JP6422740B2 - Inverse magnetostrictive vibration velocity sensor and measurement method using the same - Google Patents

Inverse magnetostrictive vibration velocity sensor and measurement method using the same Download PDF

Info

Publication number
JP6422740B2
JP6422740B2 JP2014224798A JP2014224798A JP6422740B2 JP 6422740 B2 JP6422740 B2 JP 6422740B2 JP 2014224798 A JP2014224798 A JP 2014224798A JP 2014224798 A JP2014224798 A JP 2014224798A JP 6422740 B2 JP6422740 B2 JP 6422740B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
spring material
inverse
detection coil
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014224798A
Other languages
Japanese (ja)
Other versions
JP2016090376A (en
Inventor
文登 新川
文登 新川
宏 今池
宏 今池
尊史 旭
尊史 旭
貫次 松橋
貫次 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Sensor Technology Inc
Original Assignee
Shinkawa Sensor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Sensor Technology Inc filed Critical Shinkawa Sensor Technology Inc
Priority to JP2014224798A priority Critical patent/JP6422740B2/en
Publication of JP2016090376A publication Critical patent/JP2016090376A/en
Application granted granted Critical
Publication of JP6422740B2 publication Critical patent/JP6422740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、磁歪素子を用いた振動速度センサに係る。本発明は、極低温度から高温度の変化においても振動を安定した状態で測定することができる逆磁歪形振動速度センサ及びこれを用いた測定方法に関する。   The present invention relates to a vibration speed sensor using a magnetostrictive element. The present invention relates to an inverse magnetostrictive vibration velocity sensor capable of measuring vibration in a stable state even at a change from extremely low temperature to high temperature, and a measurement method using the same.

現在はエネルギー源として天然ガス、メタンガス又は水素等の種々のものが利用されている。これらの精製、運搬には液化が有効であり、エネルギー源として利用しやすいという特性がある。その精製、運搬の過程で、コンプレッサ等の回転機器は重要な役割を果たしている。これらの機器の保全を目的とした状態監視の大きな要素である振動測定は、生命・財産を保全する目的でも重要である。この振動測定に振動センサが利用されている。   Currently, various sources such as natural gas, methane gas or hydrogen are used as energy sources. Liquefaction is effective for refining and transporting, and it is easy to use as an energy source. Rotating equipment such as compressors plays an important role in the purification and transportation process. Vibration measurement, which is a major component of state monitoring for the purpose of maintaining these devices, is also important for the purpose of maintaining life and property. A vibration sensor is used for this vibration measurement.

従来の振動速度を測定する振動センサは、主に電磁誘導の法則を利用した動電形振動センサが主に利用されている。図12の概略説明図に示すように、この振動速度センサ51は、動電形で電磁誘導の法則を利用するものである。この振動速度センサ51は、ケース52内に棒磁石53を固定部54で挟むように支持し、この棒磁石53の周囲においてソレノイドコイル55をばね56等で上下動自在に支持したものである。この上下動自在に支持されたソレノイドコイル55が可動部57となる。可動部57のソレノイドコイル55と棒磁石53の相対速度によりソレノイドコイル55に誘起する起電圧を振動速度として検知するセンサである。   As a conventional vibration sensor for measuring a vibration speed, an electrodynamic vibration sensor mainly using a law of electromagnetic induction is mainly used. As shown in the schematic explanatory diagram of FIG. 12, the vibration speed sensor 51 is an electrodynamic type and uses the law of electromagnetic induction. This vibration speed sensor 51 supports a bar magnet 53 in a case 52 so as to be sandwiched by a fixing portion 54, and supports a solenoid coil 55 around the bar magnet 53 by a spring 56 or the like so as to be movable up and down. The solenoid coil 55 supported so as to freely move up and down serves as a movable portion 57. This is a sensor that detects an electromotive voltage induced in the solenoid coil 55 as a vibration speed by the relative speed between the solenoid coil 55 of the movable portion 57 and the bar magnet 53.

また、磁歪素子を用いた振動センサに関する技術が種々提案されている。例えば特許文献1の特開2006−214995号公報「振動センサ」のように、固定部に固定された一対のバイアス磁石と、この一対のバイアス磁石にそれぞれ片持ち支持された第1の超磁歪素子及び第2の超磁歪素子と、これら第1の超磁歪素子及び第2の超磁歪素子に両持ち支持された慣性質量部と、第1のピックアップコイルと、第2のピックアップコイルと、を含んで構成されている振動センサが提案されている。   Various techniques relating to vibration sensors using magnetostrictive elements have been proposed. For example, as disclosed in Japanese Patent Laid-Open No. 2006-214995, “Vibration Sensor” of Patent Document 1, a pair of bias magnets fixed to a fixed portion, and a first giant magnetostrictive element each cantilevered by the pair of bias magnets And a second giant magnetostrictive element, an inertial mass portion supported by the first giant magnetostrictive element and the second giant magnetostrictive element, a first pickup coil, and a second pickup coil. The vibration sensor comprised by these is proposed.

特開2006−214995号公報JP 2006-214995 A

図12に示すような従来の垂直取付けの振動速度センサ51は、その自己共振周波数を使用の周波数の1/4以下にする必要がある。そのため、ばね56等の撓み量が大きくなると、ばねの弾性係数の安定性、極低温度・高温度における長期信頼性と磁石の特性変化等が直接発生起電圧に悪影響を及ぼすおそれがあった。その結果、このような構成の振動速度センサ51は極低温度・高温度の場所では使用できないおそれがあった。その結果、このような構成の振動速度センサ51は極低温度・高温度の場所では使用できないという問題を有していた。   The conventional vertically mounted vibration speed sensor 51 as shown in FIG. 12 needs to have a self-resonant frequency of ¼ or less of the frequency used. For this reason, when the amount of bending of the spring 56 or the like increases, the stability of the elastic coefficient of the spring, long-term reliability at extremely low temperatures and high temperatures, and changes in the characteristics of the magnet may directly affect the generated voltage. As a result, there is a possibility that the vibration speed sensor 51 having such a configuration cannot be used in an extremely low temperature / high temperature place. As a result, the vibration speed sensor 51 having such a configuration has a problem that it cannot be used in a place where the temperature is extremely low or high.

本発明の発明者は、振動速度センサにおいてばねに代えて簡単な形状の磁歪素子の部材を用いることにより、ばね自身即ち磁歪素子の逆磁歪効果を利用して磁気ブリッジとすれば、極低温度から高温度の変化にも対応できることに着目した。   The inventor of the present invention uses a member of a magnetostrictive element having a simple shape instead of a spring in a vibration speed sensor, so that a magnetic bridge is obtained by utilizing the inverse magnetostrictive effect of the spring itself, that is, the magnetostrictive element. We focused on the fact that it can respond to changes in high temperature.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、複雑な構成のばね構造を必要とせず、簡単な形状の磁歪素子部材の逆磁歪効果を利用し、磁気ブリッジとすることで、極低温度から高温度の変化にも対応でき、かつ高精度に安定した耐環境性に適応した振動測定を行うことができる逆磁歪形振動速度センサ及びこれを用いた測定方法を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to change from extremely low temperature to high temperature by using the inverse magnetostriction effect of the magnetostrictive element member having a simple shape without using a complicated spring structure and by forming a magnetic bridge. Is to provide an inverse magnetostrictive vibration velocity sensor capable of performing vibration measurement that is compatible with high-accuracy and stable environmental resistance, and a measurement method using the same.

本発明の速度センサは、磁歪素子の逆磁歪効果により振動速度を測定する逆磁歪形振動速度センサ(1,21)であって、支柱部(2)が挿入された磁歪検出コイル(3)と、磁石(4)を有する錘部(5)と、前記支柱部(2)の一側と前記錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、前記支柱部(2)の他側と前記錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備え、前記支柱部(2)、前記磁石(4)、前記錘部(5)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)とにより閉磁路として磁気ブリッジを形成し、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)又は第2磁歪ばね材(7)に、圧縮力が第2磁歪ばね材(7)又は第1磁歪ばね材(6)にそれぞれに加わり、第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を前記磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定し得るように構成した、ことを特徴とする。   The speed sensor of the present invention is an inverse magnetostrictive vibration speed sensor (1, 21) that measures the vibration speed by the inverse magnetostrictive effect of the magnetostrictive element, and includes a magnetostriction detection coil (3) in which a column portion (2) is inserted. A weight part (5) having a magnet (4), a first magnetostrictive spring material (6) comprising a magnetostrictive element connecting one side of the support post part (2) and one side of the weight part (5); A second magnetostrictive spring material (7) composed of a magnetostrictive element connecting the other side of the support column (2) and the other side of the weight unit (5), and the support column (2) and the magnet (4) A magnetic bridge is formed as a closed magnetic path by the weight portion (5), the first magnetostrictive spring material (6), and the second magnetostrictive spring material (7), and the first magnetostrictive spring material (6) Inclining the second magnetostrictive spring material (7) in opposite directions between the column (2) and the weight (5) arranged in parallel. As a result, the tensile force generated by the vertical vibration of the column portion (2) and the weight portion (5) is applied to the first magnetostrictive spring material (6) or the second magnetostrictive spring material (7), and the compressive force is applied to the second. A change in permeability due to the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) is added to the magnetostrictive spring material (7) or the first magnetostrictive spring material (6), respectively. The magnetostriction detection coil (3) is used for detection and the vibration speed can be measured by the induced electromotive voltage.

または、本発明の速度センサは、磁歪素子の逆磁歪効果により振動速度を測定する逆磁歪形振動速度センサ(31,41)であって、磁石(32)を有する支柱部(2)が挿入された磁歪検出コイル(3)と、錘部(5)と、前記支柱部(2)の一側と前記錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、前記支柱部(2)の他側と前記錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備え、前記支柱部(2)、前記錘部(5)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)と前記磁石(32)により閉磁路として磁気ブリッジを形成し、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)又は第2磁歪ばね材(7)に、圧縮力が第2磁歪ばね材(7)又は第1磁歪ばね材(6)にそれぞれに加わり、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を前記磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定し得るように構成した、ことを特徴とする。   Alternatively, the speed sensor of the present invention is an inverse magnetostrictive vibration speed sensor (31, 41) that measures the vibration speed by the inverse magnetostrictive effect of the magnetostrictive element, and the column portion (2) having the magnet (32) is inserted. The first magnetostrictive spring material (6) comprising a magnetostrictive element (6), a weight portion (5), and a magnetostrictive element connecting one side of the support column portion (2) and one side of the weight portion (5). ), And a second magnetostrictive spring material (7) composed of a magnetostrictive element connecting the other side of the column part (2) and the other side of the weight part (5), the column part (2), The weight portion (5), the first magnetostrictive spring material (6), the second magnetostrictive spring material (7), and the magnet (32) form a magnetic bridge as a closed magnetic path, and the first magnetostrictive spring material (6). And the second magnetostrictive spring material (7) in a direction opposite to each other between the column (2) and the weight (5) arranged in parallel. By pulling it obliquely, the tensile force generated by the vertical vibration of the support column (2) and the weight (5) is compressed to the first magnetostrictive spring material (6) or the second magnetostrictive spring material (7). A force is applied to the second magnetostrictive spring material (7) or the first magnetostrictive spring material (6), respectively, due to the inverse magnetostrictive effect of the magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7). A change in magnetic permeability is detected by the magnetostriction detection coil (3), and a vibration speed can be measured by an induced electromotive voltage.

例えば、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に可撓性を有する板状の部材である。前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に長円形のリング状の部材である。前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に鉄・コバルト系合金から成る磁歪素子を用いることができる。
前記磁歪検出コイル(3)は、第1磁歪検出コイル(3a)と、該第1磁歪検出コイル(3a)とは逆方向にコイルが巻かれた第2磁歪検出コイル(3b)とに分割した磁歪検出コイルである。
For example, the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are both plate-like members having flexibility. The first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are both oval ring-shaped members. Both the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) can be magnetostrictive elements made of an iron-cobalt alloy.
The magnetostriction detection coil (3) is divided into a first magnetostriction detection coil (3a) and a second magnetostriction detection coil (3b) wound in the opposite direction to the first magnetostriction detection coil (3a). It is a magnetostriction detection coil.

本発明の測定方法は、支柱部(2)が挿入された磁歪検出コイル(3)、磁石(4,32)、錘部(5)と該支柱部(2)の一側と該錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、該支柱部(2)の他側と該錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備えた逆磁歪形振動速度センサ(1,21,31,41)における第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定する方法であって、前記錘部(5)、前記磁石(4,32)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)と前記支柱部(2)により閉磁路として磁気ブリッジを形成し、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)に加わるときには第2磁歪ばね材(7)には圧縮力が加わり、逆にその圧縮力が第1磁歪ばね材(6)に加わるときには第2磁歪ばね材(7)にその引張力が加わるようにして、前記磁歪検出コイル(3)では磁歪素子の逆磁歪効果による透磁率の変化量を2倍にして測定する、ことを特徴とする。
前記磁歪検出コイル(3)に、第1磁歪検出コイル(3a)と、該第1磁歪検出コイル(3a)とは逆方向にコイルが巻かれた第2磁歪検出コイル(3b)とに分割した磁歪検出コイルを用いることができる。
The measuring method of the present invention includes a magnetostriction detection coil (3), a magnet (4, 32), a weight (5), one side of the support (2) and the weight ( 5) A first magnetostrictive spring material (6) composed of a magnetostrictive element connected to one side, and a magnetostrictive element connected to the other side of the column part (2) and the other side of the weight part (5). The magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) in the inverse magnetostrictive vibration velocity sensor (1, 21, 31, 41) having the second magnetostrictive spring material (7). A method of detecting a change in magnetic permeability due to an inverse magnetostriction effect by a magnetostriction detection coil (3) and measuring a vibration speed by an induced electromotive voltage, wherein the weight (5), the magnets (4, 32), the first A magnetic bridge is formed as a closed magnetic path by the one magnetostrictive spring material (6), the second magnetostrictive spring material (7), and the support column (2), and the first magnetostrictive spring material ( ) And the second magnetostrictive spring material (7) are spanned between the supporting column (2) and the weight (5) arranged in parallel so as to incline in opposite directions. (2) When the tensile force generated by the vertical vibration of the weight portion (5) is applied to the first magnetostrictive spring material (6), a compressive force is applied to the second magnetostrictive spring material (7). When applied to the first magnetostrictive spring material (6), the tensile force is applied to the second magnetostrictive spring material (7). It is characterized by being measured by doubling.
The magnetostriction detection coil (3) is divided into a first magnetostriction detection coil (3a) and a second magnetostriction detection coil (3b) in which the first magnetostriction detection coil (3a) is wound in the opposite direction. A magnetostrictive detection coil can be used.

本発明の構成では、第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定することができる。本発明は、従来のような複雑な構造のばねを用いていないので、極低温度から高温度の変化にも対応できる。
また、本発明は、印加磁界に対する透磁率変化率が温度変化に対して一定であるため、温度特性が良くなり、振動速度センサの測定精度が高くなる。
In the configuration of the present invention, a change in permeability due to the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) is detected by the magnetostriction detection coil (3), and the induced electromotive force is used. The vibration speed can be measured. Since the present invention does not use a spring having a complicated structure as in the prior art, it can cope with a change from an extremely low temperature to a high temperature.
In the present invention, since the rate of change in permeability with respect to the applied magnetic field is constant with respect to temperature change, the temperature characteristics are improved and the measurement accuracy of the vibration speed sensor is increased.

更に、本発明は、複雑な構造のばねを用いず、第1磁歪ばね材(6)と第2磁歪ばね材(7)の形状が単純構成で、組立も容易であり、センサ感度のばらつきが小さくなる。   Furthermore, the present invention does not use a spring having a complicated structure, the shapes of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are simple, easy to assemble, and variations in sensor sensitivity. Get smaller.

本発明は、第1磁歪ばね材(6)と第2磁歪ばね材(7)は、平行に配置された支柱部(2)と錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡し、全体で台形構造に取り付けられている。そこで、本発明は、支柱部(2)又は錘部(5)が上下振動するときは、第1磁歪ばね材(6)に引張力が加わるときは、逆に第2磁歪ばね材(7)には圧縮力が加わる。また、本発明は、第1磁歪ばね材(6)に圧縮力が加わるときは、逆に第2磁歪ばね材(7)には引張力が加わる。その結果、第1磁歪検出コイル(3a)と第2磁歪検出コイル(3b)により、磁歪素子の逆磁歪効果による透磁率の変化量を2倍にすることができ、測定出力値を大きくすることができる。   According to the present invention, the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are inclined in directions opposite to each other between the column portion (2) and the weight portion (5) arranged in parallel. It is attached to the trapezoidal structure as a whole. Accordingly, the present invention contemplates that when the column portion (2) or the weight portion (5) vertically vibrates, when a tensile force is applied to the first magnetostrictive spring material (6), conversely, the second magnetostrictive spring material (7). A compressive force is applied to. In the present invention, when a compressive force is applied to the first magnetostrictive spring material (6), a tensile force is applied to the second magnetostrictive spring material (7). As a result, the first magnetostriction detection coil (3a) and the second magnetostriction detection coil (3b) can double the amount of change in permeability due to the inverse magnetostriction effect of the magnetostrictive element, and increase the measured output value. Can do.

実施例1の逆磁歪形振動速度センサを示す概略正面図である。1 is a schematic front view showing an inverse magnetostrictive vibration speed sensor of Example 1. FIG. 実施例1の逆磁歪形振動速度センサを示す概略平面図である。1 is a schematic plan view showing an inverse magnetostrictive vibration speed sensor of Example 1. FIG. 実施例1の逆磁歪形振動速度センサの原理説明図である。1 is a principle explanatory diagram of an inverse magnetostrictive vibration speed sensor of Example 1. FIG. 本発明の測定原理を説明する透磁率とバイアス磁束密度との関係を示すグラフである。It is a graph which shows the relationship between the magnetic permeability and bias magnetic flux density explaining the measurement principle of this invention. 本発明の逆磁歪形振動速度センサの振動動作の説明図であり、(a)は錘部が下方へ移動している状態、(b)は錘部が上方へ移動している状態である。It is explanatory drawing of the vibration operation | movement of the inverse magnetostrictive vibration speed sensor of this invention, (a) is the state which the weight part is moving below, (b) is the state where the weight part is moving upward. 本発明の逆磁歪形振動速度センサをケースに内装した状態を示す断面図である。It is sectional drawing which shows the state which mounted the reverse magnetostriction type | mold vibration speed sensor of this invention in the case. 本発明の逆磁歪形振動速度センサにより測定した加振試験結果を示すグラフである。It is a graph which shows the vibration test result measured with the inverse magnetostrictive vibration speed sensor of this invention. 本発明の逆磁歪形振動速度センサにより測定した加振試験結果を示すグラフである。It is a graph which shows the vibration test result measured with the inverse magnetostrictive vibration speed sensor of this invention. 実施例2の逆磁歪形振動速度センサを示す概略説明図である。It is a schematic explanatory drawing which shows the inverse magnetostrictive vibration speed sensor of Example 2. 実施例3の逆磁歪形振動速度センサを示す概略説明図である。FIG. 6 is a schematic explanatory view showing an inverse magnetostrictive vibration speed sensor of Example 3. 実施例4の逆磁歪形振動速度センサを示す概略説明図である。FIG. 6 is a schematic explanatory view showing an inverse magnetostrictive vibration speed sensor of Example 4. 従来の動電形振動センサを示す概略説明図である。It is a schematic explanatory drawing which shows the conventional electrodynamic vibration sensor.

本発明は、錘部、磁石、2枚の磁歪ばね材と支柱部により閉磁路として磁気ブリッジを形成し、磁歪ばね材の磁歪素子の逆磁歪効果により振動速度を測定する逆磁歪形振動速度センサである。   The present invention relates to an inverse magnetostrictive vibration speed sensor that forms a magnetic bridge as a closed magnetic path by a weight part, a magnet, two magnetostrictive spring materials, and a support part, and measures the vibration speed by the inverse magnetostrictive effect of the magnetostrictive element of the magnetostrictive spring material. It is.

以下、本発明の実施の形態を図面を参照して説明する。
<振動速度センサの構成>
図1は実施例1の逆磁歪形振動速度センサを示す概略正面図である。図2は実施例1の逆磁歪形振動速度センサを示す概略平面図である。図3は実施例1の逆磁歪形振動速度センサの原理説明図である。
実施例1の逆磁歪形振動速度センサ1は、支柱部2が挿入された磁歪検出コイル3と、磁石4を挟むように形成された錘部5と、支柱部2の一端側と錘部5の一端側とを連結した磁歪素子から成る第1磁歪ばね材6と、支柱部2の他端側と錘部5の他端側とを連結した磁歪素子から成る第2磁歪ばね材7と、から構成される。ここで第1磁歪ばね材6と第2磁歪ばね材7と表記したのは、同じ構成の部材を説明上区別するためであり、この数字は順番又は等級を示すものではない。
なお、図1の図示例では、支柱部2に磁歪検出コイル3を2か所に分けて巻き付けた状態を示しているが、この状態に限定されない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Configuration of vibration speed sensor>
FIG. 1 is a schematic front view showing an inverse magnetostrictive vibration speed sensor according to a first embodiment. FIG. 2 is a schematic plan view showing the inverse magnetostrictive vibration velocity sensor of the first embodiment. FIG. 3 is a diagram illustrating the principle of the inverse magnetostrictive vibration speed sensor of the first embodiment.
The inverse magnetostrictive vibration speed sensor 1 according to the first embodiment includes a magnetostriction detection coil 3 in which a support column 2 is inserted, a weight unit 5 formed so as to sandwich a magnet 4, one end side of the support column unit 2, and a weight unit 5. A first magnetostrictive spring material 6 composed of a magnetostrictive element connected to one end side of the second magnetostrictive spring material, a second magnetostrictive spring material 7 composed of a magnetostrictive element connected to the other end side of the column portion 2 and the other end side of the weight portion 5; Consists of Here, the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 are described for the purpose of distinguishing the members having the same configuration, and these numbers do not indicate the order or the grade.
In the illustrated example of FIG. 1, a state in which the magnetostriction detection coil 3 is wound around the support 2 in two places is shown, but the present invention is not limited to this state.

支柱部2は外部振動を磁歪素子(第1磁歪ばね材6と第2磁歪ばね材7)に伝えるための部材である。支柱部2は例えば金属製の円柱形状の柱状部材である。この周囲に磁歪検出コイル3が巻き付けられている。
磁歪検出コイル3は、磁歪素子(第1磁歪ばね材6と第2磁歪ばね材7)が外部振動により歪が生じ、このときに磁歪素子の逆磁歪効果により透磁率が変化する。これにより生じた磁束の変化を電気信号に変換して検出する部材である。
この磁歪検出コイル3は、第1磁歪ばね6に近傍した第1磁歪検出コイル3aと第2a磁歪ばね7に近傍した第2磁歪検出コイル3bに分割して、各々相対的に逆方向にコイルが巻かれている。
磁石4は永久磁石から成り、磁歪素子(第1磁歪ばね材6と第2磁歪ばね材7)にバイアス磁束密度を印加するための部材である。
The column portion 2 is a member for transmitting external vibration to the magnetostrictive elements (the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7). The support | pillar part 2 is a metal column-shaped columnar member, for example. A magnetostriction detection coil 3 is wound around the periphery.
In the magnetostriction detection coil 3, the magnetostrictive elements (the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7) are distorted by external vibration, and at this time, the permeability changes due to the inverse magnetostrictive effect of the magnetostrictive element. This is a member that detects a change in magnetic flux generated thereby by converting it into an electrical signal.
The magnetostriction detection coil 3 is divided into a first magnetostriction detection coil 3a adjacent to the first magnetostriction spring 6 and a second magnetostriction detection coil 3b adjacent to the second a magnetostriction spring 7, and the coils are relatively opposite to each other. It is rolled up.
The magnet 4 is made of a permanent magnet and is a member for applying a bias magnetic flux density to the magnetostrictive elements (the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7).

磁歪素子から成る第1磁歪ばね材6と第2磁歪ばね材7は、外部振動による歪の変化を磁束の変化にするためのばね材(素子)である。この磁歪素子の逆磁歪効果による透磁率の変化は、磁歪検出コイル3で検知される。この検知に基づき誘導起電圧により振動速度を測定する。本発明では、この第1磁歪ばね材6と第2磁歪ばね材7が可撓性を有する薄い板状の部材であり、単純な形状で構成されている。従来のような複雑な構造のばねではないため、極低温度から高温度の変化にも対応できるようになる。   The first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 made of magnetostrictive elements are spring materials (elements) for changing a change in strain due to external vibration to a change in magnetic flux. A change in permeability due to the inverse magnetostriction effect of the magnetostrictive element is detected by the magnetostriction detection coil 3. Based on this detection, the vibration speed is measured by the induced electromotive voltage. In the present invention, the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 are thin plate members having flexibility, and are configured in a simple shape. Since it is not a spring having a complicated structure as in the prior art, it can cope with a change from extremely low temperature to high temperature.

また、第1磁歪ばね材6と第2磁歪ばね材7は、支柱部2又は錘部5との振動を正確に検知すべく、図2の平面図に示すように長円形のリング状の部材にした。このように2枚の磁歪素子片で支柱部2と錘部5とを連結するような長円形のリング状に形成し、その長辺の対角位置に支柱部2又は錘部5とをそれぞれ連結した。即ち、一側において2枚の磁歪素子片で支柱部2と錘部5とをそれぞれ連結している。この長円形のリング状にした第1磁歪ばね材6と第2磁歪ばね材7は、安定した検知が可能になる。なお、支柱部2と錘部5とを連結する構成であれば、図示例の長円形のリング状に限定されず、円形のリング状、長方形のリング状又はその他の形状にすることができる。   Further, the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 are oval ring-shaped members as shown in the plan view of FIG. 2 in order to accurately detect the vibration of the column portion 2 or the weight portion 5. I made it. In this way, the two magnetostrictive element pieces are formed in an oval ring shape that connects the support column 2 and the weight unit 5, and the support column unit 2 or the weight unit 5 is provided at the diagonal position of the long side. Connected. That is, the column part 2 and the weight part 5 are respectively connected by two magnetostrictive element pieces on one side. The first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 in the shape of an oval ring can be stably detected. In addition, if it is the structure which connects the support | pillar part 2 and the weight part 5, it is not limited to the oval ring shape of the example of illustration, It can be set as a circular ring shape, a rectangular ring shape, or another shape.

このような構成に成る第1磁歪ばね材6と第2磁歪ばね材7は、印加磁束密度に対する透磁率変化率が温度変化に対して一定であるため、温度特性が良くなり、振動速度センサの測定精度が高くなる。   The first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 having such a configuration have a constant rate of change in permeability with respect to the applied magnetic flux density, so that the temperature characteristics are improved, and the vibration speed sensor Measurement accuracy increases.

<磁歪素子>
本発明では第1磁歪ばね材6と第2磁歪ばね材7を構成する磁歪素子として、鉄・コバルト系合金(Fe−Co系磁性材料)を用いた。この材質は極低温度から高温度領域でも安定しているからである。強磁性体に磁化されたときに微小な寸法変化を生じるという性質(磁歪)がある素子であれば、この鉄・コバルト系合金に限定されない。例えば、ニッケル系材料、フェライト系材料、Fe-Si系磁性材料、Fe−Ni系磁性材料(パーマロイ)、アモルファス磁性材料を用いることができる。
<Magnetostrictive element>
In the present invention, an iron / cobalt alloy (Fe—Co magnetic material) is used as the magnetostrictive element constituting the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7. This is because this material is stable even in the extremely low to high temperature range. The element is not limited to this iron / cobalt alloy as long as the element has a property (magnetostriction) that causes a minute dimensional change when magnetized by a ferromagnetic material. For example, nickel materials, ferrite materials, Fe—Si magnetic materials, Fe—Ni magnetic materials (permalloy), and amorphous magnetic materials can be used.

<測定原理の説明>
図4は本発明の測定原理を説明する透磁率とバイアス磁束密度との関係を示すグラフである。
この逆磁歪形振動速度センサ1は、錘部5、磁石4、第1磁歪ばね材6、第2磁歪ばね材7と支柱部2とにより閉磁路として磁気ブリッジを形成している。外部振動で支柱部2又は錘部5の上下振動により、第1磁歪ばね材6と第2磁歪ばね材7に引張力又は圧縮力が生じる。この引張力又は圧縮力により第1磁歪ばね材6、第2磁歪ばね材7の磁歪素子の逆磁歪効果で透磁率(磁気抵抗)が変化する。これにより磁気平衡点が移動する際に、磁束の変化で磁歪検出コイル3(第1磁歪検出コイル3aと第2磁歪検出コイル3b)間に振動速度に比例した電圧が発生する電気信号を変換することで振動速度を測定することができる。
<Description of measurement principle>
FIG. 4 is a graph showing the relationship between the magnetic permeability and the bias magnetic flux density for explaining the measurement principle of the present invention.
In the inverse magnetostrictive vibration speed sensor 1, a weight bridge 5, a magnet 4, a first magnetostrictive spring material 6, a second magnetostrictive spring material 7, and a support column 2 form a magnetic bridge as a closed magnetic path. A tensile force or a compressive force is generated in the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 due to the vertical vibration of the column portion 2 or the weight portion 5 due to external vibration. This tensile force or compressive force changes the permeability (magnetoresistance) by the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7. As a result, when the magnetic equilibrium point moves, an electric signal that generates a voltage proportional to the vibration speed between the magnetostriction detection coils 3 (the first magnetostriction detection coil 3a and the second magnetostriction detection coil 3b) is converted by a change in magnetic flux. Thus, the vibration speed can be measured.

<振動の動作説明>
図5は本発明の逆磁歪形振動速度センサの振動動作の説明図であり、(a)は錘部が下方へ移動している状態、(b)は錘部が上方へ移動している状態である。
実施例1の逆磁歪形振動速度センサ1では各第1磁歪ばね材6と第2磁歪ばね材7は、略平行に配置された支柱部2と錘部5の間にそれぞれ相反する方向に傾斜するように掛け渡した台形状構造になる。この台形状構造とは支柱部2の長手方向の線と錘部5の長手方向の線とが平行に配置され、この支柱部2と錘部5とを連結する2本の各磁歪ばね材6,7は平行ではない状態の構成を意味する。
<Description of vibration operation>
5A and 5B are explanatory views of the vibration operation of the inverse magnetostrictive vibration speed sensor of the present invention. FIG. 5A is a state where the weight portion is moving downward, and FIG. 5B is a state where the weight portion is moving upward. It is.
In the inverse magnetostrictive vibration speed sensor 1 of the first embodiment, the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 are inclined in opposite directions between the support column portion 2 and the weight portion 5 that are arranged substantially in parallel. It becomes a trapezoidal structure that spans over. In the trapezoidal structure, the longitudinal line of the support column 2 and the longitudinal line of the weight unit 5 are arranged in parallel, and each of the two magnetostrictive spring materials 6 that connect the support column 2 and the weight unit 5 are connected. , 7 means a configuration in a non-parallel state.

このように、2本の磁歪ばね材6,7を全体構成で台形状構造になるように配置したのは、本発明では従来のように弾性部材たるばね等で錘部5を支持する構成ではない。これを単純に2本の磁歪ばね材を平行に連結するとその長方形状構造では弱い振動でも平行四辺形に変形しやすくなるため正確な検知は困難だからである。本発明のように台形状構造になるように配置すれば、振動により平行四辺形に変形することがなく、磁歪ばね材6,7の歪による変化を検知することができる。   As described above, the two magnetostrictive spring members 6 and 7 are arranged so as to have a trapezoidal structure as a whole. In the present invention, the weight portion 5 is supported by a spring or the like as an elastic member as in the prior art. Absent. This is because, if two magnetostrictive spring members are simply connected in parallel, the rectangular structure easily deforms into a parallelogram even with weak vibrations, so that accurate detection is difficult. If it arrange | positions so that it may become a trapezoid structure like this invention, it will not deform | transform into a parallelogram by vibration, but the change by the distortion of the magnetostrictive spring materials 6 and 7 can be detected.

また、実施例1の逆磁歪形振動速度センサ1は支柱部2の辺長が錘部5側の辺長より長い形状の台形状構造となっている。このように2本の磁歪ばね材6,7を全体で台形状構造になるように配置したのは、支柱部2又は錘部5の上下振動により生じる引張力が第1磁歪ばね材6に加わえるためである。逆に圧縮力が第2磁歪ばね材7に加わり、または引張力が第2磁歪ばね材7に加わり、逆に圧縮力が第1磁歪ばね材6に加わえるためである。その結果、磁歪検出コイル3では磁歪素子の逆磁歪効果による透磁率の変化量を2倍にすることができ、測定出力値を大きくすることができる。   Further, the inverse magnetostrictive vibration speed sensor 1 of the first embodiment has a trapezoidal structure in which the side length of the support column 2 is longer than the side length on the weight unit 5 side. The two magnetostrictive spring members 6 and 7 are arranged in a trapezoidal shape as a whole because the tensile force generated by the vertical vibration of the support column 2 or the weight portion 5 is applied to the first magnetostrictive spring material 6. This is because Conversely, a compressive force is applied to the second magnetostrictive spring material 7, or a tensile force is applied to the second magnetostrictive spring material 7, and conversely, a compressive force is applied to the first magnetostrictive spring material 6. As a result, in the magnetostriction detection coil 3, the amount of change in magnetic permeability due to the inverse magnetostriction effect of the magnetostrictive element can be doubled, and the measured output value can be increased.

<振動速度センサをケースに内装した構成>
図6は本発明の逆磁歪形振動速度センサをケースに内装した状態を示す断面図である。
本発明の逆磁歪形振動速度センサ1は、円筒形状のケース本体11と両側に円形状の蓋体12を着脱自在に取り付けた装置内に装着して用いる。ケース本体11は磁気シールドが用いられている。この磁気シールドにより、外部磁場ノイズが振動速度センサ1の内部に放射されないように保護される。また、振動速度センサ1の内部の部品、部材も機械的に保護される。
<Configuration with vibration speed sensor in the case>
FIG. 6 is a sectional view showing a state in which the inverse magnetostrictive vibration speed sensor of the present invention is housed in a case.
The inverse magnetostrictive vibration speed sensor 1 of the present invention is used by being mounted in a device in which a cylindrical case body 11 and circular lid bodies 12 are detachably attached on both sides. The case body 11 uses a magnetic shield. This magnetic shield protects the external magnetic field noise from being radiated into the vibration speed sensor 1. Further, the components and members inside the vibration speed sensor 1 are also mechanically protected.

一方の蓋体12にはコネクタ13が取り付けられている。このコネクタ13は、磁歪効果により生じた電気信号を出力させるための部材である。他方の蓋体12にはスタッド14が取り付けられている。このスタッド14は振動速度センサ1を被測定物58に固定するための部材である(図12参照)。   A connector 13 is attached to one lid 12. The connector 13 is a member for outputting an electrical signal generated by the magnetostrictive effect. A stud 14 is attached to the other lid 12. The stud 14 is a member for fixing the vibration speed sensor 1 to the object to be measured 58 (see FIG. 12).

ケース本体11内には その上下にストッパ15が設けられている。上下のストッパ15は、衝撃による錘部5の上下動の際に第1磁歪ばね材6と第2磁歪ばね材7の破壊、破損を防止するための部材である。例えばストッパ15は、合成樹脂材から成り、錘部5の上下端を所定距離以上は移動しないようになっている。   Stoppers 15 are provided at the top and bottom of the case body 11. The upper and lower stoppers 15 are members for preventing the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 from being broken or damaged when the weight portion 5 moves up and down due to an impact. For example, the stopper 15 is made of a synthetic resin material and does not move the upper and lower ends of the weight portion 5 beyond a predetermined distance.

<周波数加振試験>
図7は本発明の逆磁歪形振動速度センサによる周波数加振試験結果を示すグラフである。
実施例として、本発明の実施例1の共振周波数fn=35Hzの逆磁歪形振動速度センサ1を用いて周波数加振試験を実施した。図1に示すような逆磁歪形振動速度センサ1において上側の磁歪検出コイル3と下側の磁歪検出コイル3の信号を同位相にして加算となるように接続した状態で周波数加振試験を実施した。加振力v=20mm/sは一定で、加振周波数を50Hzから1000Hzで加振させた場合のセンサ出力の片振幅をバイアス磁束密度が磁石40mTの条件で測定した。
<Frequency excitation test>
FIG. 7 is a graph showing the results of a frequency excitation test using the inverse magnetostrictive vibration velocity sensor of the present invention.
As an example, a frequency excitation test was performed using the inverse magnetostrictive vibration velocity sensor 1 having the resonance frequency fn = 35 Hz according to Example 1 of the present invention. In the inverse magnetostrictive vibration velocity sensor 1 as shown in FIG. 1, the frequency excitation test is performed in a state where the signals of the upper magnetostriction detection coil 3 and the lower magnetostriction detection coil 3 are connected in the same phase and added. did. The excitation force v = 20 mm / s was constant, and the half amplitude of the sensor output when the excitation frequency was applied from 50 Hz to 1000 Hz was measured under the condition that the bias magnetic flux density was 40 mT magnet.

<振動測定試験>
図8は本発明の逆磁歪形振動速度センサにより測定した加振試験結果を示すグラフである。
本発明の逆磁歪形振動速度センサ1を用いて、外輪に傷のある転がり軸受を使用した回転試験機における軸受異常振動波形を試験した。その振動を測定した結果を図8に示す。グラフの上段は、渦電流形変位センサによるパルス信号波形を示す。1回転に1パルスの信号波形が現れる。これを回転基準信号とする。中段に本発明の逆磁歪形振動速度センサ1を用いて測定した振動波形を示す。因みに、この振動波形は増幅器で20倍にし、5kHzのローパスフィルタで処理した波形である。下段には比較のために振動加速度波形を示す。この振動加速度波形は増幅器で1倍にし、5kHzのローパスフィルタで処理した波形である。この振動測定試験の結果から、本発明の逆磁歪形振動速度センサ1を用いることにより外輪に傷のある転がり軸受の振動の特徴を的確に測定ができることを確認できた。
<Vibration measurement test>
FIG. 8 is a graph showing the vibration test results measured by the inverse magnetostrictive vibration velocity sensor of the present invention.
Using the inverse magnetostrictive vibration speed sensor 1 of the present invention, a bearing abnormal vibration waveform in a rotation tester using a rolling bearing having a scratch on the outer ring was tested. The result of measuring the vibration is shown in FIG. The upper part of the graph shows the pulse signal waveform from the eddy current displacement sensor. A signal waveform of 1 pulse appears per rotation. This is the rotation reference signal. The middle waveform shows the vibration waveform measured using the inverse magnetostrictive vibration velocity sensor 1 of the present invention. Incidentally, this vibration waveform is a waveform that is multiplied by 20 with an amplifier and processed with a 5 kHz low-pass filter. The lower row shows the vibration acceleration waveform for comparison. This vibration acceleration waveform is a waveform that has been multiplied by an amplifier and processed by a 5 kHz low-pass filter. From the results of this vibration measurement test, it was confirmed that the characteristics of the vibration of the rolling bearing having a scratch on the outer ring can be accurately measured by using the inverse magnetostrictive vibration speed sensor 1 of the present invention.

<極低温振動結果>
また、本発明の逆磁歪形振動速度センサ1は、振動を−196℃下(液体窒素温度)においても電源無しで適切に振動測定ができることを確認した。これは本発明の逆磁歪形振動速度センサ1は、磁歪ばね材6,7の全体形状を台形構造とすることで複雑なばね構造を必要とせず,簡単な形状のばねでばね自身の逆磁歪効果を利用し、磁気ブリッジとすることで極低温度から高温度変化にも対応できる。高精度に安定した耐環境性に適応した振動測定を行うことができる。
<Results of cryogenic vibration>
Further, it was confirmed that the inverse magnetostrictive vibration speed sensor 1 of the present invention can appropriately perform vibration measurement without a power source even at −196 ° C. (liquid nitrogen temperature). This is because the inverse magnetostrictive vibration speed sensor 1 of the present invention does not require a complicated spring structure by making the entire shape of the magnetostrictive spring materials 6 and 7 into a trapezoidal structure. By using the effect and making a magnetic bridge, it is possible to cope with changes from extremely low temperatures to high temperatures. It is possible to perform vibration measurement that is highly accurate and suitable for environmental resistance.

図9は実施例2の逆磁歪形振動速度センサを示す概略正面図である。
実施例2の逆磁歪形振動速度センサ21は各磁歪ばね材6,7の傾斜向きが実施例1の向きと異なる。支柱部2の長手方向の線と錘部5の長手方向の線とが平行に配置され、この支柱部2と錘部5とを連結する2本の各磁歪ばね材6,7は平行ではない状態は同じである。このような構成の磁歪ばね材6,7を台形状構造になるように配置したものでも、振動により平行四辺形に変形することがない。
FIG. 9 is a schematic front view showing an inverse magnetostrictive vibration speed sensor of the second embodiment.
In the inverse magnetostrictive vibration speed sensor 21 of the second embodiment, the inclination directions of the magnetostrictive spring members 6 and 7 are different from those of the first embodiment. The longitudinal line of the column part 2 and the longitudinal line of the weight part 5 are arranged in parallel, and the two magnetostrictive spring materials 6 and 7 connecting the pillar part 2 and the weight part 5 are not parallel. The state is the same. Even when the magnetostrictive spring members 6 and 7 having such a configuration are arranged so as to have a trapezoidal structure, they are not deformed into a parallelogram by vibration.

実施例2の逆磁歪形振動速度センサ21の構成でも、支柱部2又は錘部5が上下振動する際に、第1磁歪ばね材6に引張力が加わるときは、逆に第2磁歪ばね材7には圧縮力が加わる。また第1磁歪ばね材6に圧縮力が加わるときは、逆に第2磁歪ばね材7には引張力が加わる。その結果、磁歪検出コイル3では磁歪素子の逆磁歪効果による透磁率の変化量を2倍にすることができ、測定出力値を大きくすることができる。   Even in the configuration of the inverse magnetostrictive vibration speed sensor 21 of the second embodiment, when a tensile force is applied to the first magnetostrictive spring material 6 when the support column 2 or the weight portion 5 vibrates up and down, the second magnetostrictive spring material is conversely. A compression force is applied to 7. When a compressive force is applied to the first magnetostrictive spring material 6, a tensile force is applied to the second magnetostrictive spring material 7. As a result, in the magnetostriction detection coil 3, the amount of change in magnetic permeability due to the inverse magnetostriction effect of the magnetostrictive element can be doubled, and the measured output value can be increased.

図10は実施例3の逆磁歪形振動速度センサを示す概略説明図である。
実施例3の逆磁歪形振動速度センサ31は磁石32の装着位置が錘部5ではなく支柱部2にあることが実施例1と実施例2の配置とは異なる。このように磁石32が支柱部2にあるときでも、第1磁歪ばね材6と第2磁歪ばね材7の磁歪素子の逆磁歪効果による透磁率の変化について、磁歪検出コイル3で検知することができる。
FIG. 10 is a schematic explanatory diagram illustrating an inverse magnetostrictive vibration speed sensor according to the third embodiment.
The reverse magnetostrictive vibration speed sensor 31 of the third embodiment differs from the arrangement of the first and second embodiments in that the mounting position of the magnet 32 is not in the weight portion 5 but in the support portion 2. In this way, even when the magnet 32 is on the support 2, the magnetostriction detection coil 3 can detect a change in permeability due to the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7. it can.

なお実施例3の逆磁歪形振動速度センサ31では磁石32を支柱部2の途中に装着するために、磁歪検出コイル3はこの磁石32を挟むように2か所に装着した。このような磁歪検出コイル3の配置でも検知効果は変わらない。   In the inverse magnetostrictive vibration speed sensor 31 of the third embodiment, the magnetostriction detection coil 3 is mounted at two locations so as to sandwich the magnet 32 in order to mount the magnet 32 in the middle of the column 2. Even if such a magnetostriction detection coil 3 is arranged, the detection effect does not change.

図11は実施例4の逆磁歪形振動速度センサを示す概略説明図である。
実施例4の逆磁歪形振動速度センサ41は各磁歪ばね材6,7の傾斜向きが実施例3の向きと異なる。支柱部2又は錘部5が上下振動する際に、第1磁歪ばね材6に引張力が加わるときは、逆に第2磁歪ばね材7には圧縮力が加わる。また第1磁歪ばね材6に圧縮力が加わるときは、逆に第2磁歪ばね材7には引張力が加わる。その結果、磁歪検出コイル3では磁歪素子の逆磁歪効果による透磁率の変化量を2倍にすることができ、測定出力値を大きくすることができる。
FIG. 11 is a schematic explanatory diagram illustrating an inverse magnetostrictive vibration speed sensor according to a fourth embodiment.
In the inverse magnetostrictive vibration speed sensor 41 of the fourth embodiment, the inclination directions of the magnetostrictive spring members 6 and 7 are different from those of the third embodiment. When a tensile force is applied to the first magnetostrictive spring material 6 when the column portion 2 or the weight portion 5 vibrates up and down, on the contrary, a compressive force is applied to the second magnetostrictive spring material 7. When a compressive force is applied to the first magnetostrictive spring material 6, a tensile force is applied to the second magnetostrictive spring material 7. As a result, in the magnetostriction detection coil 3, the amount of change in magnetic permeability due to the inverse magnetostriction effect of the magnetostrictive element can be doubled, and the measured output value can be increased.

なお、本発明は、複雑な構成のばね構造を必要とせず、簡単な形状の第1磁歪ばね材6、第2磁歪ばね材7の磁歪素子の逆磁歪効果を利用し、磁気ブリッジとすることで、極低温度から高温度の変化にも対応でき、かつ高精度に安定した耐環境性に適応した振動測定を行うことができれば、上述した発明の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   The present invention does not require a spring structure having a complicated configuration, and uses the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material 6 and the second magnetostrictive spring material 7 having simple shapes to form a magnetic bridge. Thus, if it is possible to cope with a change from extremely low temperature to high temperature and perform vibration measurement that is highly accurate and stable and adapts to environmental resistance, the present invention is not limited to the embodiment of the present invention described above. Of course, various changes can be made without departing from the scope of the invention.

本発明は、コンプレッサ等の回転機器の振動測定に限定されず、その他の機器、装置、車両のように振動するものであれば測定に利用することができる。   The present invention is not limited to the measurement of vibration of a rotating device such as a compressor, but can be used for measurement as long as it vibrates like other devices, devices, and vehicles.

1 振動速度センサ
2 支柱部
3 磁歪検出コイル
3a 第1磁歪検出コイル
3b 第2磁歪検出コイル
4 磁石
5 錘部
6 第1磁歪ばね材
7 第2磁歪ばね材
21 振動速度センサ
31 振動速度センサ
32 磁石
41 振動速度センサ
DESCRIPTION OF SYMBOLS 1 Vibration speed sensor 2 Support | pillar part 3 Magnetostriction detection coil 3a 1st magnetostriction detection coil 3b 2nd magnetostriction detection coil 4 Magnet 5 Weight part 6 1st magnetostriction spring material 7 2nd magnetostriction spring material 21 Vibration speed sensor 31 Vibration speed sensor 32 Magnet 41 Vibration speed sensor

Claims (8)

磁歪素子の逆磁歪効果により振動速度を測定する逆磁歪形振動速度センサ(1,21)であって、
支柱部(2)が挿入された磁歪検出コイル(3)と、
磁石(4)を有する錘部(5)と、
前記支柱部(2)の一側と前記錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、
前記支柱部(2)の他側と前記錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備え、
前記支柱部(2)、前記磁石(4)、前記錘部(5)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)とにより閉磁路として磁気ブリッジを形成し、
前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)又は第2磁歪ばね材(7)に、圧縮力が第2磁歪ばね材(7)又は第1磁歪ばね材(6)にそれぞれに加わり、
第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を前記磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定し得るように構成した、ことを特徴とする逆磁歪形振動速度センサ。
An inverse magnetostrictive vibration velocity sensor (1, 21) that measures the vibration velocity by the inverse magnetostriction effect of the magnetostrictive element,
A magnetostriction detection coil (3) in which the support (2) is inserted;
A weight portion (5) having a magnet (4);
A first magnetostrictive spring material (6) comprising a magnetostrictive element in which one side of the support column (2) and one side of the weight (5) are connected;
A second magnetostrictive spring material (7) composed of a magnetostrictive element connecting the other side of the support column (2) and the other side of the weight (5),
A magnetic bridge is formed as a closed magnetic path by the support (2), the magnet (4), the weight (5), the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7),
The first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are inclined in directions opposite to each other between the column portion (2) and the weight portion (5) arranged in parallel. As a result, the tensile force generated by the vertical vibration of the column portion (2) and the weight portion (5) is applied to the first magnetostrictive spring material (6) or the second magnetostrictive spring material (7), and the compressive force is applied to the second. In addition to the magnetostrictive spring material (7) or the first magnetostrictive spring material (6),
The change in permeability due to the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) is detected by the magnetostrictive detection coil (3), and the vibration velocity is measured by the induced electromotive force. An inverse magnetostrictive vibration speed sensor, characterized in that it is configured to obtain.
磁歪素子の逆磁歪効果により振動速度を測定する逆磁歪形振動速度センサ(31,41)であって、
磁石(32)を有する支柱部(2)が挿入された磁歪検出コイル(3)と、
錘部(5)と、
前記支柱部(2)の一側と前記錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、
前記支柱部(2)の他側と前記錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備え、
前記支柱部(2)、前記錘部(5)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)と前記磁石(32)により閉磁路として磁気ブリッジを形成し、
前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)又は第2磁歪ばね材(7)に、圧縮力が第2磁歪ばね材(7)又は第1磁歪ばね材(6)にそれぞれに加わり、
前記第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を前記磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定し得るように構成した、ことを特徴とする逆磁歪形振動速度センサ。
An inverse magnetostrictive vibration speed sensor (31, 41) for measuring vibration speed by an inverse magnetostriction effect of a magnetostrictive element,
A magnetostriction detection coil (3) in which a support (2) having a magnet (32) is inserted;
A weight (5);
A first magnetostrictive spring material (6) comprising a magnetostrictive element in which one side of the support column (2) and one side of the weight (5) are connected;
A second magnetostrictive spring material (7) composed of a magnetostrictive element connecting the other side of the support column (2) and the other side of the weight (5),
A magnetic bridge is formed as a closed magnetic path by the support (2), the weight (5), the first magnetostrictive spring material (6), the second magnetostrictive spring material (7) and the magnet (32),
The first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are inclined in directions opposite to each other between the column portion (2) and the weight portion (5) arranged in parallel. As a result, the tensile force generated by the vertical vibration of the column portion (2) and the weight portion (5) is applied to the first magnetostrictive spring material (6) or the second magnetostrictive spring material (7), and the compressive force is applied to the second. In addition to the magnetostrictive spring material (7) or the first magnetostrictive spring material (6),
The change in permeability due to the inverse magnetostriction effect of the magnetostrictive elements of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) is detected by the magnetostrictive detection coil (3), and the vibration velocity is measured by the induced electromotive force. An inverse magnetostrictive vibration speed sensor, characterized in that it is configured to be able to perform.
前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に可撓性を有する板状の部材である、ことを特徴とする請求項1又は2の逆磁歪形振動速度センサ。   3. The inverse magnetostrictive vibration velocity sensor according to claim 1 or 2, wherein the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are both plate-like members having flexibility. 前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に長円形のリング状の部材である、ことを特徴とする請求項1,2又は3の逆磁歪形振動速度センサ。   4. The inverse magnetostrictive vibration speed sensor according to claim 1, wherein the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are both oval ring-shaped members. 前記第1磁歪ばね材(6)と第2磁歪ばね材(7)は共に鉄・コバルト系合金から成る磁歪素子を用いた、ことを特徴とする請求項1、2、3又は4の逆磁歪形振動速度センサ。   5. The inverse magnetostriction according to claim 1, wherein the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) use magnetostrictive elements made of an iron-cobalt alloy. Vibration speed sensor. 前記磁歪検出コイル(3)は、第1磁歪検出コイル(3a)と、該第1磁歪検出コイル(3a)とは逆方向にコイルが巻かれた第2磁歪検出コイル(3b)とに分割した磁歪検出コイルである、ことを特徴とする請求項1、2、3、4又は5の逆磁歪形振動速度センサ。   The magnetostriction detection coil (3) is divided into a first magnetostriction detection coil (3a) and a second magnetostriction detection coil (3b) wound in the opposite direction to the first magnetostriction detection coil (3a). 6. The inverse magnetostrictive vibration speed sensor according to claim 1, which is a magnetostrictive detection coil. 支柱部(2)が挿入された磁歪検出コイル(3)、磁石(4,32)、錘部(5)と該支柱部(2)の一側と該錘部(5)の一側とを連結した磁歪素子から成る第1磁歪ばね材(6)と、該支柱部(2)の他側と該錘部(5)の他側とを連結した磁歪素子から成る第2磁歪ばね材(7)と、を備えた逆磁歪形振動速度センサ(1,21,31,41)における第1磁歪ばね材(6)と第2磁歪ばね材(7)の磁歪素子の逆磁歪効果による透磁率の変化を磁歪検出コイル(3)で検知し、誘導起電圧により振動速度を測定する方法であって、
前記錘部(5)、前記磁石(4,32)、前記第1磁歪ばね材(6)と第2磁歪ばね材(7)と前記支柱部(2)により閉磁路として磁気ブリッジを形成し、
前記第1磁歪ばね材(6)と第2磁歪ばね材(7)を、平行に配置された前記支柱部(2)と前記錘部(5)の間にそれぞれ相反する方向に傾斜するように掛け渡すことにより、
前記支柱部(2)、前記錘部(5)の上下振動により生じる引張力が第1磁歪ばね材(6)に加わるときには第2磁歪ばね材(7)には圧縮力が加わり、逆にその圧縮力が第1磁歪ばね材(6)に加わるときには第2磁歪ばね材(7)にその引張力が加わるようにして、前記磁歪検出コイル(3)では磁歪素子の逆磁歪効果による透磁率の変化量を2倍にして測定する、ことを特徴とする逆磁歪形振動速度センサを用いた測定方法。
The magnetostriction detection coil (3), the magnets (4, 32), the weight (5), one side of the column (2) and one side of the weight (5) in which the column (2) is inserted. A first magnetostrictive spring material (6) composed of coupled magnetostrictive elements, and a second magnetostrictive spring material (7) composed of a magnetostrictive element coupling the other side of the support column (2) and the other side of the weight (5). ), And the magnetic permeability of the magnetostrictive element of the first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) in the inverse magnetostrictive vibration velocity sensor (1, 21, 31, 41). A method of detecting a change with a magnetostriction detection coil (3) and measuring a vibration speed by an induced electromotive voltage,
A magnetic bridge is formed as a closed magnetic path by the weight portion (5), the magnet (4, 32), the first magnetostrictive spring material (6), the second magnetostrictive spring material (7), and the support post portion (2),
The first magnetostrictive spring material (6) and the second magnetostrictive spring material (7) are inclined in directions opposite to each other between the column portion (2) and the weight portion (5) arranged in parallel. By crossing
When the tensile force generated by the vertical vibration of the column (2) and the weight (5) is applied to the first magnetostrictive spring material (6), a compressive force is applied to the second magnetostrictive spring material (7), and conversely When the compressive force is applied to the first magnetostrictive spring material (6), the tensile force is applied to the second magnetostrictive spring material (7). A measuring method using an inverse magnetostrictive vibration velocity sensor, characterized in that the amount of change is doubled.
前記磁歪検出コイル(3)に、第1磁歪検出コイル(3a)と、該第1磁歪検出コイル(3a)とは逆方向にコイルが巻かれた第2磁歪検出コイル(3b)とに分割した磁歪検出コイルを用いる、ことを特徴とする請求項7の逆磁歪形振動速度センサを用いた測定方法。   The magnetostriction detection coil (3) is divided into a first magnetostriction detection coil (3a) and a second magnetostriction detection coil (3b) in which the first magnetostriction detection coil (3a) is wound in the opposite direction. 8. A measuring method using an inverse magnetostrictive vibration velocity sensor according to claim 7, wherein a magnetostrictive detection coil is used.
JP2014224798A 2014-11-05 2014-11-05 Inverse magnetostrictive vibration velocity sensor and measurement method using the same Active JP6422740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224798A JP6422740B2 (en) 2014-11-05 2014-11-05 Inverse magnetostrictive vibration velocity sensor and measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224798A JP6422740B2 (en) 2014-11-05 2014-11-05 Inverse magnetostrictive vibration velocity sensor and measurement method using the same

Publications (2)

Publication Number Publication Date
JP2016090376A JP2016090376A (en) 2016-05-23
JP6422740B2 true JP6422740B2 (en) 2018-11-14

Family

ID=56016734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224798A Active JP6422740B2 (en) 2014-11-05 2014-11-05 Inverse magnetostrictive vibration velocity sensor and measurement method using the same

Country Status (1)

Country Link
JP (1) JP6422740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693132B (en) * 2020-06-23 2021-11-30 交通运输部公路科学研究所 Bridge health monitoring system based on vibration sensor
JP7438060B2 (en) 2020-08-20 2024-02-26 日本発條株式会社 stress detection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2310723A (en) * 1996-02-27 1997-09-03 Gec Alsthom Ltd Sensor device using magnetostriction
US6880403B1 (en) * 2000-08-28 2005-04-19 Mitsubishi Denki Kabushiki Kaisha Structure inspection device
JP4069016B2 (en) * 2003-05-28 2008-03-26 三菱電機株式会社 Inspection apparatus and inspection method
JP2006214995A (en) * 2005-02-07 2006-08-17 Tdk Corp Vibration sensor

Also Published As

Publication number Publication date
JP2016090376A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6116061B2 (en) Current sensor
JP2017072456A (en) Minute magnetic material detection sensor and foreign matter detection device
US10620276B2 (en) Magnetic detector
ATE532082T1 (en) GRADIOMETER WITH PERMANENT MAGNETS
CA2769706C (en) High sensitivity geophone
JP6422740B2 (en) Inverse magnetostrictive vibration velocity sensor and measurement method using the same
JP2013501240A5 (en)
Barandiaran et al. New sensors based on the magnetoelastic resonance of metallic glasses
Hlenschi et al. Flexible force sensors based on permeability change in ultra-soft amorphous wires
Zhang et al. Enhanced sensitivity in magnetoelectric current-sensing devices with frequency up-conversion mechanism by modulating the magnetostrictive strain
JP2008122254A (en) Differential transformer for displacement sensor in probe type step profiler
JP2013029337A (en) Liquid level detection device
KR101046539B1 (en) sensor
Benabdellah et al. New Electromagnetic Force-Displacement Sensor
RU2424509C1 (en) Method of monitoring mechanical properties of steel structures and elastic stress therein and device for realising said method
JP3652444B2 (en) Stress measuring device
RU2552124C1 (en) Mechanical stress measurement sensor
JP7112382B2 (en) Magnetostrictive element for power generation and magnetostrictive power generation device
JP5119880B2 (en) Magnetostrictive stress sensor
JP2011169736A (en) Device and method for measuring alternating current magnetostriction
Ong et al. Magnetically soft higher order harmonic stress and temperature sensors
RU171066U1 (en) MAGNETO-ELECTRIC CONTACTLESS DC SENSOR
JP2008157816A (en) Rotation angle detector and torque detector
Sujan et al. Thickness sensor for ferromagnetic sheets
JP3215301U (en) Elongation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250