JP6412689B2 - Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery - Google Patents

Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery Download PDF

Info

Publication number
JP6412689B2
JP6412689B2 JP2013254294A JP2013254294A JP6412689B2 JP 6412689 B2 JP6412689 B2 JP 6412689B2 JP 2013254294 A JP2013254294 A JP 2013254294A JP 2013254294 A JP2013254294 A JP 2013254294A JP 6412689 B2 JP6412689 B2 JP 6412689B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254294A
Other languages
Japanese (ja)
Other versions
JP2015115109A (en
Inventor
巌 福地
巌 福地
忠佳 田中
忠佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2013254294A priority Critical patent/JP6412689B2/en
Priority to KR1020140143467A priority patent/KR102317780B1/en
Publication of JP2015115109A publication Critical patent/JP2015115109A/en
Application granted granted Critical
Publication of JP6412689B2 publication Critical patent/JP6412689B2/en
Priority to KR1020210140344A priority patent/KR102425511B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池負極用水系スラリー、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池に関する。   The present invention relates to an aqueous slurry for a negative electrode of a lithium ion secondary battery, a negative electrode active material layer for a lithium ion secondary battery, and a lithium ion secondary battery.

特許文献1に開示されているリチウムイオン(lithium ion)二次電池をはじめとする非水電解質二次電池は、ノート型パソコン(Note PC)や携帯電話などのポータブル(portable)機器の電源として広く用いられているが、高電圧・高容量であることから、その発展に大きな期待が寄せられている。このような非水電解質二次電池の負極材料(負極活物質)には、リチウム金属やリチウム合金の他、Liイオンを脱離・挿入可能な、天然黒鉛や人造黒鉛のような黒鉛質炭素材料等が用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries disclosed in Patent Document 1 are widely used as power sources for portable devices such as notebook PCs and mobile phones. Although it is used, it has high expectations for its development because of its high voltage and high capacity. As a negative electrode material (negative electrode active material) of such a non-aqueous electrolyte secondary battery, in addition to lithium metal and lithium alloy, a graphitic carbon material such as natural graphite or artificial graphite that can desorb and insert Li ions. Etc. are used.

最近では、小型化及び多機能化した携帯機器の電池について更なる高容量化が望まれており、これを受けて、負極活物質として広く用いられている炭素系活物質(例えば黒鉛質炭素材料)に代わる新規負極活物質が検討されている。新規負極活物質としては、ケイ素(Si)系活物質及びスズ(Sn)系活物質などが注目されているが、現時点ではいずれの上記新規負極材料も充放電サイクル(cycle)寿命が黒鉛質炭素材料に比べて劣っている。   Recently, a further increase in capacity has been desired for batteries for portable devices that have become smaller and more multifunctional, and in response to this, carbon-based active materials (for example, graphitic carbon materials) that are widely used as negative electrode active materials. ) New negative electrode active materials have been investigated. As new negative electrode active materials, silicon (Si) -based active materials and tin (Sn) -based active materials have attracted attention. At present, any of the above-mentioned new negative electrode materials has a charge / discharge cycle (cycle) life of graphitic carbon. Inferior to the material.

炭素系活物質は層状構造を有しており、充放電時にLiがこの層間に挿入・脱離するので、Li挿入・離脱の際の膨張・収縮が小さい。これに対し、上記新規負極材料は、炭素系活物質よりも構造が複雑であり、かつ、充放電時の単位質量当たりのLiの挿入・脱離するLi量が多い。このため、新規負極材料は、充放電に伴う膨張・収縮が大きくなり、その結果として、膨張・収縮を繰り返す充放電サイクルにおいて、電極の構造破壊や電子伝導性の低下が起こる。このため、充放電サイクル寿命が黒鉛質炭素材料に比べて悪くなると考えられる。   The carbon-based active material has a layered structure, and Li is inserted / extracted between the layers at the time of charge / discharge, so that expansion / contraction at the time of insertion / extraction of Li is small. In contrast, the new negative electrode material has a more complicated structure than the carbon-based active material, and has a large amount of Li insertion / desorption per unit mass during charge / discharge. For this reason, the new negative electrode material has a large expansion / contraction associated with charge / discharge, and as a result, in a charge / discharge cycle in which expansion / contraction is repeated, the structure of the electrode is broken and the electronic conductivity is lowered. For this reason, it is thought that charging / discharging cycle life worsens compared with a graphitic carbon material.

一方、近年の近年の非水電解質二次電池の負極製造では、製造時の環境配慮やコスト低減といった理由により、水系スラリー(Slurry)を用いて負極を作製することが要請されている。ここで、水系スラリーは、負極活物質及び水系バインダ(binder)を含む負極合剤を水に分散させたものである。水系スラリーを集電体に塗布し、乾燥することで負極が作製される。水系スラリーを用いて作製された負極は水系負極とも称される。   On the other hand, in recent production of negative electrodes for non-aqueous electrolyte secondary batteries in recent years, production of negative electrodes using aqueous slurry (Slurry) has been required for reasons such as environmental considerations during production and cost reduction. Here, the aqueous slurry is obtained by dispersing a negative electrode mixture containing a negative electrode active material and an aqueous binder in water. A negative electrode is produced by applying an aqueous slurry to a current collector and drying. A negative electrode produced using an aqueous slurry is also referred to as an aqueous negative electrode.

特開2007−52940号公報JP 2007-52940 A

しかし、従来の水系バインダは、上述した新規負極材料の膨張収縮に十分に追従することができなかった。この結果、新規負極材料を水系負極の負極活物質として用いたリチウムイオン二次電池は、サイクル寿命が十分でなかった。   However, the conventional aqueous binder cannot sufficiently follow the expansion and contraction of the above-described new negative electrode material. As a result, the cycle life of the lithium ion secondary battery using the new negative electrode material as the negative electrode active material of the water-based negative electrode was not sufficient.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、リチウムイオン二次電池のサイクル寿命を向上することが可能なリチウムイオン二次電池負極用水系スラリー、リチウムイオン二次電池用負極活物質、及びリチウムイオン二次電池を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide an aqueous slurry for a negative electrode of a lithium ion secondary battery that can improve the cycle life of the lithium ion secondary battery. It is providing the negative electrode active material for lithium ion secondary batteries, and a lithium ion secondary battery.

上記課題を解決するために、本発明のある観点によれば、炭素系活物質と、ケイ素系活物質及びスズ系活物質のうち少なくとも一方を含む金属系活物質と、アクリル酸(Acrylic acid)またはアクリル酸誘導体の塩と、アクリロニトリル(Acrylonitrile)またはアクリロニトリル誘導体との共重合体と、を含むリチウムイオン二次電池負極用水系スラリーが提供される。   In order to solve the above problems, according to an aspect of the present invention, a carbon-based active material, a metal-based active material including at least one of a silicon-based active material and a tin-based active material, and acrylic acid (Acrylic acid) Alternatively, an aqueous slurry for a negative electrode of a lithium ion secondary battery including a salt of an acrylic acid derivative and a copolymer of acrylonitrile or an acrylonitrile derivative is provided.

この観点による共重合体は、高い可撓性及び結着力を有する。したがって、この観点による水系スラリーを用いて作製された負極活物質層は、繰り返し充放電しても、当該共重合体がケイ素系活物質及びスズ系活物質の膨張収縮に追従することができる。したがって、当該共重合体は、ケイ素系活物質及びスズ系活物質の膨張収縮による電極層の脱落を抑えることができる。この結果、サイクル寿命が向上する。   The copolymer according to this viewpoint has high flexibility and binding power. Therefore, even when the negative electrode active material layer produced using the aqueous slurry according to this viewpoint is repeatedly charged and discharged, the copolymer can follow the expansion and contraction of the silicon-based active material and the tin-based active material. Therefore, the copolymer can suppress dropping of the electrode layer due to expansion and contraction of the silicon-based active material and the tin-based active material. As a result, the cycle life is improved.

ここで、アクリル酸誘導体は、メタクリル酸(Methacrylic acid)を含んでいてもよく、この場合、サイクル寿命がさらに向上する。   Here, the acrylic acid derivative may contain methacrylic acid, and in this case, the cycle life is further improved.

また、アクリロニトリル誘導体は、メタクリロニトリル(Methacrylonitrile)を含んでいてもよく、この場合、サイクル寿命がさらに向上する。   Further, the acrylonitrile derivative may contain methacrylonitrile, and in this case, the cycle life is further improved.

また、アクリル酸またはアクリル酸誘導体の塩は、アクリル酸またはアクリル酸誘導体のリチウム(Li)塩、ナトリウム(Na)塩、アンモニウム(ammonium)塩、及びアミン(amine)塩からなる群から選択されるいずれか1種以上であってもよく、この場合、サイクル寿命がさらに向上する。   The salt of acrylic acid or acrylic acid derivative is selected from the group consisting of lithium (Li) salt, sodium (Na) salt, ammonium salt, and amine salt of acrylic acid or acrylic acid derivative. Any one or more of them may be used, and in this case, the cycle life is further improved.

また、アクリロニトリルまたはアクリロニトリル誘導体は、共重合体の総質量に対して10〜50質量%で共重合体に含まれてもよく、この場合、サイクル寿命がさらに向上する。   Moreover, acrylonitrile or an acrylonitrile derivative may be contained in the copolymer at 10 to 50% by mass with respect to the total mass of the copolymer, and in this case, the cycle life is further improved.

また、アセチレンブラック(acetylene black)、ケッチェンブラック(Ketjenblack)、カーボンナノチューブ(CNT)からなる群から選択されるいずれか1種以上を含む導電助剤を含んでいてもよく、この場合、サイクル寿命がさらに向上する。   Further, it may contain a conductive assistant containing at least one selected from the group consisting of acetylene black, ketjenblack, and carbon nanotubes (CNT). In this case, the cycle life may be included. Is further improved.

本発明の他の観点によれば、上記のリチウムイオン二次電池負極用水系スラリーを用いて作製されることを特徴とする、リチウムイオン二次電池用負極活物質層が提供される。   According to another aspect of the present invention, there is provided a negative electrode active material layer for a lithium ion secondary battery, which is produced using the above-described aqueous slurry for a lithium ion secondary battery negative electrode.

この観点による負極活物質層を用いてリチウムイオン二次電池を作製することで、リチウムイオン二次電池のサイクル寿命を向上させることができる。   By producing a lithium ion secondary battery using the negative electrode active material layer according to this viewpoint, the cycle life of the lithium ion secondary battery can be improved.

本発明の他の観点によれば、上記のリチウムイオン二次電池用負極活物質層を含むことを特徴とする、リチウムイオン二次電池が提供される。   According to another aspect of the present invention, there is provided a lithium ion secondary battery comprising the above negative electrode active material layer for a lithium ion secondary battery.

この観点によるリチウムイオン二次電池は、サイクル寿命が向上する。   The lithium ion secondary battery according to this viewpoint has improved cycle life.

以上説明したように本発明によれば、リチウムイオン二次電池のサイクル寿命が向上する。   As described above, according to the present invention, the cycle life of the lithium ion secondary battery is improved.

リチウムイオン二次電池の内部構成を概略的に示す側断面図である。It is a sectional side view which shows roughly the internal structure of a lithium ion secondary battery.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

(リチウムイオン二次電池の構成)
まず、図1に基づいて、本実施形態に係るリチウムイオン二次電池10の構成について説明する。
(Configuration of lithium ion secondary battery)
First, based on FIG. 1, the structure of the lithium ion secondary battery 10 which concerns on this embodiment is demonstrated.

リチウムイオン二次電池10は、正極20と、負極30と、セパレータ層40とを備える。リチウムイオン二次電池10の充電到達電圧(酸化還元電位)は、例えば4.3V(vs.Li/Li)以上5.0V以下、特に4.5V以上5.0V以下となる。リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、円筒形、角形、ラミネート(laminate)形、ボタン(button)形等のいずれであってもよい。 The lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, and a separator layer 40. The charge ultimate voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.3 V (vs. Li / Li + ) or more and 5.0 V or less, particularly 4.5 V or more and 5.0 V or less. The form of the lithium ion secondary battery 10 is not particularly limited. That is, the lithium ion secondary battery 10 may be any one of a cylindrical shape, a square shape, a laminate shape, a button shape, and the like.

正極20は、集電体21と、正極活物質層22とを備える。集電体21は、導電体であればどのようなものでも良く、例えば、アルミニウム(aluminium)、ステンレス(stainless)鋼、及びニッケルメッキ(nickel coated)鋼等で構成される。   The positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22. The current collector 21 may be any conductor as long as it is a conductor, and is made of, for example, aluminum, stainless steel, nickel-coated steel, or the like.

正極活物質層22は、少なくとも正極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。正極活物質は、例えばリチウムを含む固溶体酸化物であるが、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、LiMn1.5Ni0.5となる。 The positive electrode active material layer 22 includes at least a positive electrode active material, and may further include a conductive agent and a binder. The positive electrode active material is, for example, a solid solution oxide containing lithium, but is not particularly limited as long as the material can electrochemically occlude and release lithium ions. The solid solution oxide is, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15,. 20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3), LiMn 1.5 Ni 0.5 O 4 .

導電剤は、例えばケッチェンブラック(Ketjenblack)、アセチレンブラック(acetylene black)等のカーボンブラック、天然黒鉛、人造黒鉛等であるが、正極の導電性を高めるためのものであれば特に制限されない。   The conductive agent is, for example, carbon black such as ketjen black or acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is intended to increase the conductivity of the positive electrode.

バインダは、例えばポリフッ化ビニリデン(polyvinylidene fluoride)、エチレンプロピレンジエン(ethylene−propylene−diene)三元共重合体、スチレンブタジエンゴム(Styrene−butadiene rubber)、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、ニトロセルロース(cellulose nitrate)等であるが、正極活物質及び導電剤を集電体21上に結着させることができるものであれば、特に制限されない。   Examples of the binder include polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and acrylonitrile-butadiene rubber. (Fluororubber), polyvinyl acetate, polymethylmethacrylate, polyethylene, polynitroethylene, nitrocellulose, and the like, and a positive electrode active material and a conductive agent are bound on the current collector 21. The There is no particular limitation as long as it can be applied.

正極活物質層22は、例えば、以下の製法により作製される。すなわち、まず、正極活物質、導電剤、及びバインダを乾式混合することで正極合剤を作製する。ついで、正極合剤を適当な有機溶媒に分散させることで正極合剤スラリー(slurry)を形成し、この正極合剤スラリーを集電体21上に塗工し、乾燥、圧延することで正極活物質層が形成される。   The positive electrode active material layer 22 is produced, for example, by the following manufacturing method. That is, first, a positive electrode mixture is prepared by dry-mixing a positive electrode active material, a conductive agent, and a binder. Next, the positive electrode mixture is dispersed in a suitable organic solvent to form a positive electrode mixture slurry (slurry). The positive electrode mixture slurry is applied onto the current collector 21, dried, and rolled to produce a positive electrode active slurry. A material layer is formed.

負極30は、集電体31と、負極活物質層32とを含む。集電体31は、導電体であればどのようなものでも良く、例えば、アルミニウム、ステンレス鋼、及びニッケルメッキ鋼等で構成される。   The negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32. The current collector 31 may be any conductor as long as it is a conductor, for example, aluminum, stainless steel, nickel-plated steel, or the like.

負極活物質層32は、負極活物質及びバインダを含む。負極活物質層32は、さらに導電助剤を含んでもよい。負極活物質は、金属系活物質と、炭素系活物質とを含む。金属系活物質は、ケイ素系活物質及びスズ系活物質のうち、少なくとも1種を含む。   The negative electrode active material layer 32 includes a negative electrode active material and a binder. The negative electrode active material layer 32 may further contain a conductive additive. The negative electrode active material includes a metal-based active material and a carbon-based active material. The metal-based active material includes at least one of a silicon-based active material and a tin-based active material.

ケイ素系活物質は、ケイ素(原子)を含み、かつ、電気化学的にリチウムイオンを吸蔵及び放出することができる物質である。ケイ素活物質としては、例えば、ケイ素単体の微粒子、ケイ素化合物の微粒子等が挙げられる。ケイ素化合物は、リチウムイオン二次電池の負極活物質として使用されるものであれば特に制限されない。ケイ素化合物としては、例えばケイ素酸化物及びケイ素合金等が挙げられる。ケイ素酸化物は、例えばSiO(0<x≦2)で表される。ケイ素合金としては、例えばSi−Ti−Ni合金、Si−Al−Fe合金等が挙げられる。 The silicon-based active material is a material that contains silicon (atom) and can electrochemically occlude and release lithium ions. Examples of the silicon active material include fine particles of simple silicon, fine particles of silicon compound, and the like. A silicon compound will not be restrict | limited especially if it is used as a negative electrode active material of a lithium ion secondary battery. Examples of the silicon compound include silicon oxide and silicon alloy. The silicon oxide is represented by, for example, SiO x (0 <x ≦ 2 ). Examples of silicon alloys include Si—Ti—Ni alloys and Si—Al—Fe alloys.

スズ系活物質は、スズ(原子)を含み、かつ、電気化学的にリチウムイオンを吸蔵及び放出することができる物質である。スズ系活物質としては、例えば、スズ単体の微粒子、スズ化合物の微粒子等が挙げられる。スズ化合物は、リチウムイオン二次電池の負極活物質として使用されるものであれば特に制限されない。スズ化合物としては、例えばスズ酸化物及びスズ合金等が挙げられる。スズ酸化物の例としては、例えばSnO等が挙げられる。スズ合金としては、例えばSn−Ni合金等が挙げられる。 The tin-based active material is a substance that contains tin (atom) and can electrochemically occlude and release lithium ions. Examples of the tin-based active material include fine particles of a simple substance of tin and fine particles of a tin compound. A tin compound will not be restrict | limited especially if used as a negative electrode active material of a lithium ion secondary battery. Examples of tin compounds include tin oxide and tin alloys. Examples of tin oxide include SnO 2 and the like. Examples of tin alloys include Sn—Ni alloys.

一方、炭素系活物質は、炭素(原子)を含み、かつ電気化学的にリチウムイオンを吸蔵及び放出することができる物質である。炭素系活物質としては、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)等が挙げられる。   On the other hand, the carbon-based active material is a material that contains carbon (atom) and can electrochemically occlude and release lithium ions. Examples of the carbon-based active material include graphite active materials (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, and the like).

バインダは、いわゆる水系バインダである。バインダは、アクリル酸またはアクリル酸誘導体の塩と、アクリロニトリルまたはアクリロニトリル誘導体との共重合体を含む。ここで、アクリル酸誘導体は、メタクリル酸を含み、アクリロニトリル誘導体は、メタクリロニトリルを含む。当該共重合体は高い可撓性及び結着力を有するので、ケイ素系活物質及びスズ系活物質の膨張収縮に追従することができ、ケイ素系活物質及びスズ系活物質同士の連結を維持することができる。この結果、リチウムイオン二次電池10のサイクル寿命が向上する。   The binder is a so-called aqueous binder. The binder includes a copolymer of acrylic acid or a salt of an acrylic acid derivative and acrylonitrile or an acrylonitrile derivative. Here, the acrylic acid derivative includes methacrylic acid, and the acrylonitrile derivative includes methacrylonitrile. Since the copolymer has high flexibility and binding force, it can follow the expansion and contraction of the silicon-based active material and the tin-based active material, and maintain the connection between the silicon-based active material and the tin-based active material. be able to. As a result, the cycle life of the lithium ion secondary battery 10 is improved.

また、アクリル酸またはアクリル酸誘導体の塩は、アクリル酸またはアクリル酸誘導体のリチウム塩、ナトリウム塩、アンモニウム塩、及びアミン塩からなる群から選択されるいずれか1種以上であることが好ましい。   Moreover, it is preferable that the salt of acrylic acid or an acrylic acid derivative is at least one selected from the group consisting of lithium salt, sodium salt, ammonium salt, and amine salt of acrylic acid or acrylic acid derivative.

また、アクリロニトリルまたはアクリロニトリル誘導体は、共重合体の総質量に対して10〜50質量%で共重合体に含まれることが好ましく、20〜30質量%で共重合体に含まれることがより好ましい。アクリロニトリルまたはアクリロニトリル誘導体の含有率がこのような範囲内の値となる場合に、負極活物質層のピール強度が特に向上し、ひいては、サイクル寿命を向上することが可能になる。   Moreover, it is preferable that acrylonitrile or an acrylonitrile derivative is contained in a copolymer at 10-50 mass% with respect to the total mass of a copolymer, and it is more preferable that it is contained in a copolymer at 20-30 mass%. When the content of acrylonitrile or an acrylonitrile derivative is a value within such a range, the peel strength of the negative electrode active material layer is particularly improved, and as a result, the cycle life can be improved.

また、負極活物質層32は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブからなる群から選択されるいずれか1種以上を含む導電助剤を含む。   Further, the negative electrode active material layer 32 includes a conductive additive including at least one selected from the group consisting of acetylene black, ketjen black, and carbon nanotubes.

負極活物質層32は、例えば、以下の製法により作製される。すなわち、まず、負極活物質、バインダ、及び導電助剤を乾式混合することで負極合剤を作製する。ついで、負極合剤を水に分散させることで負極合剤スラリー(slurry)(水系スラリー)を形成し、この負極合剤スラリーを集電体31上に塗工し、乾燥、圧延することで負極活物質層32が形成される。   The negative electrode active material layer 32 is produced by the following manufacturing method, for example. That is, first, a negative electrode mixture is prepared by dry-mixing a negative electrode active material, a binder, and a conductive additive. Next, the negative electrode mixture is dispersed in water to form a negative electrode mixture slurry (aqueous slurry), and this negative electrode mixture slurry is applied onto the current collector 31, dried and rolled to form the negative electrode An active material layer 32 is formed.

セパレータ層40は、セパレータ(separator)と、電解液とを含む。セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する樹脂としては、例えばポリエチレン(polyethylene),ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(Polyethylene terephthalate),ポリブチレンテレフタレート(polybutylene terephthalate)等に代表されるポリエステル(Polyester)系樹脂、PVDF、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン−パーフルオロビニルエーテル(par fluorovinyl ether)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−トリフルオロエチレン(trifluoroethylene)共重合体、フッ化ビニリデン−フルオロエチレン(fluoroethylene)共重合体、フッ化ビニリデン−ヘキサフルオロアセトン(hexafluoroacetone)共重合体、フッ化ビニリデン−エチレン(ethylene)共重合体、フッ化ビニリデン−プロピレン(propylene)共重合体、フッ化ビニリデン−トリフルオロプロピレン(trifluoro propylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン−エチレン(ethylene)−テトラフルオロエチレン(tetrafluoroethylene)共重合体等を挙げることができる。   The separator layer 40 includes a separator and an electrolytic solution. The separator is not particularly limited, and any separator can be used as long as it is used as a separator for a lithium ion secondary battery. As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the resin constituting the separator include polyolefin resins typified by polyethylene, polypropylene, etc., polyethylene terephthalate, polybutylene terephthalate, and the like represented by polybutylene terephthalate. (Polyester) resin, PVDF, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene (tetrafluoroethylene) ) Copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride- Ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene (tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene- (tetrafluoroethylene-tetrafluoroethylene) hexafluoropropylene copolymer, vinylidene fluoride-ethylene (ethy) ene) - can be exemplified tetrafluoroethylene (tetrafluoroethylene) copolymers.

非水電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。非水電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(ethylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ−ブチロラクトン(butyrolactone)、γ−バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)等の鎖状カーボネート類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(butyric acid methyl)等の鎖状エステル類;テトラヒドロフラン(Tetrahydrofuran)またはその誘導体;1,3−ジオキサン(dioxane)、1,4−ジオキサン(dioxane)、1,2−ジメトキシエタン(dimethoxyethane)、1,4−ジブトキシエタン(dibutoxyethane)、メチルジグライム(methyl diglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(Dioxolane)またはその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   As the non-aqueous electrolyte, the same non-aqueous electrolyte as conventionally used for lithium secondary batteries can be used without any particular limitation. The nonaqueous electrolytic solution has a composition in which an electrolyte salt is contained in a nonaqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate (vinyl carbonate), and the like. ); Cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate chain carbonates such as ethyl carbonate; chain esters such as methyl formate, methyl acetate, butyric acid methyl; tetrahydrofuran (tetrahydrofuran) or derivatives thereof; 1,3- Ethers such as dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme; Nitriles such as acetonitrile and benzonitrile e) class; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone, or a derivative thereof alone or a mixture of two or more thereof, etc. It is not limited to.

また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiPF6−x(C2n+1[但し、1<x<6,n=1or2],LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzene sulphonic acid)等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.8〜1.5mol/L程度の濃度で含有させた非水電解液を使用することができる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6-x (C n F 2n + 1 ) x [where 1 <x <6, n = 1or2], LiSCN, LiBr, Inorganic ions containing one kind of lithium (Li), sodium (Na) or potassium (K) such as LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN Salt, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3, LiC (C 2 F 5 SO 2) 3, (CH 3) 4 NBF 4, (CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate , (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phtalate, lithium stearyl sulfonate (octyl sulfonic acid), lithium dodecylbenzene sulfonate (lithium dodecylbenzene sulfonate) organic ion salts such as dodecyl benzene sulphonic acid) and the like, and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt may be the same as that of the nonaqueous electrolytic solution used in the conventional lithium secondary battery, and is not particularly limited. In this embodiment, a nonaqueous electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.

なお、非水電解液には、各種の添加剤を添加してもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系の添加剤、炭酸エステル系の添加剤、硫酸エステル系の添加剤、リン酸エステル系の添加剤、ホウ酸エステル系の添加剤、酸無水物系の添加剤、及び電解質系の添加剤等が挙げられる。これらのうちいずれか1種を非水電解液に添加しても良いし、複数種類の添加剤を非水電解液に添加してもよい。   Various additives may be added to the nonaqueous electrolytic solution. Examples of such additives include a negative electrode action additive, a positive electrode action additive, an ester additive, a carbonate ester additive, a sulfate ester additive, a phosphate ester additive, and a borate ester additive. Additive, acid anhydride additive, electrolyte additive and the like. Any one of these may be added to the non-aqueous electrolyte, or a plurality of types of additives may be added to the non-aqueous electrolyte.

(リチウムイオン二次電池の製造方法)
次に、リチウムイオン二次電池10の製造方法について説明する。正極20は、以下のように作製される。まず、正極活物質、導電剤、及びバインダを上記の割合で混合したものを、溶媒(例えばN−メチル−2−ピロリドン)に分散させることでスラリーを形成する。次いで、スラリーを集電体21上に形成(例えば塗工)し、乾燥させることで、正極活物質層22を形成する。なお、塗工の方法は、特に限定されない。塗工の方法としては、例えば、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法等が挙げられる。以下の各塗工工程も同様の方法により行われる。次いで、プレス(press)機により正極活物質層22を上記の範囲内の密度となるようにプレスする。これにより、正極20が作製される。
(Method for producing lithium ion secondary battery)
Next, a method for manufacturing the lithium ion secondary battery 10 will be described. The positive electrode 20 is produced as follows. First, a slurry is formed by dispersing a mixture of a positive electrode active material, a conductive agent, and a binder in the above ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the positive electrode active material layer 22 is formed by forming (for example, coating) the slurry on the current collector 21 and drying the slurry. The coating method is not particularly limited. Examples of the coating method include a knife coater method and a gravure coater method. The following coating steps are also performed by the same method. Next, the positive electrode active material layer 22 is pressed by a press machine so as to have a density within the above range. Thereby, the positive electrode 20 is produced.

負極30も、正極20と同様に作製される。まず、負極活物質、バインダ、及び導電助剤を混合した負極合剤を水に分散させることで負極合剤スラリーを形成する。次いで、負極合剤スラリーを集電体31上に形成(例えば塗工)し、乾燥させることで、負極活物質層32を形成する。次いで、プレス機により負極活物質層32を圧延する。これにより、負極30が作製される。   The negative electrode 30 is also produced in the same manner as the positive electrode 20. First, a negative electrode mixture slurry is formed by dispersing a negative electrode mixture in which a negative electrode active material, a binder, and a conductive additive are mixed in water. Next, the negative electrode mixture slurry is formed (for example, coated) on the current collector 31 and dried to form the negative electrode active material layer 32. Next, the negative electrode active material layer 32 is rolled by a press machine. Thereby, the negative electrode 30 is produced.

次いで、セパレータを正極20及び負極30で挟むことで、電極構造体を作製する。次いで、電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形、ボタン形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に上記組成の電解液を注入することで、セパレータ内の各気孔に電解液を含浸させる。これにより、リチウムイオン二次電池が作製される。   Next, an electrode structure is produced by sandwiching the separator between the positive electrode 20 and the negative electrode 30. Next, the electrode structure is processed into a desired shape (for example, a cylindrical shape, a square shape, a laminate shape, a button shape, etc.) and inserted into a container of the shape. Next, by injecting the electrolytic solution having the above composition into the container, each pore in the separator is impregnated with the electrolytic solution. Thereby, a lithium ion secondary battery is produced.

(実施例1:ケイ素系活物質+共重合体バインダ)
(合成例1)
合成例1では、アクリル酸リチウム/アクリロニトリル=70/30質量%の共重合体バインダを合成した。
(Example 1: Silicon-based active material + copolymer binder)
(Synthesis Example 1)
In Synthesis Example 1, a copolymer binder of lithium acrylate / acrylonitrile = 70/30% by mass was synthesized.

具体的には、攪拌機、温度計、冷却管、送液ポンプを装着した0.5リットルの4つ口フラスコ(Flask)内に、水270gを加えた。ついで、アスピレータ(aspirator)で内圧を20mmHgに減圧し、窒素で内圧を常圧に戻す操作を3回繰り返した。ついで、フラスコ内を窒素雰囲気に保ち、水を攪拌しながらオイルバス(oil bath)で60℃に加熱した。その後、過硫酸アンモニウム0.12gを水5gに溶解することで過硫酸アンモニウム水溶液を作製し、過硫酸アンモニウム水溶液をフラスコに加えた。過硫酸アンモニウム水溶液をフラスコ内の水に加えた直後から、アクリル酸(和光純薬社製)19.4g、アクリロニトリル(和光純薬社製)9.0gの混合物を送液ポンプで2時間掛けて滴下した。   Specifically, 270 g of water was added into a 0.5 liter four-necked flask (Flash) equipped with a stirrer, a thermometer, a condenser, and a liquid feed pump. Then, the operation of reducing the internal pressure to 20 mmHg with an aspirator and returning the internal pressure to normal with nitrogen was repeated three times. The flask was then kept in a nitrogen atmosphere and heated to 60 ° C. in an oil bath while stirring the water. Thereafter, 0.12 g of ammonium persulfate was dissolved in 5 g of water to prepare an aqueous ammonium persulfate solution, and the aqueous ammonium persulfate solution was added to the flask. Immediately after the ammonium persulfate aqueous solution was added to the water in the flask, a mixture of 19.4 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 9.0 g of acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over a period of 2 hours with a liquid feed pump. did.

フラスコ内の水溶液を継続して4時間攪拌した後、フラスコ内の水溶液を80℃に昇温した。更に水溶液を継続して2時間攪拌した。水溶液を室温に冷却した後、水酸化リチウム1水和物(和光純薬社製)11.3g(アクリル酸に対して1.0当量)を加え全てが完全に溶解するまで撹拌した。これにより、アクリル酸リチウム/アクリロニトリル=70/30質量%の共重合体を合成した。   The aqueous solution in the flask was continuously stirred for 4 hours, and then the aqueous solution in the flask was heated to 80 ° C. The aqueous solution was further stirred for 2 hours. After the aqueous solution was cooled to room temperature, 11.3 g (1.0 equivalent to acrylic acid) of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred until everything was completely dissolved. Thus, a copolymer of lithium acrylate / acrylonitrile = 70/30% by mass was synthesized.

フラスコ内の水溶液を室温まで冷却した後、水溶液をアルミパン(Aluminium pan)に約1ml量り取り、160℃に加熱したホットプレート(hot plate)上で15分間乾燥させた。次いで、残渣物の質量を測定し、測定値にもとづいて、残渣物の質量%(すなわち、不揮発分の質量%)を算出した。この結果、不揮発分の質量%は水溶液の総質量に対して9.98質量%であった。なお、不揮発分の質量%は、残渣物の質量を水溶液の質量で除算することで算出される。また、サイズ排除クロマトグラフィー(SEC,ポリエチレングリコール(polyethylene glycol)換算)を行い、この結果に基づいて有機酸の重量平均分子量を算出した。この結果、合成例1により作製されたアクリル酸リチウム/アクリロニトリル=70/30質量%の共重合体バインダの重量平均分子量は56000であった。   After the aqueous solution in the flask was cooled to room temperature, about 1 ml of the aqueous solution was weighed in an aluminum pan and dried on a hot plate heated to 160 ° C. for 15 minutes. Next, the mass of the residue was measured, and based on the measured value, the mass% of the residue (that is, the mass% of the non-volatile content) was calculated. As a result, the mass% of the non-volatile content was 9.98 mass% with respect to the total mass of the aqueous solution. The mass% of the non-volatile content is calculated by dividing the mass of the residue by the mass of the aqueous solution. In addition, size exclusion chromatography (SEC, converted to polyethylene glycol) was performed, and the weight average molecular weight of the organic acid was calculated based on the result. As a result, the weight average molecular weight of the copolymer binder of lithium acrylate / acrylonitrile = 70/30% by mass produced in Synthesis Example 1 was 56000.

(合成例2)
合成例2では、アクリル酸リチウム/アクリロニトリル=50/50質量%の共重合体バインダを合成した。具体的には、アクリル酸13.9g、アクリロニトリル15g、リチウム水酸化リチウム1水和物8.1g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は9.98質量%であった。共重合体バインダの重量平均分子量は57000であった。
(Synthesis Example 2)
In Synthesis Example 2, a copolymer binder of lithium acrylate / acrylonitrile = 50/50 mass% was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 13.9 g of acrylic acid, 15 g of acrylonitrile, and 8.1 g of lithium lithium hydroxide monohydrate (1.0 equivalent to acrylic acid) were added. It was. The mass% of the nonvolatile content was 9.98% by mass. The weight average molecular weight of the copolymer binder was 57000.

(合成例3)
合成例3では、アクリル酸リチウム/アクリロニトリル=80/20質量%の共重合体バインダを合成した。具体的には、アクリル酸22.2g、アクリロニトリル6g、リチウム水酸化リチウム1水和物12.9g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は9.97質量%であった。共重合体バインダの重量平均分子量は55000であった。
(Synthesis Example 3)
In Synthesis Example 3, a copolymer binder of lithium acrylate / acrylonitrile = 80/20% by mass was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 22.2 g of acrylic acid, 6 g of acrylonitrile, and 12.9 g of lithium lithium hydroxide monohydrate (1.0 equivalent to acrylic acid) were added. It was. The mass% of non-volatile content was 9.97 mass%. The weight average molecular weight of the copolymer binder was 55000.

(合成例4)
合成例4では、アクリル酸リチウム/アクリロニトリル=90/10質量%の共重合体バインダを合成した。具体的には、アクリル酸24.9g、アクリロニトリル3g、リチウム水酸化リチウム1水和物14.5g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は9.98質量%であった。共重合体バインダの重量平均分子量は53000であった。
(Synthesis Example 4)
In Synthesis Example 4, a copolymer binder of lithium acrylate / acrylonitrile = 90/10% by mass was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 24.9 g of acrylic acid, 3 g of acrylonitrile, and 14.5 g of lithium lithium hydroxide monohydrate (1.0 equivalent to acrylic acid) were added. It was. The mass% of the nonvolatile content was 9.98% by mass. The weight average molecular weight of the copolymer binder was 53000.

(合成例5)
合成例5では、アクリル酸リチウム/メタクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、アクリロニトリルの代わりにメタクリロニトリル11.4gを加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は10.57質量%であった。共重合体バインダの重量平均分子量は500000であった。
(Synthesis Example 5)
In Synthesis Example 5, a copolymer binder of lithium acrylate / methacrylonitrile = 70/30 mass% was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 11.4 g of methacrylonitrile was added instead of acrylonitrile. The mass% of the nonvolatile content was 10.57% by mass. The weight average molecular weight of the copolymer binder was 500,000.

(合成例6)
合成例6では、メタクリル酸リチウム/アクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、アクリル酸の代わりにメタクリル酸23.2gを加えた以外は全て合成例1と同様にして行った。不揮発分の質量%は11.05質量%であった。共重合体バインダの重量平均分子量は53000であった。
(Synthesis Example 6)
In Synthesis Example 6, a copolymer binder of lithium methacrylate / acrylonitrile = 70/30% by mass was synthesized. Specifically, the procedure was the same as in Synthesis Example 1 except that 23.2 g of methacrylic acid was added instead of acrylic acid. The mass% of the non-volatile content was 11.05 mass%. The weight average molecular weight of the copolymer binder was 53000.

(合成例7)
合成例7では、メタクリル酸リチウム/メタクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、アクリル酸の代わりにメタクリル酸23.2g、アクリロニトリルの代わりに11.4gを加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は11.61質量%であった。共重合体バインダの重量平均分子量は53000であった。
(Synthesis Example 7)
In Synthesis Example 7, a copolymer binder of lithium methacrylate / methacrylonitrile = 70/30% by mass was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 23.2 g of methacrylic acid instead of acrylic acid and 11.4 g of acrylonitrile were added. The mass% of the nonvolatile content was 11.61% by mass. The weight average molecular weight of the copolymer binder was 53000.

(合成例8)
合成例8では、アクリル酸アンモニウム/アクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、水酸化リチウム1水和物(和光純薬社製)の代わりに30%アンモニア水15.3g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は10.34質量%であった。共重合体バインダの重量平均分子量は560000であった。
(Synthesis Example 8)
In Synthesis Example 8, a copolymer binder of ammonium acrylate / acrylonitrile = 70/30% by mass was synthesized. Specifically, all was the same as in Synthesis Example 1 except that 15.3 g of 30% aqueous ammonia (1.0 equivalent to acrylic acid) was added instead of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.). Was processed. The mass% of the nonvolatile content was 10.34% by mass. The weight average molecular weight of the copolymer binder was 560000.

(合成例9)
合成例9では、アクリル酸ナトリウム/アクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、水酸化リチウム1水和物(和光純薬社製)の代わりに水酸化ナトリウム10.8g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は9.98質量%であった。共重合体バインダの重量平均分子量は56000であった。
(Synthesis Example 9)
In Synthesis Example 9, a copolymer binder of sodium acrylate / acrylonitrile = 70/30% by mass was synthesized. Specifically, the same as Synthesis Example 1 except that 10.8 g of sodium hydroxide (1.0 equivalent to acrylic acid) was added instead of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.). Processed. The mass% of the nonvolatile content was 9.98% by mass. The weight average molecular weight of the copolymer binder was 56000.

(合成例10)
合成例10では、アクリル酸トリエチルアミン(Triethylamine)塩/アクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、水酸化リチウム1水和物(和光純薬社製)の代わりにトリエチルアミン27.2g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は16.90質量%であった。共重合体バインダの重量平均分子量は56000であった。
(Synthesis Example 10)
In Synthesis Example 10, a copolymer binder of triethylamine acrylate salt / acrylonitrile = 70/30% by mass was synthesized. Specifically, the same treatment as in Synthesis Example 1 was performed except that 27.2 g of triethylamine (1.0 equivalent to acrylic acid) was added instead of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.). went. The mass% of the non-volatile content was 16.90 mass%. The weight average molecular weight of the copolymer binder was 56000.

(合成例11)
合成例11では、アクリル酸トリエタノールアミン(Triethanolamine)塩/アクリロニトリル=70/30質量%の共重合体バインダを合成した。具体的には、水酸化リチウム1水和物(和光純薬社製)の代わりにトリエタノールアミン40.2g(アクリル酸に対して1.0当量)加えた以外は全て合成例1と同様の処理を行った。不揮発分の質量%は19.97質量%であった。共重合体バインダの重量平均分子量は56000であった。
(Synthesis Example 11)
In Synthesis Example 11, a copolymer binder of triethanolamine acrylate salt / acrylonitrile = 70/30% by mass was synthesized. Specifically, the same as Synthesis Example 1 except that 40.2 g of triethanolamine (1.0 equivalent to acrylic acid) was added instead of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.). Processed. The mass% of the non-volatile content was 19.97 mass%. The weight average molecular weight of the copolymer binder was 56000.

(合成例12(比較例))
合成例12では、ポリアクリル酸リチウムバインダを調製した。具体的には、ポリアクリル酸(Aldrich社製、MW450000)27.7gを水270gに溶解させ、水酸化リチウム1水和物(和光純薬社製)を16.1g(アクリル酸に対して1.0当量)加えて完全に溶解するまで撹拌した。不揮発分の質量%は9.97質量%であった。合成例1〜12の結果を表1にまとめて示す。
(Synthesis Example 12 (Comparative Example))
In Synthesis Example 12, a polyacrylic acid lithium binder was prepared. Specifically, 27.7 g of polyacrylic acid (manufactured by Aldrich, MW 450,000) is dissolved in 270 g of water, and 16.1 g of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (1 with respect to acrylic acid). 0.0 equivalents) and stirred until completely dissolved. The mass% of non-volatile content was 9.97 mass%. The results of Synthesis Examples 1 to 12 are summarized in Table 1.

Figure 0006412689
Figure 0006412689

(負極用スラリー作製例1)
まず、以下の処理によりケイ素系活物質(ケイ素系合金)を作製した。ここでケイ素合金の作製は、特許公開2001−297757記載の手法を参考に、ガスアトマイズ(GAS ATOMIZING)法を用いて行った。具体的には、Si粉末60質量%、Ti粉末20質量%、及びNi粉末20質量%をアルゴン雰囲気中で高周波溶解することで溶湯を形成した。ついで、この溶湯をタンディッシュ(Tundish)に注湯し、タンディッシュの底部に設けた細孔を通して溶湯細流を形成した。そして、この溶湯細流に高圧のアルゴンガス(argon gas)を噴霧することで、溶湯を粉末化した。この粉末がケイ素系合金となる。冷却速度は、同じ条件で凝固させたアルミニウム−4質量%銅合金のデンドライト(DENDRITE)の二次アーム(arm)間の距離の測定により、103〜105℃/secであった。すなわち、100℃/secより十分に速い冷却速度であった。なお、熱処理は行わなかった。ついで、ケイ素系活物質45.5質量%、人造黒鉛45.5質量%、CNT0.3質量%、アセチレンブラック2.7質量%、合成例1のアクリル酸リチウム/アクリロニトリル=70/30質量%の共重合体バインダ6質量%を混合し、更に粘度調整のために水を加えて負極合剤スラリーを作製した。なお、負極合剤スラリー中の不揮発分は45質量%であった。不揮発分の測定方法は合成例1で述べた方法と同様とした。
(Negative electrode slurry preparation example 1)
First, a silicon-based active material (silicon-based alloy) was produced by the following treatment. Here, the production of the silicon alloy was performed using a gas atomization (GAS ATOMIZING) method with reference to the method described in Japanese Patent Publication No. 2001-297757. Specifically, a molten metal was formed by high-frequency melting 60 mass% of Si powder, 20 mass% of Ti powder, and 20 mass% of Ni powder in an argon atmosphere. Next, this molten metal was poured into a tundish and a trickle of molten metal was formed through the pores provided at the bottom of the tundish. The molten metal was pulverized by spraying high pressure argon gas onto the molten metal stream. This powder becomes a silicon-based alloy. The cooling rate was 103-105 ° C./sec as measured by measuring the distance between the secondary arms (arm) of dendrites of aluminum-4 mass% copper alloy solidified under the same conditions. That is, the cooling rate was sufficiently faster than 100 ° C./sec. No heat treatment was performed. Next, 45.5% by mass of the silicon-based active material, 45.5% by mass of artificial graphite, 0.3% by mass of CNT, 2.7% by mass of acetylene black, lithium acrylate / acrylonitrile of Synthesis Example 1 = 70/30% by mass 6% by mass of a copolymer binder was mixed, and water was further added to adjust the viscosity to prepare a negative electrode mixture slurry. In addition, the non volatile matter in a negative mix slurry was 45 mass%. The method for measuring the nonvolatile content was the same as the method described in Synthesis Example 1.

(負極作製例1)
次いで、乾燥後の合剤塗布量(面密度)が4.5mg/cmになるようにバーコータ(Bar coater)のギャップ(gap)を調整し、このバーコータにより負極合剤スラリーを銅箔(集電体,10μm)へ均一に塗布した。次いで、負極合剤スラリーを80℃に設定した送風型乾燥機で15分乾燥した。ついで、乾燥後の負極合剤をロールプレス(roll press)機により合剤密度が1.53g/cmとなるようにプレスした。ついで、負極合剤を150℃で6時間真空乾燥する(すなわち、負極活物質用バインダを熱硬化させる)ことで、負極集電体と負極活物質層とからなるシート(Sheet)状の負極を作製した。
(Negative electrode production example 1)
Next, the gap (gap) of the bar coater (gap) is adjusted so that the coating amount (area density) after drying is 4.5 mg / cm 2, and the negative electrode mixture slurry is copper foil (collected) with this bar coater. (Electric body, 10 μm). Next, the negative electrode mixture slurry was dried for 15 minutes by a blow type dryer set at 80 ° C. Next, the dried negative electrode mixture was pressed by a roll press machine so that the mixture density was 1.53 g / cm 3 . Next, the negative electrode mixture is vacuum-dried at 150 ° C. for 6 hours (that is, the negative electrode active material binder is thermally cured), whereby a sheet-shaped negative electrode including a negative electrode current collector and a negative electrode active material layer is formed. Produced.

(負極用スラリー作製例2〜14及び負極作製例2〜14)
バインダ及び導電助剤を表2に示したものに変えた以外は全て負極用スラリー作製例1及び負極作製例1と同様の処理を行った。
(Negative electrode slurry preparation examples 2-14 and negative electrode preparation examples 2-14)
Except for changing the binder and the conductive aid to those shown in Table 2, the same treatment as in Slurry Preparation Example 1 for Negative Electrode and Preparation Example 1 for Negative Electrode was performed.

(ピール(peel)強度(密着性)評価)
各負極作製例1〜14で作製した負極を幅25mm、長さ100mmの短冊状に切り出した。ついで、両面テープ(tape)を用いてガラス(glass)板に活物質面を被着面として張り合わせ、ピール強度試験用サンプル(sample)とした。剥離試験機((株)島津製作所社製SHIMAZU EZ−S)にピール強度試験用サンプルを装着し、180度ピールに於けるピール強度を測定した。結果をまとめて表2に示す。
(Peel strength (adhesion) evaluation)
The negative electrodes produced in each of the negative electrode production examples 1 to 14 were cut into strips having a width of 25 mm and a length of 100 mm. Then, using a double-sided tape, the active material surface was bonded to a glass plate as the adherend surface to obtain a sample for peel strength test. A peel strength test sample was attached to a peel tester (SHIMAZU EZ-S manufactured by Shimadzu Corporation), and the peel strength at 180 ° peel was measured. The results are summarized in Table 2.

Figure 0006412689
Figure 0006412689

表2に示される通り、負極作製例1〜13は、本実施形態に係る負極合剤スラリー(水系スラリー)を用いているので、本実施形態の実施例に相当する。負極作製例14は比較例に相当する。   As shown in Table 2, since the negative electrode preparation examples 1 to 13 use the negative electrode mixture slurry (aqueous slurry) according to this embodiment, they correspond to the examples of this embodiment. Anode preparation example 14 corresponds to a comparative example.

(セル作製例1)
まず正極を作製した。固溶体酸化物Li1.20Mn0.55Co0.10Ni0.1596質量部(質量%)、ケッチェンブラック2質量部、ポリフッ化ビニリデン(PVDF)2質量部をN−メチル−2−ピロリドン(N−methyl−2− pyrrolidone)に分散させることで、スラリーを形成した。次いで、乾燥後の合剤塗布量(面密度)が14.7mg/cmになるようにスラリーを集電体であるアルミニウム集電箔上に塗工し、乾燥させることで、正極活物質層を形成した。次いで、プレス機により正極活物質層をプレスすることで、正極活物質層の合材密度を3.0g/cmとした。これを直径1.3cmに切断し正極を作製した。
(Cell production example 1)
First, a positive electrode was produced. 96 parts by mass (mass%) of solid solution oxide Li 1.20 Mn 0.55 Co 0.10 Ni 0.15 O 2, 2 parts by mass of ketjen black, 2 parts by mass of polyvinylidene fluoride (PVDF) were added to N-methyl- A slurry was formed by dispersing in 2-pyrrolidone (N-methyl-2-pyrrolidone). Next, the positive electrode active material layer is formed by coating the slurry on an aluminum current collector foil, which is a current collector, so that the coating amount (area density) after drying is 14.7 mg / cm 2 and drying. Formed. Next, the positive electrode active material layer was pressed by a press machine, so that the mixture density of the positive electrode active material layer was 3.0 g / cm 3 . This was cut into a diameter of 1.3 cm to produce a positive electrode.

次に、負極作製例1で作製された負極を直径1.55cmの円形に切断した。ついで、直径2.0cmのステンレス(stainless)製コイン(coin)外装容器内で、先に作製した直径1.3cmの正極、直径1.6cmの円形に切断した厚さ25μmのポリエチレン(polyethyrene)微多孔膜からなるセパレータ(separator)、直径1.55cmの円形に切断した負極、さらにスペーサー(spacer)として直径1.5cmの円形に切断した厚さ200μmの銅箔をこの順番に重ね合わせた。ついで、容器に電解液(1.5MのLiPF エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/フルオロエチレンカーボネート(FEC)=10/70/20混合溶液(体積比))を溢れない程度に数滴垂らした。ついで、ポリプロピレン製のパッキンを介して、ステンレス製のキャップ(cap)を容器に被せ、コイン電池作製用のかしめ器で容器を密封した。これにより、セル作製例1に係るリチウムイオン二次電池を作製した。 Next, the negative electrode produced in the negative electrode production example 1 was cut into a circle having a diameter of 1.55 cm. Then, in a stainless steel coin outer container having a diameter of 2.0 cm, a positive electrode having a diameter of 1.3 cm and a polyethylene microfiber having a thickness of 25 μm cut into a circle having a diameter of 1.6 cm are prepared. A separator made of a porous film, a negative electrode cut into a circle having a diameter of 1.55 cm, and a copper foil having a thickness of 200 μm cut into a circle having a diameter of 1.5 cm as a spacer were stacked in this order. Next, the container is filled with electrolyte (1.5M LiPF 6 ethylene carbonate (EC) / diethyl carbonate (DEC) / fluoroethylene carbonate (FEC) = 10/70/20 mixed solution (volume ratio)) so that it does not overflow. Dripping. Next, a stainless steel cap was placed on the container via a polypropylene packing, and the container was sealed with a caulking device for producing a coin battery. Thereby, a lithium ion secondary battery according to Cell Production Example 1 was produced.

(セル作製例2〜14)
負極作製例2〜14に係る負極を使用した以外は全てセル作製例1と同様の処理を行うことで、セル作製例2〜14に係るリチウムイオン二次電池を作製した。
(Cell production examples 2 to 14)
Lithium ion secondary batteries according to Cell Preparation Examples 2-14 were manufactured by performing the same treatment as in Cell Preparation Example 1 except that the negative electrodes according to Negative Electrode Preparation Examples 2-14 were used.

(サイクル寿命の評価)
各実施例及び比較例に係るリチウムイオン二次電池を25℃で0.2Cの容量の定電流−定電圧で充電したのち、1.0Cの定電流で0.01Cまで放電する充放電サイクルを300回繰り返した。一方、1サイクル後の放電容量と300サイクル後の放電容量を測定した。放電容量の測定は、TOSCAT3000 東洋システム株式会社により行われた。
(Evaluation of cycle life)
After charging the lithium ion secondary battery according to each Example and Comparative Example at a constant current-constant voltage with a capacity of 0.2 C at 25 ° C., a charge / discharge cycle for discharging to 0.01 C with a constant current of 1.0 C Repeated 300 times. On the other hand, the discharge capacity after 1 cycle and the discharge capacity after 300 cycles were measured. The measurement of the discharge capacity was performed by TOSCAT3000 Toyo System Corporation.

ついで、300サイクル後の放電容量を1サイクル後の放電容量で除することで、放電容量維持率(百分率)を算出した。容量維持率が大きいほどサイクル寿命が良いことを示す。評価結果をまとめて表3に示す。   Next, the discharge capacity retention rate (percentage) was calculated by dividing the discharge capacity after 300 cycles by the discharge capacity after 1 cycle. The larger the capacity retention rate, the better the cycle life. The evaluation results are summarized in Table 3.

Figure 0006412689
Figure 0006412689

セル作製例1〜13は負極作製例1〜13(実施例)に係る負極を使用しているので本実施形態の実施例に相当する。セル作製例14は負極作製例14(比較例)に係る負極を使用しているので比較例に相当する。   Since the cell preparation examples 1 to 13 use the negative electrodes according to the negative electrode preparation examples 1 to 13 (examples), they correspond to the examples of this embodiment. Since cell preparation example 14 uses the negative electrode according to negative electrode preparation example 14 (comparative example), it corresponds to a comparative example.

表1〜3から分かる通り、本実施形態に係る負極合剤スラリーを用いて作製した電極は、高いピール強度およびサイクル寿命を実現していることがわかる。特に、共重合体中のアクリロニトリルまたはアクリロニトリル誘導体の含有率を20〜30質量%とすることで、ピール強度及びサイクル寿命が飛躍的に向上することがわかる。   As can be seen from Tables 1 to 3, it can be seen that the electrode produced using the negative electrode mixture slurry according to the present embodiment achieves high peel strength and cycle life. In particular, it can be seen that when the content of acrylonitrile or acrylonitrile derivative in the copolymer is 20 to 30% by mass, the peel strength and the cycle life are dramatically improved.

(実施例2:スズ系活物質+共重合体バインダ)
上記の実施例1のケイ素系活物質をスズ系活物質(SnO)に変えたほかは実施例1と同様の処理を行った。この結果、実施例1とほぼ同様の結果が得られた。
(Example 2: Tin-based active material + copolymer binder)
The same treatment as in Example 1 was performed except that the silicon-based active material in Example 1 was changed to a tin-based active material (SnO 2 ). As a result, almost the same result as in Example 1 was obtained.

以上により、本実施形態によれば、負極合剤スラリーにアクリル酸またはアクリル酸誘導体の塩と、アクリロニトリルまたはアクリロニトリル誘導体との共重合体を含める。この共重合体は、ケイ素系活物質及びスズ系活物質の膨張収縮に追従することができる。したがって、ケイ素系活物質及びスズ系活物質の膨張収縮による電極層の脱落を抑えることができる。この結果、サイクル寿命が向上する。   As described above, according to the present embodiment, the negative electrode mixture slurry includes a copolymer of acrylic acid or a salt of an acrylic acid derivative and acrylonitrile or an acrylonitrile derivative. This copolymer can follow the expansion and contraction of the silicon-based active material and the tin-based active material. Therefore, the electrode layer can be prevented from falling off due to expansion and contraction of the silicon-based active material and the tin-based active material. As a result, the cycle life is improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 リチウムイオン二次電池
20 正極
21 集電体
22 正極活物質層
30 負極
31 集電体
32 負極活物質層
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Positive electrode 21 Current collector 22 Positive electrode active material layer 30 Negative electrode 31 Current collector 32 Negative electrode active material layer

Claims (6)

炭素系活物質と、
ケイ素系活物質及びスズ系活物質のうち少なくとも一方を含む金属系活物質と、
アクリル酸またはアクリル酸誘導体の塩と、アクリロニトリルまたはアクリロニトリル誘導体とからなる共重合体と、を含み、
前記アクリル酸またはアクリル酸誘導体の塩は、前記アクリル酸またはアクリル酸誘導体のナトリウム塩、アンモニウム塩、及びアミン塩からなる群から選択されるいずれか1種以上であり、
前記アクリロニトリルまたはアクリロニトリル誘導体は、前記共重合体の総質量に対して10〜50質量%で前記共重合体に含まれる、リチウムイオン二次電池負極用水系スラリー。
A carbon-based active material,
A metal-based active material containing at least one of a silicon-based active material and a tin-based active material;
Includes a salt of acrylic acid or acrylic acid derivative, a copolymer comprising acrylonitrile or acrylonitrile derivative, and,
The salt of acrylic acid or acrylic acid derivative is any one or more selected from the group consisting of sodium salt, ammonium salt, and amine salt of acrylic acid or acrylic acid derivative,
The acrylonitrile or the acrylonitrile derivative is an aqueous slurry for a negative electrode of a lithium ion secondary battery that is contained in the copolymer at 10 to 50% by mass with respect to the total mass of the copolymer.
前記アクリル酸誘導体は、メタクリル酸を含むことを特徴とする、請求項1記載のリチウムイオン二次電池負極用水系スラリー。   The aqueous slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the acrylic acid derivative contains methacrylic acid. 前記アクリロニトリル誘導体は、メタクリロニトリルを含むことを特徴とする、請求項1または2記載のリチウムイオン二次電池負極用水系スラリー。   3. The aqueous slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the acrylonitrile derivative contains methacrylonitrile. 4. アセチレンブラック、ケッチェンブラック、カーボンナノチューブからなる群から選択されるいずれか1種以上を含む導電助剤を含むことを特徴とする、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池負極用水系スラリー。   The lithium ion secondary material according to any one of claims 1 to 3, further comprising a conductive additive containing at least one selected from the group consisting of acetylene black, ketjen black, and carbon nanotubes. Aqueous slurry for secondary battery negative electrode. 請求項1〜4のいずれか1項に記載のリチウムイオン二次電池負極用水系スラリーを用いて作製されることを特徴とする、リチウムイオン二次電池用負極活物質層。   A negative electrode active material layer for a lithium ion secondary battery, produced using the aqueous slurry for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 4. 請求項5記載のリチウムイオン二次電池用負極活物質層を含むことを特徴とする、リチウムイオン二次電池。

A lithium ion secondary battery comprising the negative electrode active material layer for a lithium ion secondary battery according to claim 5.

JP2013254294A 2013-12-09 2013-12-09 Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery Active JP6412689B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013254294A JP6412689B2 (en) 2013-12-09 2013-12-09 Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery
KR1020140143467A KR102317780B1 (en) 2013-12-09 2014-10-22 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
KR1020210140344A KR102425511B1 (en) 2013-12-09 2021-10-20 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254294A JP6412689B2 (en) 2013-12-09 2013-12-09 Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015115109A JP2015115109A (en) 2015-06-22
JP6412689B2 true JP6412689B2 (en) 2018-10-24

Family

ID=53515178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254294A Active JP6412689B2 (en) 2013-12-09 2013-12-09 Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6412689B2 (en)
KR (2) KR102317780B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575133B2 (en) 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
US11824196B2 (en) 2020-10-14 2023-11-21 Samsung Sdi Co., Ltd. Negative electrode slurry, negative electrode, and rechargeable battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995374B1 (en) 2015-12-24 2019-07-03 주식회사 엘지화학 Binder suspension composition, method for preparing electrode for secondary battery using the same, and electrode for secondary battery prepared thereby
JP7041399B2 (en) * 2017-02-03 2022-03-24 富士フイルム和光純薬株式会社 Binder composition for lithium batteries
EP3579312B1 (en) * 2017-02-03 2022-07-27 FUJIFILM Wako Pure Chemical Corporation Use of a binder agent composition for lithium battery, slurry composition for lithium batteries comprising the binder composition, and electrode using the binder composition
KR102244907B1 (en) * 2017-10-16 2021-04-26 주식회사 엘지화학 Binder, Electrode Comprising the Same and Lithium-Surfur Battery
JP7192223B2 (en) * 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices
JP7192224B2 (en) * 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices
JP6888656B2 (en) 2018-09-07 2021-06-16 荒川化学工業株式会社 Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode and its manufacturing method, lithium ion battery electrode, and lithium ion battery
JP7283137B2 (en) * 2019-03-06 2023-05-30 株式会社レゾナック Electrode binders, electrode mixtures, energy device electrodes and energy devices
JP7461110B2 (en) * 2019-04-26 2024-04-03 三星エスディアイ株式会社 Binder composition for non-aqueous electrolyte secondary battery, slurry for negative electrode of secondary battery, negative electrode for secondary battery, and secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136946B2 (en) * 2006-04-07 2013-02-06 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device
JP2010518581A (en) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー ELECTRODE CONTAINING NOVEL BINDING AGENT AND METHOD FOR PRODUCING AND USING THE SAME
KR101041829B1 (en) * 2008-04-16 2011-06-17 주식회사 엘지화학 Anode material including polyacrylonitrile-acrylic acid, and binder, manufacture of the same and rechargeable lithium battery comprising the same
WO2012026462A1 (en) * 2010-08-24 2012-03-01 日本ゼオン株式会社 Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode
JP5803070B2 (en) * 2010-08-31 2015-11-04 日立化成株式会社 Binder resin composition, electrode for energy device and energy device
JP5682276B2 (en) * 2010-12-10 2015-03-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5691469B2 (en) * 2010-12-10 2015-04-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN103384932A (en) * 2011-02-23 2013-11-06 日本瑞翁株式会社 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
KR101201804B1 (en) * 2011-04-21 2012-11-15 삼성에스디아이 주식회사 Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2013146548A1 (en) * 2012-03-26 2013-10-03 日本ゼオン株式会社 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575133B2 (en) 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
US11824196B2 (en) 2020-10-14 2023-11-21 Samsung Sdi Co., Ltd. Negative electrode slurry, negative electrode, and rechargeable battery

Also Published As

Publication number Publication date
KR20210131934A (en) 2021-11-03
KR20150067016A (en) 2015-06-17
KR102317780B1 (en) 2021-10-25
JP2015115109A (en) 2015-06-22
KR102425511B1 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
JP6412689B2 (en) Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery
JP6226355B2 (en) Binder for lithium ion secondary battery, negative electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
JP5226128B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6813350B2 (en) Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
US10050246B2 (en) Binder for rechargeable battery, separator for rechargeable battery including same, and rechargeable battery including same
JP6595176B2 (en) Lithium ion secondary battery
JP2016126856A (en) Binder for secondary battery, separator for secondary battery, and secondary battery
JP6304746B2 (en) Lithium ion secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6673818B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
JP6081262B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5052145B2 (en) Method for producing lithium ion secondary battery
JP7378581B2 (en) Lithium-sulfur secondary battery capsule and lithium-sulfur secondary battery containing the same
JP2019061826A (en) Lithium ion secondary battery
JP7068851B2 (en) Lithium ion secondary battery
JPWO2019065288A1 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP6931986B2 (en) Negative electrode for secondary battery and secondary battery
JP6467322B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP6699267B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2014146518A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6412689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211102

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250