JP6486212B2 - Evaporator and vehicle air conditioner using the same - Google Patents

Evaporator and vehicle air conditioner using the same Download PDF

Info

Publication number
JP6486212B2
JP6486212B2 JP2015118191A JP2015118191A JP6486212B2 JP 6486212 B2 JP6486212 B2 JP 6486212B2 JP 2015118191 A JP2015118191 A JP 2015118191A JP 2015118191 A JP2015118191 A JP 2015118191A JP 6486212 B2 JP6486212 B2 JP 6486212B2
Authority
JP
Japan
Prior art keywords
tube
heat exchange
refrigerant
air
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015118191A
Other languages
Japanese (ja)
Other versions
JP2017003199A (en
Inventor
純孝 渡辺
純孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2015118191A priority Critical patent/JP6486212B2/en
Publication of JP2017003199A publication Critical patent/JP2017003199A/en
Application granted granted Critical
Publication of JP6486212B2 publication Critical patent/JP6486212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、エバポレータおよびこれを用いた車両用空調装置に関する。   The present invention relates to an evaporator and a vehicle air conditioner using the evaporator.

この明細書および特許請求の範囲において、図1〜図3の上下、左右を上下、左右というものとし、図1に矢印Xで示す方向を通風方向というものとする。   In this specification and claims, the top and bottom, left and right in FIGS. 1 to 3 are referred to as top and bottom and left and right, and the direction indicated by the arrow X in FIG.

車両用空調装置として、空気導入口、空気送出口、および空気導入口と空気送出口とを通じさせる空気通路を有するケーシングと、ケーシングの空気通路内に配置されたエバポレータと、ケーシングの空気導入口を通してケーシングの空気通路内に空気を送り込む送風機とを備えており、ケーシングの空気通路が、空気導入口と空気送出口との中間部に設けられかつエバポレータを配置する第1部分、空気導入口に通じるとともに第1部分よりも空気導入口側に設けられた第2部分、および空気送出口に通じるとともに第1部分よりも空気送出口側に設けられた第3部分を有し、第1部分および第3部分における空気流れ方向が同一であるとともに、第2部分における空気流れ方向と、第1部分および第3部分における空気流れ方向とが直角をなしているものが知られている(特許文献1参照)。エバポレータは、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともに冷凍サイクルを構成している。   As a vehicle air conditioner, a casing having an air inlet, an air outlet, and an air passage through the air inlet and the air outlet, an evaporator disposed in the air passage of the casing, and an air inlet of the casing A blower that feeds air into the air passage of the casing, and the air passage of the casing is provided in an intermediate portion between the air introduction port and the air delivery port, and communicates with the air introduction port, the first portion where the evaporator is disposed And a second portion provided closer to the air inlet than the first portion, and a third portion leading to the air outlet and further closer to the air outlet than the first portion. The air flow direction in the three parts is the same, and the air flow direction in the second part is perpendicular to the air flow direction in the first part and the third part. Those without has been known (see Patent Document 1). The evaporator constitutes a refrigeration cycle together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor.

特許文献1記載の車両用空調装置のケーシングの空気通路の第2部分においては、空気導入口側では風速が低く、空気導入口から遠ざかるにつれて風速が高くなる傾向にあるので、第1部分に配置されたエバポレータを通過する空気の風速も、空気導入口側では低く、空気導入口から遠ざかるにつれて高くなり、エバポレータの幅方向において風速バランスがばらつく。したがって、風速が低い部分ではエバポレータを通過してきた空気の温度である吐気温が低くなるとともに、風速が高い部分では吐気温が高くなり、その結果吐気温がばらつくという問題がある。   In the second part of the air passage of the casing of the vehicle air conditioner described in Patent Document 1, the wind speed is low on the air inlet side, and the wind speed tends to increase as the distance from the air inlet increases. The wind speed of the air passing through the evaporator is also low on the air inlet side, increases as it moves away from the air inlet, and the wind speed balance varies in the width direction of the evaporator. Therefore, there is a problem that the temperature of the air that has passed through the evaporator is low at a portion where the wind speed is low, and the temperature is high at a portion where the wind speed is high, resulting in a variation in the temperature.

このような問題を解決するために、長手方向を上下方向に向けた状態で通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んだ第1チューブ列および第2チューブ列と、第1チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第1チューブ列の全熱交換チューブが接続された第1ヘッダ部および第2ヘッダ部と、第2チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第2チューブ列の全熱交換チューブが接続された第3ヘッダ部および第4ヘッダ部とを備えており、第1ヘッダ部と第3ヘッダ部、および第2ヘッダ部と第4ヘッダ部とが通風方向に並んで設けられ、第1ヘッダ部の一端部に冷媒入口が設けられるとともに、第3ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、第1チューブ列および第2チューブ列に、それぞれ連続して並んだ複数の熱交換チューブからなり、かつ冷媒が熱交換チューブ内を上から下に流れる下降流チューブ群と、複数の熱交換チューブからなり、かつ冷媒が下から上に流れる上昇流チューブ群とが交互に設けられ、冷媒入口から流入した冷媒が、すべてのチューブ群の熱交換チューブを通過して冷媒出口から流出するようになされ、風下側チューブ列の冷媒入口から最も遠い位置にある最遠チューブ群および風上側チューブ列の冷媒出口から最も遠い位置にある最遠チューブ群がいずれも下降流チューブ群であるとともに、通風方向に並んだ両最遠チューブ群により1つの熱交換パスが構成されており、第1および第3ヘッダ部に、両チューブ列の最遠チューブ群の冷媒流れ方向上流側端部が通じる区画が設けられ、当該両区画が相互に通じさせられているエバポレータが提案されている(特許文献2参照)。   In order to solve such a problem, a plurality of heat exchange tubes arranged at intervals in a direction perpendicular to the ventilation direction with the longitudinal direction oriented in the vertical direction, and arranged in the ventilation direction. 1 tube row and 2nd tube row, the longitudinal direction is arranged in the longitudinal direction both ends of the heat exchange tubes of the first tube row, and the total heat exchange tubes of the first tube row are arranged The first header portion and the second header portion that are connected to each other and the longitudinal direction both ends of the heat exchange tubes of the second tube row are arranged with the longitudinal direction facing the arrangement direction of the heat exchange tubes, and all of the second tube rows are arranged. A third header part and a fourth header part to which a heat exchange tube is connected are provided, and the first header part and the third header part, and the second header part and the fourth header part are provided side by side in the ventilation direction. And A refrigerant inlet is provided at one end of one header part, a refrigerant outlet is provided at the same end as the refrigerant inlet in the third header part, and a plurality of lines arranged continuously in the first tube row and the second tube row, respectively. The heat exchanger tubes and the downflow tube group in which the refrigerant flows from the top to the bottom in the heat exchange tube and the upward flow tube groups in which the refrigerant flows from the bottom to the top alternately The refrigerant flowed in from the refrigerant inlet is passed through the heat exchange tubes of all the tube groups and flows out of the refrigerant outlet, and the farthest tube group located farthest from the refrigerant inlet of the leeward tube row and The farthest tube group located farthest from the refrigerant outlet in the windward tube row is the downflow tube group, and both farthest tubes lined up in the ventilation direction. The first and third header sections are provided with sections through which the upstream end portions in the refrigerant flow direction of the farthest tube groups of both tube rows communicate with each other. A connected evaporator has been proposed (see Patent Document 2).

特許文献2記載のエバポレータにおいては、両チューブ列の最遠チューブ群からなる1つの熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過する空気が最も冷やされるので、特許文献2記載のエバポレータを、特許文献1記載の車両用空調装置におけるケーシングの空気通路の第1部分に、両チューブ列の最遠チューブ群からなる熱交換パスが空気導入口とは反対側に位置するように配置することが考えられている。   In the evaporator described in Patent Document 2, since the air passing through the ventilation gap between adjacent heat exchange tubes of one heat exchange path consisting of the farthest tube group of both tube rows is cooled most, the evaporator described in Patent Document 2 Is arranged in the first part of the air passage of the casing in the vehicle air conditioner described in Patent Document 1 so that the heat exchange path consisting of the farthest tube groups of both tube rows is located on the side opposite to the air inlet. It is considered.

しかしながら、特許文献2記載のエバポレータを、上述したように特許文献1記載の車両用空調装置のケーシングの第1部分に配置した場合、コンデンサを通過するとともにエバポレータに送り込まれる冷媒を減圧する膨張弁は、ケーシングの外側における送風機側の部分に配置しなければならず、膨張弁とケーシングの空気通路の第1部分との距離が大きくなり、ケーシング、送風機および膨張弁が占めるスペースが大きくなるという問題がある。   However, when the evaporator described in Patent Document 2 is arranged in the first part of the casing of the vehicle air conditioner described in Patent Document 1 as described above, the expansion valve that passes through the condenser and depressurizes the refrigerant sent to the evaporator is In addition, there is a problem in that the distance between the expansion valve and the first portion of the air passage of the casing is increased, and the space occupied by the casing, the blower, and the expansion valve is increased. is there.

また、特許文献2記載のエバポレータを、特許文献1記載の車両用空調装置におけるケーシングの空気通路の第1部分に、両チューブ列の最遠チューブ群からなる熱交換パスが空気導入口とは反対側に位置するように配置することも考えられるが、この場合、風速が低い空気導入口側に最も冷えやすい部分が来るので、両チューブ列の最遠チューブ群からなる熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過する空気の温度は一層低くなる。これとは逆に、冷媒出口側の最終熱交換パスには冷媒が過熱状態となるスーパーヒート領域が生じ、最終熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度は高くなるが、最終熱交換パスが風速が高い最も冷えにくい部分に来るので、最終熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度は一層高くなる。したがって、エバポレータを通過した空気の温度である吐気温のばらつきが一層顕著になる。しかも、スーパーヒート領域が生じている最終熱交換パスが、風速が高い最も冷えにくい部分に来るので、圧縮機のオフ時には、風上側チューブ列の最遠チューブ群の隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度は短時間で上昇し、当該空気により風下側チューブ列の最遠チューブ群の熱交換チューブ内に残存していた液相冷媒も暖められて短時間で蒸発する。したがって、最終熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度が短時間で上昇することになり、圧縮機のオフ時とオン時とでは、エバポレータを通過した空気の温度である吐気温の温度差が顕著になる。   In addition, the evaporator described in Patent Document 2 is opposite to the air introduction port in the first portion of the air passage of the casing in the vehicle air conditioner described in Patent Document 1, which is the farthest tube group of both tube rows. However, in this case, since the coolest part comes to the air inlet side where the wind speed is low, the heat adjacent to the heat exchange path consisting of the farthest tube group of both tube rows The temperature of the air passing through the ventilation gap between the exchange tubes is further lowered. On the other hand, a superheat region in which the refrigerant is overheated occurs in the final heat exchange path on the refrigerant outlet side, and the temperature of the air that has passed through the ventilation gap between adjacent heat exchange tubes in the final heat exchange path is However, since the final heat exchange path comes to the part where the wind speed is most difficult to cool, the temperature of the air that has passed through the ventilation gap between adjacent heat exchange tubes of the final heat exchange path becomes higher. Therefore, the variation in the discharge temperature, which is the temperature of the air that has passed through the evaporator, becomes even more pronounced. In addition, since the final heat exchange path where the superheat region occurs is located at the most difficult part of the cooling where the wind speed is high, ventilation between adjacent heat exchange tubes in the farthest tube group of the windward side tube row when the compressor is off. The temperature of the air passing through the gap rises in a short time, and the liquid phase refrigerant remaining in the heat exchange tubes of the farthest tube group in the leeward side tube row is also warmed by the air and evaporates in a short time. Therefore, the temperature of the air that has passed through the ventilation gap between adjacent heat exchange tubes in the final heat exchange path rises in a short time, and the air that has passed through the evaporator is turned on when the compressor is off and on. The temperature difference between the discharged air temperature, which is the temperature, becomes significant.

