JP6466257B2 - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP6466257B2
JP6466257B2 JP2015114621A JP2015114621A JP6466257B2 JP 6466257 B2 JP6466257 B2 JP 6466257B2 JP 2015114621 A JP2015114621 A JP 2015114621A JP 2015114621 A JP2015114621 A JP 2015114621A JP 6466257 B2 JP6466257 B2 JP 6466257B2
Authority
JP
Japan
Prior art keywords
gas
liquid
mixed fluid
separation container
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015114621A
Other languages
Japanese (ja)
Other versions
JP2017002739A (en
Inventor
忠弘 後藤
忠弘 後藤
豪孝 伊藤
豪孝 伊藤
宮内 祐治
祐治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2015114621A priority Critical patent/JP6466257B2/en
Priority to PCT/JP2016/066291 priority patent/WO2016194982A1/en
Publication of JP2017002739A publication Critical patent/JP2017002739A/en
Application granted granted Critical
Publication of JP6466257B2 publication Critical patent/JP6466257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

本発明は、液体(水等)と気体(空気、ガス等)とを含む混合流体から液体と気体とを分離する気液分離装置に関するものである。   The present invention relates to a gas-liquid separator that separates liquid and gas from a mixed fluid containing liquid (water, etc.) and gas (air, gas, etc.).

例えば、内燃機関からの排気を浄化するシステム(装置)の一つとして、EGR(Exhaust Gas Recirculation:排気再循環)システムが知られている。EGRシステムにおいては、燃焼室内に還流させるEGRガスを冷却することにより、燃焼温度を低下させることができ、これによりNOx(窒素酸化物)の排出量を低減することができる。EGRガスを冷却すると、EGRガス中に含まれる水分が凝縮してEGR流路内に凝縮水が発生する。外気温度が0℃以下となるような環境下では凝縮水がより発生し易くなる。   For example, an EGR (Exhaust Gas Recirculation) system is known as one of systems (devices) for purifying exhaust gas from an internal combustion engine. In the EGR system, by cooling the EGR gas that is recirculated into the combustion chamber, the combustion temperature can be lowered, thereby reducing the amount of NOx (nitrogen oxide) emissions. When the EGR gas is cooled, moisture contained in the EGR gas is condensed and condensed water is generated in the EGR flow path. In an environment where the outside air temperature is 0 ° C. or less, condensed water is more likely to be generated.

EGRガスは燃料中の硫黄分を含むためEGR流路内の凝縮水には硫酸が含まれる。この硫酸を含む凝縮水がEGR流路や内燃機関の燃焼室等の内部に付着・滞留すると、内燃機関の各部(EGR流路やEGRバルブ、吸気流路や燃焼室等)に腐食や損傷等を引き起こすことが考えられる。又、内燃機関の燃焼室が多量の凝縮水を吸い込んでしまうことで、いわゆる水撃(ウォーターハンマー)による内燃機関の破損等を招くことも考えられる。   Since EGR gas contains sulfur in the fuel, the condensed water in the EGR flow path contains sulfuric acid. If this condensed water containing sulfuric acid adheres to or stays in the EGR flow path or the combustion chamber of the internal combustion engine, etc., each part of the internal combustion engine (EGR flow path, EGR valve, intake flow path, combustion chamber, etc.) is corroded or damaged, etc. It is thought to cause. It is also conceivable that the combustion chamber of the internal combustion engine sucks in a large amount of condensed water, thereby causing damage to the internal combustion engine due to a so-called water hammer.

そこで、EGRガスから凝縮水を除くために気液分離装置(あるいは気水分離装置)や吸水材(フィルター)等が用いられる。気液分離装置としては、例えばサイクロン式気液分離装置が知られている。このサイクロン式気液分離装置は、液体を含んだ気体を分離筒内に接線方向に導入し、この分離筒内で旋回流を形成することによって液体と気体を分離する方式となしたもので、分離された液体を分離筒下部より排出し、気体のみを分離筒上部より取出す構造となったものが一般的である。又、分離筒からの分離液の排出を促進して分離性能を高めるために分離筒内に分離液の旋回を抑制するための障壁を設けたものも提案されている(特許文献1参照)。さらに、EGRガス流れ下流側のEGRガス流路の内壁に設けられた凹凸部によりEGRガスから生じた凝縮水を捕集する凝縮水捕集部を備え、該凝縮水捕集部により捕集した凝縮水を貯留部に収容して貯留するEGR装置も提案されている(特許文献2参照)。吸水材やフィルター等を採用したものとしては、例えば、排気管の内壁面から排気ガス流路内に突出する異物捕集フィルターに吸水材を設けた排気還流装置(特許文献3参照)等が知られている。   Therefore, a gas-liquid separator (or a gas-water separator), a water absorbing material (filter), or the like is used to remove condensed water from the EGR gas. As the gas-liquid separator, for example, a cyclone type gas-liquid separator is known. This cyclone type gas-liquid separator is a system that separates liquid and gas by introducing a gas containing liquid in a tangential direction into the separation cylinder, and forming a swirl flow in the separation cylinder. In general, the separated liquid is discharged from the lower part of the separation cylinder and only the gas is taken out from the upper part of the separation cylinder. In addition, there has also been proposed a barrier provided in the separation cylinder for suppressing the rotation of the separation liquid in order to enhance the separation performance by promoting the discharge of the separation liquid from the separation cylinder (see Patent Document 1). Furthermore, the condensate collecting part which collects the condensate produced from EGR gas by the uneven | corrugated | grooved part provided in the inner wall of the EGR gas flow path of the EGR gas flow downstream is provided, and it collected by this condensate collection part An EGR device that stores and stores condensed water in a storage section has also been proposed (see Patent Document 2). For example, an exhaust gas recirculation device (see Patent Document 3) in which a water absorbing material is provided on a foreign matter collecting filter protruding from the inner wall surface of the exhaust pipe into the exhaust gas flow path is known as a device that employs a water absorbing material, a filter, or the like. It has been.

特開平9−220421号公報JP-A-9-220421 特開2013−29081号公報JP 2013-29081 A 特開2012−202265公報JP 2012-202265 A

しかしながら、前記した従来の気液分離手段には、以下に記載する欠点がある。
即ち、液体を含んだ気体を分離筒内に接線方向に導入し、この分離筒内で旋回流を形成することによって液体と気体を分離する方式のサイクロン式気液分離装置や、EGRガス流路に凝縮水捕集部を内蔵して気液分離する装置の場合は、水分の捕集作用が限定的であり、流速10〜100m/sのような広範囲のガス流速に対応できない。さらに、車両のエンジンルーム内は空きスペースが少なく、サイクロン方式のような比較的大型の気液分離装置の設置は難しい。又、排気還流装置の場合は、分離容器内にフィルターや吸水材等の分離部材を配置するため通気抵抗が高い上、風量が多く流速が速い領域においても通気抵抗が高まることにより、内燃機関に対して負荷がかかることになり燃費悪化をもたらす。
However, the conventional gas-liquid separation means described above has the following drawbacks.
That is, a cyclone type gas-liquid separation device or an EGR gas flow path that separates liquid and gas by introducing gas containing liquid into the separation cylinder in a tangential direction and forming a swirl flow in the separation cylinder In the case of an apparatus for gas-liquid separation with a built-in condensed water collecting part, the moisture collecting action is limited, and it cannot cope with a wide range of gas flow rates such as a flow rate of 10 to 100 m / s. Furthermore, there is little empty space in the vehicle engine room, and it is difficult to install a relatively large gas-liquid separator such as a cyclone system. Further, in the case of an exhaust gas recirculation device, a separation member such as a filter or a water absorbing material is disposed in the separation container, so that the ventilation resistance is high and the ventilation resistance is increased even in a region where there is a large amount of air and a high flow velocity. On the other hand, a load is applied, resulting in deterioration of fuel consumption.

本発明は、前記した従来の気液分離手段の有する欠点を解消するためになされたもので、フィルターや吸水材等の分離部材を無くし通気抵抗の低減をはかることにより、流速10〜100m/sのような広範囲のガス流速にも対応でき、かつ車両のエンジンルーム等の狭い場所にも設置可能な小型で捕集効率の高い気液分離装置を提供しようとするものである。   The present invention has been made in order to eliminate the disadvantages of the conventional gas-liquid separation means described above. By eliminating the separation member such as a filter and a water-absorbing material and reducing the air flow resistance, the flow rate is 10 to 100 m / s. Thus, the present invention is intended to provide a gas-liquid separation device that can cope with a wide range of gas flow rates as described above and can be installed in a narrow place such as an engine room of a vehicle and has high collection efficiency.

本発明に係る気液分離装置は、液体と気体の混合流体(以下、説明の便宜上「気液混合流体」と称する。)を分離容器内に導入し、該気液混合流体を分離容器内壁面に衝突させることによって液体と気体とに分離する方式の気液分離装置であって、前記分離容器の側面部に気液混合流体入口管が開口して接続され、前記入口管と対向する内壁面を気液混合流体の衝突壁面となし、前記分離容器の上面部には該分離容器内に開口部が突出する気体出口管が接続され、前記衝突壁面に連なり分離された液滴を前記気液混合流体入口管側に集液する傾斜底面部を有し、該傾斜底面部と分離容器の気液混合流体入口側内壁面との間にボックス形集液部を備え、前記傾斜底面部の終端部に連なりかつ前記ボックス形集液部の内部に突出する半円形又は円弧状の突出部を有し、前記ボックス形集液部に排液管を介して液体回収タンクが接続された構成となしたことを特徴とするものである。 The gas-liquid separation device according to the present invention introduces a liquid-gas mixed fluid (hereinafter referred to as “gas-liquid mixed fluid” for convenience of description) into the separation container, and the gas-liquid mixed fluid is supplied to the inner wall of the separation container. A gas-liquid separation device that separates liquid and gas by colliding with each other, wherein a gas-liquid mixed fluid inlet pipe is opened and connected to a side surface of the separation container, and an inner wall surface facing the inlet pipe And a gas outlet pipe with an opening projecting into the separation container is connected to the upper surface of the separation container, and the separated liquid droplets separated from the collision wall are separated from the gas-liquid mixture. An inclined bottom surface portion for collecting liquid on the mixed fluid inlet pipe side, and a box-shaped liquid collecting portion provided between the inclined bottom surface portion and the gas-liquid mixed fluid inlet side inner wall surface of the separation container; A semi-circle or circle that is continuous with the part and protrudes into the box-shaped liquid collecting part It has Jo protrusions, and is characterized in that the liquid recovery tank through the drain pipe to the box shape liquid collection unit is no connected thereto.

又、本発明に係る気液分離装置は、前記気液混合流体の入口管と分離された気体出口管の位置関係を分離容器最長のオフセット配置すること、前記気液混合流体の衝突壁面を粗面とすること、前記気体出口管の分離容器内突出長さを5〜20mmとすること、前記傾斜底面部の傾斜角度を10〜20度とすること、を好ましい態様とするものである。 In the gas-liquid separation device according to the present invention , the positional relationship between the gas-liquid mixed fluid inlet pipe and the separated gas outlet pipe is arranged with the longest offset of the separation container, and the gas-liquid mixed fluid collision wall is roughened. It is preferable that the surface of the gas outlet pipe is 5 to 20 mm, and the inclination angle of the inclined bottom surface portion is 10 to 20 degrees.

本発明の気液分離装置は、気液分離容器内にフィルターや吸水材等の分離部材を無くして通気抵抗の低減をはかるとともに、気液混合流体を分離容器内壁面に衝突させて気液分離させる方式としたことにより、装置の小型化がはかられるのみならず、流速10〜100m/sのような広範囲のガス流速にも十分に対応でき、内燃機関の燃費改善にも多大な効果を奏する。又、気液混合流体の入口管と、気液混合流体から分離された気体の出口管の位置関係を分離容器最長のオフセット配置することにより、分離容器に導入された気液混合流体が気体出口管より直接排出されるのを抑制できるので、気液混合流体の処理を効率よく行うことができる。さらに、分離容器内における気液混合流体の衝突壁面を粗面とすることにより、面衝突による液滴化を効率よく行うことができ、液滴の捕集効率を増加することが可能となる。又、分離容器の底部に排液管を介して液体回収タンクを設けることにより、回収された液滴の分離容器内への巻き上げが防止され、高流速域における液滴捕集率の低下を抑制できる。さらに、気体出口管の分離容器内突出長さを5〜20mmとすることにより、気体出口管からの液滴吸引をより効果的に抑制することができ、分離容器の傾斜底面部の傾斜角度を10〜20度に設定することにより、気体と分離後の液滴をより効果的に排液部に集めることができる。又、分離容器の傾斜底面部に連なる集液部を所望深さのボックス形とするとともに、傾斜底面部の終端部を半円形又は円弧状に形成して当該ボックス形集液部の内部に突出させることにより、傾斜底面部を流下してきた液滴が傾斜底面部の終端部に沿って落下してボックス形集液部に溜まり集液性を向上させるのみならず、分離容器内での旋回流による液滴の巻き上げを防止することができる。   The gas-liquid separation device of the present invention eliminates a separation member such as a filter and a water-absorbing material in the gas-liquid separation container to reduce ventilation resistance, and causes the gas-liquid mixed fluid to collide with the inner wall surface of the separation container for gas-liquid separation. By adopting this method, not only can the apparatus be miniaturized, but it can sufficiently handle a wide range of gas flow rates such as a flow rate of 10 to 100 m / s, and has a great effect on improving the fuel consumption of an internal combustion engine. Play. Also, the gas-liquid mixed fluid introduced into the separation container is placed in the gas outlet by arranging the positional relationship between the gas-liquid mixed fluid inlet pipe and the gas outlet pipe separated from the gas-liquid mixed fluid at the longest offset of the separation container. Since direct discharge from the pipe can be suppressed, the gas-liquid mixed fluid can be processed efficiently. Furthermore, by making the collision wall surface of the gas-liquid mixed fluid in the separation container rough, it is possible to efficiently form droplets by surface collision and increase the droplet collection efficiency. In addition, by providing a liquid recovery tank at the bottom of the separation vessel via a drainage pipe, the collected droplets are prevented from being rolled up into the separation vessel, and the drop in the droplet collection rate at high flow rates is suppressed. it can. Furthermore, by making the protruding length in the separation container of the gas outlet pipe 5 to 20 mm, it is possible to more effectively suppress the liquid droplet suction from the gas outlet pipe, and the inclination angle of the inclined bottom surface portion of the separation container can be reduced. By setting the angle to 10 to 20 degrees, the gas and the liquid droplet after separation can be more effectively collected in the drainage part. In addition, the liquid collection part connected to the inclined bottom surface part of the separation container is formed into a box shape having a desired depth, and the terminal part of the inclined bottom surface part is formed in a semicircular shape or an arc shape to protrude into the box-shaped liquid collection part. As a result, the liquid droplets that have flowed down the inclined bottom surface part fall along the end of the inclined bottom surface part and accumulate in the box-shaped liquid collecting part to improve the liquid collecting property, and also the swirl flow in the separation container. It is possible to prevent the droplets from being rolled up.

本発明に係る気液分離装置に関連する参考例1の気液分離装置を一部破断して示す斜視図である。It is a perspective view which partially fractures and shows the gas-liquid separation apparatus of the reference example 1 relevant to the gas-liquid separation apparatus which concerns on this invention. 図1に示す気液分離装置の平面図である。It is a top view of the gas-liquid separator shown in FIG. 図1、図2に示す気液分離装置の気液混合流体の気液分離動作を示す説明図で、(a)は概略正面図、(b)は概略平面図である。It is explanatory drawing which shows the gas-liquid separation operation | movement of the gas-liquid mixed fluid of the gas-liquid separator shown in FIG. 1, FIG. 2, (a) is a schematic front view, (b) is a schematic plan view. 本発明に係る気液分離装置に関連する参考例2の気液分離装置を一部破断して示す斜視図である。It is a perspective view which partially fractures and shows the gas-liquid separator of the reference example 2 relevant to the gas-liquid separator which concerns on this invention. 本発明に係る気液分離装置の実施例を一部破断して示す斜視図である。 1 is a perspective view showing a partially broken embodiment of a gas-liquid separator according to the present invention. 図5に示す気液分離装置の図3(a)相当図である。FIG. 6 is a view corresponding to FIG. 3A of the gas-liquid separator shown in FIG. 5. 図5に示す気液分離装置の傾斜底面部終端部の断面形状例を示す縦断面図で、(a)は円弧状部と水平部との組合わせ形状、(b)は円弧状部と斜面部との組合わせ形状をそれぞれ示す。It is a longitudinal cross-sectional view which shows the cross-sectional shape example of the inclination bottom face part termination | terminus part of the gas-liquid separator shown in FIG. 5, (a) is the combined shape of an arc-shaped part and a horizontal part, (b) is an arc-shaped part and a slope. The combination shape with the part is shown respectively.

以下、図面を参照して、参考例1、2及び本発明の実施の形態について説明する。
図1〜図7において、1、11、21は気液分離装置、2、12、22は気液分離容器、2−1、12−1、22−1は気液混合流体の衝突壁面、2−2、12−2、22−2は傾斜底面部、2−3、12−3は水平底面部からなる集液部、22−3はボックス形の集液部、22−2aは傾斜底面部の半円形状突出部、22−2bは傾斜底面部の円弧状突出部、3、13、23は気液混合流体入口管、4、14、24は気体出口管、5、15、25は排液管、6、16、26は液体回収タンク(貯水タンク等)である。
Hereinafter, reference examples 1 and 2 and embodiments of the present invention will be described with reference to the drawings.
1 to 7, 1, 11 and 21 are gas-liquid separators, 2, 12 and 22 are gas-liquid separation containers, 2-1, 12-1 and 22-1 are collision wall surfaces of gas-liquid mixed fluid, 2 -2, 12-2 and 22-2 are inclined bottom surface portions, 2-3 and 12-3 are liquid collecting portions composed of horizontal bottom surface portions, 22-3 is a box-shaped liquid collecting portion, and 22-2a is an inclined bottom surface portion. The semicircular projecting part, 22-2b is the arcuate projecting part of the inclined bottom surface part, 3, 13, 23 are gas-liquid mixed fluid inlet pipes, 4, 14, 24 are gas outlet pipes, 5, 15, 25 are exhausted The liquid pipes 6, 16, and 26 are liquid recovery tanks (water storage tanks and the like).

図1、図2に示す参考例1の気液分離装置は、ボックス形の気液分離容器2と、該気液分離容器の側面部に水平に接続された気液混合流体入口管3、及び、同気液分離容器の上面部に垂直に接続された気体出口管4、同気液分離容器の底面部に接続された液体回収タンク6とから構成され、かつ前記気液分離容器2の気液混合流体入口管3と対向する内壁面を気液混合流体の衝突壁面2−1となすとともに、該衝突壁面2−1に連なる気液分離容器の底面を傾斜底面部2−2となし、該傾斜底面部2−2の下端に連なる水平底面部からなる集液部2−3に排液管5を介して液体回収タンク6が接続されている。 1, the gas-liquid separator 1 of Reference Example 1 shown in FIG. 2, a gas-liquid separation vessel 2 of box-shaped, gas-liquid separation horizontally connected to the side portions of the container are gas-liquid mixed fluid inlet pipe 3, And a gas outlet pipe 4 perpendicularly connected to the upper surface portion of the same gas-liquid separation container, and a liquid recovery tank 6 connected to the bottom surface portion of the same gas-liquid separation container. The inner wall surface facing the gas-liquid mixed fluid inlet pipe 3 serves as the collision wall surface 2-1 of the gas-liquid mixed fluid, and the bottom surface of the gas-liquid separation container connected to the collision wall surface 2-1 is the inclined bottom surface portion 2-2. The liquid recovery tank 6 is connected via a drainage pipe 5 to a liquid collecting part 2-3 consisting of a horizontal bottom face continuous to the lower end of the inclined bottom face 2-2.

前記気液混合流体入口管3はその先端部が気液分離容器2に開口するように水平に接続され、気体出口管4は気液分離容器2の上面部にその開口部が気液分離容器2内に突出するように垂直に接続されている。この気液混合流体入口管3と気体出口管4は、気液混合流体入口管3より気液分離容器2内に流入した気液混合流体が気体出口管4より直接排出されるのを抑制するため、図2に示すようにその位置関係を気液混合流体入口管3は分離容器側面の中心位置よりも片端側へ設け、気体出口管4は分離容器上面の中心位置よりも前記入口管3と反対側端部に設けてオフセット配置されている。ここで、前記気体出口管4の気液分離容器2内突出部4−1の突出長さ(突出代)としては、特に限定するものではないが5〜20mmが好ましい。即ち、突出長さが5mm未満では気体出口管4からの液滴吸引の抑制効果が小さく、他方、20mmを超えると排液管5側への液滴集液が抑制されてしまうためである。   The gas-liquid mixed fluid inlet pipe 3 is connected horizontally such that the tip thereof opens to the gas-liquid separation container 2, and the gas outlet pipe 4 is open to the upper surface of the gas-liquid separation container 2. 2 are vertically connected so as to protrude into the area 2. The gas-liquid mixed fluid inlet pipe 3 and the gas outlet pipe 4 prevent the gas-liquid mixed fluid flowing into the gas-liquid separation container 2 from the gas-liquid mixed fluid inlet pipe 3 from being directly discharged from the gas outlet pipe 4. Therefore, as shown in FIG. 2, the gas-liquid mixed fluid inlet pipe 3 is provided at one end side with respect to the central position on the side surface of the separation container, and the gas outlet pipe 4 is arranged on the inlet pipe 3 with respect to the central position on the upper surface of the separation container. It is provided at the end opposite to and offset. Here, the protrusion length (protrusion allowance) of the protrusion 4-1 in the gas-liquid separation container 2 of the gas outlet pipe 4 is not particularly limited, but is preferably 5 to 20 mm. That is, if the protrusion length is less than 5 mm, the effect of suppressing the suction of the liquid droplets from the gas outlet pipe 4 is small, while if it exceeds 20 mm, the liquid collection to the drain pipe 5 side is suppressed.

前記気液分離容器2の衝突壁面2−1に連なる傾斜底面部2−2は、気液混合流体入口管3より気液分離容器2内に流入した気液混合流体が衝突壁面2−1に衝突して気体と分離した液滴を気液混合流体入口管3側に集液するために形成したもので、衝突壁面2−1側が高く、気液混合流体入口管3側が低く形成されている。この傾斜底面部2−2の傾斜角度θとしては、特に限定するものではないが10〜20度に設定するのが好ましい。即ち、傾斜角度θが10度未満では気体と分離後の液滴の捕集率が小さく、他方、20度を超えると液滴の捕集率は高くなるが、傾斜底面部2−2上における液滴の流れ状態(流速等)、排液管5及び液体回収タンク6との関係等を考慮すると上限は20度程度が好ましいためである。   The inclined bottom surface portion 2-2 connected to the collision wall surface 2-1 of the gas-liquid separation container 2 has the gas-liquid mixed fluid flowing into the gas-liquid separation container 2 from the gas-liquid mixed fluid inlet pipe 3 into the collision wall surface 2-1. It is formed to collect liquid droplets that have collided and separated from gas on the gas-liquid mixed fluid inlet pipe 3 side, and the collision wall surface 2-1 side is high and the gas-liquid mixed fluid inlet pipe 3 side is low. . The inclination angle θ of the inclined bottom surface part 2-2 is not particularly limited, but is preferably set to 10 to 20 degrees. That is, when the inclination angle θ is less than 10 degrees, the collection rate of the liquid and separated droplets is small. On the other hand, when the inclination angle θ exceeds 20 degrees, the collection rate of the droplets is high, but on the inclined bottom surface portion 2-2. This is because the upper limit is preferably about 20 degrees in consideration of the flow state of the droplets (flow velocity, etc.), the relationship between the drainage pipe 5 and the liquid recovery tank 6 and the like.

さらに、前記傾斜底面部2−2の下端に連なる水平底面部からなる集液部2−3には、排液口2−3aが設けられ、この排液口2−3aに排液管5を介して液体回収タンク6が付設されている。なお、排液口2−3aの位置は特に限定するものではなく、気液分離容器2内に導入される気液混合流体の流速等を考慮して、気体と分離後の液滴が溜まり易い場所に設定することとする。   Furthermore, the liquid collection part 2-3 which consists of a horizontal bottom face part connected to the lower end of the inclined bottom face part 2-2 is provided with a drainage outlet 2-3a, and the drainage pipe 5 is connected to the drainage outlet 2-3a. A liquid recovery tank 6 is attached. Note that the position of the drainage outlet 2-3a is not particularly limited, and in consideration of the flow rate of the gas-liquid mixed fluid introduced into the gas-liquid separation container 2, the gas and the liquid droplets after separation are likely to accumulate. The location will be set.

上記図1、図2に示す構成の気液分離装置において、気液混合流体入口管3より気液分離容器2内に流入した気液混合流体Mは、図3(a)(b)に示すように、気液分離容器2の内周壁面に沿って旋回しながら衝突壁面2−1に対する衝突を繰り返しながら慣性力や遠心力によって気体Gと液滴Wとに分離される。その際、気液混合流体M中の分離された気体Gは分離容器上面の気体出口管4より外部に流出するが、液滴Wへの吸引の抑制効果や排液管5側への集液を考慮して設定された気体出口管4の気液分離容器2内突出部4−1の作用により、液滴Wを吸引することなく分離された気体Gのみが効果的に取出される。一方、分離された液滴Wは傾斜底面部2−2上に落下するとともに当該傾斜底面部上面を下方へ流れて集液部2−3に溜まる。この時、傾斜底面部2−2の上面に落下した液滴Wは、当該液滴の流れ状態(流速等)等を考慮して所望の傾斜角度θに設定して設けられた傾斜底面部2−2の作用により効率よく集液部2−3に捕集される。集液部2−3に捕集された液滴Wは、排液口2−3aより排液管5を介して液体回収タンク6に回収される。このように気液混合流体から分離された液滴Wを気液分離容器2とは別設の液体回収タンク6に回収することにより、回収された液滴の気液分離容器2内への巻き上げが防止され、高流速域における液体捕集率の低下を抑制できる。   1 and FIG. 2, the gas-liquid mixed fluid M flowing into the gas-liquid separation container 2 from the gas-liquid mixed fluid inlet pipe 3 is shown in FIGS. 3 (a) and 3 (b). As described above, the gas G and the droplet W are separated by the inertial force and the centrifugal force while repeating the collision with the collision wall surface 2-1 while turning along the inner peripheral wall surface of the gas-liquid separation container 2. At that time, the separated gas G in the gas-liquid mixed fluid M flows out from the gas outlet pipe 4 on the upper surface of the separation container. However, the effect of suppressing the suction to the droplets W and the liquid collection to the drain pipe 5 side. Due to the action of the protruding portion 4-1 in the gas-liquid separation container 2 of the gas outlet pipe 4 set in consideration of the above, only the separated gas G is effectively taken out without sucking the droplets W. On the other hand, the separated droplet W falls on the inclined bottom surface portion 2-2 and flows downward on the upper surface of the inclined bottom surface portion to accumulate in the liquid collecting portion 2-3. At this time, the droplet W dropped on the upper surface of the inclined bottom surface portion 2-2 is provided with the inclined bottom surface portion 2 set at a desired inclination angle θ in consideration of the flow state (flow velocity, etc.) of the droplet. -2 is efficiently collected in the liquid collection part 2-3. The droplets W collected in the liquid collection unit 2-3 are collected in the liquid collection tank 6 through the drainage pipe 5 from the drainage port 2-3a. The liquid droplet W thus separated from the gas-liquid mixed fluid is collected in the liquid collection tank 6 separate from the gas-liquid separation container 2, so that the collected liquid is rolled up into the gas-liquid separation container 2. Is prevented, and a decrease in the liquid collection rate in the high flow rate region can be suppressed.

次に、図4に示す参考例2の気液分離装置11は、前記図1、図2に示す気液分離容器2の気液混合流体の衝突壁面2−1を粗面の衝突壁面12−1とした以外は、前記図1、図2に示す構成の気液分離装置と同様の構成を有するもので、分離容器内における気液混合流体の衝突壁面を粗面とすることにより、面衝突による液滴化を効率よく行うことができ、液滴の捕集効率の増加を可能とした気液分離装置である。 Next, the gas-liquid separation device 11 of Reference Example 2 shown in FIG. 4 uses the collision wall surface 2-1 of the gas-liquid mixed fluid of the gas-liquid separation container 2 shown in FIGS. 1 except that the gas-liquid separation device having the configuration shown in FIG. 1 and FIG. 2 has the same configuration as above. It is a gas-liquid separation device that can efficiently form droplets by means of and can increase the collection efficiency of the droplets.

即ち、その構造は前記図1、図2に示す参考例1の気液分離装置1と同様に、ボックス形の気液分離容器12と、該気液分離容器の側面部に水平に接続された気液混合流体入口管13、及び、同気液分離容器の上面部に垂直に接続された気体出口管14、同気液分離容器の底面部に接続された液体回収タンク16とから構成され、かつ前記気液分離容器12の気液混合流体入口管13と対向する内壁面を粗面の衝突壁面12−1となすとともに、該衝突壁面12−1に連なる気液分離容器の底面を傾斜底面部12−2となし、該傾斜底面部12−2の下端に連なる水平底面部からなる集液部12−3に排液管15を介して液体回収タンク16が接続されている。 That is, the structure is horizontally connected to the box-shaped gas-liquid separation container 12 and the side surface of the gas-liquid separation container, similarly to the gas-liquid separation apparatus 1 of Reference Example 1 shown in FIGS. A gas-liquid mixed fluid inlet pipe 13, a gas outlet pipe 14 connected perpendicularly to the upper surface of the gas-liquid separation container, and a liquid recovery tank 16 connected to the bottom surface of the gas-liquid separation container, The inner wall surface of the gas-liquid separation container 12 facing the gas-liquid mixed fluid inlet pipe 13 is a rough collision wall surface 12-1, and the bottom surface of the gas-liquid separation container connected to the collision wall surface 12-1 is the inclined bottom surface. A liquid recovery tank 16 is connected via a drainage pipe 15 to a liquid collecting part 12-3 formed of a horizontal bottom face continuous to the lower end of the inclined bottom face 12-2.

前記参考例1、2の気液分離装置1、11において、気液混合流体の衝突壁面を粗面の衝突壁面12−1としたのは、気液混合流体中の液滴粒子が衝突壁面に付着し易いようにするためである。ここで、粗面とは表面に液滴粒子が引っかかりやすく、気流の流れを妨げないような粗さである。例えば、気液混合流体中の液滴粒子の粒経が数μm〜数百μmの混合流体の場合は、衝突面の表面に凹部と凸部の差が数百μm〜5mm程度となる表面処理(凹凸形成)を施して捕集率を向上させることが望ましい。なお、この数値は気液混合流体の流速や液滴の種類(水滴、油滴等)、気液分離容器12の内部形状等によって変わるものであり、前記数値に限定されるものではない。又、粗面の衝突壁面12−1は前記表面処理に代えて、表面に液滴を付着しやすい材料を設けて形成してもよい。例えば、ステンレス等の金属繊維を網目状に織り込んだ織物や網体を貼り付けてもよく、さらに耐熱性、耐食性等の条件が満たされれば、合成樹脂、セラミック等のものであってもよい。 In the gas-liquid separation devices 1 and 11 of the reference examples 1 and 2, the collision wall surface of the gas-liquid mixed fluid is the rough collision wall surface 12-1. This is to facilitate adhesion. Here, the rough surface is such a roughness that the droplet particles are easily caught on the surface and do not hinder the flow of the airflow. For example, in the case of a mixed fluid having a particle size of several μm to several hundred μm in the gas-liquid mixed fluid, the surface treatment is such that the difference between the concave and convex portions on the surface of the collision surface is about several hundred μm to 5 mm. It is desirable to improve the collection rate by applying (unevenness formation). This numerical value varies depending on the flow velocity of the gas-liquid mixed fluid, the type of liquid droplet (water droplet, oil droplet, etc.), the internal shape of the gas-liquid separation container 12, and the like, and is not limited to the above numerical value. The rough collision wall surface 12-1 may be formed by providing a material that easily attaches droplets to the surface instead of the surface treatment. For example, a woven fabric or mesh body in which metal fibers such as stainless steel are woven in a mesh shape may be attached, and a material such as a synthetic resin or ceramic may be used as long as conditions such as heat resistance and corrosion resistance are satisfied.

前記図4に示す気液分離装置11の場合も、前記図1、図2に示す気液分離装置1と同様に、気液混合流体入口管13はその先端部が気液分離容器12に開口するように水平に接続され、気体出口管14は気液分離容器12の上面部にその開口部が気液分離容器12内に突出するように垂直に接続されている。この気液混合流体入口管13と気体出口管14も前記と同様に、その位置関係を気液混合流体入口管13は分離容器側面の中心位置よりも片端側へ設け、気体出口管14は分離容器上面の中心位置よりも前記入口管13と反対側端部に設けてオフセット配置されている。前記気体出口管14の気液分離容器12内突出部14−1の突出長さ(突出代)も前記と同様に、5〜20mmが好ましい。   In the case of the gas-liquid separator 11 shown in FIG. 4, the gas-liquid mixed fluid inlet pipe 13 is opened at the tip of the gas-liquid separator 12 as in the case of the gas-liquid separator 1 shown in FIGS. The gas outlet pipe 14 is vertically connected to the upper surface portion of the gas-liquid separation container 12 so that the opening projects into the gas-liquid separation container 12. Similarly to the above, the gas-liquid mixed fluid inlet pipe 13 and the gas outlet pipe 14 are disposed at one end of the gas-liquid mixed fluid inlet pipe 13 with respect to the center position on the side surface of the separation container, and the gas outlet pipe 14 is separated. It is disposed offset from the center position of the upper surface of the container at the end opposite to the inlet pipe 13. The protruding length (protruding margin) of the protruding portion 14-1 in the gas-liquid separation container 12 of the gas outlet pipe 14 is preferably 5 to 20 mm, as described above.

又、前記気液分離容器12の衝突壁面12−1に連なる傾斜底面部12−2も前記と同様に、気液混合流体入口管13より気液分離容器12内に流入した気液混合流体Wが粗面の衝突壁面12−1に衝突して気体と分離した液滴を気液混合流体入口管13側に集液するために、衝突壁面12−1側が高く、気液混合流体入口管13側が低く形成されている。この傾斜底面部12−2の傾斜角度θも前記同様に、10〜20度に設定するのが好ましい。   In addition, the inclined bottom surface portion 12-2 connected to the collision wall surface 12-1 of the gas-liquid separation container 12 also has the gas-liquid mixed fluid W flowing into the gas-liquid separation container 12 from the gas-liquid mixed fluid inlet pipe 13 as described above. In order to collect liquid droplets separated from the gas by colliding with the rough collision wall surface 12-1, the collision wall surface 12-1 side is high and the gas-liquid mixture fluid inlet tube 13 is high. The side is formed low. The inclination angle θ of the inclined bottom surface portion 12-2 is preferably set to 10 to 20 degrees as described above.

さらに、前記傾斜底面部12−2の下端に連なる水平底面部からなる集液部12−3も前記のものと同様に、排液口12−3aが設けられ、この排液口12−3aに排液管15を介して液体回収タンク16が付設されている。なお、排液口12−3aの位置は特に限定するものではなく、気液分離容器12内に導入される気液混合流体の流速等を考慮して、気体と分離後の液滴が溜まり易い場所に設定することとすることはいうまでもない。   Furthermore, the liquid collection part 12-3 which consists of a horizontal bottom face part connected to the lower end of the inclined bottom face part 12-2 is also provided with a drainage port 12-3a, and the drainage port 12-3a A liquid recovery tank 16 is attached via a drainage pipe 15. Note that the position of the drainage port 12-3a is not particularly limited, and in consideration of the flow rate of the gas-liquid mixed fluid introduced into the gas-liquid separation container 12, the gas and the liquid droplets after separation are likely to accumulate. Needless to say, the location is set.

上記図4に示す構成の気液分離装置11において、気液混合流体入口管13より気液分離容器12内に流入した気液混合流体Mは、気液分離容器12の内周壁面に沿って旋回しながら衝突壁面12−1に対する衝突を繰り返しながら慣性力や遠心力によって気体Gと液滴Wとに分離されるが、本装置の場合は、衝突壁面12−1が粗面となっているので、前記図1、図2に示す衝突面に粗面処理が施されていない衝突壁面に比べ気液混合流体中の液滴粒子が多く付着し、液滴化率が高くなる。粗面の衝突壁面12−1に衝突して分離された液滴Wは、傾斜底面部12−2上に落下するとともに当該傾斜底面部上面を下方へ流れて集液部12−3に溜まり、排液口12−3aより排液管15を介して液体回収タンク16に回収される。なお本実施例装置の場合も、気液混合流体から分離された液滴Wを気液分離容器12とは別設の液体回収タンク16に回収することにより、回収された液滴の気液分離容器12内への巻き上げが防止され、高流速域における液体捕集率の低下を抑制できることはいうまでもない。   In the gas-liquid separation device 11 having the configuration shown in FIG. 4, the gas-liquid mixed fluid M that has flowed into the gas-liquid separation container 12 from the gas-liquid mixed fluid inlet pipe 13 flows along the inner peripheral wall surface of the gas-liquid separation container 12. The gas G and the droplet W are separated by inertia force or centrifugal force while repeating the collision with the collision wall surface 12-1 while turning, but in the case of this apparatus, the collision wall surface 12-1 is a rough surface. Therefore, more droplet particles in the gas-liquid mixed fluid adhere to the collision surface shown in FIGS. 1 and 2 than the collision wall surface on which the rough surface treatment is not performed, and the droplet formation rate is increased. The droplet W separated by colliding with the rough collision wall surface 12-1 falls on the inclined bottom surface portion 12-2 and flows downward on the upper surface of the inclined bottom surface portion to collect in the liquid collecting portion 12-3. The liquid is recovered into the liquid recovery tank 16 through the drainage pipe 15 from the drainage port 12-3a. In the case of the apparatus of the present embodiment as well, the liquid droplets separated from the gas-liquid mixed fluid are recovered in the liquid recovery tank 16 provided separately from the gas-liquid separation container 12, so that the recovered liquid droplets are separated from each other. Needless to say, winding into the container 12 is prevented, and a decrease in the liquid collection rate in the high flow rate region can be suppressed.

図5〜図7に示す本発明に係る気液分離装置21は、前記図1〜図4に示す気液分離容器2、12の集液部2−3、12−3を所望深さのボックス形とするとともに、傾斜底面部2-2、12−2の終端部を半円形又は円弧状に形成して当該ボックス形集液部の内部に突出させる構造とした以外は、前記図1〜図4に示す構成の気液分離装置と同様の構成を有するもので、集液部を所望深さのボックス形とすることにより集液性を向上できるとともに、傾斜底面部の終端部を半円形又は円弧状に形成して当該ボックス形集液部の内部に突出させることにより、当該突出部の遮蔽作用により分離容器内での旋回流による液滴の巻き上げ、飛散が防止され、液滴の捕集率のさらなる増加を可能とした気液分離装置である。 The present invention engaging Ru gas-liquid separator 21 shown in FIGS. 5-7, the collecting liquid portion 2-3,12-3 the desired depth of the gas-liquid separation vessel 2, 12 shown in FIG. 1 to FIG. 4 Except for the box shape and the structure in which the end portions of the inclined bottom surface portions 2-2 and 12-2 are formed in a semicircular shape or an arc shape and project into the box-shaped liquid collecting portion, the above-described FIG. 4 has the same configuration as the gas-liquid separator having the configuration shown in FIG. 4, and the liquid collection part can be improved by making the liquid collection part into a box shape with a desired depth, and the end part of the inclined bottom part is semicircular Alternatively, by forming it into an arc shape and projecting into the box-shaped liquid collecting part, the shielding action of the projecting part prevents the liquid from being rolled up and scattered by the swirling flow in the separation container, and the liquid droplet is captured. This is a gas-liquid separator that can further increase the collection rate.

即ち、その構造は図5、図6に示すように、前記図1〜図4に示す気液分離装置1、11と同様に、ボックス形の気液分離容器22と、該気液分離容器の側面部に水平に接続された気液混合流体入口管23、及び、同気液分離容器の上面部に垂直に接続された気体出口管24、同気液分離容器の底面部に連なる所望深さのボックス形集液部22−3に接続された液体回収タンク26とから構成され、かつ前記気液分離容器22の気液混合流体入口管23と対向する内壁面を衝突壁面22−1となすとともに、該衝突壁面22−1に連なる気液分離容器の底面を傾斜底面部22−2となし、該傾斜底面部22−2の終端部に、半円形状に形成されて前記ボックス形集液部22−3の内部に突出させた半円形状突出部22−2aを有し、該半円形状突出部22−2aを有するボックス形集液部22−3の水平底面部に排液管25を介して液体回収タンク26が接続されている。なお、前記ボックス形集液部22−3の深さ、半円形状突出部22−2aの突出量及び大きさ等は、当該気液分離装置21の規模、気液分離容器22の容積等に応じて適宜定めることとする。又、ボックス形集液部22−3の底面部は、半円形状突出部22−2aより落下した液滴が排液管25へ集まり易くするために傾斜底面としてもよい。24−1は気体出口管24の気液分離容器22内突出部である。
なお、前記気液混合流体入口管23と気体出口管24も前記と同様に、その位置関係を気液混合流体入口管23は分離容器側面の中心位置よりも片端側へ設け、気体出口管24は分離容器上面の中心位置よりも前記入口管23と反対側端部に設けてオフセット配置されている。さらに、前記気体出口管24の気液分離容器22内突出部24−1の突出長さ(突出代)も前記と同様に、5〜20mmが好ましい。又、前記傾斜底面部22−2の傾斜角度θも前記同様に、10〜20度に設定するのが好ましい。
That is, as shown in FIGS. 5 and 6, the structure is similar to the gas-liquid separators 1 and 11 shown in FIGS. 1 to 4, and the box-shaped gas-liquid separator 22 and the gas-liquid separator Gas-liquid mixed fluid inlet pipe 23 connected horizontally to the side surface, gas outlet pipe 24 connected perpendicularly to the top surface of the gas-liquid separation container, and desired depth connected to the bottom surface of the gas-liquid separation container The inner wall surface of the gas-liquid separation container 22 facing the gas-liquid mixed fluid inlet pipe 23 is defined as a collision wall surface 22-1. In addition, the bottom surface of the gas-liquid separation container connected to the collision wall surface 22-1 is formed as an inclined bottom surface portion 22-2, and the box-shaped liquid collection is formed in a semicircular shape at the end portion of the inclined bottom surface portion 22-2. A semicircular protruding portion 22-2a protruding inside the portion 22-3, the semicircular shape Through the drain pipe 25 to the horizontal bottom of the box form liquid collection unit 22-3 having protrusions 22-2a liquid collection tank 26 is connected. The depth of the box-shaped liquid collecting part 22-3, the protruding amount and the size of the semicircular protruding part 22-2a, etc. are the same as the scale of the gas-liquid separating device 21, the volume of the gas-liquid separating container 22, and the like. It will be determined accordingly. Further, the bottom surface of the box-shaped liquid collecting portion 22-3 may be an inclined bottom surface in order to make it easier for liquid droplets falling from the semicircular protruding portion 22-2a to collect in the drainage pipe 25. 24-1 is a protrusion in the gas-liquid separation container 22 of the gas outlet pipe 24.
Note that the gas-liquid mixed fluid inlet pipe 23 and the gas outlet pipe 24 are provided at one end side of the gas-liquid mixed fluid inlet pipe 23 with respect to the center position on the side surface of the separation container. Is provided at an end opposite to the inlet pipe 23 with respect to the center position of the upper surface of the separation container. Further, the protruding length (protruding allowance) of the protruding portion 24-1 in the gas-liquid separation container 22 of the gas outlet pipe 24 is preferably 5 to 20 mm as described above. In addition, the inclination angle θ of the inclined bottom surface portion 22-2 is preferably set to 10 to 20 degrees as described above.

上記図5、図6に示す構成の気液分離装置21において、気液混合流体入口管23より気液分離容器22内に流入した気液混合流体Mは、気液分離容器22の内周壁面に沿って旋回しながら衝突壁面22−1に対する衝突を繰り返しながら慣性力や遠心力によって気体Gと液滴Wとに分離され、衝突壁面22−1に衝突して分離された液滴Wは、傾斜底面部22−2上に落下するとともに当該傾斜底面部上面を下方へ流れてその終端部に形成された半円形状突出部22−2aからボックス形集液部22−3内に落下する。この時、半円形状突出部22−2aの遮蔽作用により当該分離容器内での旋回流によるボックス形集液部22−3内の液滴の巻き上げ、飛散が減少する。ボックス形集液部22−3内の液滴は、排液管25を介して液体回収タンク26に回収される。
このように、本実施例装置の場合は、集液部を所望深さのボックス形とすることにより集液性を向上できるのみならず、傾斜底面部の終端部に形成した半円形状突出部22−2aの作用により分離容器内での旋回流による液滴の巻き上げ、飛散が防止されるので、液滴捕集率をより高めることが可能となる。
なお、ここでは図面は省略しているが、本実施例においても、気液混合流体の衝突壁面22−1を粗面とした場合には、前記と同様の作用効果が得られることはいうまでもない。
In the gas-liquid separation device 21 configured as shown in FIGS. 5 and 6, the gas-liquid mixed fluid M flowing into the gas-liquid separation container 22 from the gas-liquid mixed fluid inlet pipe 23 is the inner peripheral wall surface of the gas-liquid separation container 22. The gas G and the liquid droplet W are separated by inertial force or centrifugal force while repeating the collision with the collision wall surface 22-1 while turning along, and the liquid droplet W separated by colliding with the collision wall surface 22-1 is It falls on the inclined bottom surface portion 22-2 and flows downward on the upper surface of the inclined bottom surface portion to fall into the box-shaped liquid collecting portion 22-3 from the semicircular protruding portion 22-2a formed at the terminal portion thereof. At this time, due to the shielding action of the semicircular protruding portion 22-2a, the winding and scattering of the droplets in the box-shaped liquid collecting portion 22-3 due to the swirling flow in the separation container are reduced. The liquid droplets in the box-type liquid collecting section 22-3 are collected in the liquid collection tank 26 through the drain pipe 25.
Thus, in the case of the apparatus of the present embodiment, not only can the liquid collecting property be improved by making the liquid collecting portion into a box shape with a desired depth, but also a semicircular protruding portion formed at the end portion of the inclined bottom surface portion. The action of 22-2a prevents the liquid droplet from being rolled up and scattered by the swirling flow in the separation container, so that the liquid droplet collection rate can be further increased.
In addition, although drawing is abbreviate | omitted here, it cannot be overemphasized that the effect similar to the above is acquired also in a present Example, when the collision wall surface 22-1 of a gas-liquid mixed fluid is made into a rough surface. Nor.

上記図5、図6に示す構成の気液分離装置21における傾斜底面部22−2の終端部に形成する突出部は、前記半円形状突出部22−2aに替えて、例えば図7(a)に示す下部を水平部22−2cとした円弧状突出部22−2bと、同(b)に示す下部を斜面部22−2dとした円弧状突出部22−2bとすることもできる。そして、この円弧状突出部22−2bの場合も、前記半円形状突出部22−2aの場合と同様に分離容器内での旋回流によるボックス形集液部22−3内の液滴の巻き上げ、飛散が減少することはいうまでもない。   The protrusion formed at the terminal end of the inclined bottom surface portion 22-2 in the gas-liquid separator 21 having the structure shown in FIGS. 5 and 6 is replaced with the semicircular protrusion 22-2a, for example, FIG. The lower part shown in FIG. 4B may be an arcuate protruding part 22-2b having a horizontal part 22-2c, and the lower part shown in FIG. In the case of the arc-shaped protrusion 22-2b, the droplets in the box-shaped liquid collecting part 22-3 are wound up by the swirling flow in the separation container as in the case of the semicircular protrusion 22-2a. Needless to say, scattering is reduced.

1、11、21 気液分離装置
2、12、22 気液分離容器
2−1、12−1、22−1 衝突壁面
2−2、12−2、22−2 傾斜底面部
2−3、12−3 集液部
2−3a、12−3a 排液口
3、13、23 気液混合流体入口管
4、14、24 気体出口管
4−1、14−1、24−1 突出部
5、15、25 排液管
6、16、26 液体回収タンク
12−1 粗面の衝突壁面
22−2a 半円形状突出部
22−2b 円弧状突出部
22−2c 水平部
22−2d 斜面部
22−3 ボックス形集液部
M 気液混合流体
G 気体
W 液滴
1, 11, 21 Gas-liquid separation device 2, 12, 22 Gas-liquid separation container 2-1, 12-1, 22-1 Collision wall surface 2-2, 12-2, 22-2 Inclined bottom surface 2-3, 12 -3 Liquid collecting part 2-3a, 12-3a Drain port 3, 13, 23 Gas-liquid mixed fluid inlet pipe 4, 14, 24 Gas outlet pipe 4-1, 14-1, 24-1 Protruding part 5, 15 , 25 Drain pipe 6, 16, 26 Liquid recovery tank 12-1 Rough collision wall 22-2a Semi-circular protrusion 22-2b Arc-shaped protrusion 22-2c Horizontal part 22-2d Slope part 22-3 Box Liquid collecting part M Gas-liquid mixed fluid G Gas W Droplet

Claims (5)

液体と気体の混合流体を分離容器内に導入し、該気液混合流体を分離容器内壁面に衝突させることによって液体と気体とに分離する方式の気液分離装置であって、前記分離容器の側面部に気液混合流体入口管が開口して接続され、前記入口管と対向する内壁面を気液混合流体の衝突壁面となし、前記分離容器の上面部には該分離容器内に開口部が突出する気体出口管が接続され、前記衝突壁面に連なり分離された液滴を前記気液混合流体入口管側に集液する傾斜底面部を有し、該傾斜底面部と分離容器の気液混合流体入口側内壁面との間にボックス形集液部を備え、前記傾斜底面部の終端部に連なりかつ前記ボックス形集液部の内部に突出する半円形又は円弧状の突出部を有し、前記ボックス形集液部に排液管を介して液体回収タンクが接続された構成となしたことを特徴とする気液分離装置。   A gas-liquid separation device of a type that separates liquid and gas into liquid and gas by introducing a mixed fluid of liquid and gas into the separation container and causing the gas-liquid mixed fluid to collide with the inner wall surface of the separation container. A gas-liquid mixed fluid inlet tube is opened and connected to the side surface, and an inner wall surface facing the inlet tube is formed as a collision wall surface of the gas-liquid mixed fluid, and an upper portion of the separation container has an opening in the separation container. Is connected to the collision wall surface, and has an inclined bottom surface portion for collecting the separated liquid droplets on the gas-liquid mixed fluid inlet tube side, and the inclined bottom surface portion and the gas-liquid of the separation container A box-shaped liquid collection part is provided between the inner wall surface of the mixed fluid inlet side, and has a semicircular or arc-shaped protrusion that continues to the terminal end of the inclined bottom surface part and protrudes into the box-shaped liquid collection part. A liquid recovery tank is connected to the box-type liquid collector through a drainage pipe Gas-liquid separation device is characterized in that no the configuration. 前記気液混合流体の入口管と分離された気体出口管の位置関係をオフセット配置することを特徴とする請求項に記載の気液分離装置。 The gas-liquid separator according to claim 1 , wherein a positional relationship between the gas-liquid mixed fluid inlet pipe and the separated gas outlet pipe is offset. 前記気液混合流体の衝突壁面を粗面とすることを特徴とする請求項1又は2に記載の気液分離装置。 The gas-liquid separator according to claim 1 or 2 , wherein a collision wall surface of the gas-liquid mixed fluid is a rough surface. 前記気体出口管の分離容器内突出長さを5〜20mmとすることを特徴とする請求項1〜のいずれか1項に記載の気液分離装置。 The gas-liquid separation device according to any one of claims 1 to 3 , wherein a protruding length of the gas outlet pipe in the separation container is 5 to 20 mm. 前記傾斜底面部の傾斜角度θを10〜20度とすることを特徴とする請求項1〜のいずれか1項に記載の気液分離装置。 The gas-liquid separator according to any one of claims 1 to 4 , wherein an inclination angle θ of the inclined bottom surface portion is set to 10 to 20 degrees.
JP2015114621A 2015-06-05 2015-06-05 Gas-liquid separator Active JP6466257B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015114621A JP6466257B2 (en) 2015-06-05 2015-06-05 Gas-liquid separator
PCT/JP2016/066291 WO2016194982A1 (en) 2015-06-05 2016-06-01 Gas-liquid separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114621A JP6466257B2 (en) 2015-06-05 2015-06-05 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JP2017002739A JP2017002739A (en) 2017-01-05
JP6466257B2 true JP6466257B2 (en) 2019-02-06

Family

ID=57440373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114621A Active JP6466257B2 (en) 2015-06-05 2015-06-05 Gas-liquid separator

Country Status (2)

Country Link
JP (1) JP6466257B2 (en)
WO (1) WO2016194982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220049505A (en) * 2019-06-14 2022-04-21 엑스-에너지 엘엘씨 A system for recovering entrained particles from an exhaust gas stream

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095234B2 (en) * 2017-06-22 2022-07-05 いすゞ自動車株式会社 Exhaust gas recirculation device
KR102176993B1 (en) * 2019-09-18 2020-11-12 삼보모터스주식회사 Condensing water separation unit and egr module including the same
CN113323775B (en) * 2021-06-30 2022-11-22 中国第一汽车股份有限公司 Exhaust gas recirculation air inlet unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026218U (en) * 1983-07-29 1985-02-22 アイシン精機株式会社 oil separator
JP2003126631A (en) * 2001-10-29 2003-05-07 Central Conveyor Kk Gas/liquid separator
JP2006274961A (en) * 2005-03-30 2006-10-12 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device
JP2008241064A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Gas-liquid separator for air conditioner
JP5772402B2 (en) * 2011-08-31 2015-09-02 トヨタ紡織株式会社 Oil separator
JP6314400B2 (en) * 2013-09-30 2018-04-25 三菱自動車工業株式会社 Condensate separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220049505A (en) * 2019-06-14 2022-04-21 엑스-에너지 엘엘씨 A system for recovering entrained particles from an exhaust gas stream
KR102570389B1 (en) * 2019-06-14 2023-08-23 엑스 에너지, 엘엘씨 A system for recovering entrained particles from an exhaust gas stream

Also Published As

Publication number Publication date
JP2017002739A (en) 2017-01-05
WO2016194982A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6466257B2 (en) Gas-liquid separator
US8075656B2 (en) Separator assembly
CN105214331B (en) A kind of high-efficiency condensation tube bank demister and application
WO2016186108A1 (en) Gas-liquid separation device
US20170100689A1 (en) Air intake water separator
CN106582248A (en) Flue gas wet desulphurization, dedusting integrated device and process
CN206391788U (en) Fountain inertial dust separator
CN101362037B (en) Pulse blade demister
CN208389571U (en) A kind of finned efficient cyclone
JP3776793B2 (en) Wet flue gas desulfurization equipment
CN209646139U (en) A kind of moisture trap
CN101721860A (en) Economizer hopper of coal-fired boiler in power plant
JP2007296457A (en) Dust collector
CN109621607A (en) A kind of moisture trap
JP5531557B2 (en) Capacitor
CN209530445U (en) A kind of combined type multi-stage spray cleaner
CN208943752U (en) A kind of Hydraulic dust removal device
CN200987951Y (en) Turbulent flow dust removing and desulfurizing tower
CN202921124U (en) Self-circulation revolving liquid composite gas filter
JP5915351B2 (en) Dust remover
CN207928870U (en) A kind of gas-solid-liquid purifier
JP2007248015A (en) Exhaust stack structure for preventing stack rain
CN215462915U (en) Flue particulate matter collection device
JP6553435B2 (en) Oil separation and recovery unit
CN208541957U (en) A kind of multiple high-efficiency demister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150