も前記負荷側の前記電圧正常計器と最も前記電源側の前記電圧異常計器との間の低圧線に断線の可能性があると判定することを特徴とする配電系統断線検出システム。
The power supply side of the distribution line having a plurality of low voltage lines connected from the high voltage line connected to the distribution transformer via the pole transformer is the power source side and the power receiving side is the load side, and from the high voltage line In the distribution system disconnection detection system for detecting disconnection of the high-voltage line and the low-voltage line of the distribution system that supplies power to the low-voltage line,
An instrument having a function of measuring at least a voltage value and transmitting a measured voltage value provided at a receiving end of each consumer connected via a lead-in line from the low-voltage line;
Receiving a voltage value measured by the instrument and searching for a disconnection part of the high-voltage line based on the voltage value of the instrument;
A low voltage line break location search unit that receives a voltage value measured by the meter and searches for a break location of the low voltage line based on the voltage value of the meter;
The high-voltage wire break location searching unit is activated when a disconnection request for the distribution line is requested, and determines the voltage value of the terminal instrument of the low-voltage line, and the voltage value of the terminal instrument of the low-voltage line is abnormal. In some cases, the pole transformer of the low voltage line is a voltage abnormal transformer, and when the voltage value of the terminal gauge of the low voltage line is normal, the pole transformer of the low voltage line is a voltage normal transformer. It is determined that there is a possibility of disconnection in the high voltage line between the voltage normal transformer on the most load side and the voltage abnormal transformer on the most power source side,
The low-voltage wire break location search unit is activated when the voltage abnormal transformer is 1 or less in the high voltage line break location search unit, determines a voltage value of a meter connected to the low voltage line, and the voltage value is A voltage abnormality meter is an abnormal meter, a voltage normal meter is a voltage normal meter, and a low voltage line between the voltage normal meter closest to the load side and the voltage abnormal meter closest to the power supply side It is determined that there is a possibility of disconnection in the distribution system disconnection detection system.
前記低圧線断線箇所探索部は、
前記低圧線のすべての計器が電圧異常計器であるときは最も電源側の電圧異常計器より電源側の低圧線か、柱上変圧器及び高圧線の断線と判定することを特徴とする請求項1に記載の配電系統断線検出システム。
The low-voltage wire disconnection location search unit is
2. When all the meters on the low voltage line are voltage abnormality meters, it is determined that the voltage abnormality meter on the power source side is the low voltage line on the power source side, or that the pole transformer and the high voltage line are disconnected. Distribution system disconnection detection system described in 1.
前記低圧線断線箇所探索部は、前記電圧異常計器が1つのみであるときは最も電源側の電圧異常計器及び最も負荷側の電圧正常計器との間の低圧線か、引込線の断線または柱上ヒューズ切れと判定することを特徴とする請求項1または請求項2に記載の配電系統断線検出システム。   When there is only one voltage abnormality meter, the low-voltage wire breakage location search unit is either a low-voltage line between the most abnormal voltage meter on the power supply side and the most normal voltage meter on the load side, or the disconnection of the lead-in wire or on the column The distribution system disconnection detection system according to claim 1, wherein it is determined that the fuse is blown. 前記高圧線断線箇所探索部は、前記配電系統が前記柱上変圧器として電灯変圧器のみを接続した電灯配電系統である場合には、前記負荷側から前記電源側に向けて前記低圧線の末端計器の電圧値を順番に判定し、隣接する最も前記負荷側の前記電圧正常変圧器と最も前記電源側の前記電圧異常変圧器との間の高圧線に断線の可能性があると判定した後に、前記電圧正常変圧器より前記電源側の前記低圧線の末端計器の電圧値を確認して前記電源側に新たな電圧異常変圧器があるか否かを確認し、新たな電圧異常変圧器がない場合は、先に判定した隣接する最も前記負荷側の前記電圧正常変圧器と最も前記電源側の前記電圧異常変圧器との間の高圧線に断線があると判定し、新たな電圧異常変圧器がある場合は、再度、隣接する最も前記負荷側の前記電圧正常変圧器と最も前記電源側の前記電圧異常変圧器とを探索することを特徴とする請求項1乃至3のいずれか1項に記載の配電系統断線検出システム。 When the distribution system is an electric power distribution system in which only the electric light transformer is connected as the pole transformer, the end of the low voltage line is connected from the load side to the power source side. After determining the voltage value of the meter in order, it is determined that there is a possibility of disconnection in the high voltage line between the adjacent voltage normal transformer on the most load side and the voltage abnormal transformer on the most power supply side. , Confirm the voltage value of the terminal gauge of the low-voltage line on the power supply side from the voltage normal transformer to check whether there is a new voltage abnormal transformer on the power supply side, If not, it is determined that there is a disconnection in the high-voltage line between the adjacent voltage normal transformer on the most load side and the voltage abnormal transformer on the most power source side that have been determined earlier, and a new voltage abnormal transformer If there is a container, again the most adjacent load side Distribution system disconnection detection system according to any one of claims 1 to 3, characterized in that searching and said voltage abnormality transformer of the voltage normal transformer most the power supply side. 前記高圧線断線箇所探索部及び前記低圧線断線箇所探索部は、前記計器の電圧を受信できないときは、前記計器の電圧は異常であると判定することを特徴とする請求項1乃至請求項4のいずれか1項に記載の配電系統断線検出システム。   5. The high voltage line break location search unit and the low voltage line break location search unit determine that the voltage of the meter is abnormal when the voltage of the meter cannot be received. The distribution system disconnection detection system according to any one of the above.
JP2014216892A 2014-10-24 2014-10-24 Distribution system disconnection detection system Active JP6492529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216892A JP6492529B2 (en) 2014-10-24 2014-10-24 Distribution system disconnection detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216892A JP6492529B2 (en) 2014-10-24 2014-10-24 Distribution system disconnection detection system

Publications (3)

Publication Number Publication Date
JP2016086496A JP2016086496A (en) 2016-05-19
JP2016086496A5 JP2016086496A5 (en) 2017-10-12
JP6492529B2 true JP6492529B2 (en) 2019-04-03

Family

ID=55973518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216892A Active JP6492529B2 (en) 2014-10-24 2014-10-24 Distribution system disconnection detection system

Country Status (1)

Country Link
JP (1) JP6492529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287285B2 (en) * 2017-12-18 2022-03-29 Landis+Gyr Innovations, Inc. Methods and systems for distributed verification and control of a resource distribution network
CN115113001B (en) * 2022-07-12 2023-10-20 国网江苏省电力有限公司宿迁供电分公司 Self-adaptive power distribution network single-phase disconnection fault positioning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455786B2 (en) * 2010-05-27 2014-03-26 株式会社日立製作所 Distribution system disconnection detection device, distribution system disconnection detection system, meter-reading device, relay device, control device, and distribution system disconnection detection method
JP2012105463A (en) * 2010-11-10 2012-05-31 Chugoku Electric Power Co Inc:The Failure determination system
WO2014018909A1 (en) * 2012-07-27 2014-01-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods
JP5854953B2 (en) * 2012-08-29 2016-02-09 三菱電機株式会社 Disconnection detector
JP2014150647A (en) * 2013-01-31 2014-08-21 Chugoku Electric Power Co Inc:The Power failure section determining system

Also Published As

Publication number Publication date
JP2016086496A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
US8736297B2 (en) Method for production of a fault signal, and an electrical protective device
CN109564257A (en) The fault detection and protection carried out during stable state using traveling wave
CN102879630A (en) Capacitive voltage transformer failure monitoring instrument
CN105223427B (en) The detection method and detection device of fault electric arc
JP6547426B2 (en) Distribution line management system
CN101803136A (en) Differential protection method, system and device
KR101567491B1 (en) Apparatus for detecting leakage current and switch board comprising apparatus for detecting leakage current
CN201945681U (en) Online monitoring device for capacitor voltage transformer
US8766809B2 (en) Apparatus and method for correcting error of acquired data
JP6492529B2 (en) Distribution system disconnection detection system
CN204241594U (en) A kind of real-time monitoring system for substation transformer operating condition
CN202886456U (en) Capacitor voltage transformer fault monitoring instrument
JP4068624B2 (en) Electrostatic high voltage synchronous phase detection method and apparatus
JP5854953B2 (en) Disconnection detector
KR20210014877A (en) An On-line Monitoring Method and Its Device Using the Circuit Constants Measurement of Electric Power Equipment
CN109075608A (en) Wire breakage detector
CN102545151A (en) On-line monitoring system for capacitor voltage transformer
AU2013209382B2 (en) Detection system for detecting impedance variation in a neutral conductor, transformer station compising such a system and method for detecting impedance variation in a neutral conductor with such a system
US10916930B2 (en) Electrical power systems
CN106918757A (en) A kind of method of discrimination of Secondary Circuit of Potential Transformer integrity
KR102219806B1 (en) Method for monitoring a smart switchgear and control panel and the smart switchgear and control panel thereof
US6870719B2 (en) Plausibility checking of current transformers in substations
JP2016086496A5 (en)
JP2018021826A (en) Measurement device, measurement system and computer system
JP2016070854A (en) Short-circuit fault-point determining system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150