特開2002−144848号公報JP 2002-144848 A 特開2009−156532号公報JP 2009-156532 A

この発明の目的は、上記問題を解決し、エバポレータを通過してきた空気の温度である吐気温を均一化した上で、車両用空調装置が占めるスペースを小さくしうるエバポレータおよびこれを用いた車両用空調装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, to make the discharge air temperature that is the temperature of the air that has passed through the evaporator uniform, and to reduce the space occupied by the vehicle air conditioner, and to a vehicle using the same It is to provide an air conditioner.

本発明は、前記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けた状態で通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んだ第1チューブ列および第2チューブ列と、第1チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第1チューブ列の全熱交換チューブが接続された第1ヘッダ部および第2ヘッダ部と、第2チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第2チューブ列の全熱交換チューブが接続された第3ヘッダ部および第4ヘッダ部とを備えており、第1ヘッダ部と第3ヘッダ部、および第2ヘッダ部と第4ヘッダ部とが通風方向に並んで設けられ、第1ヘッダ部の一端部に冷媒入口が設けられるとともに、第3ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、第1チューブ列および第2チューブ列に、それぞれ連続して並んだ複数の熱交換チューブからなり、かつ冷媒が熱交換チューブ内を上から下に流れる下降流チューブ群と、複数の熱交換チューブからなり、かつ冷媒が下から上に流れる上昇流チューブ群とが交互に設けられているエバポレータであって、
第1チューブ列の冷媒入口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向と、第2チューブ列の冷媒出口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向とが同じであり、第1ヘッダ部および第3ヘッダ部に、両チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が設けられるとともに両区画が通じさせられ、第3ヘッダ部に、第2チューブ列における最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第1ヘッダ部における第1チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が入口区画となるとともに、冷媒入口が入口区画に通じさせられ、第3ヘッダ部における第2チューブ列の最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が出口区画になるとともに、冷媒出口が出口区画に通じさせられ、
両チューブ列の最近チューブ群により1つの入口端熱交換パスが構成され、第2チューブ列における最近チューブ群に隣接するチューブ群により出口端熱交換パスが構成され、両チューブ列の残りのチューブ群により当該チューブ群と同数の中間熱交換パスが構成され、冷媒入口から入口区画に流入した冷媒が、入口端熱交換パス、すべての中間熱交換パスおよび出口端熱交換パスを順次流れて出口区画に入り、冷媒出口から流出するようになされているエバポレータ。
1) A first tube row and a second tube row which are composed of a plurality of heat exchange tubes arranged at intervals in a direction perpendicular to the ventilation direction with the longitudinal direction thereof being directed vertically, and arranged in the ventilation direction. And a first header portion that is disposed on both ends in the longitudinal direction of the heat exchange tubes of the first tube row with the longitudinal direction oriented in the direction of arrangement of the heat exchange tubes, and to which the total heat exchange tubes of the first tube row are connected, and The second header portion and the second heat exchanger tube of the second tube row are arranged at both ends in the longitudinal direction with the longitudinal direction directed in the direction in which the heat exchanger tubes are arranged, and the second heat exchanger tube of the second tube row is connected. 3 header portions and a fourth header portion, the first header portion and the third header portion, and the second header portion and the fourth header portion are provided side by side in the ventilation direction, and one end of the first header portion Refrigerant inlet A refrigerant outlet is provided at the same end as the refrigerant inlet in the third header portion, and is composed of a plurality of heat exchange tubes arranged continuously in the first tube row and the second tube row, respectively. An evaporator in which a downflow tube group that flows from the top to the bottom in the heat exchange tube and a plurality of heat exchange tubes and an upflow tube group in which the refrigerant flows from the bottom to the top are alternately provided,
The refrigerant flow direction of the heat exchange tube of the nearest tube group closest to the refrigerant inlet of the first tube row is the same as the refrigerant flow direction of the heat exchange tube of the nearest tube group nearest to the refrigerant outlet of the second tube row, The first header part and the third header part are provided with a section through which only the upstream end portion in the refrigerant flow direction of the nearest tube group of both tube rows communicates, and the both sections are communicated, and the second header is provided in the third header part. A section through which only the downstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group in the row communicates is provided, and only the upstream end portion in the refrigerant flow direction of the nearest tube group in the first tube row in the first header portion communicates. The compartment becomes the inlet compartment, and the refrigerant inlet is communicated with the inlet compartment, and the tube group adjacent to the nearest tube group of the second tube row in the third header portion With only medium flow direction downstream side end communicating compartment is an outlet compartment, the refrigerant outlet is vented to the outlet compartment,
An inlet end heat exchange path is constituted by the nearest tube groups of both tube rows, an outlet end heat exchange path is constituted by the tube group adjacent to the nearest tube group in the second tube row, and the remaining tube groups of both tube rows As a result, the same number of intermediate heat exchange paths as the tube group are formed, and the refrigerant flowing from the refrigerant inlet to the inlet compartment sequentially flows through the inlet end heat exchange path, all the intermediate heat exchange paths, and the outlet end heat exchange path to the outlet compartment. An evaporator that enters and flows out of the refrigerant outlet.

2)入口端熱交換パスに含まれる熱交換チューブの数が、各中間熱交換パスに含まれる熱交換チューブの数、および出口端熱交換パスに含まれる熱交換チューブの数よりも少なくなっている上記1)記載のエバポレータ。   2) The number of heat exchange tubes included in the inlet end heat exchange path is less than the number of heat exchange tubes included in each intermediate heat exchange path and the number of heat exchange tubes included in the outlet end heat exchange path. The evaporator according to 1) above.

3)第2ヘッダ部に、第1チューブ列の最近チューブ群の冷媒流れ方向下流側端部および当該最近チューブ群に隣接するチューブ群の冷媒流れ方向上流側端部が通じる区画が設けられ、第4ヘッダ部に、第2チューブ列の最近チューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第2ヘッダ部における第1チューブ列の最近チューブ群の冷媒流れ方向下流側端部および当該最近チューブ群に隣接するチューブ群の冷媒流れ方向上流側端部が通じる区画と、第4ヘッダ部における第2チューブ列の最近チューブ群の冷媒流れ方向下流側端部のみが通じる区画とが通じさせられている上記1)または2)記載のエバポレータ。   3) The second header portion is provided with a section through which the downstream end portion in the refrigerant flow direction of the nearest tube group of the first tube row communicates with the upstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group. 4 The header section is provided with a section through which only the downstream end portion in the refrigerant flow direction of the nearest tube group of the second tube row communicates, and the downstream end portion in the refrigerant flow direction of the nearest tube group of the first tube row in the second header portion And a section through which the upstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group communicates and a section through which only the downstream end portion in the refrigerant flow direction of the nearest tube group of the second tube row in the fourth header section communicates. The evaporator according to 1) or 2), which is communicated.

4)第1チューブ列のチューブ群の数が3以上の奇数であるとともに、第2チューブ列のチューブ群の数が第1チューブ列のチューブ群の数よりも1つ少ない数であり、第1チューブ列の冷媒入口から最も遠い最遠チューブ群の冷媒流れ方向が、第1チューブ列の最近チューブ群の冷媒流れ方向と同じであり、第2チューブ列の冷媒出口から最も遠い最遠チューブ群の冷媒流れ方向が、第2チューブ列の最近チューブ群の冷媒流れ方向と逆向きであり、第2ヘッダ部に第1チューブ列の最遠チューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第4ヘッダ部に第2チューブ列の最遠チューブ群の冷媒流れ方向上流側端部のみが通じる区画が設けられ、第2ヘッダ部における第1チューブ列の最遠チューブ群の冷媒流れ方向下流側端部が通じる区画と、第4ヘッダ部における第2チューブ列の最遠チューブ群の冷媒流れ方向上流側端部が通じる区画とが通じている上記1)〜3)のうちのいずれかに記載のエバポレータ。   4) The number of tube groups in the first tube row is an odd number of 3 or more, the number of tube groups in the second tube row is one less than the number of tube groups in the first tube row, The refrigerant flow direction of the farthest tube group farthest from the refrigerant inlet of the tube row is the same as the refrigerant flow direction of the nearest tube group of the first tube row, and the farthest tube group farthest from the refrigerant outlet of the second tube row. The refrigerant flow direction is opposite to the refrigerant flow direction of the nearest tube group of the second tube row, and there is a section where only the downstream end portion of the farthest tube group of the first tube row communicates with the downstream end portion of the first tube row. A section in which only the upstream end in the refrigerant flow direction of the farthest tube group of the second tube row communicates is provided in the fourth header portion, and the refrigerant flow of the farthest tube group of the first tube row in the second header portion Downstream direction Any one of the above 1) to 3), in which the section that communicates with the section that communicates with the upstream end in the refrigerant flow direction of the farthest tube group of the second tube row in the fourth header section Evaporator.

5)第1および第3ヘッダ部が、第2および第4ヘッダ部の上方に配置されており、入口端熱交換パスを構成する第1および第2チューブ列の最近チューブ群が下降流チューブ群であり、出口端熱交換パスを構成する第2チューブ列のチューブ群が上昇流チューブ群である上記4)記載のエバポレータ。   5) The first and third header portions are arranged above the second and fourth header portions, and the nearest tube group of the first and second tube rows constituting the inlet end heat exchange path is the downflow tube group The evaporator according to 4) above, wherein the tube group of the second tube row constituting the outlet end heat exchange path is an upflow tube group.

6)第1チューブ列に、第1〜第3の3つのチューブ群が、冷媒入口側端部から他端部に向かって順番に並んで設けられ、第2チューブ列に第4および第5の2つのチューブ群が冷媒出口側端部から他端部に向かって順番に並んで設けられている上記4)または5)記載のエバポレータ。   6) First to third tube groups are provided in the first tube row in order from the refrigerant inlet side end portion to the other end portion, and the fourth and fifth tube groups are provided in the second tube row. The evaporator according to 4) or 5), wherein the two tube groups are provided in order from the refrigerant outlet side end toward the other end.

7)空気導入口、空気送出口、および空気導入口と空気送出口とを通じさせる空気通路を有するケーシングと、ケーシングの空気通路内に配置されたエバポレータと、エバポレータに送り込まれる冷媒を減圧する膨張弁と、ケーシングの空気導入口を通してケーシングの空気通路内に空気を送り込む送風機とを備えており、ケーシングの空気通路が、空気導入口と空気送出口との中間部に設けられかつエバポレータを配置する第1部分、空気導入口に通じるとともに第1部分よりも空気導入口側に設けられた第2部分、および空気送出口に通じるとともに第1部分よりも空気送出口側に設けられた第3部分を有し、第1部分および第3部分における空気流れ方向が同一であり、第2部分における空気流れ方向と、第1部分および第3部分における空気流れ方向とが異なっているとともに一定の角度をなしている車両用空調装置において、
上記1)〜6)のうちのいずれかに記載されたエバポレータが、各ヘッダ部の長手方向が、空気通路の第1部分での空気の流れ方向と直角をなす方向を向き、かつ冷媒入口および冷媒出口が、空気導入口とは反対側に位置するように配置され、膨張弁が、ケーシングの外側でかつ空気導入口とは反対側の位置に配置されている車両用空調装置。
7) A casing having an air inlet, an air outlet, and an air passage through the air inlet and the air outlet, an evaporator disposed in the air passage of the casing, and an expansion valve for reducing the pressure of the refrigerant sent to the evaporator And a blower that sends air into the air passage of the casing through the air inlet of the casing, and the air passage of the casing is provided in an intermediate portion between the air inlet and the air outlet and the evaporator is disposed. 1 part, the 2nd part provided in the air introduction port side rather than the 1st part while communicating with the air introduction port, and the 3rd part provided in the air delivery port side while communicating with the air delivery port The air flow direction in the first part and the third part is the same, the air flow direction in the second part, and the first part and the third part. A moving vehicle air-conditioning apparatus forms a predetermined angle with being different from the direction of air flow,
In the evaporator described in any one of 1) to 6) above, the longitudinal direction of each header portion is oriented in a direction perpendicular to the air flow direction in the first portion of the air passage, and the refrigerant inlet and A vehicle air conditioner in which the refrigerant outlet is disposed on the opposite side of the air introduction port, and the expansion valve is disposed on the outer side of the casing and on the opposite side of the air introduction port.

8)ケーシングの空気通路の第2部分における空気流れ方向と、第1部分および第3部分における空気流れ方向とが直角をなしており、ケーシングの空気通路の第2部分の流路面積が、空気導入口から遠ざかるに連れて小さくなっている上記7)記載のエバポレータ。   8) The air flow direction in the second portion of the air passage of the casing is perpendicular to the air flow direction in the first portion and the third portion, and the flow area of the second portion of the air passage of the casing is air The evaporator according to the above 7), which becomes smaller as the distance from the introduction port increases.

上記1)〜6)のエバポレータによれば、第1チューブ列の冷媒入口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向と、第2チューブ列の冷媒出口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向とが同じであり、第1ヘッダ部および第3ヘッダ部に、両チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が設けられるとともに両区画が通じさせられ、第3ヘッダ部に、第2チューブ列における最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第1ヘッダ部における第1チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が入口区画となるとともに、冷媒入口が入口区画に通じさせられ、第3ヘッダ部における第2チューブ列の最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が出口区画になるとともに、冷媒出口が出口区画に通じさせられ、両チューブ列の最近チューブ群により1つの入口端熱交換パスが構成され、第2チューブ列における最近チューブ群に隣接するチューブ群により出口端熱交換パスが構成され、両チューブ列の残りのチューブ群により当該チューブ群と同数の中間熱交換パスが構成され、冷媒入口から入口区画に流入した冷媒が、入口端熱交換パス、すべての中間熱交換パスおよび出口端熱交換パスを順次流れて出口区画に入り、冷媒出口から流出するようになされているので、冷媒入口および冷媒出口側に設けられ、かつ両チューブ列の最近チューブ群により構成された入口端熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過する空気が最も冷やされる。したがって、上記1)〜6)のエバポレータを、特許文献1記載の車両用空調装置におけるケーシングの空気通路の第1部分に、両チューブ列の最近チューブ群からなる入口端熱交換パスが空気導入口とは反対側に位置するように配置することによって、エバポレータを通過する空気の風速が最も高くかつ空気が冷やされにくい部分に、最も冷やされやすい入口端熱交換パスを位置させ、さらにエバポレータを通過する風速が最も低くかつ空気が冷やされやすい部分に、スーパーヒート領域が生じて最も冷やされにくい出口端熱交換パスを位置させることができる。その結果、エバポレータを通過した吐気温を、エバポレータの幅方向に均一化することができる。   According to the evaporators 1) to 6) above, the direction of refrigerant flow in the heat exchange tubes of the nearest tube group closest to the refrigerant inlet of the first tube row and the heat of the nearest tube group closest to the refrigerant outlet of the second tube row. The refrigerant flow direction of the exchange tube is the same, and the first header part and the third header part are provided with a section through which only the upstream end portion in the refrigerant flow direction of the nearest tube group of both tube rows communicates, and both sections communicate with each other. And the third header portion is provided with a section through which only the downstream end in the refrigerant flow direction of the tube group adjacent to the nearest tube group in the second tube row communicates, and the nearest tube of the first tube row in the first header portion. The section where only the upstream end of the group in the refrigerant flow direction communicates becomes the inlet section, and the refrigerant inlet communicates with the inlet section. A section where only the downstream end portion in the refrigerant flow direction of the tube group adjacent to the tube group is an outlet section, and a refrigerant outlet is connected to the outlet section, and one inlet end heat exchange is performed by the nearest tube group of both tube rows. A path is configured, and an outlet end heat exchange path is configured by the tube group adjacent to the nearest tube group in the second tube row, and the same number of intermediate heat exchange paths as the tube group are configured by the remaining tube groups of both tube rows. The refrigerant flowing from the refrigerant inlet into the inlet compartment flows through the inlet end heat exchange path, all intermediate heat exchange paths and the outlet end heat exchange path in order, enters the outlet compartment, and flows out from the refrigerant outlet. Adjacent heat exchange tubes of the inlet end heat exchange path provided on the refrigerant inlet and refrigerant outlet sides and constituted by the nearest tube groups of both tube rows Air passing through the air-passing clearances between is cooled most. Therefore, the evaporators 1) to 6) described above are connected to the first portion of the air passage of the casing in the vehicle air conditioner described in Patent Document 1 with the inlet end heat exchange path formed of the nearest tube groups of both tube rows. By positioning it so that it is located on the opposite side, the inlet end heat exchange path that is most likely to be cooled is positioned in the part where the wind speed of the air passing through the evaporator is the highest and the air is difficult to cool, and further passes through the evaporator It is possible to locate the outlet end heat exchange path where the superheat region is generated and is most difficult to be cooled in a portion where the wind speed is the lowest and the air is easily cooled. As a result, the discharged air temperature that has passed through the evaporator can be made uniform in the width direction of the evaporator.

しかも、風速が高い最も冷えにくい部分に、液相冷媒が多く流れかつ最も冷やされやすい入口端熱交換パスが位置しているので、圧縮機のオフ時にも、風上側のチューブ列の最近チューブ群の隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度が上昇しにくくなり、風下側のチューブ列の最近チューブ群に流れ込む空気の温度は比較的長時間にわたって低いままである。したがって、入口端熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度は短時間で上昇することはなく、圧縮機のオフ時とオン時でのエバポレータを通過した空気の温度である吐気温の温度差は比較的小さくなる。   In addition, the inlet end heat exchange path where the liquid-phase refrigerant flows and is most easily cooled is located in the most difficult-to-cool part where the wind speed is high. The temperature of the air that has passed through the ventilation gap between the adjacent heat exchange tubes becomes difficult to rise, and the temperature of the air that flows into the latest tube group in the tube array on the leeward side remains low for a relatively long time. Therefore, the temperature of the air that has passed through the ventilation gap between adjacent heat exchange tubes in the inlet end heat exchange path does not rise in a short time, and the air that has passed through the evaporator when the compressor is off and on The temperature difference between the discharged air temperature, which is the temperature, is relatively small.

さらに、上記1)〜6)のエバポレータを、特許文献1記載の車両用空調装置におけるケーシングの空気通路の第1部分に、両チューブ列の最近チューブ群からなる入口端熱交換パスが空気導入口とは反対側に位置するように配置すると、冷媒を減圧する膨張弁を、ケーシングの外側における送風機とは反対側の部分に配置することができ、ケーシングの空気通路の第1部分と、送風機との距離を比較的小さくすることが可能になる。したがって、ケーシング、送風機および膨張弁が占めるスペースが、特許文献2記載のエバポレータを用いた場合に比べて小さくなる。   Further, the evaporators 1) to 6) are connected to the first part of the air passage of the casing in the vehicle air conditioner described in Patent Document 1, and the inlet end heat exchange path consisting of the nearest tube groups of both tube rows is an air inlet. The expansion valve for reducing the pressure of the refrigerant can be disposed in a portion on the opposite side to the blower on the outside of the casing, the first portion of the air passage of the casing, the blower, Can be made relatively small. Therefore, the space occupied by the casing, the blower, and the expansion valve is smaller than when the evaporator described in Patent Document 2 is used.

上記2)のエバポレータによれば、次の効果を奏する。すなわち、特許文献2記載のエバポレータにおいては、両チューブ列の最遠チューブ群においては、風上側チューブ列に比較的高温の空気が当たるので、風上側チューブ列のチューブ群の熱交換チューブ内の液相冷媒の蒸発が促進され、当該チューブ群の熱交換チューブの内圧が高くなって冷媒が流れにくくなる傾向にあり、圧縮機のオフ時には、最終熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度が短時間で上昇することになり、圧縮機のオフ時とオン時とでは、エバポレータを通過した空気の温度である吐気温の温度差が顕著になる。しかしながら、上記2)のエバポレータによれば、2つのチューブ列の最近チューブ群からなる入口端熱交換パスには多くの液相冷媒が流れるので、風上側チューブ列の最近チューブ群の熱交換チューブ内のすべての液相冷媒が蒸発することはなく、当該最近チューブ群の熱交換チューブの内圧の上昇が抑制されて冷媒が流れやすくなる。そして、入口端熱交換パスに含まれる熱交換チューブの数が、各中間熱交換パスに含まれる熱交換チューブの数、および出口端熱交換パスに含まれる熱交換チューブの数よりも少なくなっていると、入口端熱交換パスの各熱交換チューブあたりの液相冷媒の量が多くなるので、風上側チューブ列の最近チューブ群の熱交換チューブ内の液相冷媒の蒸発が効果的に抑制され、風下側のチューブ列の最近チューブ群に流れ込む空気の温度は比較的長時間にわたって低いままである。したがって、入口端熱交換パスの隣り合う熱交換チューブ間の通風間隙を通過してきた空気の温度は短時間で上昇することはなく、圧縮機のオフ時とオン時でのエバポレータを通過した空気の温度である吐気温の温度差は比較的小さくなる。   According to the evaporator 2), the following effects are obtained. That is, in the evaporator described in Patent Document 2, in the farthest tube group of both tube rows, since the relatively high temperature air hits the windward tube row, the liquid in the heat exchange tubes of the tube group of the windward tube row Evaporation of the phase refrigerant is promoted, and the internal pressure of the heat exchange tubes of the tube group tends to increase, making it difficult for the refrigerant to flow. When the compressor is off, the ventilation gap between adjacent heat exchange tubes in the final heat exchange path The temperature of the air that has passed through the temperature rises in a short time, and the temperature difference between the discharged air temperature, which is the temperature of the air that has passed through the evaporator, becomes significant when the compressor is off and on. However, according to the evaporator of 2) above, since a large amount of liquid-phase refrigerant flows through the inlet end heat exchange path consisting of the nearest tube group of the two tube rows, the inside of the heat exchange tube of the nearest tube group of the upwind tube row All the liquid-phase refrigerants of the above will not evaporate, and the increase in the internal pressure of the heat exchange tubes of the tube group will be suppressed, and the refrigerant will flow easily. And the number of heat exchange tubes included in the inlet end heat exchange path is less than the number of heat exchange tubes included in each intermediate heat exchange path and the number of heat exchange tubes included in the outlet end heat exchange path. If so, the amount of liquid phase refrigerant per heat exchange tube in the inlet end heat exchange path increases, so that evaporation of the liquid phase refrigerant in the heat exchange tubes of the latest tube group of the windward side tube array is effectively suppressed. The temperature of the air flowing into the tube group of the tube array on the leeward side remains low for a relatively long time. Therefore, the temperature of the air that has passed through the ventilation gap between adjacent heat exchange tubes in the inlet end heat exchange path does not rise in a short time, and the air that has passed through the evaporator when the compressor is off and on The temperature difference between the discharged air temperature, which is the temperature, is relatively small.

上記7)および8)の車両用空調装置によれば、上記1)〜6)のエバポレータが、各ヘッダ部の長手方向が、空気通路の第1部分での空気の流れ方向と直角をなす方向を向き、かつ冷媒入口および冷媒出口が、空気導入口とは反対側に位置するように配置され、膨張弁が、ケーシングの外側でかつ空気導入口とは反対側の位置に配置されているので、エバポレータを通過する空気の風速が最も高くかつ空気が冷やされにくい部分に、最も冷やされやすい入口端熱交換パスが位置し、さらにエバポレータを通過する風速が最も低くかつ空気が冷やされやすい部分に、スーパーヒート領域が生じて最も冷やされにくい出口端熱交換パスが位置している。したがって、エバポレータを通過した吐気温を、エバポレータの幅方向に均一化することができる。   According to the vehicle air conditioners of 7) and 8) above, the evaporators of 1) to 6) described above are such that the longitudinal direction of each header portion is perpendicular to the air flow direction in the first portion of the air passage. And the refrigerant inlet and the refrigerant outlet are arranged on the opposite side of the air inlet, and the expansion valve is arranged on the outside of the casing and on the opposite side of the air inlet. In the part where the wind speed of the air passing through the evaporator is the highest and the air is not easily cooled, the inlet end heat exchange path that is most easily cooled is located, and in the part where the wind speed passing through the evaporator is the lowest and the air is easily cooled The exit end heat exchanging path that is most difficult to be cooled due to the superheat region is located. Therefore, the discharged air temperature that has passed through the evaporator can be made uniform in the width direction of the evaporator.

しかも、ケーシングの空気通路の第1部分と、送風機との距離を比較的小さくすることが可能になって、ケーシング、送風機および膨張弁が占めるスペースが、特許文献2記載のエバポレータを用いた場合に比べて小さくなる。   Moreover, the distance between the first portion of the air passage of the casing and the blower can be made relatively small, and the space occupied by the casing, the blower, and the expansion valve is when the evaporator described in Patent Document 2 is used. Smaller than that.

この発明のエバポレータを示す一部を省略した斜視図である。It is the perspective view which abbreviate | omitted one part which shows the evaporator of this invention. 一部を省略した図1のA−A線拡大断面図である。It is the AA line expanded sectional view of Drawing 1 which omitted some. 一部を省略した図1のB−B線拡大断面図である。It is the BB line expanded sectional view of Drawing 1 which omitted some. 図1のエバポレータを用いた車両用空調装置を概略的に示す水平断面図である。It is a horizontal sectional view which shows roughly the vehicle air conditioner using the evaporator of FIG.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1〜図3はこの発明のエバポレータの構成を示し、図4はこの発明のエバポレータを用いた車両用空調装置を概略的に示す。   1 to 3 show the configuration of the evaporator according to the present invention, and FIG. 4 schematically shows a vehicle air conditioner using the evaporator according to the present invention.

図1〜図3において、エバポレータ(1)は、幅方向を図1に矢印Xで示す通風方向に向けるとともに長手方向を上下方向に向けた状態で左右方向(通風方向と直角をなす方向)に間隔をおいて配置された複数のアルミニウム製熱交換チューブ(2)からなる風下側チューブ列(3)(第1チューブ列)および風上側チューブ列(4)(第2チューブ列)と、風下側チューブ列(3)の熱交換チューブ(2)の上下両端側に(長手方向両端側)に長手方向を左右方向(熱交換チューブ(2)の並び方向)に向けて配置され、かつ風下側チューブ列(3)の全熱交換チューブ(2)が接続されたアルミニウム製風下側上ヘッダ部(5)(第1ヘッダ部)およびアルミニウム製風下側下ヘッダ部(6)(第2ヘッダ部)と、風上側チューブ列(4)の熱交換チューブ(2)の上下両端側に長手方向を左右方向に向けて配置され、かつ風上側チューブ列(4)の全熱交換チューブ(2)が接続されたアルミニウム製風上側上ヘッダ部(7)(第3ヘッダ部)および風上側下ヘッダ部(8)(第4ヘッダ部)とを備えており、風下側上ヘッダ部(5)と風上側上ヘッダ部(7)、および風下側下ヘッダ部(6)と風上側下ヘッダ部(8)とが通風方向に並んで設けられている。風下側上ヘッダ部(5)の右端部に冷媒入口(9)が設けられるとともに、風上側上ヘッダ部(7)の右端部に冷媒出口(11)が設けられている。なお、風下側チューブ列(3)の熱交換チューブ(2)の数と風上側チューブ列(4)の熱交換チューブ(2)の数とは等しくなっている。   1 to 3, the evaporator (1) is in the left-right direction (the direction perpendicular to the ventilation direction) with the width direction directed to the ventilation direction indicated by arrow X in FIG. 1 and the longitudinal direction directed to the vertical direction. The leeward side tube row (3) (first tube row) and the windward side tube row (4) (second tube row) composed of a plurality of aluminum heat exchange tubes (2) arranged at intervals, and the leeward side Arranged on the upper and lower ends (longitudinal ends) of the heat exchanger tubes (2) in the tube row (3) with the longitudinal direction facing the left and right (alignment direction of the heat exchange tubes (2)), and the leeward tubes Aluminum leeward upper header part (5) (first header part) and aluminum leeward lower header part (6) (second header part) to which the total heat exchange tubes (2) of the row (3) are connected, The longitudinal direction on the upper and lower ends of the heat exchange tube (2) in the windward tube row (4) Upwind header (7) (third header) and upwind lower header (8) made of aluminum to which the total heat exchange tubes (2) of the upwind tube row (4) are connected (Fourth header portion), and the leeward upper header portion (5) and the windward upper header portion (7), and the leeward lower header portion (6) and the windward lower header portion (8) It is provided side by side in the ventilation direction. A refrigerant inlet (9) is provided at the right end of the leeward upper header portion (5), and a refrigerant outlet (11) is provided at the right end of the leeward upper header portion (7). The number of heat exchange tubes (2) in the leeward tube row (3) is equal to the number of heat exchange tubes (2) in the windward tube row (4).

両チューブ列(3)(4)の隣接する熱交換チューブ(2)どうしの間の通風間隙(12)および左右両端の熱交換チューブ(2)の外側に、それぞれ両チューブ列(3)(4)の熱交換チューブ(2)に跨って共有されるようにアルミニウム製コルゲートフィン(13)が配置されて両熱交換チューブ(2)にろう付され、左右両端のコルゲートフィン(13)の外側にそれぞれアルミニウム製サイドプレート(14)が配置されてコルゲートフィン(13)にろう付されている。左右両端の熱交換チューブ(2)とサイドプレート(14)との間も通風間隙(12)となっている。両チューブ列(3)(4)の隣接する熱交換チューブ(2)どうしの間の通風間隙(12)を通過した空気は、車両用空調装置が搭載されている車両の車室内に送り込まれる。   Both tube rows (3) (4) are arranged outside the ventilation gap (12) between the adjacent heat exchange tubes (2) of both tube rows (3) and (4) and outside the heat exchange tubes (2) at both left and right ends. The aluminum corrugated fins (13) are placed so as to be shared across the heat exchange tubes (2) and brazed to both heat exchange tubes (2), and the outer sides of the corrugated fins (13) at the left and right ends. Aluminum side plates (14) are respectively disposed and brazed to the corrugated fins (13). A ventilation gap (12) is also formed between the heat exchange tubes (2) at the left and right ends and the side plate (14). The air that has passed through the ventilation gap (12) between the adjacent heat exchange tubes (2) of both tube rows (3) and (4) is sent into the vehicle compartment of the vehicle in which the vehicle air conditioner is mounted.

風下側チューブ列(3)に、連続して並んだ複数の熱交換チューブ(2)からなる3以上の奇数、ここでは3つチューブ群(15)(16)(17)が、冷媒入口(9)側端部(右端部)から他端部側(左端部)に向かって並んで設けられ、風上側チューブ列(4)に、連続して並んだ複数の熱交換チューブ(2)からなりかつ風下側チューブ列(3)のチューブ群(15)(16)(17)よりも1つ少ない数、ここでは2つのチューブ群(18)(19)が、冷媒出口(11)側端部(右端部)から他端部(左端部)に向かって並んで設けられている。以下、風下側チューブ列(3)の3つのチューブ群(15)(16)(17)を冷媒入口(9)側端部(右端部)から他端部(左端部)に向かって第1〜第3チューブ群といい、風上側チューブ列(4)の2つのチューブ群(18)(19)を冷媒出口(11)側端部から左端部に向かって第4および第5チューブ群というものとする。第1チューブ群(15)が、風下側チューブ列(3)における冷媒入口(9)に最も近い位置にある最近チューブ群であり、第3チューブ群(17)が、風下側チューブ列(3)における冷媒入口(9)から最も遠い位置にある最遠チューブ群である。また、第4チューブ群(18)が、風上側チューブ列(4)における冷媒出口(11)に最も近い位置にある最近チューブ群であり、第5チューブ群(19)が、冷媒出口(11)から最も遠い位置にある最遠チューブ群であると同時に、最近チューブ群に隣接するチューブ群である。第1チューブ群(15)と第4チューブ群(18)を構成する熱交換チューブ(2)の数は等しく、両チューブ群(15)(18)の左右方向の幅は同一である。第2および第3チューブ群(16)(17)を構成する熱交換チューブ(2)の合計数は第5チューブ群(19)を構成する熱交換チューブ(2)と同数であり、第2および第3チューブ群(16)(17)の左右方向の合計幅は、第5チューブ群(19)(21)の左右方向の幅と同一である。   In the leeward side tube row (3), an odd number of 3 or more consisting of a plurality of heat exchange tubes (2) arranged in series, here three tube groups (15), (16), (17) are connected to the refrigerant inlet (9 ) Provided side by side from the side end (right end) toward the other end side (left end), consisting of a plurality of heat exchange tubes (2) continuously arranged in the windward tube row (4) and The tube group (15), (16), (17) in the leeward tube row (3) is one less than the tube group (15), (16), (17). Part) to the other end part (left end part). Hereinafter, the three tube groups (15), (16), and (17) in the leeward side tube row (3) are moved from the refrigerant inlet (9) side end (right end) toward the other end (left end). It is called the third tube group, and the two tube groups (18), (19) in the windward tube row (4) are called the fourth and fifth tube groups from the refrigerant outlet (11) side end toward the left end. To do. The first tube group (15) is the nearest tube group closest to the refrigerant inlet (9) in the leeward side tube row (3), and the third tube group (17) is the leeward side tube row (3). This is the farthest tube group located farthest from the refrigerant inlet (9). The fourth tube group (18) is the nearest tube group located closest to the refrigerant outlet (11) in the windward tube row (4), and the fifth tube group (19) is the refrigerant outlet (11). The tube group farthest from the tube group and the tube group that is adjacent to the tube group recently. The number of heat exchange tubes (2) constituting the first tube group (15) and the fourth tube group (18) is equal, and the widths in the left-right direction of both tube groups (15) and (18) are the same. The total number of heat exchange tubes (2) constituting the second and third tube groups (16), (17) is the same as the number of heat exchange tubes (2) constituting the fifth tube group (19). The total lateral width of the third tube group (16) (17) is the same as the lateral width of the fifth tube group (19) (21).

風下側上ヘッダ部(5)と風上側上ヘッダ部(7)、および風下側下ヘッダ部(6)と風上側下ヘッダ部(8)とは、たとえば1つのタンク(21)(22)内を左右方向にのびる仕切部(21a)(22a)により通風方向に2つの空間に分割することにより設けられている。   The leeward upper header (5) and the windward upper header (7), and the leeward lower header (6) and the windward lower header (8) are, for example, in one tank (21) (22). Is divided into two spaces in the ventilation direction by partitioning portions (21a) and (22a) extending in the left-right direction.

風下側上ヘッダ部(5)内が分割部(23)により2つの区画(24)(25)に分割されることによって、風下側上ヘッダ部(5)に、冷媒入口(9)に通じるとともに、第1チューブ群(15)の熱交換チューブ(2)の上端部が通じる区画(24)と、第2および第3チューブ群(16)(17)の熱交換チューブ(2)の上端部が通じる区画(25)とが設けられ、風下側下ヘッダ部(6)内が分割部(26)により2つの区画(27)(28)に分割されることによって、風下側下ヘッダ部(6)に、第1および第2チューブ群(15)(16)の熱交換チューブ(2)の下端部が通じる区画(27)と、第3チューブ群(17)の熱交換チューブ(2)の下端部が通じる区画(28)とが設けられている。また、風上側上ヘッダ部(6)内が分割部(29)により2つの区画(31)(32)に分割されることによって、風上側上ヘッダ部(7)に、第4チューブ群(18)の熱交換チューブ(2)の上端部が通じる区画(31)と、冷媒出口(11)に通じるとともに、第5チューブ群(19)の熱交換チューブ(2)の上端部が通じる区画(32)とが設けられ、風上側下ヘッダ部(8)内が分割部(33)により2つの区画(34)(35)に分割されることによって、風上側下ヘッダ部(8)に、第4チューブ群(18)の熱交換チューブ(2)の下端部が通じる区画(34)と、第5チューブ群(19)の下端部が通じる区画(35)とが設けられている。   By dividing the leeward side upper header part (5) into two sections (24) and (25) by the dividing part (23), the leeward side upper header part (5) leads to the refrigerant inlet (9). The section (24) through which the upper end of the heat exchange tube (2) of the first tube group (15) communicates, and the upper end of the heat exchange tube (2) of the second and third tube groups (16) and (17) The leeward lower header portion (6) is divided into two compartments (27) and (28) by the dividing portion (26). A compartment (27) through which the lower ends of the heat exchange tubes (2) of the first and second tube groups (15), (16) communicate, and a lower end of the heat exchange tubes (2) of the third tube group (17) And a section (28) through which is communicated. Further, the inside of the upwind header section (6) is divided into two sections (31) and (32) by the dividing section (29), so that the fourth tube group (18 ) Of the heat exchange tube (2) of the fifth tube group (19) and the compartment (31) to which the upper end of the heat exchange tube (2) of the fifth tube group (19) communicates. ) And the inside of the upwind lower header section (8) is divided into two sections (34) and (35) by the dividing section (33), so that the upwind lower header section (8) A section (34) through which the lower end of the heat exchange tube (2) of the tube group (18) communicates and a section (35) through which the lower end of the fifth tube group (19) communicates are provided.

以下、風下側上ヘッダ部(5)の冷媒入口(9)に通じるとともに第1チューブ群(15)の熱交換チューブ(2)の上端部が通じる区画(24)を第1区画、風上側上ヘッダ部(7)の第4チューブ群(18)の熱交換チューブ(2)の上端部が通じる区画(31)を第2区画、風下側下ヘッダ部(5)の第1および第2チューブ群(15)(16)の熱交換チューブ(2)の下端部が通じる区画(27)を第3区画、風上側下ヘッダ部(8)の第4チューブ群(18)の熱交換チューブ(2)の下端部が通じる区画(34)を第4区画、風下側上ヘッダ部(5)の第2および第3チューブ群(16)(17)の熱交換チューブ(2)の上端部が通じる区画(25)を第5区画、風下側下ヘッダ部(6)の第3チューブ群(17)の熱交換チューブ(2)の下端部が通じる区画(28)を第6区画、風上側下ヘッダ部(8)の第5チューブ群(19)の熱交換チューブ(2)の下端部が通じる区画(35)を第7区画、風上側上ヘッダ部(7)の冷媒出口(11)に通じるとともに、第5チューブ群(19)の上端部が通じる区画(32)を第8区画というものとする。   Hereinafter, the section (24) leading to the refrigerant inlet (9) of the leeward side upper header section (5) and the upper end of the heat exchange tube (2) of the first tube group (15) is defined as the first section, the windward side The section (31) through which the upper end of the heat exchange tube (2) of the fourth tube group (18) of the header section (7) communicates is the second section, and the first and second tube groups of the leeward lower header section (5). (15) The section (27) through which the lower end of the heat exchange tube (2) of (16) communicates is the third section, and the heat exchange tube (2) of the fourth tube group (18) of the windward lower header section (8) A section (34) through which the lower end of the heat exchanger tube (2) of the second and third tube groups (16), (17) of the leeward upper header section (5) communicates (4). 25) is the fifth section, the section (28) through which the lower end of the heat exchange tube (2) of the third tube group (17) of the leeward lower header section (6) communicates is the sixth section, the leeward lower header section ( Section where the lower end of the heat exchange tube (2) of the fifth tube group (19) of 8) communicates (35) leads to the seventh section, and the section (32) through which the upper end of the fifth tube group (19) leads to the refrigerant outlet (11) of the windward upper header section (7) is called the eighth section. .

第1区画(24)と第2区画(31)は、上側タンク(21)内を風下側上ヘッダ部(5)と風上側上ヘッダ部(7)とに分割する仕切部(21a)に設けられた連通部(36)により通じさせられ、第3区画(27)と第4区画(34)、および第6区画(28)と第7区画(35)は、それぞれ下側タンク(22)内を風下側下ヘッダ部(6)と風下側下ヘッダ部(8)とに分割する仕切部(22a)に設けられた連通部(37)(38)により通じさせられている。   The first section (24) and the second section (31) are provided in a partition section (21a) that divides the upper tank (21) into a leeward upper header section (5) and an leeward upper header section (7). The third section (27) and the fourth section (34), and the sixth section (28) and the seventh section (35) are respectively connected in the lower tank (22). Are communicated by communication portions (37) and (38) provided in the partition portion (22a) that divides the leeward side lower header portion (6) and the leeward side lower header portion (8).

上述のようにして冷媒入口(9)、冷媒出口(11)、第1〜第5チューブ群(15)(16)(17)(18)(19)、第1〜第8区画(24)(31)(27)(34)(25)(28)(35)(32)、および連通部(36)(37)(38)が設けられることによって、冷媒は、風下側チューブ列(3)の最近チューブ群である第1チューブ群(15)、風下側チューブ列(3)の最遠チューブ群である第3チューブ群(17)および風上側チューブ列(4)の最近チューブ群である第4チューブ群(18)の熱交換チューブ(2)内を上から下に流れることになり、これらのチューブ群(15)(17)(18)が下降流チューブ群となっている。また、冷媒は、第2チューブ群(16)および第5チューブ群(19)の熱交換チューブ(2)内を下から上に流れることになり、これらのチューブ群(16)(19)が上昇流チューブ群となっている。風下側チューブ列(3)の第1チューブ群(15)(最近チューブ群)、および風上側チューブ列(4)の第4チューブ群(18)(最近チューブ群)の熱交換チューブ(2)における冷媒の流れ方向は同一方向である。また、第1区画(24)が、第1チューブ群(15)の冷媒流れ方向上流側端部のみが通じる入口区画となるとともに、冷媒入口(9)が当該入口区画に通じさせられ、第5チューブ群(19)(最近チューブ群である第4チューブ群(18)に隣接するチューブ群)の冷媒流れ方向下流側端部が通じる第8区画(32)が出口区画になるとともに、冷媒出口(11)が当該出口区画に通じさせられている。   As described above, the refrigerant inlet (9), the refrigerant outlet (11), the first to fifth tube groups (15), (16), (17), (18), (19), the first to eighth sections (24) ( 31) (27) (34) (25) (28) (35) (32) and the communication portions (36) (37) (38) are provided, so that the refrigerant can be used in the leeward side tube row (3). The first tube group (15) which is the most recent tube group, the third tube group (17) which is the farthest tube group of the leeward side tube row (3), and the fourth tube group which is the most recent tube group of the upwind tube row (4). It flows from the top to the bottom in the heat exchange tube (2) of the tube group (18), and these tube groups (15), (17), and (18) are downflow tube groups. In addition, the refrigerant flows from the bottom to the top in the heat exchange tubes (2) of the second tube group (16) and the fifth tube group (19), and these tube groups (16) and (19) rise. It is a flow tube group. In the first tube group (15) (most recent tube group) of the leeward side tube row (3) and in the heat exchange tube (2) of the fourth tube group (18) (most recent tube group) of the upwind tube row (4) The flow direction of the refrigerant is the same direction. Further, the first section (24) serves as an inlet section through which only the upstream end portion in the refrigerant flow direction of the first tube group (15) communicates, and the refrigerant inlet (9) communicates with the inlet section. The eighth section (32) through which the downstream end portion in the refrigerant flow direction of the tube group (19) (the tube group adjacent to the fourth tube group (18) which is the latest tube group) is an outlet section, and a refrigerant outlet ( 11) is connected to the exit section.

したがって、冷媒入口(9)から流入した冷媒は、次のように2つの経路を流れて冷媒出口(11)から流出するようになされている。第1の経路は、第1区画(24)、第1チューブ群(15)、第3区画(27)、第2チューブ群(16)、第5区画(25)、第3チューブ群(17)、第6区画(28)、第7区画(35)、第5チューブ群(19)および第8区画(32)であり、第2の経路は、第1区画(24)、第2区画(31)、第4チューブ群(18)、第4区画(34)、第3区画(27)、第2チューブ群(16)、第5区画(25)、第3チューブ群(17)、第6区画(28)、第7区画(35)、第5チューブ群(19)および第8区画(32)である。そして、両チューブ列(3)(4)の最近チューブ群である第1チューブ群(15)および第4チューブ群(18)により1つの入口端熱交換パスが構成され、風上側チューブ列(4)の最近チューブ群に隣接する第5チューブ群(19)により出口端熱交換パスが構成され、残りの第2および第3チューブ群(16)(17)によりそれぞれ1つの中間熱交換パスが構成されている。第1チューブ群(15)および第4チューブ群(18)よりなる入口端熱交換パスに含まれる熱交換チューブ(2)の数は、各中間熱交換パスに含まれる熱交換チューブ(2)の数、および出口端熱交換パスに含まれる熱交換チューブ(2)の数よりも少なくなっている。   Therefore, the refrigerant flowing in from the refrigerant inlet (9) flows through the two paths as follows and flows out from the refrigerant outlet (11). The first path consists of the first section (24), the first tube group (15), the third section (27), the second tube group (16), the fifth section (25), and the third tube group (17). , The sixth section (28), the seventh section (35), the fifth tube group (19), and the eighth section (32). The second path is the first section (24) and the second section (31). ), Fourth tube group (18), fourth compartment (34), third compartment (27), second tube group (16), fifth compartment (25), third tube group (17), sixth compartment (28), the seventh section (35), the fifth tube group (19), and the eighth section (32). The first tube group (15) and the fourth tube group (18), which are the most recent tube groups of the tube rows (3) and (4), constitute one inlet end heat exchange path, and the windward side tube row (4 ), The outlet tube end heat exchange path is constituted by the fifth tube group (19) adjacent to the most recent tube group, and one intermediate heat exchange path is constituted by the remaining second and third tube groups (16), (17). Has been. The number of heat exchange tubes (2) included in the inlet end heat exchange path consisting of the first tube group (15) and the fourth tube group (18) is the number of heat exchange tubes (2) included in each intermediate heat exchange path. The number is smaller than the number of heat exchange tubes (2) included in the outlet end heat exchange path.

上述したエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともに冷凍サイクルを構成し、図4に示すような車両用空調装置として車両、たとえば自動車に搭載される。   The evaporator (1) described above constitutes a refrigeration cycle together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor, and is mounted on a vehicle, for example, an automobile, as a vehicle air conditioner as shown in FIG. .

図4において、車両用空調装置(40)は、空気導入口(42)、空気送出口(43)、および空気導入口(42)と空気送出口(43)とを通じさせる空気通路(44)を有する合成樹脂製ケーシング(41)と、ケーシング(41)の空気通路(44)内に配置されたエバポレータ(1)と、コンデンサ(図示略)で冷却された冷媒を減圧する膨張弁(45)と、ケーシング(41)の空気導入口(42)を通してケーシング(41)の空気通路(44)内に空気を送り込む送風機(46)とを備えている。   In FIG. 4, the vehicle air conditioner (40) includes an air inlet (42), an air outlet (43), and an air passage (44) through which the air inlet (42) and the air outlet (43) are passed. A synthetic resin casing (41), an evaporator (1) disposed in the air passage (44) of the casing (41), and an expansion valve (45) for reducing the pressure of the refrigerant cooled by a condenser (not shown). And a blower (46) for sending air into the air passage (44) of the casing (41) through the air inlet (42) of the casing (41).

ケーシング(41)の空気通路(44)は、空気導入口(42)と空気送出口(43)との中間部に設けられかつエバポレータ(1)を配置する第1部分(44a)、空気導入口(42)に通じるとともに第1部分(44a)よりも空気導入口(42)側に設けられた第2部分(44b)、および空気送出口(43)に通じるとともに第1部分(44a)よりも空気送出口(43)側に設けられた第3部分(44c)を有している。空気通路(44)の第1部分(44a)および第3部分(44c)における空気流れ方向は同一であり、第2部分(44b)における空気流れ方向と、第1部分(44a)および第3部分(44c)における空気流れ方向とが異なっているとともに一定の角度、ここでは直角をなしている。また、ケーシング(41)の空気通路(44)の第2部分(44b)の流路面積は、空気導入口(42)から遠ざかるに連れて小さくなっている。   The air passage (44) of the casing (41) is provided at an intermediate portion between the air inlet (42) and the air outlet (43), and a first portion (44a) for arranging the evaporator (1), an air inlet (42) leads to the second part (44b) provided on the air inlet (42) side of the first part (44a), and leads to the air outlet (43) and from the first part (44a). It has the 3rd part (44c) provided in the air delivery port (43) side. The air flow direction in the first portion (44a) and the third portion (44c) of the air passage (44) is the same, the air flow direction in the second portion (44b), and the first portion (44a) and the third portion. The direction of air flow in (44c) is different and a certain angle, here a right angle. Further, the flow passage area of the second portion (44b) of the air passage (44) of the casing (41) decreases as the distance from the air inlet (42) increases.

エバポレータ(1)は、各ヘッダ部(5)(6)(7)(8)の長手方向が、空気通路(44)の第1部分(44a)での空気の流れ方向と直角をなす方向を向き、かつ冷媒入口(9)および冷媒出口(11)が空気導入口(42)とは反対側に位置するように、空気通路(44)の第1部分(44a)に配置されている。膨張弁(45)は、ケーシング(41)の外側における空気導入口(42)とは反対側に位置するように取り付けられている。すなわち、エバポレータ(1)は、第1チューブ群(15)および第4チューブ群(18)により構成され、かつ隣り合う熱交換チューブ(2)間の通風間隙(12)を通過する空気が最も冷やされる入口端熱交換パスが、空気導入口(42)とは反対側に位置するように、空気通路(44)の第1部分(44a)に配置されている。   The evaporator (1) has a direction in which the longitudinal direction of each header part (5) (6) (7) (8) is perpendicular to the air flow direction in the first part (44a) of the air passage (44). It is arranged in the first portion (44a) of the air passage (44) so that the refrigerant inlet (9) and the refrigerant outlet (11) are located on the opposite side of the air inlet (42). The expansion valve (45) is attached so as to be located on the opposite side of the air inlet (42) on the outside of the casing (41). That is, the evaporator (1) is composed of the first tube group (15) and the fourth tube group (18), and the air passing through the ventilation gap (12) between the adjacent heat exchange tubes (2) is the coldest. The inlet end heat exchange path is disposed in the first portion (44a) of the air passage (44) so as to be located on the side opposite to the air inlet (42).

車両用空調装置(40)の稼働時には、圧縮機(図示略)、コンデンサおよび膨張弁(45)を通過した冷媒が、上述した2つの経路を通って、冷媒入口(9)から流入するとともに冷媒出口(11)から流出し、冷媒が風下側チューブ列(3)の熱交換チューブ(2)内、および風上側チューブ列(4)の熱交換チューブ(2)内を流れる間に、隣り合う熱交換チューブ(3)どうしの間の通風間隙(12)を通過する空気と熱交換をし、空気は冷却され、冷媒は気相となって流出する。   During operation of the vehicle air conditioner (40), the refrigerant that has passed through the compressor (not shown), the condenser, and the expansion valve (45) flows from the refrigerant inlet (9) through the above-described two paths and is also refrigerant. While the refrigerant flows out from the outlet (11) and flows through the heat exchange tube (2) of the leeward tube row (3) and the heat exchange tube (2) of the leeward tube row (4), the adjacent heat Heat exchange is performed with the air passing through the ventilation gap (12) between the exchange tubes (3), the air is cooled, and the refrigerant flows out as a gas phase.

エバポレータ(1)は、エバポレータ(1)を通過する空気の風速が高くかつ空気が冷やされにくい部分に、第1チューブ群(15)および第4チューブ群(18)により構成され、かつ隣り合う熱交換チューブ(2)間の通風間隙(12)を通過する空気が最も冷やされる入口端熱交換パスが位置し、さらにエバポレータ(1)を通過する風速が低くかつ空気が冷やされやすい部分に、第5チューブ群(19)により構成され、かつスーパーヒート領域が生じて隣り合う熱交換チューブ(2)間の通風間隙(12)を通過する空気が最も冷やされにくいスーパーヒート領域が生じて最も冷やされにくい出口端熱交換パスが位置するように配置されている。したがって、エバポレータ(1)を通過した吐気温を、エバポレータ(1)の幅方向(図4の左右方向)に均一化することができる。   The evaporator (1) is composed of the first tube group (15) and the fourth tube group (18) at the portion where the wind speed of the air passing through the evaporator (1) is high and the air is not easily cooled, and adjacent heat. The inlet end heat exchange path where the air passing through the ventilation gap (12) between the exchange tubes (2) is most cooled is located, and the air velocity passing through the evaporator (1) is low and the air is easily cooled. It is composed of 5 tube groups (19), and a superheat region is created, and the air passing through the ventilation gap (12) between the adjacent heat exchange tubes (2) is most difficult to cool and the superheat region is most cooled. It is arranged so that a difficult outlet end heat exchange path is located. Therefore, the discharged air temperature that has passed through the evaporator (1) can be made uniform in the width direction of the evaporator (1) (the left-right direction in FIG. 4).

また、圧縮機のオフ時にも、風上側チューブ列(4)の第4チューブ群(18)の隣り合う熱交換チューブ(2)間の通風間隙(12)を通過してきた空気の温度が上昇しにくくなり、風下側チューブ列(3)の第1チューブ群(15)に流れ込む空気の温度は比較的長時間にわたって低いままに維持される。しかも、入口端熱交換パスを構成する第1および第4チューブ群(15)(18)の各熱交換チューブ(2)あたりの液相冷媒の量が多くなることによっても、第4チューブ群(18)の熱交換チューブ(2)内の液相冷媒の蒸発が効果的に抑制され、第1チューブ群(15)に流れ込む空気の温度は比較的長時間にわたって低いままに維持される。したがって、り、入口端熱交換パスを構成する第1および第4チューブ群(15)(18)の隣り合う熱交換チューブ(2)間の通風間隙(12)を通過してきた空気の温度は短時間で上昇することはなく、圧縮機のオフ時とオン時でのエバポレータ(1)を通過した空気の温度である吐気温の温度差は比較的小さくなる。   Even when the compressor is off, the temperature of the air passing through the ventilation gap (12) between the adjacent heat exchange tubes (2) of the fourth tube group (18) of the upwind tube row (4) rises. The temperature of the air flowing into the first tube group (15) of the leeward side tube row (3) is kept low for a relatively long time. In addition, the fourth tube group (the fourth tube group (15) and the fourth tube group (15) constituting the inlet end heat exchange path) is also increased by increasing the amount of liquid-phase refrigerant per each heat exchange tube (2). Evaporation of the liquid phase refrigerant in the heat exchange tube (2) of 18) is effectively suppressed, and the temperature of the air flowing into the first tube group (15) is kept low for a relatively long time. Therefore, the temperature of the air passing through the ventilation gap (12) between the adjacent heat exchange tubes (2) of the first and fourth tube groups (15) and (18) constituting the inlet end heat exchange path is short. The temperature does not increase over time, and the temperature difference between the discharged air temperature, which is the temperature of the air that has passed through the evaporator (1) when the compressor is off and when it is on, is relatively small.

上述した実施形態においては、エバポレータ(1)の風下側上ヘッダ部(5)が第1ヘッダ部、風下側下ヘッダ部(6)が第2ヘッダ部となり、風上側上ヘッダ部(7)が第3ヘッダ部となり、風上側下ヘッダ部(8)が第4ヘッダ部となっているが、これとは逆に、風下側下ヘッダ部(6)が第1ヘッダ部、風下側上ヘッダ部(5)が第2ヘッダ部となり、風上側下ヘッダ部(8)が第3ヘッダ部となり、風上側上ヘッダ部(7)が第4ヘッダ部となっており、かつ風下側下ヘッダ部(6)の一端に冷媒入口(9)が設けられるとともに、風上側下ヘッダ部(8)の一端に冷媒出口(11)が設けられていてもよい。   In the embodiment described above, the leeward upper header portion (5) of the evaporator (1) is the first header portion, the leeward lower header portion (6) is the second header portion, and the windward upper header portion (7) is On the other hand, the leeward lower header part (6) is the first header part and the leeward upper header part. (5) is the second header part, the windward lower header part (8) is the third header part, the windward upper header part (7) is the fourth header part, and the leeward lower header part ( A refrigerant inlet (9) may be provided at one end of 6), and a refrigerant outlet (11) may be provided at one end of the windward lower header portion (8).

この発明によるエバポレータは、車両用空調装置を構成する冷凍サイクルに好適に用いられる。   The evaporator according to the present invention is suitably used for a refrigeration cycle constituting a vehicle air conditioner.

(1):エバポレータ
(2):熱交換チューブ
(3):風下側チューブ列(第1チューブ列)
(4):風上側チューブ列(第2チューブ列)
(5):風下側上ヘッダ部(第1ヘッダ部)
(6):風下側下ヘッダ部(第2ヘッダ部)
(7):風下側上ヘッダ部(第3ヘッダ部)
(8):風上側下ヘッダ部(第4ヘッダ部)
(9):冷媒入口
(11):冷媒出口
(15):第1チューブ群(風下側チューブ列の最近チューブ群)
(16):第2チューブ群
(17):第3チューブ群(風下側チューブ列の最遠チューブ群)
(18):第4チューブ群(風上側チューブ列の最近チューブ群)
(19):第5チューブ群(風上側チューブ列の最遠チューブ群)
(24):第1区画(入口区画)
(25)(27)(28)(31)(34)(35):区画
(32):第8区画(出口区画)
(40):車両用空調装置
(41):ケーシング
(42):空気導入口
(43):空気送出口
(44):空気通路
(44a):第1部分
(44b):第2部分
(44c):第3部分
(45):膨張弁
(1): Evaporator
(2): Heat exchange tube
(3): Downward tube row (first tube row)
(4): Windward tube row (second tube row)
(5): Downward upper header (first header)
(6): Downstream lower header (second header)
(7): Downward upper header (third header)
(8): Upwind lower header (fourth header)
(9): Refrigerant inlet
(11): Refrigerant outlet
(15): First tube group (most recent tube group in the leeward tube row)
(16): Second tube group
(17): Third tube group (the farthest tube group in the leeward tube row)
(18): Fourth tube group (most recent tube group in the windward tube row)
(19): Fifth tube group (farthest tube group in the windward tube row)
(24): 1st section (entrance section)
(25) (27) (28) (31) (34) (35): Section
(32): Section 8 (exit section)
(40): Vehicle air conditioner
(41): Casing
(42): Air inlet
(43): Air outlet
(44): Air passage
(44a): 1st part
(44b): Second part
(44c): Third part
(45): Expansion valve

Claims (8)

長手方向を上下方向に向けた状態で通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなり、かつ通風方向に並んだ第1チューブ列および第2チューブ列と、第1チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第1チューブ列の全熱交換チューブが接続された第1ヘッダ部および第2ヘッダ部と、第2チューブ列の熱交換チューブの長手方向両端側に長手方向を熱交換チューブの並び方向に向けて配置され、かつ第2チューブ列の全熱交換チューブが接続された第3ヘッダ部および第4ヘッダ部とを備えており、第1ヘッダ部と第3ヘッダ部、および第2ヘッダ部と第4ヘッダ部とが通風方向に並んで設けられ、第1ヘッダ部の一端部に冷媒入口が設けられるとともに、第3ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、第1チューブ列および第2チューブ列に、それぞれ連続して並んだ複数の熱交換チューブからなり、かつ冷媒が熱交換チューブ内を上から下に流れる下降流チューブ群と、複数の熱交換チューブからなり、かつ冷媒が下から上に流れる上昇流チューブ群とが交互に設けられているエバポレータであって、
第1チューブ列の冷媒入口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向と、第2チューブ列の冷媒出口に最も近い最近チューブ群の熱交換チューブの冷媒流れ方向とが同じであり、第1ヘッダ部および第3ヘッダ部に、両チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が設けられるとともに両区画が通じさせられ、第3ヘッダ部に、第2チューブ列における最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第1ヘッダ部における第1チューブ列の最近チューブ群の冷媒流れ方向上流側端部のみが通じる区画が入口区画となるとともに、冷媒入口が入口区画に通じさせられ、第3ヘッダ部における第2チューブ列の最近チューブ群に隣接するチューブ群の冷媒流れ方向下流側端部のみが通じる区画が出口区画になるとともに、冷媒出口が出口区画に通じさせられ、
両チューブ列の最近チューブ群により1つの入口端熱交換パスが構成され、第2チューブ列における最近チューブ群に隣接するチューブ群により出口端熱交換パスが構成され、両チューブ列の残りのチューブ群により当該チューブ群と同数の中間熱交換パスが構成され、冷媒入口から入口区画に流入した冷媒が、入口端熱交換パス、すべての中間熱交換パスおよび出口端熱交換パスを順次流れて出口区画に入り、冷媒出口から流出するようになされているエバポレータ。
A plurality of heat exchange tubes arranged at intervals in a direction perpendicular to the ventilation direction with the longitudinal direction oriented in the vertical direction, and the first tube row and the second tube row arranged in the ventilation direction; A first header section and a second header section, which are arranged on both ends in the longitudinal direction of the heat exchange tubes of the first tube row, with the longitudinal direction directed in the direction of arrangement of the heat exchange tubes, and to which the total heat exchange tubes of the first tube row are connected A header portion and a third header in which the longitudinal direction is arranged on both ends of the longitudinal direction of the heat exchange tubes in the second tube row with the heat exchange tubes arranged in the longitudinal direction and the total heat exchange tubes in the second tube row are connected And a fourth header portion, the first header portion and the third header portion, and the second header portion and the fourth header portion are provided side by side in the ventilation direction, and at one end portion of the first header portion Refrigerant inlet And a refrigerant outlet is provided at the same end as the refrigerant inlet in the third header portion, and is composed of a plurality of heat exchange tubes arranged continuously in the first tube row and the second tube row, respectively, and the refrigerant is An evaporator in which a downflow tube group that flows from the top to the bottom in the heat exchange tube and a plurality of heat exchange tubes and an upflow tube group in which the refrigerant flows from the bottom to the top are alternately provided,
The refrigerant flow direction of the heat exchange tube of the nearest tube group closest to the refrigerant inlet of the first tube row is the same as the refrigerant flow direction of the heat exchange tube of the nearest tube group nearest to the refrigerant outlet of the second tube row, The first header part and the third header part are provided with a section through which only the upstream end portion in the refrigerant flow direction of the nearest tube group of both tube rows communicates, and the both sections are communicated, and the second header is provided in the third header part. A section through which only the downstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group in the row communicates is provided, and only the upstream end portion in the refrigerant flow direction of the nearest tube group in the first tube row in the first header portion communicates. The compartment becomes the inlet compartment, and the refrigerant inlet is communicated with the inlet compartment, and the tube group adjacent to the nearest tube group of the second tube row in the third header portion With only medium flow direction downstream side end communicating compartment is an outlet compartment, the refrigerant outlet is vented to the outlet compartment,
An inlet end heat exchange path is constituted by the nearest tube groups of both tube rows, an outlet end heat exchange path is constituted by the tube group adjacent to the nearest tube group in the second tube row, and the remaining tube groups of both tube rows As a result, the same number of intermediate heat exchange paths as the tube group are formed, and the refrigerant flowing from the refrigerant inlet to the inlet compartment sequentially flows through the inlet end heat exchange path, all the intermediate heat exchange paths, and the outlet end heat exchange path to the outlet compartment. An evaporator that enters and flows out of the refrigerant outlet.
入口端熱交換パスに含まれる熱交換チューブの数が、各中間熱交換パスに含まれる熱交換チューブの数、および出口端熱交換パスに含まれる熱交換チューブの数よりも少なくなっている請求項1記載のエバポレータ。 The number of heat exchange tubes included in the inlet end heat exchange path is smaller than the number of heat exchange tubes included in each intermediate heat exchange path and the number of heat exchange tubes included in the outlet end heat exchange path. The evaporator according to Item 1. 第2ヘッダ部に、第1チューブ列の最近チューブ群の冷媒流れ方向下流側端部および当該最近チューブ群に隣接するチューブ群の冷媒流れ方向上流側端部が通じる区画が設けられ、第4ヘッダ部に、第2チューブ列の最近チューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第2ヘッダ部における第1チューブ列の最近チューブ群の冷媒流れ方向下流側端部および当該最近チューブ群に隣接するチューブ群の冷媒流れ方向上流側端部が通じる区画と、第4ヘッダ部における第2チューブ列の最近チューブ群の冷媒流れ方向下流側端部のみが通じる区画とが通じさせられている請求項1または2記載のエバポレータ。 The second header portion is provided with a section through which the downstream end portion in the refrigerant flow direction of the nearest tube group of the first tube row communicates with the upstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group. A section through which only the downstream end portion in the refrigerant flow direction of the nearest tube group of the second tube row communicates, and the downstream end portion in the refrigerant flow direction of the nearest tube group of the first tube row in the second header portion, and A section where the upstream end portion in the refrigerant flow direction of the tube group adjacent to the nearest tube group communicates with a section where only the downstream end portion in the refrigerant flow direction of the nearest tube group of the second tube row in the fourth header section communicates. The evaporator according to claim 1 or 2. 第1チューブ列のチューブ群の数が3以上の奇数であるとともに、第2チューブ列のチューブ群の数が第1チューブ列のチューブ群の数よりも1つ少ない数であり、第1チューブ列の冷媒入口から最も遠い最遠チューブ群の冷媒流れ方向が、第1チューブ列の最近チューブ群の冷媒流れ方向と同じであり、第2チューブ列の冷媒出口から最も遠い最遠チューブ群の冷媒流れ方向が、第2チューブ列の最近チューブ群の冷媒流れ方向と逆向きであり、第2ヘッダ部に第1チューブ列の最遠チューブ群の冷媒流れ方向下流側端部のみが通じる区画が設けられ、第4ヘッダ部に第2チューブ列の最遠チューブ群の冷媒流れ方向上流側端部のみが通じる区画が設けられ、第2ヘッダ部における第1チューブ列の最遠チューブ群の冷媒流れ方向下流側端部が通じる区画と、第4ヘッダ部における第2チューブ列の最遠チューブ群の冷媒流れ方向上流側端部が通じる区画とが通じている請求項1〜3のうちのいずれかに記載のエバポレータ。 The number of tube groups in the first tube row is an odd number of 3 or more, the number of tube groups in the second tube row is one less than the number of tube groups in the first tube row, and the first tube row The refrigerant flow direction of the farthest tube group farthest from the refrigerant inlet is the same as the refrigerant flow direction of the nearest tube group of the first tube row, and the refrigerant flow of the farthest tube group farthest from the refrigerant outlet of the second tube row The direction is opposite to the refrigerant flow direction of the most recent tube group in the second tube row, and a section is provided in the second header portion so that only the downstream end portion in the refrigerant flow direction of the farthest tube group in the first tube row communicates. A section through which only the upstream end of the second tube row in the farthest tube group in the refrigerant flow direction passes is provided in the fourth header portion, and the refrigerant flow direction downstream of the farthest tube group in the first tube row in the second header portion. Side edge And compartment communicate in evaporator according to any one of claims 1 to 3 compartment and is communicated to the refrigerant flow direction upstream end of the farthest tube group communicate in the second tube row in the fourth header portion. 第1および第3ヘッダ部が、第2および第4ヘッダ部の上方に配置されており、入口端熱交換パスを構成する第1および第2チューブ列の最近チューブ群が下降流チューブ群であり、出口端熱交換パスを構成する第2チューブ列のチューブ群が上昇流チューブ群である請求項4記載のエバポレータ。 The first and third header portions are arranged above the second and fourth header portions, and the nearest tube group of the first and second tube rows constituting the inlet end heat exchange path is a downflow tube group The evaporator according to claim 4, wherein the tube group of the second tube row constituting the outlet end heat exchange path is an upflow tube group. 第1チューブ列に、第1〜第3の3つのチューブ群が、冷媒入口側端部から他端部に向かって順番に並んで設けられ、第2チューブ列に第4および第5の2つのチューブ群が冷媒出口側端部から他端部に向かって順番に並んで設けられている請求項4または5記載のエバポレータ。 The first tube row is provided with the first to third tube groups arranged in order from the refrigerant inlet side end portion to the other end portion, and the second tube row includes the fourth and fifth two tube groups. The evaporator according to claim 4 or 5, wherein the tube group is provided in order from the refrigerant outlet side end toward the other end. 空気導入口、空気送出口、および空気導入口と空気送出口とを通じさせる空気通路を有するケーシングと、ケーシングの空気通路内に配置されたエバポレータと、エバポレータに送り込まれる冷媒を減圧する膨張弁と、ケーシングの空気導入口を通してケーシングの空気通路内に空気を送り込む送風機とを備えており、ケーシングの空気通路が、空気導入口と空気送出口との中間部に設けられかつエバポレータを配置する第1部分、空気導入口に通じるとともに第1部分よりも空気導入口側に設けられた第2部分、および空気送出口に通じるとともに第1部分よりも空気送出口側に設けられた第3部分を有し、第1部分および第3部分における空気流れ方向が同一であり、第2部分における空気流れ方向と、第1部分および第3部分における空気流れ方向とが異なっているとともに一定の角度をなしている車両用空調装置において、
請求項1〜6のうちのいずれかに記載されたエバポレータが、各ヘッダ部の長手方向が、空気通路の第1部分での空気の流れ方向と直角をなす方向を向き、かつ冷媒入口および冷媒出口が、空気導入口とは反対側に位置するように配置され、膨張弁が、ケーシングの外側でかつ空気導入口とは反対側の位置に配置されている車両用空調装置。
A casing having an air inlet, an air outlet, and an air passage through the air inlet and the air outlet, an evaporator disposed in the air passage of the casing, and an expansion valve for reducing the pressure of the refrigerant sent to the evaporator; And a blower for sending air into the air passage of the casing through the air introduction port of the casing, wherein the air passage of the casing is provided in an intermediate portion between the air introduction port and the air delivery port and the evaporator is disposed. A second portion that leads to the air inlet and is provided closer to the air inlet than the first portion; and a third portion that leads to the air outlet and is closer to the air outlet than the first portion. The air flow direction in the first part and the third part is the same, the air flow direction in the second part, and in the first part and the third part A moving vehicle air-conditioning system forms a constant angle with the air flow direction is different,
The evaporator according to any one of claims 1 to 6, wherein the longitudinal direction of each header portion is oriented in a direction perpendicular to the air flow direction in the first portion of the air passage, and the refrigerant inlet and the refrigerant An air conditioner for a vehicle in which an outlet is disposed so as to be located on the side opposite to the air introduction port, and an expansion valve is disposed on the outside of the casing and on a side opposite to the air introduction port.
ケーシングの空気通路の第2部分における空気流れ方向と、第1部分および第3部分における空気流れ方向とが直角をなしており、ケーシングの空気通路の第2部分の流路面積が、空気導入口から遠ざかるに連れて小さくなっている請求項7記載のエバポレータ。
The air flow direction in the second part of the air passage of the casing is perpendicular to the air flow direction in the first part and the third part, and the flow area of the second part of the air passage of the casing is the air inlet. The evaporator according to claim 7, wherein the evaporator becomes smaller as the distance from the end increases.
JP2015118191A 2015-06-11 2015-06-11 Evaporator and vehicle air conditioner using the same Expired - Fee Related JP6486212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118191A JP6486212B2 (en) 2015-06-11 2015-06-11 Evaporator and vehicle air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118191A JP6486212B2 (en) 2015-06-11 2015-06-11 Evaporator and vehicle air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2017003199A JP2017003199A (en) 2017-01-05
JP6486212B2 true JP6486212B2 (en) 2019-03-20

Family

ID=57754026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118191A Expired - Fee Related JP6486212B2 (en) 2015-06-11 2015-06-11 Evaporator and vehicle air conditioner using the same

Country Status (1)

Country Link
JP (1) JP6486212B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321242B2 (en) * 2003-12-02 2009-08-26 株式会社デンソー Air conditioner for vehicles
JP5136050B2 (en) * 2007-12-27 2013-02-06 株式会社デンソー Heat exchanger
JP6118069B2 (en) * 2012-11-02 2017-04-19 株式会社日本クライメイトシステムズ Air cooler with cool storage function
JP2015040641A (en) * 2013-08-20 2015-03-02 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Also Published As

Publication number Publication date
JP2017003199A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US9494368B2 (en) Heat exchanger and air conditioner
US8176750B2 (en) Heat exchanger
US10047984B2 (en) Evaporator
JP2012092991A (en) Evaporator
US10041710B2 (en) Heat exchanger and air conditioner
US10612823B2 (en) Condenser
KR20160131577A (en) Heat exchanger for air conditioner
US10408510B2 (en) Evaporator
KR101748242B1 (en) Refrigerant evaporator
JP5890705B2 (en) Heat exchanger
JP5636215B2 (en) Evaporator
KR20170080748A (en) Condenser and heat pump system with the same
JP5998854B2 (en) Refrigerant evaporator
JP2011257111A5 (en)
US20150241080A1 (en) Air-conditioning apparatus for vehicle
US10393445B2 (en) Evaporator
JP2017015310A (en) Evaporator
US20110024083A1 (en) Heat exchanger
JP6486212B2 (en) Evaporator and vehicle air conditioner using the same
JP2010223464A (en) Evaporator
JP2018087646A5 (en)
JP6098358B2 (en) Refrigerant evaporator
JP2016023815A (en) Evaporator
WO2016136157A1 (en) Vehicle air-conditioning apparatus
JP2015040641A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees