JP6424336B2 - Floodlight device - Google Patents

Floodlight device Download PDF

Info

Publication number
JP6424336B2
JP6424336B2 JP2015525009A JP2015525009A JP6424336B2 JP 6424336 B2 JP6424336 B2 JP 6424336B2 JP 2015525009 A JP2015525009 A JP 2015525009A JP 2015525009 A JP2015525009 A JP 2015525009A JP 6424336 B2 JP6424336 B2 JP 6424336B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical filter
emitted
projecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015525009A
Other languages
Japanese (ja)
Other versions
JPWO2015001693A1 (en
Inventor
山中 一彦
一彦 山中
森本 廉
廉 森本
白石 誠吾
誠吾 白石
純久 長崎
純久 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2015001693A1 publication Critical patent/JPWO2015001693A1/en
Application granted granted Critical
Publication of JP6424336B2 publication Critical patent/JP6424336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Multimedia (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Filters (AREA)
  • Projection Apparatus (AREA)

Description

本開示は、光源から出射した光を波長変換素子に照射することで発生する光を利用する車両用照明等の照明分野に用いられる投光装置に関する。   The present disclosure relates to a light projecting device used in the field of lighting such as vehicle lighting that utilizes light generated by irradiating a wavelength conversion element with light emitted from a light source.

従来この種の投光構造体は、図16に示すごとく、反射部材1041と、発光部材1042とを有する。反射部材1041は、頂点近傍に焦点が位置する深い凹面状に形成された反射面1041aを有する。発光部材1042は、反射面1041aの焦点及びその周辺に配置され、励起光により励起されることにより光を出射する。   Conventionally, this type of light emitting structure has a reflecting member 1041 and a light emitting member 1042 as shown in FIG. The reflecting member 1041 has a deep concave reflecting surface 1041a whose focal point is located near the vertex. The light emitting member 1042 is disposed at the focal point of the reflective surface 1041 a and its periphery, and emits light by being excited by the excitation light.

発光部材1042は、レーザ1043からの励起光L1を吸収して蛍光を発生する蛍光材料の粉末を樹脂などに混ぜて固めたもの、あるいは蛍光材料の粒子をバインダーに混ぜて塗布したものであった。   The light emitting member 1042 is a powder obtained by mixing a powder of a fluorescent material that absorbs the excitation light L1 from the laser 1043 to generate fluorescence and is solidified with a resin or the like, or a particle of the fluorescent material is mixed with a binder and applied. .

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to this application, for example, Patent Document 1 is known.

特開2012−53995号公報JP 2012-53995 A

このような従来の投光装置を車両用照明などの屋外照明に用いる場合、投光装置外部より太陽光が入射し、発光部材に赤外線が集光されるため、発光部材が劣化するという課題があった。   When such a conventional light projection device is used for outdoor lighting such as vehicle lighting, sunlight is incident from the outside of the light projection device, and infrared rays are condensed on the light emitting member, so that the light emitting member is deteriorated. there were.

上記課題を解決するために本開示の投光装置は、励起光を放射する発光素子と、励起光を受け、励起光を異なる波長の光に変換し放射光として放射する波長変換部と、放射光を受ける光学フィルタと、を有する。光学フィルタは、放射光が有する波長よりも波長の長い長波長光を反射する。   In order to solve the above problems, a light projecting device of the present disclosure includes a light emitting element that emits excitation light, a wavelength conversion unit that receives excitation light, converts the excitation light into light of different wavelengths, and emits the light as emitted light. And an optical filter for receiving light. The optical filter reflects long wavelength light having a wavelength longer than that of the emitted light.

この構成により、光学フィルタが放射光よりも波長の長い長波長光を反射するので、波長変換部に長波長光が照射されるのを抑制することができ、波長変換部の劣化を抑制することができる。   With this configuration, since the optical filter reflects long wavelength light having a longer wavelength than the emitted light, it is possible to suppress the long wavelength light from being irradiated to the wavelength conversion unit, and to suppress deterioration of the wavelength conversion unit. Can.

図1は本開示の実施の形態1における投光装置の模式図である。FIG. 1 is a schematic view of a light projecting device according to a first embodiment of the present disclosure. 図2は本開示の実施の形態1における投光装置に用いられる光学フィルタの好ましい透過スペクトルを表す図である。FIG. 2 is a diagram showing a preferable transmission spectrum of the optical filter used in the light projecting device in the first embodiment of the present disclosure. 図3は本開示の実施の形態1における投光装置に用いられる波長変換光のスペクトルを表す図である。FIG. 3 is a diagram showing the spectrum of wavelength-converted light used in the light projecting device in the first embodiment of the present disclosure. 図4は本開示の実施の形態1における投光装置に入射する太陽光のスペクトルを表す図である。FIG. 4 is a diagram showing the spectrum of sunlight incident on the light projecting device in the first embodiment of the present disclosure. 図5は本開示の実施の形態1における投光装置の動作を説明する模式図である。FIG. 5 is a schematic view for explaining the operation of the light projecting device in the first embodiment of the present disclosure. 図6は投光装置に用いられる光学フィルタ40の具体例の透過スペクトルを示す図である。FIG. 6 is a view showing a transmission spectrum of a specific example of the optical filter 40 used for the light projecting device. 図7は本開示の実施の形態1における投光装置の効果を説明する図である。FIG. 7 is a diagram for explaining the effect of the light projecting device in the first embodiment of the present disclosure. 図8は本開示の実施の形態1における投光装置の効果を説明する図である。FIG. 8 is a diagram for explaining the effect of the light projecting device in the first embodiment of the present disclosure. 図9は本開示の実施の形態1の変形例における投光装置の模式図である。FIG. 9 is a schematic view of a light projecting device in a modification of the first embodiment of the present disclosure. 図10は本開示の実施の形態1の変形例における投光装置に用いられる光学フィルタの好ましい透過スペクトルを表す図である。FIG. 10 is a diagram showing a preferable transmission spectrum of the optical filter used in the light projecting device in the modification of the first embodiment of the present disclosure. 図11は本開示の実施の形態1の変形例における投光装置の効果を説明する模式図である。FIG. 11 is a schematic view for explaining the effect of the light projecting device in the modification of the first embodiment of the present disclosure. 図12Aは本開示の実施の形態2における投光装置の模式図である。FIG. 12A is a schematic view of a light projecting device according to a second embodiment of the present disclosure. 図12Bは本開示の実施の形態2における投光装置の波長変換部16に関する模式図である。FIG. 12B is a schematic view of the wavelength conversion unit 16 of the light projecting device according to the second embodiment of the present disclosure. 図13は本開示の実施の形態2における投光装置に用いられる光学フィルタの好ましい透過スペクトルを表す図である。FIG. 13 is a diagram showing a preferable transmission spectrum of the optical filter used in the light projecting device in the second embodiment of the present disclosure. 図14は本開示の投光装置の動作を説明する模式図である。FIG. 14 is a schematic view for explaining the operation of the light projecting device of the present disclosure. 図15は本開示の投光装置に用いられる光学フィルタの具体例の透過スペクトルを示す図である。FIG. 15 is a view showing a transmission spectrum of an example of the optical filter used in the light projecting device of the present disclosure. 図16は従来の投光装置の概略図である。FIG. 16 is a schematic view of a conventional light projecting device.

(実施の形態1)
本開示の実施の形態1における投光装置1を、図1から図8を用いて説明する。
Embodiment 1
The light projector 1 in Embodiment 1 of this indication is demonstrated using FIGS. 1-8.

本開示の実施の形態1における投光装置の模式図を図1に示す。図1に示すように、本実施の形態における投光装置1は、発光素子11と、波長変換部16と、光学フィルタ40とを備える。発光素子11は、励起光を放射する。波長変換部16は、励起光を受け、励起光を異なる波長の光に変換し波長変換光76として放射する。波長変換光76は放射光である。光学フィルタ40は、波長変換光76を受ける。光学フィルタ40は、放射光が有する波長よりも波長の長い長波長光を反射する。   The schematic diagram of the light projection apparatus in Embodiment 1 of this indication is shown in FIG. As shown in FIG. 1, the light projecting device 1 in the present embodiment includes a light emitting element 11, a wavelength conversion unit 16, and an optical filter 40. The light emitting element 11 emits excitation light. The wavelength converter 16 receives the excitation light, converts the excitation light into light of a different wavelength, and emits it as a wavelength converted light 76. The converted wavelength light 76 is a radiation light. The optical filter 40 receives the wavelength converted light 76. The optical filter 40 reflects long wavelength light having a wavelength longer than that of the emitted light.

この構成により、光学フィルタ40が放射光よりも波長の長い長波長光を反射するので、波長変換部16に長波長光が照射されるのを抑制することができ、波長変換部16の劣化を防止することができる。   With this configuration, since the optical filter 40 reflects long wavelength light having a longer wavelength than emitted light, it is possible to suppress the irradiation of the long wavelength light to the wavelength conversion unit 16, and deterioration of the wavelength conversion unit 16 can be reduced. It can be prevented.

以下、任意の構成も含めたより具体的な構成について説明する。   Hereinafter, a more specific configuration including an optional configuration will be described.

発光素子11は、例えば、発光中心波長は約405nmで光出力が2ワットである窒化物半導体レーザである半導体発光素子により構成する。本実施の形態においては、発光素子11がヒートシンク25に3つ配置される。発光素子11から出射した光は、コリメートレンズ12で直進光である出射光70に変換される。導光部材35は、出射光70を波長変換部16に導く。リフレクタ30は、波長変換部16から出射された波長変換光76を前方方向へ反射させ出射光80bとする。リフレクタ30は、例えばAl、Agなどの金属膜もしくは表面に保護膜を形成したAl膜を有する。リフレクタ30は凹面形状をしており、波長変換部16がその凹面形状の内側に配置されている。光学フィルタ40は、リフレクタ30の開口部30aを覆うように設けられる。   The light emitting element 11 is formed of, for example, a semiconductor light emitting element which is a nitride semiconductor laser having an emission center wavelength of about 405 nm and an optical output of 2 watts. In the present embodiment, three light emitting elements 11 are arranged on the heat sink 25. The light emitted from the light emitting element 11 is converted by the collimator lens 12 into the outgoing light 70 which is straight light. The light guide member 35 guides the emitted light 70 to the wavelength converter 16. The reflector 30 reflects the wavelength-converted light 76 emitted from the wavelength conversion unit 16 in the forward direction to obtain an emitted light 80 b. The reflector 30 has, for example, a metal film of Al, Ag or the like or an Al film in which a protective film is formed on the surface. The reflector 30 has a concave shape, and the wavelength conversion unit 16 is disposed inside the concave shape. The optical filter 40 is provided to cover the opening 30 a of the reflector 30.

導光部材35は波長変換部16の支持部16aと一体に成型される部品であり、例えば低融点ガラスなどの波長400nm以上の光を吸収しない材料で構成される。導光部材35は、支持部16aに向かって径が小さくなる円錐形状であり、先端部分を例えば高温炉で軟化させ球状に成型することで支持部16aを一体で構成できる。支持部16aには、蛍光体層17が覆うように形成され、具体的には、例えばEu賦活(Ba、Sr)Si蛍光体、Ce賦活YAl12蛍光体などの黄色光を発する蛍光体を含む第4の蛍光体層17Yと、例えばEu賦活SrMgSi蛍光体、Eu賦活BaMgAl1017蛍光体などの青色光を発する蛍光体を含む第3の蛍光体層17Bを順に支持部16aを覆うように形成される。第4の蛍光体層17Yおよび第3の蛍光体層17Bは上記の蛍光体を、例えばシリコーンなどの透明材料に混合させ金型等で支持部16aに固定される。The light guide member 35 is a component integrally molded with the support portion 16 a of the wavelength conversion portion 16, and is made of, for example, a material such as low melting glass that does not absorb light of wavelength 400 nm or more. The light guide member 35 has a conical shape whose diameter decreases toward the support portion 16a, and the support portion 16a can be integrally formed by, for example, softening the tip portion with a high-temperature furnace and forming it into a spherical shape. The phosphor layer 17 is formed to cover the support portion 16a, and specifically, for example, Eu-activated (Ba, Sr) Si 2 O 2 N 2 phosphor, Ce-activated Y 3 Al 5 O 12 phosphor, etc. And a third phosphor layer 17Y including a phosphor emitting yellow light and a phosphor emitting blue light such as Eu-activated Sr 3 MgSi 2 O 8 phosphor and Eu-activated BaMgAl 10 O 17 phosphor. The phosphor layers 17B are sequentially formed to cover the support portion 16a. The fourth phosphor layer 17Y and the third phosphor layer 17B are mixed with a transparent material such as silicone, for example, and fixed on the support portion 16a with a mold or the like.

また、光学フィルタ40は、好ましくは図2に示すような、例えば波長420nm以下の光および波長700nm以上の光を反射する特性を有する。   In addition, the optical filter 40 preferably has a characteristic of reflecting, for example, light with a wavelength of 420 nm or less and light with a wavelength of 700 nm or more, as shown in FIG.

続いて、投光装置1の動作について説明する。3個の発光素子11から出射された例えば6ワットの出射光は、コリメートレンズ12により直進光である出射光70に変換され、導光部材35の入射端部32から導光部材35内部へと入射する。導光部材35に入射した光は、直接、または、導光部材35の表面を全反射しながら支持部16aへと導かれる。支持部16aに入射した出射光70は、その一部が第4の蛍光体層17Yに吸収される。第4の蛍光体層17Yを透過した光は第3の蛍光体層17Bへと入射する。第4の蛍光体層17Y、第3の蛍光体層17Bに入射した光は、黄色光、青色光へと変換され、波長変換部16から白色光である波長変換光76として全方位へ放射される。波長変換部16から放射された波長変換光76は、直接に光学フィルタ40に向かうか、リフレクタ30の反射面にて反射された反射光80aとなり、図1において上方方向へ放射される。このとき、波長変換光76および反射光80aのスペクトルは図3で示されるように、波長405nm付近のレーザ光と、波長460nm付近と波長570nm付近にピークをもつ蛍光で構成され、白色光として放射されている。一方、このような投光装置を屋外に設置する場合、太陽からの太陽光の影響を加味する必要がある。太陽光は図4で示されるスペクトルを有し、特に波長700nm以上の赤外線は容易に物質に吸収されるため発熱要因となる。特にリフレクタ30を用いた投光装置においては、投光装置から入射した太陽光は、リフレクタ30により容易に波長変換部16に集光される。 Subsequently, the operation of the light projecting device 1 will be described. For example, 6-watt emitted light emitted from the three light emitting elements 11 is converted into emitted light 70 which is straight light by the collimator lens 12, and is incident from the incident end 32 of the light guiding member 35 into the light guiding member 35. It will be incident. The light incident on the light guide member 35 is guided to the support portion 16 a directly or while totally reflecting the surface of the light guide member 35. A part of the emitted light 70 that has entered the support portion 16a is absorbed by the fourth phosphor layer 17Y. The light transmitted through the fourth phosphor layer 17Y enters the third phosphor layer 17B. The light incident on the fourth phosphor layer 17Y and the third phosphor layer 17B is converted to yellow light and blue light, and emitted from the wavelength conversion unit 16 as omnidirectional light as wavelength converted light 76 which is white light. Ru. The wavelength conversion light 76 emitted from the wavelength conversion unit 16 directly travels to the optical filter 40 or becomes the reflected light 80a reflected by the reflection surface of the reflector 30, and is emitted upward in FIG. At this time, as the spectrum of the wavelength-converted light 76 and the reflected light 80a is shown in Figure 3, is composed of a laser beam at a wavelength of 405 nm, a fluorescence having a peak near a wavelength 460nm and near the wavelength 570 nm, as a white light It is emitted. On the other hand, when installing such a light projection apparatus outdoors, it is necessary to take into consideration the influence of the sunlight from the sun. Sunlight has a spectrum shown in FIG. 4, and in particular, infrared rays having a wavelength of 700 nm or more are easily absorbed by the substance, which causes heat generation. In particular, in a light projecting device using the reflector 30, sunlight incident from the light projecting device is easily collected by the reflector 30 on the wavelength conversion unit 16.

そこで、リフレクタ30の開口部30aには図2に示すような透過率特性を有する光学フィルタ40を設ける。まず、波長変換部16から出射された放射光は、光学フィルタ40を透過する際に、例えば波長420nm以下の光が除去されるため、発光素子11からの出射光70が直接出射されない。さらに外部から入射される太陽光のうち、赤外線は、図5に示すように、光学フィルタ40により反射されるため、波長変換部16に集光されることを抑制することができ、波長変換部16が発熱することを抑制することができる。   Therefore, the opening 30a of the reflector 30 is provided with an optical filter 40 having a transmittance characteristic as shown in FIG. First, since the light having a wavelength of 420 nm or less, for example, is removed when the radiation from the wavelength conversion unit 16 passes through the optical filter 40, the light 70 from the light emitting element 11 is not directly emitted. Furthermore, in sunlight incident from the outside, as shown in FIG. 5, since infrared rays are reflected by the optical filter 40, it is possible to suppress that the light is condensed on the wavelength conversion portion 16, and the wavelength conversion portion It can suppress that 16 heats up.

光学フィルタ40の具体的な例を以下に示す。図2は光学フィルタ40の理想的な透過スペクトルを示す。光学フィルタ40は、例えばMgF、SiO、Ta、Al、TiO、などの誘電体の多層膜より構成される。本実施の形態における光学フィルタ40は、その透過スペクトル図である図6に示すように、波長420nm以下の光および波長700nm以上の光を反射し、波長430nm以上、且つ、660nm以下の光を透過する。A specific example of the optical filter 40 is shown below. FIG. 2 shows the ideal transmission spectrum of the optical filter 40. The optical filter 40 is formed of, for example, a multilayer film of a dielectric such as MgF 2 , SiO 2 , Ta 2 O 3 , Al 2 O 3 , TiO 2 or the like. The optical filter 40 according to the present embodiment reflects light with a wavelength of 420 nm or less and light with a wavelength of 700 nm or more and transmits light with a wavelength of 430 nm or more and 660 nm or less, as shown in FIG. Do.

この図6に示す透過スペクトル特性を有する光学フィルタ40を用いた投光装置1から出射される出射光のスペクトルを、太陽光の下で測定すると、図7の実線により示すスペクトル特性が得られた。図7の実線により示すスペクトル特性は、図3の実線により示したスペクトル特性と同様であった。なお、図7の実線により示すスペクトル特性については、光学フィルタ40における太陽光の反射の影響を除去している。一方、図7の点線は、光学フィルタ40を設けない場合のスペクトル特性を示す。図7の点線により示すスペクトル特性は、図3の実線により示すスペクトル特性と同じである。図7の結果より、特に波長が680nm以上の光については光強度がほとんどゼロ(波長が680nm以上のところでの裾野が存在しない)であることがわかった。すなわち、太陽光のうち赤外線部分については太陽光が投光装置1の内部に入り込まず、投光装置1より外部に出ないことがわかった。また、光学フィルタ40を設けなかった場合に見られた波長405nm付近のレーザ光の放射もほとんどゼロとなった。図8を用いて、上記の光学フィルタ40を設けた場合の投光装置1から出射される出射光と、光学フィルタ40を設けなかった場合の投光装置1から出射される出射光とを比較説明する。この図8に示すように色温度、平均演色指数については、光学フィルタ40を設けた場合と設けなかった場合とでほとんど差が無く、また光束についても、通常の透明ガラスを配置した場合と同程度の光束を得ることができた。具体的には、光学フィルタ40を設けなかった場合の光束が100lmであるのに対し、光学フィルタ40を設けた場合の光束は93lmであった。これらの説明から明らかなように、本開示の投光装置1を用いれば、発光素子11からの出射光をさほど変化させずに、太陽光からの赤外線を効果的に反射させることができる。   When the spectrum of the light emitted from the light projecting device 1 using the optical filter 40 having the transmission spectrum characteristic shown in FIG. 6 is measured under sunlight, the spectrum characteristic shown by the solid line in FIG. 7 is obtained . The spectral characteristics shown by the solid line in FIG. 7 were similar to the spectral characteristics shown by the solid line in FIG. The spectral characteristics shown by the solid line in FIG. 7 remove the influence of the reflection of sunlight in the optical filter 40. On the other hand, dotted lines in FIG. 7 indicate spectral characteristics when the optical filter 40 is not provided. The spectral characteristics shown by the dotted line in FIG. 7 are the same as the spectral characteristics shown by the solid line in FIG. From the results shown in FIG. 7, it was found that the light intensity was almost zero (no tail at the wavelength of 680 nm or more), particularly for light of 680 nm or more. That is, it was found that the sunlight does not enter the inside of the light projecting device 1 and the light does not go out of the light projecting device 1 with respect to the infrared portion of the sunlight. In addition, the emission of the laser light near the wavelength of 405 nm, which was observed when the optical filter 40 was not provided, was almost zero. Using FIG. 8, comparison is made between the emitted light emitted from the light projecting device 1 when the optical filter 40 is provided and the emitted light emitted from the light projecting device 1 when the optical filter 40 is not provided. explain. As shown in FIG. 8, the color temperature and the general color rendering index are almost the same as in the case where the optical filter 40 is not provided and in the case where the optical filter 40 is not provided. It was possible to obtain a degree of luminous flux. Specifically, while the luminous flux in the case where the optical filter 40 was not provided was 100 lm, the luminous flux in the case where the optical filter 40 was provided was 93 lm. As is apparent from these descriptions, when the light projecting device 1 of the present disclosure is used, infrared rays from sunlight can be effectively reflected without significantly changing the light emitted from the light emitting element 11.

なお、上記実施の形態1に係る光学フィルタ40としては、波長420nm以下の光および波長700nm以上の光を反射する特性を有するものとしたが、波長420nm以下の光および波長700nm以上の光を吸収し、波長430nm以上、且つ、波長660nm以下の光を透過するものであっても同様な効果が得られる。   The optical filter 40 according to the first embodiment has characteristics of reflecting light of wavelength 420 nm or less and light of wavelength 700 nm or more, but absorbs light of wavelength 420 nm or less and light of wavelength 700 nm or more The same effect can be obtained by transmitting light having a wavelength of 430 nm or more and a wavelength of 660 nm or less.

(実施の形態1の変形例)
続いて本開示の実施形態1における投光装置1の変形例を、図9、図10、図11を用いて説明する。本変形例においては実施の形態1と異なる部分についてのみ説明する。
(Modification of Embodiment 1)
Then, the modification of the light projection apparatus 1 in Embodiment 1 of this indication is demonstrated using FIG.9, FIG.10, FIG.11. In this modification, only parts different from the first embodiment will be described.

本開示の実施の形態1の変形例における投光装置の模式図を図9に示す。本変形例においては、実施の形態1のリフレクタ30の代わりに、リフレクタ130を用いる。リフレクタ130は、例えばガラスなどの透明材料で構成される凹面状の凹面部材31の内表面に光学フィルタ140が形成されている。光学フィルタ140は凹面形状を有し、波長変換部16がこの凹面形状の内側に配置されている。光学フィルタ140は、好ましくは図10に示すように、例えば波長420nm以下の光および波長700nm以上の光を透過する特性を有する、例えば誘電体多層膜で構成される。そして好ましくは、リフレクタ130の開口部30aには、波長変換部16や光学フィルタ40を保護するための、例えばガラスなどの透明材料で構成された透明カバー45が配置される。   The schematic diagram of the light projection apparatus in the modification of Embodiment 1 of this indication is shown in FIG. In the present modification, a reflector 130 is used instead of the reflector 30 of the first embodiment. The reflector 130 has an optical filter 140 formed on the inner surface of a concave concave member 31 made of a transparent material such as glass. The optical filter 140 has a concave shape, and the wavelength conversion unit 16 is disposed inside the concave shape. Preferably, as shown in FIG. 10, the optical filter 140 is made of, for example, a dielectric multilayer film, which has a property of transmitting, for example, light with a wavelength of 420 nm or less and light with a wavelength of 700 nm or more. Preferably, a transparent cover 45 made of a transparent material such as glass is disposed in the opening 30 a of the reflector 130 for protecting the wavelength converter 16 and the optical filter 40.

一方、本変形例において、波長変換部16は、導光部材35の先端部分に形成された半球状の支持部16a上に、蛍光体層17および反射部材16bが積層されて固定される。具体的には、蛍光体層17の第4の蛍光体層17Yは、例えばEu賦活(Ba、Sr)Si蛍光体、Ce賦活Y (Al,Ga)12蛍光体などの黄色光を発する蛍光体を含む蛍光体層である。第3の蛍光体層17Bは、例えばEu賦活(Ba,Sr)MgSi蛍光体、Eu賦活BaMgAl1017蛍光体などの青色光を発する蛍光体を含む蛍光体層である。反射部材16bは例えばアルミニウム合金であり、最表面に配置される。 On the other hand, in the present modification, in the wavelength conversion unit 16, the phosphor layer 17 and the reflection member 16 b are stacked and fixed on the hemispherical support unit 16 a formed at the tip of the light guide member 35. Specifically, the fourth phosphor layer 17Y of the phosphor layer 17 may be, for example, Eu-activated (Ba, Sr) Si 2 O 2 N 2 phosphor, Ce-activated Y 3 (Al, Ga) 5 O 12 phosphor And a phosphor layer that contains a phosphor that emits yellow light. The third phosphor layer 17B is a phosphor layer including a phosphor emitting blue light such as, for example, Eu-activated (Ba, Sr) 3 MgSi 2 O 8 phosphor, or Eu-activated BaMgAl 10 O 17 phosphor. The reflecting member 16 b is, for example, an aluminum alloy, and is disposed on the outermost surface.

続いて、本変形例の投光装置1の動作について説明する。発光素子11から出射された出射光70は、導光部材35および支持部16aを伝搬し、その一部が第4の蛍光体層17Yに吸収される。第4の蛍光体層17Yに吸収されなかった出射光70は、第4の蛍光体層17Yを透過し第3の蛍光体層17Bへと入射する。第4の蛍光体層17Y、第3の蛍光体層17Bに入射した光は、黄色光、青色光へと変換され、波長変換部16から白色光である波長変換光76として、放射される。このとき波長変換光76のスペクトルは、図3で示されるように、波長405nm付近のレーザ光と、波長460nm付近と波長570nm付近にピークをもつ蛍光で構成される白色光である。波長変換部16から放射された波長変換光76は、凹面部材31上の光学フィルタ140に向かう。波長変換光76の波長420nm以下の光、つまり波長405nm付近のレーザ光の成分80bは、光学フィルタ140を透過し、波長変換部16で変換された光、つまり波長430nm以上、且つ、660nm以下の光は、光学フィルタ140にて反射された反射光80aとなり、図9において上方方向へ放射される。 Subsequently, the operation of the light projecting device 1 of the present modification will be described. The emitted light 70 emitted from the light emitting element 11 propagates through the light guide member 35 and the support portion 16a, and a part thereof is absorbed by the fourth phosphor layer 17Y. The emitted light 70 not absorbed by the fourth phosphor layer 17Y passes through the fourth phosphor layer 17Y and is incident on the third phosphor layer 17B. The light incident on the fourth phosphor layer 17Y and the third phosphor layer 17B is converted into yellow light and blue light, and is emitted from the wavelength conversion unit 16 as wavelength converted light 76 which is white light. Spectrum of this when the wavelength converted light 76, in so that shown in Figure 3, a laser beam at a wavelength of 405 nm, a white light composed of the fluorescence having a peak near a wavelength 460nm and near the wavelength 570 nm. The wavelength-converted light 76 emitted from the wavelength converter 16 travels to the optical filter 140 on the concave member 31. The light with a wavelength of 420 nm or less of the wavelength conversion light 76, that is, the component 80b of the laser light near the wavelength of 405 nm, passes through the optical filter 140, and the light converted by the wavelength conversion unit 16, ie, a wavelength of 430 nm or more and 660 nm or less The light becomes the reflected light 80a reflected by the optical filter 140, and is emitted upward in FIG.

一方、このような投光装置1を屋外に設置し、外部から太陽光が入射した場合、赤外線は、図11に示すように、光学フィルタ140において透過していくため、波長変換部16に集光されることを抑制することができ、波長変換部16を発熱させることを抑制することができる。また、蛍光体層17上には、反射部材16bが配置されるため、外部から赤外線が直接、蛍光体層17に照射されるのも防止することができる。   On the other hand, when such a light projecting device 1 is installed outdoors and sunlight is incident from the outside, infrared rays are transmitted through the optical filter 140 as shown in FIG. It can be suppressed that the light is emitted, and it is possible to suppress the heat generation of the wavelength conversion unit 16. In addition, since the reflecting member 16 b is disposed on the phosphor layer 17, it is possible to prevent the infrared ray from being directly irradiated to the phosphor layer 17 from the outside.

上述の説明のとおり、本変形例においては、光学フィルタ140がリフレクタ130の一部となるため、投光装置1を容易に構成することができる。   As described above, in the present modification, since the optical filter 140 is a part of the reflector 130, the light projecting device 1 can be easily configured.

なお、上記実施の形態1の変形例に係る光学フィルタ140としては、波長420nm以下の光および波長700nm以上の光を透過する特性を有する例を示したが、光学フィルタ140が波長420nm以下の光および波長700nm以上の光を吸収し、波長430nm以上、且つ、波長660nm以下の光を反射する構成としてもよい。もしくは、光学フィルタ140は、波長420nm以下の光および波長700nm以上の光を透過する特性を有するが、凹面部材31が波長420nm以下の光および波長700nm以上の光を吸収するとしてもよい。上記構成により同様な効果が得られると共に、投光装置の凹面部材31の背面から、赤外光やレーザ光が放射されるのを防止することができる。   In addition, although the example which has the characteristic which permeate | transmits the light of wavelength 420 nm or less and the light of wavelength 700 nm or more was shown as the optical filter 140 which concerns on the modification of the said Embodiment 1, the light of optical filter 140 is wavelength 420 nm or less The light may be absorbed at a wavelength of 700 nm or more, and the light at a wavelength of 430 nm or more and a wavelength of 660 nm or less may be reflected. Alternatively, the optical filter 140 has a characteristic of transmitting light of wavelength 420 nm or less and light of wavelength 700 nm or more, but the concave member 31 may absorb light of wavelength 420 nm or less and light of wavelength 700 nm or more. According to the above configuration, the same effect can be obtained, and it is possible to prevent infrared light and laser light from being emitted from the rear surface of the concave member 31 of the light projecting device.

(実施の形態2)
続いて、図12Aから図15を用いて、本開示の第2の実施の形態における投光装置および投写機について説明する。
Second Embodiment
Subsequently, a light projecting device and a projector according to a second embodiment of the present disclosure will be described using FIGS. 12A to 15.

図12Aは、本開示の実施の形態2における投光装置の構成の概略図である。なお、第1の実施の形態と共通の構成要素については、同じ番号を付すことにより説明を省略する。   FIG. 12A is a schematic view of a configuration of a light projecting device in Embodiment 2 of the present disclosure. The same components as in the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.

図12A、図12Bに示す投光装置101は、主な発光波長が590nm以上、且つ、660nm以下の範囲のいわゆる赤色光のみの光と、主な発光波長が500nm以上、且つ、590nm未満の範囲のいわゆる緑色光のみの光と、主な発光波長が430nm以上、且つ、500nm未満の範囲のいわゆる青色光のみの光を放射する。これら3色の光が時間に連続してなる波長変換光76として放射される。波長変換光76は、例えば一周期が約8.3ms(120Hz)の光であり、例えば青色、緑色、赤色の順番で三原色が放射される。   The light emitting device 101 shown in FIGS. 12A and 12B has so-called red light only with a main emission wavelength of 590 nm or more and 660 nm or less and a main emission wavelength of 500 nm or more and less than 590 nm And so-called green light only, and so-called blue light only having a main emission wavelength of 430 nm or more and less than 500 nm. The light of these three colors is emitted as wavelength-converted light 76 which is continuous in time. The wavelength conversion light 76 is, for example, light having a cycle of about 8.3 ms (120 Hz), and the three primary colors are emitted in the order of blue, green and red, for example.

投光装置101の構成は、例えば光出力が2ワットで発光波長の中心波長が380nm以上、且つ、420nm以下の範囲にある半導体レーザである発光素子11がヒートシンク25上に、例えば3個配置される。発光素子11から出射した出射光70はコリメートレンズ12により凹レンズ13に集められ直進光となる。直進光は光学フィルタ14を透過し、集光レンズ15により波長変換部16の所定の位置に集光される。ここで光学フィルタ14は、波長380nm以上、且つ、420nm以下の光を透過し、波長430nm以上、且つ、660nm以下の光を反射するように設定される。光学フィルタ14から波長変換部16への方向と、光学フィルタ14から長波長吸収部90への方向とのなす角度は90度である。ここで、90度とは、約90度、すなわち製造上の誤差を含む。   The configuration of the light projecting device 101 is such that, for example, three light emitting elements 11 which are semiconductor lasers having a light output of 2 watts and a central wavelength of light emission wavelength in the range of 380 nm or more and 420 nm or less Ru. The emitted light 70 emitted from the light emitting element 11 is collected by the collimator lens 12 into the concave lens 13 and becomes straight light. The straight traveling light passes through the optical filter 14, and is condensed at a predetermined position of the wavelength conversion unit 16 by the condensing lens 15. Here, the optical filter 14 is set to transmit light with a wavelength of 380 nm or more and 420 nm or less and reflect light with a wavelength of 430 nm or more and 660 nm or less. The angle between the direction from the optical filter 14 to the wavelength conversion unit 16 and the direction from the optical filter 14 to the long wavelength absorption unit 90 is 90 degrees. Here, 90 degrees includes about 90 degrees, that is, a manufacturing error.

波長変換部16は図12Bに示すように円盤状の形状の金属板の表面に第1の蛍光体層17R、第2の蛍光体層17G、第3の蛍光体層17Bが同一面上に3分割して形成された構成である。第1の蛍光体層17Rは、例えばEu賦活(Sr,Ca)AlSiNである蛍光体を含有する。第2の蛍光体層17Gは、例えばCe賦活Y(Al、Ga)12である蛍光体を含有する。第3の蛍光体層17Bは、例えばEu賦活SrMgSiである蛍光体を含有する。なお、図12Bの波長変換部16は、図12Aにおける波長変換部16を発光素子11側から見た概略図である。As shown in FIG. 12B, the wavelength conversion unit 16 has three first phosphor layers 17R, second phosphor layers 17G, and third phosphor layers 17B on the same surface on the surface of a disk-shaped metal plate. It is a configuration formed by division. The first phosphor layer 17R contains a phosphor which is, for example, Eu-activated (Sr, Ca) AlSiN. The second phosphor layer 17G contains a phosphor which is, for example, Ce-activated Y 3 (Al, Ga) 5 O 12 . The third phosphor layer 17B contains a phosphor that is, for example, Eu-activated Sr 3 MgSi 2 O 8 . In addition, the wavelength conversion part 16 of FIG. 12B is the schematic which looked the wavelength conversion part 16 in FIG. 12A from the light emitting element 11 side.

波長変換部16は、例えばアルミ合金である金属板(支持部16a)上に、第1の蛍光体層17R、第2の蛍光体層17G、第3の蛍光体層17Bが形成され構成されている。第1の蛍光体層17R、第2の蛍光体層17G、第3の蛍光体層17Bは、上述した蛍光体が、例えばジメチルシリコーンなどのバインダー(図示せず)に混合されてなる。このような構成の波長変換部16は、回転機構20と回転軸19により所定の回転数で回転される。波長変換部16は回転することで、第1の蛍光体層17R、第2の蛍光体層17G、第3の蛍光体層17Bの特定の位置に出射光70が照射し続けることを抑制することができる。また、波長変換部16で変換される波長変換光76の発光スペクトルを時間で変化するように設定することができる。具体的には、波長変換部16に集光された出射光70が、第1の蛍光体層17Rに含まれる蛍光体により、主な波長が590nm以上、且つ、660nm以下の波長変換光76へと変換される。波長変換部16に集光された出射光70が、第2の蛍光体層17Gに含まれる蛍光体により、主な波長が500nm以上、且つ、590nm未満の波長変換光76へと変換される。波長変換部16に集光された出射光70が、第3の蛍光体層17Bに含まれる蛍光体により、主な波長が430nm以上、且つ、500nm未満の波長変換光76へと変換される。なお、出射光70の中心波長は380nm以上、且つ、420nm以下である。この波長変換光76は、集光レンズ15により再び直進光である波長変換光となり光学フィルタ14で反射され、集光レンズ131、導光素子132、レンズ133を通って、投光装置101から出射光79として出射される。なお、光学フィルタ14からみて集光レンズ131の反対側には長波長吸収部90が設けられている。   The wavelength conversion unit 16 is configured by forming the first phosphor layer 17R, the second phosphor layer 17G, and the third phosphor layer 17B on a metal plate (supporting portion 16a) that is, for example, an aluminum alloy. There is. The first phosphor layer 17R, the second phosphor layer 17G, and the third phosphor layer 17B are formed by mixing the phosphors described above with a binder (not shown) such as dimethyl silicone, for example. The wavelength conversion unit 16 having such a configuration is rotated at a predetermined rotation speed by the rotation mechanism 20 and the rotation shaft 19. The wavelength converter 16 is rotated to prevent the emission light 70 from continuing to be irradiated to specific positions of the first phosphor layer 17R, the second phosphor layer 17G, and the third phosphor layer 17B. Can. In addition, the emission spectrum of the wavelength conversion light 76 converted by the wavelength conversion unit 16 can be set to change with time. Specifically, the emitted light 70 collected in the wavelength conversion unit 16 is converted to the wavelength converted light 76 having a main wavelength of 590 nm or more and 660 nm or less by the phosphor contained in the first phosphor layer 17R. Is converted to The emitted light 70 collected in the wavelength conversion unit 16 is converted into wavelength converted light 76 having a main wavelength of 500 nm or more and less than 590 nm by the phosphor contained in the second phosphor layer 17G. The emitted light 70 collected in the wavelength conversion unit 16 is converted into wavelength converted light 76 having a main wavelength of 430 nm or more and less than 500 nm by the phosphor contained in the third phosphor layer 17B. The central wavelength of the emitted light 70 is 380 nm or more and 420 nm or less. The converted wavelength light 76 is converted by the condensing lens 15 back into wavelength converted light, which is straight light, reflected by the optical filter 14, passes through the condensing lens 131, the light guiding element 132, and the lens 133, and exits from the light projecting device 101. It is emitted as a light 79. A long wavelength absorbing section 90 is provided on the opposite side of the condensing lens 131 as viewed from the optical filter 14.

上記構成において、光学フィルタ14の透過率特性は、好ましくは図13に示すような、例えば波長420nm以下の光および波長700nm以上の光を透過し、波長430nm以上、且つ、波長660nm以下の光を反射する特性を有する。   In the above configuration, the transmittance characteristics of the optical filter 14 preferably transmit, for example, light with a wavelength of 420 nm or less and light with a wavelength of 700 nm or more and light with a wavelength of 430 nm or more and 660 nm or less as shown in FIG. It has the characteristic of reflecting.

この構成により外部から投光装置101内に太陽光等が進入した場合においても、赤外線81の大部分は図14に示すように光学フィルタ14を通過して長波長吸収部90にて吸収される。そのため、太陽光等が波長変換部16に入射・集光するのを抑制することができ、波長変換部16が劣化することを抑制することができる。   Even when sunlight or the like enters the light projecting device 101 from the outside by this configuration, most of the infrared rays 81 pass through the optical filter 14 and are absorbed by the long wavelength absorbing portion 90 as shown in FIG. . Therefore, it can suppress that sunlight etc. injects into the wavelength conversion part 16, and condenses, and it can suppress that the wavelength conversion part 16 degrades.

光学フィルタ14の具体的な例を以下に示す。図13は光学フィルタ14の理想的なスペクトル特性を示す。光学フィルタ14は、例えばSiOとTiOとの多層膜より構成される。本実施の形態における光学フィルタ14は、その反射スペクトル図である図15が示すように、波長420nm以下の光および波長730nm以上の光を透過し、波長が430nm以上、且つ、660nm以下の光を反射する。A specific example of the optical filter 14 is shown below. FIG. 13 shows the ideal spectral characteristics of the optical filter 14. The optical filter 14 is composed of, for example, a multilayer film of SiO 2 and TiO 2 . The optical filter 14 in the present embodiment transmits light with a wavelength of 420 nm or less and light with a wavelength of 730 nm or more and has a wavelength of 430 nm or more and 660 nm or less, as shown in FIG. reflect.

図15に示す透過スペクトル特性を有する光学フィルタ40を用い、太陽光の下で投光装置101から放射される放射光のスペクトルを測定すると、実施の形態1の図7を用いて示したスペクトル比較と同様の結果が得られた。すなわち、光学フィルタ40を用いた場合と用いなかった場合とで、色温度、平均演色指数についてはほとんど差がなかった。これらの説明から明らかなように、本開示の投光装置101を用いれば、発光素子11からの出射光をさほど変化させずに、太陽光からの赤外線を効果的に反射させることができる。   When the spectrum of the radiation light emitted from the light projector 101 under sunlight is measured using the optical filter 40 having the transmission spectrum characteristic shown in FIG. 15, the spectrum comparison shown using FIG. 7 of the first embodiment Similar results were obtained. That is, there was almost no difference in color temperature and general color rendering index between the case where the optical filter 40 was used and the case where it was not used. As is clear from these descriptions, when the light projecting device 101 of the present disclosure is used, infrared rays from sunlight can be effectively reflected without significantly changing the light emitted from the light emitting element 11.

なお、上記実施の形態1および2に示した投光装置に用いる青色光、緑色光、黄色光、赤色光用の蛍光体の種類として、Eu賦活SrMgSi蛍光体、Eu賦活BaMgAl1017蛍光体、Ce賦活Y(Al、Ga)12蛍光体、Eu賦活(Ba、Sr)Si蛍光体、Ce賦活YAl12、Eu賦活(Sr,Ca)AlSiNなどを示したがこの限りではない。例えば上記に示した蛍光体の他に、例えば、Eu賦活CaAlSiN、Ce賦活YAl12蛍光体、Eu賦活β−SiAlON、Eu賦活α−SiAlON、Eu賦活(Sr,Ca,Ba)MgSi、Eu賦活(Sr,Ca)MgSi、Eu賦活(Sr,Ba)MgSi、Eu賦活(Sr,Ca,Ba)MgSi、Eu賦活(Sr,Ca)MgSi、Eu賦活(Sr,Ba)MgSiなどを最適化したものを用いてもよい。In addition, Eu-activated Sr 3 MgSi 2 O 8 phosphor and Eu-activated BaMgAl as phosphors for blue light, green light, yellow light and red light used for the light projecting device shown in the first and second embodiments. 10 O 17 phosphor, Ce activated Y 3 (Al, Ga) 5 O 12 phosphor, Eu activated (Ba, Sr) Si 2 O 2 N 2 phosphor, Ce activated Y 3 Al 5 O 12 , Eu activated (Sr activated) , Ca) AlSiN etc. are shown but not limited to this. For example, in addition to the phosphors described above, for example, Eu-activated CaAlSiN, Ce-activated Y 3 Al 5 O 12 phosphor, Eu-activated β-SiAlON, Eu-activated α-SiAlON, Eu-activated (Sr, Ca, Ba) 3 MgSi 2 O 8 , Eu activated (Sr, Ca) 3 MgSi 2 O 8 , Eu activated (Sr, Ba) 3 MgSi 2 O 8 , Eu activated (Sr, Ca, Ba) 2 MgSi 2 O 7 , Eu activated (Sr , Ca) 2 MgSi 2 O 7 , Eu activated (Sr, Ba) 2 MgSi 2 O 7 or the like may be optimized.

本開示の投光装置は、車両用照明などの屋外で使用する照明装置において、その耐久性を改善させることができるという効果を有し有用である。   The light projection device of the present disclosure is useful in a lighting device used outdoors such as a vehicle light, and has an effect that the durability can be improved.

1,101 投光装置
11 発光素子
12 コリメートレンズ
14,40,140 光学フィルタ
16 波長変換部
16a 支持部
17 蛍光体層
17R 第1の蛍光体層
17G 第2の蛍光体層
17B 第3の蛍光体層
17Y 第4の蛍光体層
25 ヒートシンク
30,130 リフレクタ
30a 開口部
31 凹面部材
32 入射端部
35 導光部材
70,79,80b 出射光
76 波長変換光
80a 反射光
81 赤外線
90 長波長吸収部
Reference numeral 1, 101 Light emitting device 11 Light emitting element 12 Collimator lens 14, 40, 140 Optical filter 16 Wavelength converter 16a Supporter 17 Phosphor layer 17R First phosphor layer 17G Second phosphor layer 17B Third phosphor Layer 17Y Fourth phosphor layer 25 Heat sink 30, 130 Reflector 30a Opening 31 Concave member 32 Incident end 35 Light guiding member 70, 79, 80b Emitted light 76 Wavelength converted light 80a Reflected light 81 Infrared 90 Long wavelength absorbing portion

Claims (7)

励起光を放射する発光素子と、
前記励起光を受け、前記励起光を異なる波長の光に変換し放射光として放射する波長変換部と、
前記放射光を受ける光学フィルタと、を有し、
前記光学フィルタは凹面形状を有し、
前記波長変換部が前記凹面形状の内側に配置され、
前記光学フィルタは、前記励起光および赤外線を透過し、前記放射光を反射することを特徴とする投光装置。
A light emitting element that emits excitation light;
A wavelength conversion unit that receives the excitation light, converts the excitation light into light of different wavelengths, and emits the light as emitted light;
An optical filter for receiving the radiation light ;
The optical filter has a concave shape,
The wavelength converter is disposed inside the concave shape;
The optical filter transmits the excitation light and infrared light, and reflects the emitted light.
前記光学フィルタは、波長430nm以上、且つ、660nm以下の光を反射する請求項1に記載の投光装置。   The light projecting device according to claim 1, wherein the optical filter reflects light having a wavelength of 430 nm or more and 660 nm or less. 前記光学フィルタは、凹面部材の内表面に形成され、
前記凹面部材は、前記光学フィルタを透過する光を吸収することを特徴とする請求項1または2に記載の投光装置。
The optical filter is formed on the inner surface of a concave member,
The concave member, the light projection device according to claim 1 or 2, characterized in that to absorb the light transmitted through the optical filter.
前記凹面部材は、波長420nm以下の光および波長700nm以上の光を吸収することを特徴とする請求項3に記載の投光装置。 The light projecting device according to claim 3, wherein the concave member absorbs light having a wavelength of 420 nm or less and light having a wavelength of 700 nm or more . 励起光を放射する発光素子と、
前記励起光を受け、前記励起光を異なる波長の光に変換し放射光として放射する波長変換部と、
前記放射光を受ける光学フィルタと、
前記放射光が有する波長よりも波長の長い長波長光を受ける長波長吸収部と、を有し、
前記光学フィルタは、前記長波長光を透過し、
前記長波長光は、前記長波長吸収部において吸収されることを特徴とする投光装置。
A light emitting element that emits excitation light;
A wavelength conversion unit that receives the excitation light, converts the excitation light into light of different wavelengths, and emits the light as emitted light;
An optical filter that receives the radiation;
And a long wavelength absorbing section for receiving long wavelength light having a wavelength longer than that of the radiation light,
The optical filter transmits the long wavelength light,
The projector according to claim 1, wherein the long wavelength light is absorbed by the long wavelength absorbing portion .
前記光学フィルタから前記波長変換部への方向と前記光学フィルタから前記長波長吸収部への方向とのなす角度が90度である請求項5に記載の投光装置。 The light projecting device according to claim 5, wherein an angle between a direction from the optical filter to the wavelength conversion unit and a direction from the optical filter to the long wavelength absorbing unit is 90 degrees . 前記長波長光が赤外線の波長帯の光であることを特徴とする請求項5または6に記載の投光装置。 7. The light projecting device according to claim 5, wherein the long wavelength light is light in an infrared wavelength band .
JP2015525009A 2013-07-04 2014-04-11 Floodlight device Expired - Fee Related JP6424336B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013140454 2013-07-04
JP2013140454 2013-07-04
PCT/JP2014/002077 WO2015001693A1 (en) 2013-07-04 2014-04-11 Projection apparatus

Publications (2)

Publication Number Publication Date
JPWO2015001693A1 JPWO2015001693A1 (en) 2017-02-23
JP6424336B2 true JP6424336B2 (en) 2018-11-21

Family

ID=52143300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015525009A Expired - Fee Related JP6424336B2 (en) 2013-07-04 2014-04-11 Floodlight device

Country Status (3)

Country Link
US (1) US9885813B2 (en)
JP (1) JP6424336B2 (en)
WO (1) WO2015001693A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427851B2 (en) * 2014-10-21 2018-11-28 スタンレー電気株式会社 Vehicle lighting
WO2016170966A1 (en) * 2015-04-20 2016-10-27 ソニー株式会社 Light source device, projection display device, and display system
JP2017059396A (en) * 2015-09-16 2017-03-23 ウシオ電機株式会社 Fluorescent light source device and lighting device
JP6610310B2 (en) * 2016-02-04 2019-11-27 岩崎電気株式会社 Surgical light
US10760766B2 (en) 2016-06-30 2020-09-01 Ushio Denki Kabushiki Kaisha Floodlight device with two optical systems that condense and collimate laser light
JP6631798B2 (en) * 2016-06-30 2020-01-15 ウシオ電機株式会社 Floodlight device
WO2019035307A1 (en) * 2017-08-17 2019-02-21 ソニー株式会社 Light source device and projection type display device
CN110887009A (en) * 2018-09-10 2020-03-17 深圳市绎立锐光科技开发有限公司 Lighting device and car light
CN109578824A (en) * 2018-12-17 2019-04-05 华中科技大学 A kind of white light uniform illumination device based on paraboloid reflecting cup
CN111457275A (en) * 2019-01-18 2020-07-28 深圳市绎立锐光科技开发有限公司 Lighting device
WO2020162260A1 (en) * 2019-02-04 2020-08-13 デンカ株式会社 Reflector and irradiation device
US11906124B2 (en) * 2021-06-08 2024-02-20 Apple Inc. Multiband adjustable lights

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
US7445340B2 (en) * 2005-05-19 2008-11-04 3M Innovative Properties Company Polarized, LED-based illumination source
JP2007322851A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Projection display device
JP2008268757A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Optical filter for lighting apparatus and lighting apparatus provided with the same
JP2009140827A (en) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd External light source apparatus
JP2010262768A (en) * 2009-04-30 2010-11-18 Koito Mfg Co Ltd Vehicle lamp
JP2010262767A (en) * 2009-04-30 2010-11-18 Koito Mfg Co Ltd Lighting fixture for vehicle
JP5285038B2 (en) * 2010-08-31 2013-09-11 シャープ株式会社 Light projecting structure and lighting device

Also Published As

Publication number Publication date
JPWO2015001693A1 (en) 2017-02-23
WO2015001693A1 (en) 2015-01-08
US9885813B2 (en) 2018-02-06
US20160109627A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6424336B2 (en) Floodlight device
US10514151B2 (en) Light-emitting device, illumination device, and vehicle headlamp
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP6258083B2 (en) Light emitting unit, light emitting device, lighting device, and vehicle headlamp
JP6342279B2 (en) Light emitting device
US9810826B2 (en) Light emitting device
JP6225338B2 (en) Light source and image projection device
KR102154645B1 (en) Vehicle headlight
US9470895B2 (en) Light-emitting device
KR102114607B1 (en) Laser Light Source
JP5259791B2 (en) Light emitting device, vehicle headlamp, lighting device, and vehicle
JP6271216B2 (en) Light emitting unit and lighting device
JP6067629B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6033586B2 (en) Lighting device and vehicle headlamp
WO2017043121A1 (en) Light-emitting device and illumination device
JPWO2017203977A1 (en) Light emitting device and lighting device
JP6125776B2 (en) Floodlight device
CN102914939B (en) Light-source system and relevant projecting system
US9255672B2 (en) High luminance solid state light source
JP6266796B2 (en) Light emitting device, lighting device, spotlight, vehicle headlamp, and endoscope
WO2020090663A1 (en) Optical element, fluorescent wheel, light source device, headlight for vehicles, and projection device
JP6072447B2 (en) Lighting device and vehicle headlamp
JP6509570B2 (en) Lamp
WO2020189405A1 (en) Optical element, vehicle headlight, light source device, and projection device
JP2022181221A (en) Light-emitting element, luminaire and projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R151 Written notification of patent or utility model registration

Ref document number: 6424336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees